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Let o be an action of a compact abelian group on a separable prime C*-algebra A4,
such that also the fixed point subalgebra, 4%, is prime. Several conditions on « are shown
to be equivalent, among which are the following:

for each ge G, either a,=1 or a, is properly outer;

there exists a faithful irreducible representation of A4 which is also irreducible on 4%

there exists a faithful irreducible representation of A4 which is covariant.

An example of a nontrivial action satisfying these conditions is the infinite tensor
product action on M,.= &>, M, obtained from a sequence of nontrivial inner ac-
tions on M,, each one appearing infinitely often. In earlier work, this example was
shown to be, in a certain sense, typical of nontrivial actions satisfying the third
condition. This fact is the key to deducing the first two conditions from the third.

The second condition is noteworthy in two respects. First, it involves only the fixed
point subalgebra 4*< A4, not the action « itself. (This is not evident in the case of the
other two conditions.) Second, while a representation verifying the third condition is
required to be covariant, a representation verifying the second condition must in fact be
as far as possible from being covariant.

1. In [26], Olesen, Pedersen, and Stermer obtained results concerning the system
consisting of a prime C*-algebra and a compact abelian group of automorphisms such
that the fixed point subalgebra is prime. They showed that if the group is either the circle
group or is finite of prime order, then

(i) the only multipliers commuting with the fixed point subalgebra are the scalars,
and

(ii) the only automorphism in the group that is determined by a multiplier is the
identity.

In addition, assuming that the group is finite but not necessarily of prime order, and
that the C*-algebra is simple, they showed that the properties (i) and (ii), which need no
longer hold, are equivalent. (The nontrivial implication is (ii) = (i).)

In the present paper, we shall improve these two results substantially. Our methods
require that the C*-algebra be separable. We shall formulate properties (i)" and (i)’ (14
and 15 below) which are stronger than (i) and (ii), but reduce to these in the case that the
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C*-algebra is simple. We shall show that the stronger properties still hold if the group is
the circle group or is finite of prime order, and that, in any case, they are equivalent. The
latter result is new even in the case that the C*-algebra is simple, there being no
restriction on the compact abelian group. Furthermore, and in fact as part of the proof,
we shall show that the properties (i)’ and (i)’ are equivalent to a number of other
properties (1 to 13 below).

Properties (i)’ and (ii)" are stated in terms of the limit multiplier C*-algebra, which
was used in [13], after a suggestion by G. K. Pedersen, and was considered further by
Pedersen in [29]. (See also [26, Appendix].) Recall that the limit multiplier C*-algebra,
M®>(A4), of a C*-algebra A4 is defined as the inductive limit of the net of multiplier C*-
algebras of essential closed two-sided ideals of 4. In this connection, note that if /=J are
two such ideals, then M(I) = M(J), and that if / and J are any two such ideals, then also
InJ is such.

Two of the properties (4 and 15) involve the proper outerness of certain auto-
morphisms (either d,, y%0, or a,, g0). Proper outerness of an automorphism of a
C*-algebra A4 was defined in [14] to mean that the restriction to any nonzero invariant
closed two-sided ideal is at distance two from any automorphism of that ideal
determined by a multiplier. It was shown in [13] and [14] that, at least in the case that A4
is an AF algebra (i.e., a separable approximately finite-dimensional C*-algebra), the
condition for an automorphism of 4 to be properly outer fails—and, moreover, with
respect to an essential ideal—if, and only if, the canonical extension of the automor-
phism to M*(A) is inner. Various other reformulations of proper outerness in the case
of AF algebras were also given in [13] and [14], and most of these are now known to be
valid for any separable C*-algebra, as a result of work of Kishimoto in [17] and Brown
in [6]—see also [18] and [25] (a complete summary is given in Theorem 6.6 of [25]). The
reformulation in terms of M*(A) follows from a result of Pedersen in [29]—see
Proposition 3.2 below. In Propositions 3.1, 3.2, 3.3, 3.4, and 3.5 we also establish other
facts concerning M*(A) that we shall need.

Two other properties (1 and 12) refer to the action on the algebra of the unitary
group of the fixed point subalgebra; the first is topological transitivity of this action, in
the sense of [21], and the second is strong topological transitivity, in the sense of [3]. (It is
open in general whether these two properties are equivalent.)

Another property (13) is an analogue of Tannaka duality. It is stated for
automorphisms of M*(A), instead of just for automorphisms of 4, in order to deduce
the other properties from it. (Stated just for A4, it is already known to follow from the
property 1—see [21].)

In Section 4, a more general form of this analogue of Tannaka duality is given, in
which some of the automorphisms are allowed to be inner. (In 13, none of the
automorphisms can be inner, as follows from 13 = 15.)

In Section 5, we prove that strong topological transitivity and ergodicity are
equivalent notions for an action on a von Neumann algebra. This is used for proving the
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implication 10 = 12 in Theorem 1; this result also yields a new proof of the Tannaka
duality theorem for von Neumann algebras given in [2].

In the following theorem, G denotes the dual group of G, G(a) denotes the Connes
spectrum of the action « ([30]), 7, denotes the cyclic representation defined by the state
w, and j? ma,dg is viewed in the canonical way as a representation on H,® L*(G), where
H_ is the Hilbert space of the representation .

THEOREM. Let A be a separable C*-algebra, and let o be a faithful action of a
compact abelian group G on A. Suppose that Gx0.

The following fifteen conditions are equivalent.

1. If x,ye ANA{0}, then xA*y x0.

2.  Any sub-C*-algebra of A containing A* is prime.

3. For any closed subgroup H of G such that GIH=T or G/H=Z/nZ for some n=
1,2, - - -, the fixed point algebra A" is prime.

4. A*is prime and the dual automorphisms &, y € G\ {0}, of the crossed product C*-
algebra A><, G are properly outer.

5. A* is prime and there exists an a-invariant pure state w of A such that w, is
Sfaithful.

6. G(x)=G and there exists an a-invariant pure state w of A such that ., is faithful.

7. For any sequence (£,) of finite-dimensional unitary representations of G there
exists an o-invariant sub-C*-algebra B of A and a closed a**-invariant projection q in the
bidual A** of A such that

() geB,

(i) gAq= By,

(i) geJ** = A** for any nonzero closed two-sided ideal J of A,

(iv) the C*-dynamical system (Bq, G, a** | Byg) is isomorphic to the product system
(®: Mymgs G, @, AdE,).

8. B and q exist as in 7 in the case that dim¢,=2 and £,=1@y,, where (y,) is a
sequence in G in which each element of G appears infinitely many times.

9. There exists an a-invariant state w of A such that n, is faithful and

n,(A*)' Nn (A)" =C.
10. There exists a faithful representation n of A such that
n(A*)' Na(A4)'=C.
11. There exists a faithful irreducible representation n of A such that
n(A%)" =n(A)" .

11". There exists a faithful irreducible representation n of A such that
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(&) ”
<<J oL, dg)(A)) =n(A)"®L*(G) .
G

12.  For each pair (x, -, x,) and (y, - -, y,) of finite sequences in M*(A) such
that Y1_, x;®y; %0, there exists ae A* such that Y }_, x,ay;x0.

