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5-DIMENSIONAL CONTACT MANIFOLDS WITH SECOND
BETTI NUMBER b2 = 0
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Abstract. In this paper we improve some results of S. I. Goldberg ([3], [4]) in the 5-
dimensional case. As consequences we obtain:

(a) the sphere S5 is the only compact simply connected normal homogeneous
contact manifold of dimension 5 with b2 = Q;

(b) if a 5-dimensional compact simply connected regular Sasakian manifold is μ-
holomorphically pinched with μ> 1/2, then it is homeomorphic with a sphere.

1. Introduction. Recently Goldberg [4] has proved the following: Let M be a

compact simply-connected regular Sasakian ( = normal contact Riemannian) manifold

of dimension 2« + 1, «^2, with positive sectional curvature. Then M is homeomorphic

with a sphere.

Moreover the same author proved in [3] that, if in addition the scalar curvature r of

M is constant, then M is isometric to a sphere. These results of Goldberg are relative to
the problem posed in [2]. In this paper we improve these results in the 5-dimensional

case. Precisely we obtain:

THEOREM 1. Let M be a ^-dimensional simply-connected compact regular
Sasakian manifold with b2 = 0 and with scalar curvature r > — 4. Then M is homeomorphic

with a sphere.

THEOREM 2. Let M be a ^-dimensional simply-connected compact regular

Sasakian manifold with b2 = 0 and with scalar curvature r > — 4. Then M is isometric to a

sphere -S5; M is isometric to S5(l) of constant sectional curvature 1 when r = 20.

Note that all compact Sasakian manifolds with positive sectional curvature have
the second Betti number equal to zero (cf. [8], p. 41-5).

The same result as in Theorem 2 is obtained by replacing "Sasakian manifold" with

"^/-Einstein contact manifold" (see Theorem 3 in Section 4). Theorems 1 and 2 give the

following interesting consequences.

COROLLARY 1. A 5-dimensional compact simply-connected regular Sasakian man-
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ifold either of positive curvature or μ-holomorphically pinched with μ> 1/2, is homemor-
phic with a sphere.

COROLLARY 2. A ^-dimensional compact simply-connected normal homogeneous

contact manifold with b2 = 0 is, with respect to the invariant metric, isometric with a

sphere.

COROLLARY 3. A ^-dimensional compact simply-connected isotropy irreducible

homogeneous contact manifold with b2 = Q is, with respect to the invariant metric, isometric

to the sphere S5(\) of constant sectional curvature 1.

COROLLARY 4. A ^-dimensional compact simply -connected homogeneous contact

manifold either of positive curvature or μ-holomorphically pinched with μ>\/2 in the

invariant metric is isometric with a sphere.

REMARK. If the torsion part of the integral second homology group vanishes, the

condition on the regularity is not necessary in Corollary 1 (see Theorem 11.6 and

Corollary 1 1.9 of [13]). Corollary 4 extends Corollary 2 of [3] in the 5-dimensional case.

I wish to thank Professor S. I. Goldberg for several stimulating discussions on the

subject and the referee for his useful comments on the original manuscript.

2. Contact manifolds. A (2n+ l)-dimensional C00 manifold is said to have a

contact structure, and is called a contact manifold, if it carries a global 1-form η such

that η Λ (dη)n Φ 0 everywhere; η is denned up to a non-zero factor.

An almost contact structure (φ, X0, η) on a (2n+ l)-dimensional C°° manifold M is

given by a tensor field φ of type (1, 1), a vector field X0 called characteristic field, and a

1-form η on M such that

η(X0)=\, φ(X0) = 0 and φ

2=

where / is the identity transformation. If M has such a structure, it is called an almost

contact manifold. In this case, a Riemannian metric g can be found so that

) = -g(X,φY) and g(φX, φY) = g(X, Y)-η(X)η(Y)

for any vector fields X and Y on M. Such a metric is called an associated metric and is

however clearly not unique. The resulting structure (φ, X0, η, g) is then called an almost

contact metric structure. An almost contact metric structure (φ, X0, η, g) is called a

contact metric structure (or contact Riemannian structure) if g(X, φY) = dη(X, Y) for
any vector fields X, Y on M.

It has been shown by Sasaki that a contact manifold M with contact form η has an

underlying contact Riemannian structure (φ, XΌ, η, g). A contact metric structure
(φ, X0, η, g) is said to be K-contact if X0 is a Killing field with respect to g, while it is said
to be normal if the almost complex structure J on M x R defined by
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is integrable, where /is a real-valued function.
A normal contact Riemannian structure is called Sasakian structure. Naturally a

Sasakian structure is also of ^-contact. A contact structure η on a compact manifold M
is called regular if X0 is a regular vector field on M, that is, every point yeM has a
cubical coordinate neighborhood U such that the integral curves of X0 passing through
U pass through the neighborhood only once. In this case M is a principal circle bundle
over a sympletic manifold B whose fundamental 2-form Ω has integral periods and the
corresponding fibration p : M^B is known as the Boothby- Wang fibration of M (cf. [2]).

