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1. Two entire functions f(z) and g{z) are said to be permutable if
they satisfy the relation

for any finite complex number z. The permutability of entire functions
which we are to consider is determining permutable functions of entire
functions. As far as the present authors know, there are several papers
that discuss this subject (see [8] and [5]) and contain some good ideas
which are used in the proof of results.

T. Kobayashi [5] proved the following:

THEOREM A. Let f{z) = z + Ceaz, where a and C are constants with
aC Φ 0. Let g{z) be a non-constant entire function of finite order which
is permutable with f{z). Then either g(z) = f(z) + D or g(z) = z + D,
where D is a constant with exp(αD) = 1.

The method he used in the proof of Theorem A is very complicated
and not suitable in generalizing Theorem A. The purpose of this paper
is to decide permutable functions of a class of entire functions satisfying
certain differential equation and to indicate an elementary and simple
method by which we can generalize Theorem A.

We assume that the reader is familiar with the fundamental concepts
in Nevanlinna's theory of meromorphic functions, in particular, with
symbols m{r, /) , T(r, /) and M(r, f) etc. (see [4]).

2. First we state the results of this paper.

THEOREM 1. Let f(z) and g{z) be both mutually permutable entire
functions of finite order and f(z) of positive lower order. Let Pt(z)
{i = 0, 1, , n + 1, with n^l) be polynomials not all zero. If f(z)
satisfies a differential equation

(1) P0(s)/(n)(s) + + P.GO/GO + P,+ι(«) = 0 ,

then there exist polynomials Q0(z), , Qn+1(z) not all zero such that
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Qo(z)g{n)(z) + . . . + Qn(z)g(z) + Qn+1(z) = 0 .

THEOREM 2. Let f(z) be an entire function of positive lower order
and g{z) an entire function of finite order, permutable with f(z). Then
the order, lower order, and type-class of g(z) do not exceed ones of f(z),
respectively.

The following theorems are the main results of this paper and reveal
the advantage of our method.

THEOREM 3. Let / = Q + Hep, where Q and H (=£0) are polynomials
and P is a non-constant polynomial. Let g be a non-linear entire func-
tion of finite order, permutable with f. Then g = Cf + D, where Cn = 1,
D = a^C — l)/(nan), n = deg P, an and an_x are coefficients of the first
and second terms of P, respectively.

THEOREM 4. Let f{z) = sin P(z), where P{z) is a non-constant poly-
nomial. Let g{z) be an entire function of finite order, permutable with
f{z) and non-linear, (i) If f{z) is an odd function, then g(z) = f(z) or
g(z) = —/(«); (ϋ) if f{z) is not an odd function, then when d e g P = 1,
we have g(z) = f(z), while when deg P > 1, either g{z) = f(z) or g(z) —
—sm(P(z) — c), where c satisfies exp(mc) = ( — l)π +\ n = deg P and
P(sin(-z + c)) = -P(sin z) + c.

We need the following lemmas for the proof of the above theorems.

LEMMA 1 (cf. [3]). Let F0(z), •••, Fm(z) be entire functions not van-
ishing identically and ho(z), •••, hm(z) (m ̂  1) be arbitrary meromorphic
functions not all zero. Let g{z) be a non-constant entire function, K a
positive real number and {r,} an unbounded monotone increasing sequence
of positive real numbers such that, for each j ,

T(rh ht) ^ KT{rά, g) « = 0,1, • •, m) f

T(rjf g') ^ (1 + o(l))Γ(rΛ g) .

If Fi(z) and ht(z) (i = 0, 1, , m) satisfy

F0(g)h0 + FMK + + Fm(g)hm = 0 ,

then there exist polynomials P0(z), •••, Pm(z) not all zero such that

F0(z)P0(z) + F^P^z) + • + Fm(z)Pm(z) = 0 .

LEMMA 2 (cf. [7]). Let P(z) and Q(z) be polynomials of degree greater
than one. If the equation
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admits a meromorphic solution f(z), then deg P = deg Q and the solution
f(z) is not transcendental.