13. A and A* are prime, and if B is an automorphism of M*(A) such that p| A*=1
then B=u, for some geG.

14. A* is prime, and (A*) N M*(A)=C.

15. A and A* are prime, and o, is properly outer for each ge G\ {0}.

Furthermore, if G is the circle group or a finite cyclic group of prime order, then these
conditions are equivalent to the following one.

16. A and A* are prime.

(If G=0, the equivalence of all the conditions, with the exception of 7 and 8§,
remains valid, but the theorem then reduces to the well-known fact that a separable C*-
algebra is primitive if and only if it is prime.)

2. Proof of Theorem 1. We shall prove the following implications:
o2 m 0w 2m: m]Smdm]; 8mllell); llell.
The implications 1 =2 and 2 = 3 are obvious.

Ad 3 = 4. Assume 3. Putting H= G we see that A% is prime. Now fix 0xye G, and
let us show that &, is properly outer.
With H=XKery, we have that G/H is isomorphic to y(G), which by compactness of
G is a closed subgroup of T, and therefore either T itself, or a cyclic group of finite order
n=2,3, - -. In particular, 47 is prime by 3.
. It follows, as we shall now show, that the double crossed product (4><,G)
> s H* is prime.

LEMMA 2.1. Let G be a compact abelian group, let o be a faithful action of G on a
C*-algebra A, and let H be a closed subgroup of G. The following two conditions are
equivalent:

1. A" is prime.

2. (A><,G)>; H* is prime.

PROOF. Note that (4>, G)>; H* is the fixed point subalgebra of (4 >, G) >, G
under & By [32], the system ((4><,G)><;G, ) is isomorphic to the system
(A® K(L*(G)), «®4), where K(L*(G)) denotes the algebra of compact operators on
L?*(G), and 1 is the representation of G on K(L?*(G)) determined by the left regular
representation. Since G is compact, we have a canonical system of matrix units
(€4y)y,y e for K(L*(G)), with e K (x—x), ie. a (e, )=<x—1, g>e,, Clearly

(1®em)(A® K)H(1 ®eoo)=AH®e00 .
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Denote by I the closed two-sided ideal of (A®K)" generated by 47®e,,. By
Theorem 1.6 of [28], I and the hereditary subalgebra 4”®e,, have the same spectrum,
and, in particular, one is prime if and only if the other is.

The implication 2 = 1 is now immediate: if (4® K)" is prime, then I is prime and
hence A" is prime.

To prove the implication 1 =2, moreover, it is now enough to show that if 4" is
prime, then the ideal I of (A® K)" is essential. Suppose that 4 is prime, and denote the
largest closed two-sided ideal of (4® K)” orthogonal to 47®e,, by J. We must show
that J=0.

Since G is abelian, both (A®K)¥ and 4¥®e,, are invariant under «®4, and
therefore J is invariant. Hence (as G is compact), if there exists a nonzero element in J
then there exists one of the form a®e, - with ae A%(x"— x). (By the proof of Proposition
3.3, below, A* contains an approximate unit for 4. The tensor product of this with finite
sums Zeu is an approximate unit for A®K, invariant under a®A. Hence, if
03 xeJ*®*, then, after multiplication on the left by an element of 4°®e,, for some y,
and similarly on the right, x has the desired form.) Fix x, "€ G and ae A*(y’— x) with
a®e, . €J, and let us show that a=0. Since 4*(x+ H")®e,, = (AR K)", we have

0=(A4"®eqo)(A*(x+ H")®eo,)(a®e,,) = A" A*(x+ H )a®eq,. .
Since H is compact, A” contains an approximate unit for 4. (See proof of Proposition
3.3.) Hence,
A*(y+HYa=0, ie.,
A*(x+ HY*A*(x+ H"aa* =0 .

But A%(x+ HY)*A*(x+ H*) is a two-sided ideal of 4", and aa* belongs to A (in fact to
A%). Hence, since A" is prime, either 4*(x+ H*)=0, or a=0. But by Lemma 2.2, below,
with (4, H, o| H) and x+ H* € H in place of (4, G, o)) and y, since o is faithful and A% is
prime, A*(x+ H*)x0. Therefore a=0, as desired.

LEMMA 2.2. Let G be a compact abelian group, let o be a faithful action of G on a
C*-algebra A, and suppose that A* is prime. It follows that Sp o= G, i.e., for every yeG,
A*(x)=0.

PROOF. First, let us show that Spa is a subgroup of G. If A4%(x) %0 and 4%(x") %0,
then

A*(x—x")24*(0A*(x)* ,

and A*(x)*A*(y), A*(x")*A*(x’) are nonzero two-sided ideals of the prime algebra 4%, so
have nonzero product. This shows that 4*(y —x’) x0.

Second, as Spa is a subgroup of G, we have Spa=H" where H=(Spa)*<G.
Hence, in A,
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Sp(oc\H):(Spoc)/Hl=Hi/HL=0.
In other words, o | H is trivial. Since « is faithful, H=0, i.e. Spcx=(7.

Returning to the proof of the implication 3 =4, we now have that (4 >, G) >; H*
is prime. Hence by Theorem 5.8 of [24] (with 4 >, G in place of A, H* in place of G, and
&| H* in place of o),

(HY)" (@[ HY)=(H)" .

Since H* is the cyclic subgroup of G generated by 7, it follows, either by Remark 2.5
of [18] or by Theorem 6.6 of [25], that &, is properly outer, as desired. (Let us expand on
Remark 2.5 of [18]: If B is an automorphism of a C*-algebra which is not properly outer,
then to show that the Connes spectrum 7T'(f5) (or the Borchers spectrum Tg(f)) is equal to
{1}, it is enough by 1.3 (or 2.1) of [18] to consider the case f=expd where ¢ is a
derivation. Since Sp "= (Sp )", we have T(S") = T(B)" (and Tg(B") = Tx(B)"), and so to
prove that T(8)= {1} we may replace é by n~ !5 and suppose that |f—1|| <|&*™*—1],
so that Sp f# does not contain any nontrivial subgroup of T. But then T(f) equals {1}
because it is a subgroup of T ([30], 8.8.4; to get Tx(B)= {1} use [30], 8.8.5). Incidentally,
combining this argument with Lemma 3.6 of [25] and using compactness of T, we have a
different proof of Lemma 4.1 of [25], that every derivation is close to zero on some
invariant hereditary sub-C*-algebra. However, this proof does not seem to give a
subalgebra which is invariant under all automorphisms commuting with the derivation,
as does that in [25].)

Ad 4 =5 (We prove this implication by combining ideas from the proof of
Theorem 2.1 in [17] and the argument on page 161 in [19].) Assume 4. In particular, 4* is
prime, and it follows by Lemma 2.1, with G in place of H, that 4>, G is prime. (This
does not use the hypothesis of proper outerness.)

