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Abstract. In this paper we improve some results of S. I. Goldberg ([3], [4]) in the 5-
dimensional case. As consequences we obtain:

(a) the sphere S° is the only compact simply connected normal homogeneous
contact manifold of dimension 5 with b,=0;

(b) if a 5S-dimensional compact simply connected regular Sasakian manifold is u-
holomorphically pinched with x> 1/2, then it is homeomorphic with a sphere.

1. Introduction. Recently Goldberg [4] has proved the following: Let M be a
compact simply-connected regular Sasakian (=normal contact Riemannian) manifold
of dimension 2n+ 1, n>2, with positive sectional curvature. Then M is homeomorphic
with a sphere.

Moreover the same author proved in [3] that, if in addition the scalar curvature r of
M is constant, then M is isometric to a sphere. These results of Goldberg are relative to
the problem posed in [2]. In this paper we improve these results in the 5-dimensional
case. Precisely we obtain:

THEOREM 1. Let M be a S5-dimensional simply-connected compact regular
Sasakian manifold with b, =0 and with scalar curvature r > — 4. Then M is homeomorphic
with a sphere.

THEOREM 2. Let M be a S5-dimensional simply-connected compact regular
Sasakian manifold with b, =0 and with scalar curvature r > —4. Then M is isometric to a
sphere S*; M is isometric to S°(1) of constant sectional curvature 1 when r=20.

Note that all compact Sasakian manifolds with positive sectional curvature have
the second Betti number equal to zero (cf. [8], p. 41-5).

The same result as in Theorem 2 is obtained by replacing ‘‘Sasakian manifold” with
“n-Einstein contact manifold” (see Theorem 3 in Section 4). Theorems 1 and 2 give the
following interesting consequences.

COROLLARY 1. A 5-dimensional compact simply-connected regular Sasakian man-
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ifold either of positive curvature or p-holomorphically pinched with p>1/2, is homemor-
phic with a sphere.

COROLLARY 2. A 5-dimensional compact simply-connected normal homogeneous
contact manifold with b,=0 is, with respect to the invariant metric, isometric with a
sphere.

COROLLARY 3. A 5-dimensional compact simply-connected isotropy irreducible
homogeneous contact manifold with b, =0 is, with respect to the invariant metric, isometric
to the sphere S°(1) of constant sectional curvature 1.

COROLLARY 4. A 5-dimensional compact simply-connected homogeneous contact
manifold either of positive curvature or p-holomorphically pinched with u>1/2 in the
invariant metric is isometric with a sphere.

REMARK. If the torsion part of the integral second homology group vanishes, the
condition on the regularity is not necessary in Corollary 1 (see Theorem 11.6 and
Corollary 11.9 of [13]). Corollary 4 extends Corollary 2 of [3] in the 5-dimensional case.

I wish to thank Professor S. I. Goldberg for several stimulating discussions on the
subject and the referee for his useful comments on the original manuscript.

2. Contact manifolds. A (2n+ 1)-dimensional C® manifold is said to have a
contact structure, and is called a contact manifold, if it carries a global 1-form # such
that n A (dn)"#0 everywhere; 7 is defined up to a non-zero factor.

An almost contact structure (@, X,, 1) on a (2n+ 1)-dimensional C* manifold M is
given by a tensor field ¢ of type (1, 1), a vector field X, called characteristic field, and a
1-form n on M such that

nX.)=1,  ¢(X)=0 and ¢’=—I+n(-)X,

where I is the identity transformation. If M has such a structure, it is called an almost
contact manifold. In this case, a Riemannian metric g can be found so that

n=9(X,, "), 9(eX, Y)=—g(X,9Y) and g(oX, oY)=g(X, Y)—n(X)n(Y)

for any vector fields X and Y on M. Such a metric is called an associated metric and is
however clearly not unique. The resulting structure (¢, X,, 1, g) is then called an almost
contact metric structure. An almost contact metric structure (¢, X, 1, g) is called a
contact metric structure (or contact Riemannian structure) if g(X, ¢ Y)=dn(X, Y) for
any vector fields X, Y on M.

It has been shown by Sasaki that a contact manifold M with contact form # has an
underlying contact Riemannian structure (¢, X,,n,g). A contact metric structure
(@, X, 1, g) is said to be K-contact if X, is a Killing field with respect to g, while it is said
to be normal if the almost complex structure J on M x R defined by
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J(X, f%>=<¢X, _rx., n(X)%>

is integrable, where f'is a real-valued function.