L E M M A 3 (BoreΓs t h e o r e m [2]). Let Fλ{z), •••, Fm{z) be entire func-
tions such that Fi(z) — Fά(z) is non-constant for i Φ j . Let h^z), , hm(z)
be meromorphic functions of finite order such that

p(ht) < min{p(exv(F8 - Ft)); s, t = 1, , m, s Φ t}

(i = 1, , m), where ρ(h^) denotes the order of ht. If

U*)exv(Fi(*)) + + hm(z)exv(Fm(z)) = 0 ,

then hλ(z) = = few(z) = 0.

3 We state the proof of the above theorems.

PROOF OF THEOREM 1. Since f(g) = g{f) by Polya's theorem (cf. [6]),
we have

M(M(r, /), g) ^ M(r, g{f)) = M(r, f(g)) > M(cM(r/2, g), f) ,

where c is a positive constant between zero and one. Since g is of finite
order and / of positive lower order, there exist positive Kt and K2 such that

K, log M(r, f) > log log M(cM(r/2, g), f) > K2 log M(r/2, g) ^ K2T(r/2, g) .

By [4, Theorem 1.6], for each positive number r and any real number R >r ,
we get Iog+M(r, / ) < (R + r)(R - rΓTCR, / ) . Thus Iog+M(r, /) < 3Γ(2r, / ) .
Hence we easily obtain

(2) T(r, g) < KBT(±r, f) ,

for a positive number K5.
Since / is of finite order, there exists Polya's peak {r, } (cf. [1]) of/.

Namely there exist three sequence {r)}> {r"}9 {εj} satisfying r)—>+°°,
Tjlr) —> + oo, r'/lrj -> + °o, $j -> 0 (i -> + °°) and when rJ ^ ί ^ r/,

(3) Tit, / ) < (1 + ey) (t/rj)^ T(r,, /) .

By the condition p(f) < + °°, we have

m(r, Γk)/f) = O(logr) (fc = 1, 2, • •) (cf. [4]) .

Hence

(4) Γ(r, / ( W) ^ m(r, /(fc)//) + m(r, /)

= O(logr) + Γ(r, /) ^ (1 + o(l))Γ(r, /) (fc = 1, 2, .. •) .

Combining (2) and (3), we get

(5) T(rh g™) ^ (1 + o(l))Γ(r,, g)
< 2KzT(4rjf f) < 2KAp{/)T(rif f) (k = 1, 2, . . .) ,
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since p(g) < + °°.
Differentiating both sides of the equality f(g) — g(f) step by step,

we have

/W = ff W ,
f"{g)g'2 + / W = g"{f)fn

Γn\g)g'n + /^W-V' + + /'
- <7U )(/)/'* + flf^ί/)/'-1/" + + 0 ' ( )

Consequently,

/'(</) = {fΊg'Wif),

( 6 } /"to) = {fΊgJg'\f) + (/" - g"f'lg')g\f),

/(TO)(^) = (f'/g')ng{n)(f) + .

We can rewrite (1) as

(7) Po(g)fM(g) + + Pn(fl0/(fl0 + Pn+i(ff) = o .

Substituting each equality in (6) into (7), we have

hog
M(f) + + M i / ) + fc»+i = 0 ,

where all of h09 hlf , hn+1 are the differential polynomials in z, /, /', ,
/ ( n ), 0, #', , g{n)- Therefore by the above discussion, we can find out a
positive number A such that

T(ri9 h<) < AT(ri9 f) (ΐ = 0, 1, , n + 1) ,

T(r3, f) ^ (1 + o(l))Γ(rif /) .

Thus by Lemma 1, we complete the proof of Theorem 1.

REMARK. Fromt he proof of Theorem 1, it is clear that Theorem 2
holds.

PROOF OF THEOREM 3. From the expression of f(z)9 we easily get

(8) Hf - {Hf + HP')f - HQ' - Q(H' + HP') = A(z) (say) .

By Theorem 1, there exist three polynomials Q09 Qu Q2 not all zero such
that

(9) QJ - Qj = Qt .