Since 4 ><, G is separable, there exists a sequence (J,) of nonzero closed two-sided
ideals of 4 ><, G such that every nonzero closed two-sided ideal contains some J, ([9],
3.3.4). (If (x,) is a dense sequence in the unit sphere of 4 >, G, we may take J, to be the
smallest closed two-sided ideal of 4>, G such that ||x,+J,||<1/2, for if J is any
nonzero closed two-sided ideal there is some » such that ||x,+J| <|x,||/2=1/2.) Since
A><, G is prime, we may replace J, by J; N -+ - NJ, and suppose that the sequence (J,) is
decreasing.

Denote by T the set of aeA>u, G such that a>0, ||a|=1, and there exists
0xbeA>a, G with ab=>b. By spectral theory, T is not empty, and if ae T then there
exists be T such that ab=5.

Choose a dense sequence of unitaries (4,,) in (4><,G)~, the C*-algebra 4><, G
with unit adjoined, and let (o,) be an enumeration of the automorphisms (Ad «,,)4,, m =
1,2, -+, ye G\{0}.

Construct as follows a sequence (e,) in T such that
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enen+1=en+1 > ene‘/n’ and “eno-n(en)usn—l .

Suppose that we have constructed e, e T for 1 <k <n such that e,_,e,=¢,, e, €J,, and
lexo(e)| <k !. Choose xeT such that e, ,x=x. (If n=1, just choose xeT.) By
Proposition 6.4 of [25], applied to the properly outer automorphism o, and the
hereditary sub-C*-algebra J, N (x(A4><, G)x) ", there exists e, in this subalgebra such that
0<e,, |le,ll=1, and |le,0,(e,)|| <n~'. Necessarily, e,_,e,=e,, and modifying e, slightly
using spectral theory ensures that, in addition, e, e T, as desired.

As (e,) is a decreasing sequence of positive elements of 4 >, G of norm one, the set
of states of 4>, G with value 1 on e, for all n is a nonempty compact face in the state
space of 4>, G. Therefore, there exists a pure state ¢, of 4>, G such that ¢,(e,)=1 for
all n. Denote by ¢ the unique d-invariant extension of ¢, to a state of (4>, G) ><; G.
We shall show that =, is faithful and that ¢ is pure.

Since ¢o(e,)=1 and e,eJ,, J, is not contained in Kern, for any n. Hence
Kern, =0. Since Ker 7, is d-invariant, if it were nonzero its intersection with the fixed
point subalgebra 4>, G would be nonzero, but this intersection is clearly contained in
Ker T which is zero. Therefore Kern,=0.

Since ¢, is pure, to show that ¢ is pure, it suffices to show that ¢ is the unique
extension of ¢, to a state of (4 ><, G)><;, G. Let ¥ be a state of (4 >, G) >, G such that
Y| 4>, G=¢,. To show that y=¢, we must show that ¥ is d-invariant, i.e. that
Y(bu(y))=0 for any beA>, G and any OxyeG. Here u(y) denotes the unitary
multiplier of the crossed product by G canonically associated with ye G. Since any C*-
algebra is spanned linearly by its unitary elements (Proposition 3, page 4 of [8]), it is
enough to suppose that b is unitary, and then of course b can be approximated by a
subsequence of («,). In the enumeration, above, of (Ad u,)d, as g,, let us denote by 7, ,
and e, , the 0, and e, corresponding to (Ad u,)d,. Thus, for fixed 0xyeG,

€m.s0m,(€m, ;)0 (m—00).

In other words, with yeG\{O} fixed, we have

Cm, Uml(V)Cm, ;= Cm, O, (€, ) () 0 .

Since Y (e, ,)=Po(e,,,)=1 for all m, we have
Y (U u(y)) = Y(e,, Upti(y)e,, ,) >0,

whence Y(bu(y))=0. Therefore, ¥ = ¢. This shows that ¢ is pure.

Let us again identify (4 >, G) >; G with A® K(L*(G)), and & with a® 4. Then, with
e,, as above, in the proof of Lemma 2.1, for any ye@ the positive functional ¢, =
(1®e,,)¢(1®e,,), if nonzero, is a scalar multiple of an -invariant pure state of
A®e,, = A®K, i.e. an o-invariant pure state, say ., of 4. Furthermore, for some ye G,

¢, is nonzero, and then m, is faithful, since m, is. Since T, (a®e,) =7, (A)®¢,,, it
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follows that, for such y, m, is a faithful representation of A. This shows that, with
w=w, for such a 7, w is an a-invariant pure state of A4, and =, is faithful, as desired.

Ad 5=+6. Condition 5 implies that both 4 and 4* are prime, whence by 8.10.4 of
[30], G(ot) = Sp a. In particular, as G(«) is group ([30], 8.8.4), so also is Sp a, and since a is
faithful this implies Spa=G.

Ad 6 =7. Except for the property (iii), this is exactly Theorem 2.1 of [5].
Referring to the proof of that theorem, we ensure that B and g have the extra property
as follows.

Since A is separable and prime there exists a decreasing sequence (J,) of nonzero
-closed two-sided ideals of 4 such that any nonzero closed two-sided ideal of 4 contains
some J, (see proof of 4 = 5 above). Also, since 4 is prime and G is compact we have

N «(J)=0

geG
for any nonzero closed two-sided ideal J of A. (First, by strong continuity of o, for any
heG there is a neighbourhood U, of 4 in G such that I,=(),.y,%(/)x0; by
compactness of G, there are Ay, - -, hye G such that U, U---UU, =G; finally, by
primeness of A, I, N--- N1, %0, ie. (),e6%(J)x0.) It follows that

JNA*x0

for any nonzero closed two-sided ideal J of A. In particular, (J,N A% is a decreasing
sequence of nonzero closed two-sided ideals of 4%

Now note that the quasimatrix system (e,), (v, )iz, of Lemma 2.7 of [5] can be
constructed so that

e,eJ,NA*,

n=1, 2, ---. Then the projection g,e A** defined in the proof of Theorem 2.1 of [5] is
contained in J}*, and hence the limit g =1im g, is contained in (] J¥*. Since any nonzero
closed two-sided ideal J contains some J,, (iii) holds.

Ad 7=8. 8is a special case of 7.

Ad 8 =9. Assume 8. Denote by 7 the unique tracial state of the C*-algebra g4gq,
which is isomorphic to the Glimm algebra M,., and denote by w the corresponding
state of A4,

Asar—1(qaq).

Since g is a**-invariant, and 7 is unique, w is a-invariant.

Since w(q)=1, g¢ Ker(n%*)=(Ker 7, )**, and hence by 8(iii), Ker n,=0.

That n(4%)' Nn,(A)" =C was shown in the proof of Theorem 3.1 of [15]. (The case
g=1is Lemma 4.2 of [4].)
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Ad 9 = 10. This is evident.

Ad 8= 11. Assume 8. Let (¢,) be any sequence of pure states of M, such that, for

each y e G, the (infinite) subsequence (¢n),,. =, contains a subsequence that converges to

. . . . . 10
a nondiagonal pure state, i.e. to a pure state with density matrix not equal to <O 0) or

00 . . . .
(0 1). For instance, ¢, may be taken to be a fixed pure state with density matrix

different from ((1) g) and <g ?) (e.g. the pure state with density matrix %(i i))

Denote by ¢ the pure state of g4q obtained from ® ., ¢, by identifying g4q with
@, M, as in 8, and denote also by ¢ the corresponding pure state of A4,

Aear—¢d(gaq)=(®%; $,)(qaq) .