3. Proof of Theorem 1. Let (φ, X09 η, g) be the regular normal contact metric
structure on the 5-dimensional compact simply-connected manifold M. Then the base
manifold B of the Boothby- Wang fibration p : M^B is a compact Kaehlerian manifold
of complex dimension 2 and with complex structure J and Kaehler metric h defined by

dη=p*Ω

Ω(X, Y) = h(X, JY) for any vector fields X, Y on B .

Functions on B can be considered as functions on M in a natural way, i.e., i f / i s a
function on B we shall write/rather than/?*/when it is lifted to M. Locally, the Kaehler
metric h on B and the Riemann metric g on M are given by

A = Σ (w')2 and Q=Σ (^α)2

where w' are 1-forms defined on a small open set U of B, θ° = η and θl=p*wl. If we put
Ω = ΣΛX Λ WJ> the components ί̂<7 kh of the curvature tensor of 5 with respect to the
basis (wl) and the components RΛβyδ of the curvature tensor of M with respect to the
basis (0α) are related by (cf. Lemma 4 of [3]):

• D If /Λ Γ 7 i J J J J \
^ijkh — ̂ ijkh ~ \^J ijjkh " J ikjjh ~ J ihjjk) •>

(3.1) lΌfc°~ IΌ°*~ °ίk°~ °lΌk~ ίk

Rχβγδ = Q otherwise

. V α , j 8 , y , < 5 = 0, 1, - - - , 4 and V / , 7 , * : , A = 1 , •••,4.

Then, the components jRα^ and ̂  of the Ricci tensors S of M and S'ofB, are related by

Consequently the scalar curvatures r and r7 of M and B respectively, are related by

(3.3) r = r'-4.
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Moreover the second Betti numbers of M and B are related by (cf. [2], p. 733)

Therefore, the assumption b2(M) = Q implies b2(E)= 1.
Now if ( β 1 , β2) is a local field of unitary co frames on B, then the Ricci form y and

the scalar curvature rf are given respectively by

It is well-known that the first Chern class c^(B) of B is represented, in the de Rham
cohomology, by the Ricci form y. Moreover b2(B) = 1 implies that

(3.4) c1(B) = a[φ] for some real number a ,

where φ is the 2-form given by φ = (^J — \ / 8 π ) Σ β l Λ β*.

On the other hand, by a direct computation we find

,

Thus by integrating both sides of this equation, we obtain

(35)

where * is the Hodge star operator.
If we assume r> — 4, from (3.3)-(3.5), we deduce that B has positive first Chern

class. Then, using a classification theorem of Yau [14] for complex surfaces with positive

first Chern class, B is biholomorphic to CP1 x CP1 or to a surface obtained from CP2 by
blowing up k points, 0^£^8, in general position. Since b2(B)=\, B cannot be

biholomorphic to CP1 x CP1. On the other hand, by blowing up a point of CP2 the
second Betti number increases by one. Therefore b2(B)= 1 implies B is biholomorphic to

the complex project! ve space CP2. Consequently, from the homotopy sequences of the
fiberings

and S^M^B,

for all / > ! .

Since M is simply connected we see that it is of the same homotopy type as the 5-sphere.
Applying a result due to Smale [10] we conclude that M is homeomorphic with S5.

4. Proof of Theorem 2. Since 62(M) = 0, from Lemma 6 of [5] we have
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(4.1) l ^ l 2 - + 2 r ^ + --- rΛ;Y-20vol(Λf) = 0
J M \ 2 / 4vol(M)VJM /

where | S\ denotes the length of the Ricci tensor and dv the volume element. Because r =
const., (4.1) becomes

Γ / r2 \
(4.2) |S|2--- + 2r-20 A; = 0.

JM \ 4 /

Moreover, if we put E=S — (r/4 — l)g-(5-r/4)η®η, then

r2

(4.3) 1512--- + 2r-20 = |£|2^0

where the equality holds if and only if Mis ^-Einstein. From (4.1)-(4.3), we deduce that
M is f -Einstein (see also Corollary 5.7 of [12]).

If the scalar curvature r = 20, from (4.2) it follows that M is an Einstein manifold.
Then, from (3.2) and (3.3), (B, h) is a Kaehler-Einstein manifold with scalar curvature
r' = 24. Now, from the proof of Theorem 1, the base manifold B of the Boothby-Wang
fibration is biholomorphic with CP2. Thus we may consider the Fubini-Study metric h0

on B with constant holomorphic sectional curvature c = 4. Because A is a Kaehler-
Einstein metric and B is biholomorphic with CP2, a result of Berger (cf. for example [6],
p. 74) implies

(4.4) h = ah0 for some constant α>0.

Since (B, h) has scalar curvature r' = 24, from (4.4) we obtain α = l , i.e., (B, h) has
constant holomorphic sectional curvature c = 4. Thus formulas (3.1) imply that (M, g)
has constant sectional curvature 1. Finally the simple connectedness of M implies that it
is isometric with S5(l).