By Lemma 2, we have Qo ̂  0 and Q1 & 0, unless g is a linear function.
From (8) and (9), we have
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Qlf)g\f) - Q1(f)g(f) = <&/),

H(g)f'(g) - (H'(g) + H(g)P'(g))f(g) = A(g) ,

f(g) = g(f), f\g)g' = </'(/)/' .

By simple calculation, we have

[H(g)Q1(f)f - Q0(f)(H'(g) + H{g)P'(g))g']f(g)

= -H(g)Q2(f)f + Q0(f)A(g)g' .

Therefore by Lemma 3 we have

(10) mf)/Qo(f))Γ = KH'(g) + H{g)P\g))IH(g)\g' .

We separately treat two cases.
(I) The case where H is not a constant. Clearly (ZΓ + HPf)jH is

not a polynomial. By (9), for any finite complex number u, g — u has
at most finitely many multiple zeros. In fact, if Q2 + uQx & 0, the result
clearly holds; if Q2 + uQx = 0, g — u has at most finitely many zeros. We
may assume without loss of generality that g can take any finite complex
number. In fact, suppose that g = cx + ex, where cλ is a constant and
X is a polynomial. By Theorem 2, degX is not greater than degP. We
easily get / = ct + c2(z — cλ)

m exp P, for some constant c2 and non-negative
integer m. Thus it follows from f{g) — g(f) that

exp(X(/)) = c2 exp(mX + P(g)) , and X(f) = mX + c3 + P(g) ,

where c3 is a constant. By Lemma 3, we easily obtain m = 0 and
(X — c3)(/) = P(g). This is a special case of the following discussion.

Therefore the functions of both sides of the equality (10) are mero-
morphic. Furthermore, QQ/(Q0, Qi) and Hj{Hr + HP', H) are not constant,
which we denote by F{z) and E(z), respectively, where (Qo, QJ denotes
the greatest common factor of Qo and Qx. From (10), we know that E(g)
and F(f) have zeros at the same points. By Theorem 2, p(g) ^ p(f).
f—u and g — u have at most finitely many multiple zeros for any com-
plex number u. Hence by (10) and the above discussion, we have

B(z)E(g) = C(z)F(f)ew^ ,

where B, C and W are polynomials and deg W ^ p(f). Obviously

B{f)E{f{g)) - C(f)F(f(f))exΏ(W(f)) ,

B{f)E{Q{g) + H(g)exv(P(g))) = C(f)F(Q(f) + H(/)exp(P(/)))exp(W(/)) .

By Lemma 3, we get without difficulty

P(g) = aP(f) + bW(f) + G(z) = (aP + bW)(f) + G(z) = L(f) + G (say) ,
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where a and b are constants, G(z) is a polynomial. Thus we obtain

P(Q(g) + flfor)θxp(P(flO)) = L(Q(/) + lϊ(/)exp(P(/))) + G(/) .

By Lemma 3 again, we have P{g) = dP(/> + S(«), where d is a constant
and S(z) a polynomial. We have d — 1 by the same method as in the
above. Then it follows that

(11) P(g) = P(/) + S ,

(110 P(Q(flO + H(g)exv(S + P(/))) = P(Q(/) + if(/)exp(P(/))) + S(/) .

Comparing the coefficients of the first and second terms of both sides
of the equality (11'), we see that Hn(g)exv(nS) = Hn(f) and

= nanQ(f)H-\f)

Therefore

(12)

c(nanQ{g) + ̂ . J = nanQ(f) + αn_! , namely ,

(13) Q(flf) = c^Qif) + aUl - c)/(τιcιnc) ,

where c is a constant with cn = 1. Combining (11), (12) and (13), we have

9(f) = /(ff) = Q(g) + H(flf)exp(P(flf))

= c^QC/) + c~Ή{f)e-s exp(P(/) + S) + 9 = c-/(/) + q ,

hence sf = c""1/ + g, where q = αn_x(l — c)/(nanc).
(II) The case where i ϊ is a constant. We may assume that H = 1.

From (10), we get immediately P(#) = L(/), where L is an integral of
(QJQo) By the same method as in (I), we may assume that / takes any
finite complex number. Thus it follows that L is a polynomial. There-
fore by the same method as in (I), we have the theorem.