Since ¢(q)=1, g¢ Ker(n3*)2(Kermy)**, and hence by 8(iii), Ker m,=0.

We shall show that n,(4*)"=mn4(4)". We shall show this, or, equivalently, that
m4(A%)’ =C, in two steps: first, we shall show that @, the canonical cyclic vector for ms(A),
is also cyclic for m4(A4%), and thus separating for n,(4)’; and, second, we shall show that
ny(A*) @ =COP.

Let us show that @ is cyclic for n,(4%). To do this, we shall show that, for each
xeq,

- Peny(A(0) P,
where the bar denotes ultraweak closure. Then, for each ye G,
(A% (= 1))P = 1y (A*(— )y (A°(1)) ™ P S my(A*(— 1) A% (X))~ P
Sy(A%)” DS (ny(AMD) ™,

where the last bar denotes weak closure in H,, which on a linear subspace is the same as
norm closure. Since the closed linear span of |J,.s 4%(—x) is equal to 4, and @ is cyclic
for m4(A), this shows that @ is cyclic for m,(4%).

Let, then, x be an element of G and let us show that ® e m,(A4%(x))~ ®. (If x=0 this

follows from the fact that A* contains an approximate unit for 4,—see for example the
proof of Proposition 3.3, below.) For each k such that y, =y denote by ¢, the image of

00
(1 0) € M, under the k-th embedding of M, in g4g= ® ., M,. Then, by the choice of

(Dn);

sea=a,(] o)o.

(Here k is such that x, = x.) Passing to a subsequence of (c,), we may suppose that
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P(c)—~Ax0,
and then, since (¢,) is a central sequence in g4q, and m,4(qAq) is irreducible on m,(q)H,,
mg(c) > Any(q) ultraweakly .
Since ge B’, the map
Bsb+—bge Bg=qAq

is a morphism, and so we can ¢ choose b,e B with b,g=c,, and |b,]| <2 (even with
bl =1). Replacing by by {; {1, g>a,(b,)dg, we may suppose that b, e B*(x). If now b is
any ultraweak limit point of the sequence n,(b,), we have

bry(q)=my(9)b=1my(q) ,
and as n,(q)® = we have

D=2""bpen, (A (1) P,

as desired.

Now let us show that 7,(4%)’'® = C®. Since g is an a**-invariant projection in A**
and also is closed, we have g e (A4*)** = 4**. (1 —q is the unit of the ultraweak closure in
A** of an a-invariant hereditary sub-C*-algebra of A4, and so is the limit of an
approximate unit of this subalgebra; this approximate unit may, as remarked above, be
chosen to be a-invariant.) In particular, n,(q) € n,(4*)". Moreover, for each x e G, it was
shown in the preceding paragraph that m,(q)emn,(4%(x))” (where the bar denotes
ultraweak closure). Hence, for each yeG,

Ta(A*(—1)9) Sy (A*(— )7 (A(0)) ™
Sy (A (=A%)~ Smy(A) ™ .

Since the closed linear span of |J,.s 4%(—x) is equal to 4, and n,(4) is irreducible, this
shows that m,(q4%q) is irreducible on n,(q)H,. Now we have n4(q) e n,(A4*)" and

Tp(A%) Ty (q) =T5(qA*q) Tp(q) = Cry(q) -
Since n,(q)® = it follows that n,(4%)'® =C.
Ad 11 = 10. This is evident.
Ad 10 =12, This is Corollary 5.4, below.

REMARK. It is interesting to inquire whether the implications 9 = 11 and 11 =9
(which are now established, since 12 = 1 is evident) can be proved directly. Certainly,
our proof of 8 =11 yields an alternative proof of 8 =9, since the pure states ¢
constructed in the proof of 8 = 11 constitute a direct integral decomposition of the
invariant state w constructed in our proof of 8 =9 above. Given a state w asin 9, and a
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direct integral decomposition of n, as [® n({)du({), must almost every n({) verify 11?

Ad 11« 11’. If 7 is an irreducible representation of A4, then, as we shall show, ©
verifies 11 if, and only if, it verifies 11’. (See also [20].)

11 = 11", for 7, is just Lemma 3.5 of [15]. (The proof in [15] does not require that =
be faithful.)

Assume 11", Set j"f;B no,dg=p. p is a-covariant, and o is implemented by the right
regular representation of G on H,® L*(G) (we do not need here that G is abelian). Since
G is compact,

p(A?)" =(p(4)")* = (n(4)" @ L*(G))*=n(4)'®1 .
But p(4*)=n(A*)®1, so
n(A)'@1=p(A*)" =n(4*)'®1.
(We have not used here that 7 is irreducible.)

Ad 12 =13. Assume 12. Let f be an automorphism of M*(A4) such that | 4*=1.
Let us prove that f=o, for some geG.

By Proposition 3.3, below, M*(A4)*< M*(A%), and it follows that /3| M*(Ay=1.
We now note that, except for continuity of o from G into Aut M*(A), all the hypotheses
of Theorem 2.1 of [3] are fulfilled, with M*(A) in place of 4, and (UM*(A4)*), Ad) in
place of (H, 7). The proof of Theorem 2.1 of [3], which is valid without continuity of «
until the very last line—provided that M*(A4)y is defined as the set of all xe M*(A4) such
that the linear span of os(x) is finite-dimensional—, yields that, for some ge G,

B(x) =, (x) for all xeM>*(A)g.

In particular, this holds for all x e 4, and since 4 is dense in 4 (continuity is known for
a: G—Aut A4), this shows that f=a,. (Here we have not used that G is abelian. A proof
in the case that G is abelian can also be obtained by modifying, in a somewhat less triv-
ial way, the proof of Theorem 3.1 of [21].)

Ad 13 =14. Assume 13. Then for each unitary ue(4*)'NnM*(4), Adu=a, for
some g € G. By Proposition 3.1, as A4 is prime, Centre M*(4)= C. By commutativity of
G, it follows that o (u) e Tu for every ue(A4*)’'NM>(A) and every geG. But, for fixed
such u, and fixed g € G, it follows from the fact that a,(v) e Tv for every unitary v in the
C*-algebra generated by u, that a (#)=u. Since g is arbitrary, it follows that u is in
M=(A)*, which by Proposition 3.3 is contained in M*(A4%). But ue(A4*)’, so u belongs to
Centre M*(A%). By Proposition 3.1, as A% is prime, this is equal to C. Since any C*-
algebra is spanned linearly by its unitary elements (Proposition 3, page 4 of [8]), we have
A NnM*(4)=C.
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We should like to point out that if G is not abelian, then the implication 13 = 14
may fail. For example, it fails if A=M,, n=2, 3, - - -, and G=Aut 4. However, this may
be essentially the only case in which the implication fails.

Ad 14 =15. Assume 14. Let us first show that 4 is prime. Clearly,
Centre M*(A)=C; by Proposition 3.1, this just says that 4 is prime.