A normal contact Riemannian structure is called Sasakian structure. Naturally a
Sasakian structure is also of K-contact. A contact structure # on a compact manifold M
is called regular if X, is a regular vector field on M, that is, every point ye M has a
cubical coordinate neighborhood U such that the integral curves of X, passing through
U pass through the neighborhood only once. In this case M is a principal circle bundle
over a sympletic manifold B whose fundamental 2-form Q has integral periods and the
corresponding fibration p: M — B is known as the Boothby-Wang fibration of M (cf. [2]).

3. Proof of Theorem 1. Let (¢, X,, , g) be the regular normal contact metric
structure on the 5-dimensional compact simply-connected manifold M. Then the base
manifold B of the Boothby-Wang fibration p: M — B is a compact Kaehlerian manifold
of complex dimension 2 and with complex structure J and Kaehler metric /4 defined by

g=p*h+n®n,  dn=p*Q
QX, V)=hX,JY) for any vector fields X, Y on B.

Functions on B can be considered as functions on M in a natural way, i.e., if fis a
function on B we shall write f rather than p*f when it is lifted to M. Locally, the Kaehler
metric # on B and the Riemann metric g on M are given by

h=Y (w)* and g=) (6%

where w' are 1-forms defined on a small open set U of B, §° =7 and 6'=p*w'". If we put
Q=) J;w' Awl, the components K, of the curvature tensor of B with respect to the
basis (w') and the components R,;,; of the curvature tensor of M with respect to the

basis (6%) are related by (cf. Lemma 4 of [3]):
Rijon=Kijin— QJ;ji i+ T i —Tind ) »
3.1 Rioro= — Rigor = — Roixo = Roior =0
R,,5=0 otherwise
Va,B,y,6=0,1,---,4 and Vijk h=1,---,4.
Then, the components R,; and K;; of the Ricci tensors S of M and S” of B, are related by

(3.2) R,=K,;—26 Ry=0, Ryy=4.

ijo
Consequently the scalar curvatures r and r’ of M and B respectively, are related by

(3.3) r=r'—4.
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Moreover the second Betti numbers of M and B are related by (cf. [2], p. 733)
by(B)=by(M)+1.

Therefore, the assumption b,(M)=0 implies b,(B)=1.
Now if (8, B?) is a local field of unitary coframes on B, then the Ricci form y and
the scalar curvature r’” are given respectively by

y=%#izK-wABu F=2Y Ky .

ij
It is well-known that the first Chern class ¢,(B) of B is represented, in the de Rham
cohomology, by the Ricci form y. Moreover b,(B)=1 implies that
3.9 ¢, (B)=al¢] for some real number a,

where ¢ is the 2-form given by ¢=(/—1/8m) Y B A B
On the other hand, by a direct computation we find

’

r
— A2
dAy 5 ¢
Thus by integrating both sides of this equation, we obtain
3.5 a ! r'x1
= *
(3.5) 2vol(B) |,

where * is the Hodge star operator.

If we assume r> —4, from (3.3)—(3.5), we deduce that B has positive first Chern
class. Then, using a classification theorem of Yau [14] for complex surfaces with positive
first Chern class, B is biholomorphic to CP* x CP* or to a surface obtained from CP? by
blowing up k points, 0<k <8, in general position. Since b,(B)=1, B cannot be
biholomorphic to CP' x CP'. On the other hand, by blowing up a point of CP? the
second Betti number increases by one. Therefore b,(B)=1 implies B is biholomorphic to
the complex projective space CP*>. Consequently, from the homotopy sequences of the
fiberings

S'>S°->CP* and S'->M-B,
(M) =mn(S>) forall i>1.
Since M is simply connected we see that it is of the same homotopy type as the S-sphere.

Applying a result due to Smale [10] we conclude that M is homeomorphic with S°.

4. Proof of Theorem 2. Since b,(M)=0, from Lemma 6 of [5] we have
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r2 1 2
4.1) JM (l S? —7+2r> dv+m—) (J.M rdv> —20vol(M)=0

where | S| denotes the length of the Ricci tensor and dv the volume element. Because r =
const., (4.1) becomes

2
4.2) j <|S[2—r—+2r—20>dv=0.
M 4
Moreover, if we put E=S—(r/4—1)g—(5—r/4)n®n, then
2
(43) ISP =" +2r=20=|E[*>0

where the equality holds if and only if M is n-Einstein. From (4.1)—(4.3), we deduce that
M is n-Einstein (see also Corollary 5.7 of [12]).