If r = const. > — 4, we put

'0=—X0, η' = aη
a

with a = (r + 4/24) = const. >0. Then, by Lemma 2.1 of [13], (φ', X'Q, η'9 g') is a regular
Sasakian structure on M; moreover by direct computation we see that the new metric g'
is an Einstein metric with scalar curvature equal to 20. As before (M, g') has constant

sectional curvature 1 and if (φ0, X09 η0, g0) denotes the standard Sasakian structure on
S5(l ), by Theorem 2 of [11] there is a diffeomorphism/: M-+S5 such that

f*g0=g', f*xfo=x0, f*η0=η', f*°φf = φ0°f*
Thus if we consider on S5 the following metric
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, 1 \-a

a £r

then

Therefore (M, g) is isometric to (S5, g'Q). This concludes the proof of Theorem 2.

Now, let (φ, X0, η, g) be a regular contact metric structure on a 5-dimensional

simply-connected compact manifold M. By a result of Hatakeyama (cf. [1], p. 70) we

may assume that (φ, X0, η, g) is a ^-contact structure. If this contact metric structure is

also ^-Einstein with scalar curvature r> — 4, then (cf. Prop. 5.4 of [12]) the base

manifold B of the Boothby-Wang fibration is an Einstein-almost Kaehler manifold

whose scalar curvature r' = r + 4>0. But, recently Sekigawa [9] proved that a 4-

dimensional compact Einstein-almost Kaehler manifold whose scalar curvature is
nonnegative is necessarily a Kaehler manifold. Then by a result of Hatakeyama (cf. [1],

p. 87), (φ, X0, η, g) is an ^/-Einstein Sasakian structure on M. So from Theorem 2 we

obtain:

THEOREM 3. A ^-dimensional compact simply connected regular K-contact η-

Eίnstein manifold with b2 = Q and scalar curvature r > — 4, is isometric with a sphere', M is

isometric to S5(\) when r = 20.

5. Proof of the corollaries. Let M be a 5-dimensional compact Sasakian

manifold.
If M has positive curvature, then r> — 4 and from Theorem 41.2 of [8] we have

b2 = 0. Now we assume that M is μ-holomorphically pinched with μ>l/2. Then by

Theorem 8.3 of [13] we have b2 = Q. Moreover r> -4, in fact by (38.12) and (38.7) of [8]

we have

where the sectional curvatures KΛβ relative to a φ-basis (eh eίt = φeh X0) satisfy (cf. (7.2)
and Prop. 6.2 of [13])

j

So Corollary 1 follows from Theorem 1.

A contact manifold M is called homogeneous if there is a connected Lie group G

which acts transitively and effectively on M as a group of diffeomorphisms and leaves

the contact form η invariant. If M is also compact and simply-connected, then the
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contact form is regular and M is a principal circle bundle over a homogeneous Kaehler

manifold B (cf. [2]). Moreover the curvature form of the connection is p*Ω = dη where

p: M-+B is the bundle projection map and Ω the fundamental 2-form of B. Hence the

contact metric structure is normal (cf. for example [1], pp. 86-87). Since M is compact

and simply-connected, then according to a theorem of Montgomery (cf. [2]) we may

suppose G to be compact. If K is the isotropy group of a point p0 in M, then M=G/K.

Let (X0, η, g) be a regular Sasakian structure of the homogeneous contact manifold
M=G/K, such that η and g are (/-invariant on M.

PROOF OF COROLLARY 2. The metric g on M generally comes from a left-
invariant Riemannian metric g on G. Now we assume that the metric g is a normal

homogeneous metric, i.e., it is induced by a bi-invariant metric g on G (cf. [15]). So from

Samelson's theorem [7], we obtain that the sectional curvatures are non-negative.
Moreover, since the metric g is invariant, its scalar curvature is a constant (non-

negative). Therefore Corollary 2 follows from Theorem 2.

PROOF OF COROLLARY 3. Assume that M=G/K is an isotropy irreducible

homogeneous space, i.e., the isotropy linear group K* acts irreducibly on Tpo(M). Then

M is an Einstein space in the invariant metric g. In fact if K* acts irreducibly on Γpo(M),

the Ricci tensor Spo and the metric gpo are proportional and hence S = λg. Since (M, g) is
a Sasakian-Einstein space with 62(M) = 0, the formula (4.2) becomes

JM

Therefore r = 2Q and consequently Corollary 3 follows from Theorem 2.

PROOF OF COROLLARY 4. By the proof of Corollary 1, we get b2(G/K) = Q and

r> -4. On the other hand r is constant because the metric is invariant. So Corollary 4
follows from Theorem 2.
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Added in proof. Combining Theorems 2, 3 of the paper [I. Hasegawa and M.
Seino, J. Hokkaido Univ. Ed. Sect. II A 32 (1981/82), No. 1, 1-7; MR 84 j : 53055] with
the Theorem 1 of our paper, we obtain the following new Theorem: If a 5-dimensional
complete simply-connected regular Sasakian manifold with vanishing contact Bochner
tensor is μ-holomorphically pinched with μ>0, then it is homeomorphic with a sphere.