Let ge G, and suppose that a, is not properly outer. By Proposition 3.2, there is a
unitary # in M*(A) such that «,=Adu. Since ue(4*)’'N M>(A), by 14 we have a,=1.
Since « is faithful, g=0.

Ad 15 =4. Assume 15. In particular, A* is prime. Hence by Lemma 2.1 (as in the
proof of 4 = 5), with H=G, also A><, G is prime.

Let ye G, and suppose that d, is not properly outer. We must prove that y=0. By
Proposition 3.2, as 4 >, G is prime, there exists a unitary ue M*(4 ><, G) such that &, =
Adu. By Proposition 3.1, Centre M*(A4 >, G)=C. Therefore u is unique up to a scalar
multiple. By commutativity of G, it follows that u '@ u)e T for every te G. Therefore
the map ¢ r—»u“(ié(u) is a character of G, and so there exists geG:é with

&é(u)=<é7 g>ua éeGA
Since also
G(Mg)=<E gdMg), ¢EeG,

where A(g) is the canonical unitary multiplier of 4>, G corresponding to g, it follows
that, with v=A(g)u*,

ve M®(A><,G)" .

By the choice of u, A(f)ul(t) ! =< —7, t)u, te G, and hence as G is abelian, A(t)vA() "' =
<y, tyv, teG. Since udu~' = A, also vAv~! = A. Hence by Proposition 3.4,

veM*(A) s M*(4><,G).

Since (Adv)|A=a,, it follows by Proposition 3.2 that «, is not properly outer.
Therefore, by 15, g=0. This shows that

ue M*(A><,G)" .
Recall that A(DuA(t) "' =<{—7, tHu, te G, and udu~' = A. Hence by Proposition 3.4,
ue M*(A)ycs M*(A><,G).

By the choice of u, Adu=4,, and in particular, (Adu)| A= 1. Therefore, ue Centre M*(4).
As A is prime, by Proposition 3.1 Centre M*(4)=C, and so ue T. Hence 4, =Adu=1,
and y=0, as desired.

Ad 4= 1. This follows from 4 =12, established above, since 12 is clearly



ACTIONS OF A COMPACT ABELIAN GROUP ON A C*-ALGEBRA 145

stronger than 1. Let us, however, give a more direct proof of 4 = 1.
Assume 4. Let x and y be nonzero elements of 4, and let us find ae 4* such that
xayx0. Replacing x and y by x*x and yy*, we may suppose that x and y are positive.
As in the proof of Lemma 2.1, above, we shall identify the systems ((4><, G)
><; G, 4) and (AQ K(L*(G)), a®4), and the subalgebras 4>, G <= (4>, G)><; G and
(A® K)*®*= A® K. Recall that

(1®ego)(A®K)*®*(1®e0) = A*®eqo ,

where e, is the projection onto the one-dimensional subspace of L%(G) generated by the
trivial character.

Since x and y are positive and nonzero, so also are x,={g;0,(x)dg and y,=
¢ 2,(»)dg. We shall prove the following inequality, which is stronger than what is
needed:

SUPaca, jay <t 1 Xyl Z |0 | ¥oll -
Let us identify x, y with x®eyy, yY®eyeA®ey,. Recalling that AQK=
(A><,G)><, G, we may replace x and y by finite approximating sums

Z xyu(’)”) ) Z yyu(y) >

yeF yeF

where x,, y, € 4>, G for each y in the finite set F< G. Here we cannot insist that all X,
and y, be the canonical (Fourier) coefficients of (the original) x and y, since the Fourier
series only converges in the Cesaro mean in general. However, we may certainly assume
that x, and y, are as defined above (the zeroth Fourier coefficients). We may also assume
that all x, and y, lie in 4*®ey,, the cutdown of 4 ><, G by 1®e,,. From now on we shall
suppose that x and y are equal to such finite sums. We shall also suppose that | x| =
Iyl=1.

We shall now use Proposition 6.4 of [25], as extended in Lemma 7.1 of [25]. (We
could equally well use Lemma 3.2 of [17].) Let us apply Lemma 7.1 of [25], with
(A®K)*®*=A><, G in place of 4, (&,),.r o) in place of a;, - - -, &, and, successively,
(x,),crand (y,),cr in place of ay, a,, - - -, a,. This yields, for each ¢>0, elements w and z
of A>«, G, of norm one, such that

Iwxowll >lixol =&, llzyozll = ¥ol =&, and
lwx,g,wl<e, lzvd)l<e, yeF\{0}.

The proof of Lemma 7.1 of [25] in fact produces w and z that belong to the hereditary
sub-C*-algebras generated by x, and y,, which are contained in 4*® ey, and so we may
suppose that w, ze A*®eg,.

Since A*®e,, is prime, there exists be A*®e,, such that ||b| =1 and

Iwxowbzyoz|| = |wxow| | 2y02] —& .
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Hence, with a=wbz, we have |a| <1, ae A*®e,,, and
[xay|| = [wxwbzyz|

= |wxowbzyozl|— Y, wx,u(z)wbzy,u()z]|
7,7 € F\{0}

= |wxowl zyozl —e— Y [Iwx, 8wl 2,8, (2)
7,7'€ F\{0}

= |xo] [|yoll —3e—n?e?,
where n=card(F'\ {0}). Since ¢>0 is arbitrary, the desired inequality is proved.

Finally, suppose that G=T or G=Z/pZ with p prime, and let us show that 16 is
equivalent to 1 to 15.

Ad 3 = 16. This is evident.

Ad 16 = 3. In the case G=Z/pZ with p prime, this is evident, as G is simple.

In the case G=T, there are nontrivial proper closed subgroups, but these are all
finite. Assume 16. Let H be a closed subgroup of G, where now G=T. If G/H=~Z/nZ for
some n=1,2, - - -, then necessarily n=1 and H=G, and so A" is equal to 4% which is
prime by 16. If G/H=T, then H is finite and cyclic; choose an element / generating H.
We must show that 47 is prime.

By 16, 4 is prime. Therefore, by Theorem 1 of [26], it is equivalent to show that, if §
denotes the restriction of « to the subgroup H<G, then the Connes spectrum of f is
equal to the Arveson spectrum of f—i.e., H(B)=Sp f. In terms of the automorphism o,
this says that, for every nonzero hereditary sub-C*-algebra B of A which is invariant
under oy,

(*) Sp(os| B)=Spa, .

By 16, 4% is prime, and so by Theorem 1 of [26], G(«) = Sp a. In particular, (x) holds
if Bis a-invariant. By Proposition 5.1 of [23], applied to «,, and as simplified using that 4
is prime, there exists a canonical nonzero closed two-sided ideal J of A4, invariant under
oy, such that () holds when both sides are restricted to J, i.e.

Sp(at, | BNJ)=Sp(0t, | J) .

That J is canonical entails that J is invariant under «. (/ is in fact constructed to contain
all other such ideals. See also Proposition 3.1 of [18].) Therefore (as G(o)=Sp a), ()
holds for J. Hence, for any o,-invariant B,

Sp o, 2Sp(%, | B) 2Sp(a, | BNJ)=Sp(a, | J)=Sp a1, ,
i.e. (*) holds for B, as desired.
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3. Auxiliary results concerning the limit multiplier algebra.