If the scalar curvature r=20, from (4.2) it follows that M is an Einstein manifold.
Then, from (3.2) and (3.3), (B, h) is a Kaehler-Einstein manifold with scalar curvature
r’=24. Now, from the proof of Theorem 1, the base manifold B of the Boothby-Wang
fibration is biholomorphic with CP?. Thus we may consider the Fubini-Study metric 4,
on B with constant holomorphic sectional curvature c=4. Because / is a Kaehler-
Einstein metric and B is biholomorphic with CP?, a result of Berger (cf. for example [6],
p. 74) implies

(4.4) h=ah, for some constant a>0.

Since (B, h) has scalar curvature r'=24, from (4.4) we obtain a=1, i.e., (B, h) has
constant holomorphic sectional curvature c=4. Thus formulas (3.1) imply that (M, g)
has constant sectional curvature 1. Finally the simple connectedness of M implies that it
is isometric with S3(1).

If r=const. > —4, we put

’ ’ 1
g’=ag+(a2_a)r’®r’a (p:(p, XO:;XO’ ’7=a’7

with a=(r+4/24)=const. >0. Then, by Lemma 2.1 of [13], (¢’, X., %', g’) is a regular
Sasakian structure on M; moreover by direct computation we see that the new metric g’
is an Einstein metric with scalar curvature equal to 20. As before (M, g’) has constant
sectional curvature 1 and if (¢,, X, 7., g,) denotes the standard Sasakian structure on
S5(1), by Theorem 2 of [11] there is a diffeomorphism f: M—S* such that

f*9.=9", [ X.=X,, [*n.=n", fiep'=¢.f,.

Thus if we consider on S° the following metric
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, 1 +l—a ®
gO_agO az Ho&XMs

then

1—a
a2 f*r]o®f*’70=g .

, 1
f*go =_f*go +
a
Therefore (M, g) is isometric to (S, g2). This concludes the proof of Theorem 2.

Now, let (¢, X, n,g) be a regular contact metric structure on a 5-dimensional
simply-connected compact manifold M. By a result of Hatakeyama (cf. [1], p. 70) we
may assume that (¢, X, #, g) is a K-contact structure. If this contact metric structure is
also n-Einstein with scalar curvature r> —4, then (cf. Prop. 5.4 of [12]) the base
manifold B of the Boothby-Wang fibration is an Einstein-almost Kaehler manifold
whose scalar curvature r’=r+4>0. But, recently Sekigawa [9] proved that a 4-
dimensional compact Einstein-almost Kaehler manifold whose scalar curvature is
nonnegative is necessarily a Kaehler manifold. Then by a result of Hatakeyama (cf. [1],
p. 87), (¢, X,, 1, g) is an n-Einstein Sasakian structure on M. So from Theorem 2 we
obtain:

THEOREM 3. A 5-dimensional compact simply connected regular K-contact -
Einstein manifold with b, =0 and scalar curvature r > — 4, is isometric with a sphere; M is
isometric to S°(1) when r=20.

5. Proof of the corollaries. Let M be a S-dimensional compact Sasakian
manifold.

If M has positive curvature, then r> —4 and from Theorem 41.2 of [8] we have
b,=0. Now we assume that M is u-holomorphically pinched with p>1/2. Then by
Theorem 8.3 of [13] we have b, =0. Moreover r> —4, in fact by (38.12) and (38.7) of [8]
we have

r=Z(R,.i+Ri*i‘)+4=22{1 +2 (K + Ki,.*)}+4

where the sectional curvatures K, relative to a ¢-basis (e;, e = pe;, X,) satisfy (cf. (7.2)
and Prop. 6.2 of [13])

14+ (Kij+ Kij) =2(4u—2)>0.
J

So Corollary 1 follows from Theorem 1.

A contact manifold M is called homogeneous if there is a connected Lie group G
which acts transitively and effectively on M as a group of diffeomorphisms and leaves
the contact form # invariant. If M is also compact and simply-connected, then the
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contact form is regular and M is a principal circle bundle over a homogeneous Kaehler
manifold B (cf. [2]). Moreover the curvature form of the connection is p*Q=dn where
p: M- B is the bundle projection map and Q the fundamental 2-form of B. Hence the
contact metric structure is normal (cf. for example [1], pp. 86-87). Since M is compact
and simply-connected, then according to a theorem of Montgomery (cf. [2]) we may
suppose G to be compact. If K is the isotropy group of a point p, in M, then M =G/K.