PROOF OF THEOREM 4. Obviously, / satisfies the equation

(14) fn + p'ψ = p'z .

Since f\g)g' = g\f)f and f\g) = g\f), we have

{f'l9')29'\f) + P'\g)g\f) = P'Xg).

By the same method as in the proof of Theorem 1, we can find out
three polynomials Qo, Qlf Q2 not all zero such that

(15) QO0'2 + Qi92 = Q2 .

By Lemma 2, we have Qo ̂  0 and Qx =£ 0, unless g is a linear function.
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Hence from (14) and (15), we have

f'\g) + P'\g)f\g) = P'\g),

Qo(f)(g'/fΎΓ\g) + QU)f\g) = Q,(/).

Eliminating f'\g) from the above equalities, we have

Wi(/) - P'\g)Qo(f){g'lfΎVf\g) = Q,(/) - Pf\g)QU)(gΊfΎ .
Thus

P'\g)QM){gΊfΎ = Qi(/) = Q,(/).

Obviously, Qx = Q2

Put i? = (QJQo), which is a polynomial, since / takes any finite com-
plex number. Hence from (14), (15) and (16), we obtain P'\g)(l - g2)B =
£(/) ( l - / 2 ) P ' 2 , namely,

C(g)B = D(/)P' 2,

where C = P/2(2;)(l - z2) and D = B(z)(l - z2). Furthermore, we have
B(f)C(f(g)) = P'2(/)D(/(/)), namely,

B(f)C((exv(ίP(g)) - βxp(-iP(flf)))/(2i))

= P'2(/)ί)((exp(iP(/)) -

Then it follows from Lemma 3 that

(17) P(flO = dP(/) +

where G is a polynomial and d a constant. Hence we have immediately

P((exp(ίdP(/) + %G) - exp(-fdP(/) -

= dP((exp(iP(/)) - exp(-iP(/)))/(

By Lemma 3 again, cί = 1 or d = — 1; furthermore, when c£ = 1, exp(mG) = 1;
when d = — 1, exp(mG) = ( — l)n + 1; n = degP. Hence G is a constant.
From (17), we have

(18) P(sin(±w + G)) = ±P(sin w) + G .

Now we separately treat two cases.
(I) The case where P = az + 6, where both α (=£0) and 6 are con-

stants. From (17), we have g = ±f + c, where c = (G ± 6 — 6)/α. Since

g(f) = /(ff) = sin P(g) = ±sin(P(/) ± G) ,

we get g = ±sin(P(z) ± G) = ±sin P{z) + c, further, sin(z ± G) = sin z±c.
By Lemma 3, we have immediately c = 0. It follows that # = ±/.

When / is not an odd function, g Φ — f. Indeed, suppose that g = —/.
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We have - / ( / ) = </(/) = f(g) = / ( - / ) , namely, -/(*) = f{-z). This is
a contradiction.

(II) The case where d e g P > 1. We consider two subcases.
(1) The subcase where the equality (18) holds for the positive sign.

We are to prove that G = 0. Indeed, suppose that G Φ 0. By (18) we
get without difficulty

P(sin(mG))/(mG) = P(0)/(mG) + 1 .

As m-> +oo, the right side of the above equality converges to 1, but
since |exp(iG)| = 1, the left side converges to 0. This is a contradiction.
Thus we have G — 0. Therefore, we have g = /.

(2 ) The subcase where the equality (18) holds for the negative sign.
From (17), we have

9(f) = /(ff) = sin P(g) = -sin(P(/) - G) ,

namely, g = — sin(POs) — G).
When /is an odd function, by Lemma 3, we have P( — z) = — P(2)+2fcπ,

where k is an integer. Then it follows from (18) that P(sin(z — G)) =
P(sin z) + (2fcττ — G). Consequently,

P(0) - P(sin(G - G)) = P(sin(mG)) + m(2/cττ - G) .

By the same method as in the subcase (1), we can prove that G = 2Jcπ.
Thus we have g = —/.

Hence we complete the proof of the theorem.
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