3.1. PROPOSITION. Let A be a C*-algebra. The following four properties are
equivalent.
(i) A is prime.
(i) M=>(A) is prime.
(iii)) Centre M*(A)=C.
(iv) Centre M(I)=C for every nonzero closed two-sided ideal I of A.

PROOF. Ad (i) = (ii). As pointed out on page 303 of [29], this follows from the fact
that each nonzero closed two-sided ideal of M*(A4) has a nonzero intersection with A.

Ad (ii) = (iii). This is evident.

Ad (iii) = (iv). Assume (iii). Let I be a nonzero closed two-sided ideal of 4. To show
that Centre M(I)=C it is sufficient to do this with I replaced by I+J where 1J=0.
Therefore, we may suppose that / is essential, so that M(I) = M*(A). If J is any essential
closed two-sided ideal of 7, then Centre M(/) < Centre M(J), as follows by considering a
faithful representation of I which is nondegenerate on J. Hence

Centre M(I) = Centre M*(4) .
In particular, from (iii) follows Centre M(I)=C.

A natural question arises here: is Centre M®(A) the inductive limit of Centre M(])
(1 an essential ideal)?

Ad (iv) = (i). If 4 is not prime, then there exist nonzero closed two-sided ideals I,
and I, of A with I,1,=0. Set I, +1,=1. Then I is nonzero and Centre M(I)xC.

3.2. PROPOSITION. Let A be a separable prime C*-algebra, and let o be an
automorphism of A. The following three properties are equivalent.
(i) o is not properly outer.
(il) o is inner in M (A).
(iii) o is weakly inner in every faithful factor representation of A.

PROOF. Ad (i) = (ii). Assume (i). By definition, there is a nonzero invariant closed
two-sided ideal I of 4 such that for some unitary v in M(I), |o|I—(Adu)|I| <2. By the
Kadison-Ringrose theorem ([16]), there exists a derivation § of I such that

oa|I=(Adu)expd.

By Proposition 2 of [29], as A4 is separable, ¢ is inner in M®(I). Since A is prime,
M>(I)=M®>(A), so a is inner in M*(A), as desired.

Ad (i) = (iii). This follows from the fact, stated on page 303 of [29], that any
faithful factor representation of 4 extends to a representation of M*(A4). (Here we do
not need A4 to be separable. Also, the implication (ii) => (i) holds for any C*-algebra.)
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Ad (iii) = (i). Assume that a is properly outer. By the proof of Theorem 2.1 of [17],
with Lemma 1.1 of [17] replaced by Proposition 6.4 of [25] (see also Proposition 6.5 of
[25]), there exists a pure state ¢ of 4 such that ¢a is disjoint from ¢. A modification of
the proof of Theorem 2.1 of [17], using that A is separable and prime in the same way as
in the proof of 4 =5 of Theorem 1, above, shows that ¢ may be chosen so that 7 is
faithful. Thus, m, is a faithful factor representation in which a is not weakly inner.

3.3. PROPOSITION. Let A be a C*-algebra, let G be a compact group, and let o be
an action of G on A. Then M*(A)* < M™(A%).

PROOF. As shown in the proof of 6 = 7 of Theorem 1, above, if I is a nonzero
closed two-sided ideal of 4, then (as G is compact) I contains a nonzero a-invariant closed
two-sided ideal; the largest such is of course [ . %,(/). It follows easily that if I is
essential, then also () ,.¢ (/) is essential.

This shows that, in the definition of M®(4), as the inductive limit of multiplier
algebras M(I) over all essential closed two-sided ideals I, we may restrict I to be a-
invariant without changing the definition (or, at least, without changing the resulting
algebra). Thus,

M=(4)=lim; inariane M) .
Hence, using a second time that G is compact, we have
M=(A)y* =1im; inyariane M(1)* .
Next, let us show that for invariant I, M(I)*= M(I*). We have
My MI%e M),

where the first inclusion is evident, and the second holds as /* contains an approximate
unit for 1. (This uses again that G is compact: If (¢;) is an approximate unit for 7, then so
also is (j ¢ %,(€)dg). To see this just note that e, Ya)—a , '(a) uniformly in g since G is
compact, or, in other words, a,(e;)Ja—a uniformly in g.) Hence, immediately, M(I*)=
M1y

We now have

MOO(A)a = llnlll invariant M(Ia) = Mao(Aa) .

3.4. PROPOSITION. Let A be a C*-algebra, let G be a compact abelian group, and
let a be an action of G on A. It follows that

M=(4)c M*(4>,G)* .

Assume that A is separable and prime, that A* is prime, and that G is separable, and let u be
a unitary element of M*(A><,G)" such that uAu™'= A, and, for some y€G,

Mgui(g) =<y, g>u, geG.
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It follows that ue M*(4).

PrROOF. First, using only that G is compact, let us show that M*(4)c
M*®(4><,G).

If 1 is an a-invariant closed two-sided ideal of 4, then /< M(I><, G), and since an
approximate unit for 7 acts also as one on />, G, also M(I) = M(I><, G). (This uses only
that G is locally compact.)

Since G is amenable, for each a-invariant essential closed two-sided ideal I of A4, the
crossed product ideal /><, G is essential in 4>, G. (By 7.7.8 of [30], for any faithful
representation © of A4, the representation of 4>, G on H,®L*(G) induced by = is
faithful. If = is chosen to be nondegenerate on I, so that I and 4 have the same weak
closure in the representation =, then /><, G and 4 ><, G have the same weak closure in
the induced representation, and since this is faithful it follows that /><, G is essential.)

Hence by compactness of G, as in the proof of Proposition 3.3,

Mw(A) = 111’nl essential M(I) = llInl essential and invariant M(I)
= llml essential and invariant M(I><a G) = MOO(A ><a G) .

It of course follows, as G is abelian, that
M*®(4)c M*(4><,G)" .

Now, assume that A4 is separable and prime, and let ue M*(4><, G)ﬁ and ye G be
such that u is unitary, udu™'=4, and A(g)ui(g) ' =<y, g>u, geG. Let us show that
ue M*(A4). (If, in addition, ue M(A><, G), then it follows from 7.8.9 of [30] that
ue M(A). What we are establishing is a very limited generalization of 7.8.9 of [30] to the
limit multiplier algebra. In particular, the assumption that 4 and 4 >, G are separable
and prime may be superfluous.)

First, let us show that there exists ve M*(A4) such that Ad v agrees on A with Adu.
By Proposition 3.2, for this it is sufficient to show that the automorphism f=(Ad u)| 4
is weakly inner in every faithful factor representation of A. Let n be a faithful factor
representation of 4, and denote by p the representation of 4>, G induced by 7 on
H,®L*G). Note that &, which extends to p(4 ><, G)”, acts ergodically on the centre of
p(A><, G)" (as m is factorial). It follows, as we shall show below, that p can be extended
from 4 to M®(4><, G)", mapping this algebra into (p(4 >, G)”)i , and commuting with
Ad A(g) for each geG. Since A(g)p(u)A(g) ' =<y, gd>p(u), g€ G, it follows that p(u)=
V®y with Ven(4)". (pu)(1®y)~! commutes with 1®¢ and 1®A(g) for all ¢eG and
g€G, and therefore with 1® B(L*(G)). By construction, p(4><,G)" is contained in
n(A)"® B(L*(G)).) We now have, for each ae 4,

p(B(a)) = p(uau™") = pw)p(a)p(u) "' = (V@®Y)p(@)(V®?) ',

and since p(a) is just the function ¢ +— n(a,(a)), evaluating at t=0 we get
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nf=(Ad V)n,

and so f is weakly inner in 7, as desired.