Let (X,, 1, g) be a regular Sasakian structure of the homogeneous contact manifold
M =G/K, such that n and g are G-invariant on M.

PROOF OF COROLLARY 2. The metric g on M generally comes from a left-
invariant Riemannian metric § on G. Now we assume that the metric g is a normal
homogeneous metric, i.e., it is induced by a bi-invariant metric § on G (cf. [15]). So from
Samelson’s theorem [7], we obtain that the sectional curvatures are non-negative.
Moreover, since the metric g is invariant, its scalar curvature is a constant (non-
negative). Therefore Corollary 2 follows from Theorem 2.

PROOF OF COROLLARY 3. Assume that M=G/K is an isotropy irreducible
homogeneous space, i.e., the isotropy linear group K* acts irreducibly on 7, (M). Then
M is an Einstein space in the invariant metric g. In fact if K* acts irreducibly on 7, (M),
the Ricci tensor S, and the metric g, are proportional and hence S= 1g. Since (M, g) is
a Sasakian-Einstein space with b,(M)=0, the formula (4.2) becomes

J‘ (r—20)2dv=0.
M

Therefore r=20 and consequently Corollary 3 follows from Theorem 2.

PROOF OF COROLLARY 4. By the proof of Corollary 1, we get b,(G/K)=0 and
r> —4. On the other hand r is constant because the metric is invariant. So Corollary 4
follows from Theorem 2.

REFERENCES

[1] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lect. Notes in Math. Springer-Verlag, vol.
509, 1976.

[2] W. M. BoorHBY AND H. C. WANG, On contact manifolds, Annals of Math. 68 (1958), 721-734.

[3]1 S.I. GOLDBERG, Rigidity of positively curved contact manifolds, J. London Math. Soc. 42 (1967), 257-
263.

[4] S.I GoLDBERG, Nonnegatively curved contact manifolds, Proc. Amer. Math. Soc. 96 (1986), 651-656.

[5] S. 1. GoLpBERG AND H. GAUCHMAN, Spectral rigidity of compact Kaehler and contact manifolds,
Tohoku Math. J. 38 (1986), 563-573.

[6] A.Lascoux AND M. BERGER, Variétés Kaehlériennes compactes, Lect. Notes in Math. Springer-Verlag,
vol. 154, 1970.

[7] H. SAMELSON, On curvature and characteristic of homogeneous spaces, Michigan Math. J. 5 (1958),
13-18.



170 D. PERRONE

[8] S. Sasakl, Almost contact manifolds, Part 3, Lect. Notes, Math. Inst., Téhoku Univ., Japan, 1968.

[9] K. SekiGawa, On some 4-dimensional compact Einstein almost Kéhler manifolds, Math. Ann. 271
(1985), 333-337.

[10] S. SMALE, The generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc. (N.S) 66
(1960), 373-375.

[11] T. TakAHAsHI, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), 271-
290.

[12] S. TanNo, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, J. Math. Soc.
Japan 19 (1967), 308-316.

[13] S. TanNo, The topology of contact Riemannian manifolds, Ill. J. Math. 12 (1968), 700-717.

[14] S. T. YAu, On the curvature of compact Hermitian manifolds, Inv. Math. 25 (1974), 213-239.

[15] M. Y. WANG AND W. ZILLER, On normal homogeneous Einstein manifolds, Ann. Scient. Ec. Norm.
Sup. 4, 18 (1985), 563-633.

DIPARTIMENTO DI MATEMATICA
FACOLTA DI SCIENZE

UNIVERSITA DEGLI STUDI DI LECCE
ViA ARNESANO, C.P. 193

73100 LeccE

ITALY

Added in proof. Combining Theorems 2, 3 of the paper [I. Hasegawa and M.
Seino, J. Hokkaido Univ. Ed. Sect. IT A 32 (1981/82), No. 1, 1-7; MR 84 j: 53055] with
the Theorem 1 of our paper, we obtain the following new Theorem: If a 5-dimensional
complete simply-connected regular Sasakian manifold with vanishing contact Bochner
tensor is p-holomorphically pinched with >0, then it is homeomorphic with a sphere.