Before proceeding to modify u using v, let us show as announced that if p is a
faithful representation of A><, G such that the restriction of p to any d-invariant
essential closed two-sided ideal of 4 >, G is nondegenerate, then p| A4 can be extended
to M*(A>«, G)&. (It was pointed out earlier in the proof of this theorem that p as
defined in the preceding paragraph is faithful; the second property also holds for that p,
since 4 extends to an action on p(A4><,G)” which is ergodic on the centre.) Let
xe M (A>«, G)i, and let (J,) be a sequence of essential closed two-sided ideals of
A >, G such that there exists x,e M(J,) with | x—x,||=¢,—0. Then, for any m and n,
and any ¢, ne@,

” &.f(xm) - &r,(xn) ” < Em + &n

(this uses the triangle inequality and &.(x) =x =4d,(x)). Denote by " the unit of p(J,)", a
central projection in p(A4 >, G)". For each n, the representation pIJ,,, on the Hilbert
space €"H,,, has a unique extension to a representation of M(J,), which we could denote
by (p]J,,)**, but will denote by p” for brevity. Let ¢,, &,, - - - be an enumeration of G,
which is countable since G is compact and separable. Fix n, and define projections
pi, p3, - - in Centre p(4 ><, G)" by orthogonalizing the units of p(d,(J,))", p(d,,(J,))",
- -+, which we shall denote by e}, €5, - - -. Thus,

pi=el, py=1-=pies, ps=(—pivp3les, .
Then V. pi= Viei=1, since V e} is the unit of p(I,)” where I, is the smallest closed
two-sided ideal of 4>, G containing d&,(J,), &,(J,), - - -, and 1, is d-invariant and
essential (so by hypothesis p is nondegenerate on 7,). For each k denote by p} the unique
extension of p | d,,(J,) to a representation of M(d,,(J,)) =4, (M(J,)) on the Hilbert space
erH,. (Thus, pp=(p| 4 (J,))**.) Set
i PP G (X)) =, -

Then y, € p(4A><,G)". Furthermore, the sequence (y,) is Cauchy:
1Vm = Yull = 0Dk, i|1PK PI(Yi— i)
=supy [P¥ PI(PR (g (X)) — PT(Ge, (X))

<Supyi[|(P | 8y, () NG () ** (B, () — Gy (X))
=supy 1|4, (X)) — 8 (X <&+, -

Here we have used that py' p; <ef'e], and that ej'e; is the unit of p(d;,(/,) N4,,(J,))". Set
lim y,=p(x) .

From what we have shown, namely, that
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1Ym = Yull S 11X = 21| + |26 — 1|,

it is clear that p(x) is independent of any choices made in the construction. Hence, in
particular, p(x) depends additively and multiplicatively on x, and p(x*)=p(x)*.
Furthermore, p defined on M*(4><, G)i in this way agrees with the unique extension of
p to a representation of M(A><,G) (or to M(J) for any closed two-sided ideal J of
A >, G on which p is nondegenerate). Finally, for use at the end of this proof, let us note
that, by construction, p is isometric on M*(A4><, G)i.

Now let us return to the proof that ue M*(A). As we have shown, there exists a
unitary ve M*(4) such that (Adv)|4=(Adu)|A4. Since (Adu)|4 commutes with
(Ad A(g)) ] A=u, for each geG, it follows that v~ 'a,(v) belongs to Centre M*(A) for
each ge G. By Proposition 3.1, as 4 is prime, Centre M*(A)=C. Hence, by Proposition
3.5, below, the map g Hf_ldg(l)) is continuous. This map is clearly multiplicative.
Therefore, there exists & e G such that

Mgig)~ =& gov,  geG.

Replacing u by uv*, and y by y—¢, we then have that u fulfills the hypotheses of the
proposition andz in addition, uau™! =a for all ac 4. In other words, we now have that
ue M*(A><, G)" and, replacing y by —7,

3,=Adu.

Using only the hypothesis that 4 and 4* have faithful irreducible representa-
tions, we shall now deduce that y=0, and hence that u is a scalar multiple of 1.

First, let us show that y=0. Since 4 is prime, by Theorem 3.4 of [24] we have
G(d)=G. To show that y=0, therefore, it is sufficient to show that yeG(&)*. By
Proposition 4.2 of [25], for this it is sufficient to find a nonzero d-invariant hereditary
sub-C*-algebra B of 4>, G such that &, | B=exp o for some d-invariant derivation of B.
If B is d-invariant and |Sp(&, | B)—1|<1 then this of course holds, with 5=log(o?y|B).

Since &, =Adu with ue M*(4><,G), 4, is not properly outer. (The implication
(ii) = (i) of Proposition 3.2 holds for any C*-algebra; just note that if an automorphism
f of a C*-algebra is, when restricted to a not necessarily invariant closed two-sided ideal
I, strictly within distance two of an automorphism of I, then f leaves I invariant.)
Hence, by (viii) = (i) of Theorem 6.6 of [25] (this implication does not use sepa-
rability), there exists a nonzero 4 -invariant hereditary sub-C*-algebra B, of A><, G
such that |Sp(&,|B,)—1|<1. Using that u is d-invariant, we shall show that if B
denotes the d-invariant hereditary sub-C*-algebra of 4 >«, G generated by B,, then also
|Sp(a, | B)—1|<1, as desired.

We shall in fact show that Sp(&, | B) =Sp(d, | B,). To do this we shall proceed in two
steps, using a faithful irreducible representation © of 4 ><, G. (Recall that by Lemma 2.1,
with H=G, the hypothesis that A* is prime implies that 4>, G is prime.) Since ©
extends to M (4 >, G) (being both faithful and factorial), and &,= Ad u, we may extend
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d, to n(A >, G)", writing &, = Ad m(u).
We shall prove first that

Sp(d, | Bo)=Sp(d, | n(Bo").
and second that
Sp(&, | 7(Bo)")=Sp(&, | n(B)") .

Since, for single automorphisms, spectrum and Arveson spectrum, and therefore also
point spectrum, coincide—see [30], 8.1.14—, we have

Sp(@, | B,)=Sp(4, | B)=Sp(&, | «(BY") ,
and the desired equality,
Sp(&, | By) =Sp(4,

B),

follows.

Let us show that Sp(&, | B,)=Sp(8,| n(B,)"). By 8.1.9 of [30], A€ Sp B, where B is an
automorphism of a C*-algebra or a von Neumann algebra, if and only if, for each
fel'(Z) with f(2) %0, Y f(n)B"x 0. Applying this first with =4, | B, and then with f =
&,| m(By)", we see that Sp(d, | By) =Sp(4, | n(B,)"), as desired.

Let us show that Sp(é,|n(B,)")=Sp(d, | n(B)"). As above, the inclusion of the
spectrum on the smaller domain in the spectrum on the larger domain holds since the
spectrum is point spectrum. Conversely, let AeSp(4, | n(B)"), and let us show that
AeSp(d,| n(B,)"). By Lemma 2.3.10 of [7], A=4,4; ! with 4,, 4, € Sp n(1). We shall show
that 4,, 4, e Spe,n(u) where ¢, is the unit of n(B,)”", using that u is d-invariant. Since B is
the smallest d-invariant hereditary sub-C*-algebra of 4 >, G containing B,, the unit of
n(B)", say e, is the smallest projection containing the unit of n(d.(B,))", say e, for every
¢eG. For each e, since d(u)=u, we have uo‘té(Bo)u“ =d.(B,), and hence e,n(u)=
n(u)e,.

Let us show that, for each & e G, Sp e,n(u) =Sp eyn(u). Since &,| By=(Ad u)| B, with
ue M*(4>,G), and B, is a hereditary sub-C*-algebra of 4 >, G, so that every faithful
factor representation of B, extends to a faithful factor representation of 4>, G (and
hence of M®(A><,G)) on a larger Hilbert space, by Proposition 3.2 there exists
we M*®(B,) such that &, | B,=(Ad w) | B,. Since 7 is irreducible, also the restriction of 7
to B, is irreducible on the Hilbert space e, H,. It follows that m(w) is a scalar multiple of
eom(u), and so we may modify w so that n(w)=e,n(u). Hence, for any a, be B, awb=
aub. Tt follows that, for any &€ G, on considering the irreducible representation nd, of
A><, G, and its restriction to By, which is irreducible on the Hilbert space e.H,, we have
né(w) =e,nd (1) =e,n(u). Since nd, is faithful on B, and therefore on M*(B,), we have
Sp nd(w)=Spw. This shows that Spe,n(u) is independent of &, as desired.

Now let us show, as announced, that 4, and 2, belong to Sp e,n(u). Note that, since
€=V g€ the homomorphism

)|
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C*(en(w)) 3x r—(ex) €[ [sec C*(egm(w)

is injective, so that Sp en(u) =({J¢.s Spe:n(#)) . Since Sp e, n(1) =Sp e,n(u) for each ¢,
this shows that Sp en(u) =Sp e,n(u). In particular, 4,, 1, € Sp e,m(u).

Since A=4;4; !, and &, | n(B,)" =(Ad e,m(w)) | n(B,)", it follows by Lemma 2.3.10 of
[7] that 2eSp &, | n(B,)", as asserted.

This completes the proof that, after u is modified as above, y=0. Let us now show
that u, thus modified, is a scalar multiple of 1. Let 7 be a faithful factor representation of
A, so that, as noted above, the induced representation p of 4 ><, G is also faithful, and,
moreover, extends from 4 < M(A4><, G) to M*(A4><, G)&, and is faithful there. What we
must show, then, is that p(u) is a scalar multiple of 1. As shown above, p(u) = V®?y with
Ven(A4)". Since y=0€ G, by which we mean that 7 is the trivial character 1, we have u=
V®1. As shown above, n((Ad u) ] A)=(Ad V)=. Since (Ad v) | A=1 and = is factorial, it
follows that V' is a scalar multiple of 1, and therefore also u is. In particular, ue M*(A).

We do not know if all the assumptions made in the second half of the proposition
are necessary.

3.5. PROPOSITION. Let A be a prime C*-algebra and let o be an action of a
compact group G on A. Let ¢ be a pure state of A such that ny is faithful, so that ¢ extends
uniquely to a pure state of M®(A). It follows that for any a, b, ce M®(A) the map

G 39 —bpc(o,(a)) : = P(ca,(a)b)
is continuous.

PROOF. As shown in the proof of Proposition 3.3, we have M*(A4)=
lim; invariane M(Z). Therefore it is sufficient to consider the case that ae M(I), where I is a
nonzero o-invariant closed two-sided ideal of A. Again as shown in the proof of
Proposition 3.3, I* contains an approximate unit (e;) for I. Then ||¢ — ¢e;|| =0, and the
same holds with b¢c in place of ¢. The conclusion follows as g —a,(e;a) is continuous.

4. Duality for a partially inner action.

4.1. THEOREM. Let A be a separable prime C*-algebra, and let o. be an action of a
compact abelian group G on A. Set
H={teG; a, is not properly outer} ,

and suppose that A® and A" are prime.
If B is an automorphism of A such that B| A°=1 and Ba, = a,B, t € H, then there exists
g€ G such that f=a,.

PROOF. We may suppose that « is faithful.
By Proposition 3.2, for each t e H there exists a unitary u(t) e M*(A) such that o, =



154 O. BRATTELI, G. A. ELLIOTT, D. E. EVANS AND A. KISHIMOTO

Ad u(?); furthermore, this holds only for te H. By Proposition 3.1, Centre M*(4)=C,
and so u(f) is unique up to a phase factor.

It follows in particular that H is a subgroup of G. Let us equip H with the discrete
topology. Since G is abelian we have o, =Ad a,(u(?)) for each te H and ge G, and by
uniqueness of u(t) we have u(f) "'« (u(r)) € T. Hence, for each fixed ¢ e H, by Proposition
3.5, the map g —>u(t) o, (u(?)) is continuous. This map is clearly multiplicative, and is
therefore a character of G, say Y(¢). Clearly, also, y: H -G is a homomorphism.
Denoting by x: G- H the dual of , we have

oy (u(1)) =g, Y(O)pu(t)=<x(g), Hu(1),

geG, te H.

Let N denote Ker y=(Imy)*. We shall establish the following five assertions.
wH)=H.
x| H is injective.
NH=G.
AN is prime.
. pANy=4".

PROOF OF 1. Since y(H) is a compact subgroup of H, it suffices to show that y(H)
is dense in H. Let te H be such that {y(h), t>=1 for all he H, i.e. a,(u(t))=u(t), he H.
Hence, by continuity of g ——u(t) ‘o (u(r)) (see above), a,(u(t))=u(t) for all he H.
Therefore, u(t)e(A®) NM*(4). By Proposition 3.3, then u(f)e(4%) N M= (A¥), ie.,
u(t) e Centre M*(A™). Since A7 is prime, by Proposition 3.1, Centre M*(A7)=C. This
shows that o,=1, and so r=0.

PROOF OF 2. If h, te H, then

Cuhy, ) =u(hyu(yuth) " u(t) ™! = (o), by~

It follows that if te H and x(f)=0 then te y(H)*=0.
PROOF OF 3. Since y(H)=H and Ker y=N, we have NH=G.
PROOF OF 4. By definition of N=Ker y,

s

a(u(t)=u(t), seN, teH,

i.e. u(tye M*(A)", te H. By Proposition 3.3, it follows that u(t)e M*(A"), te H. Since G
is abelian, A" is a-invariant. Suppose that 4" has nonzero closed two-sided ideals 7 and
J such that 1J=0, and let us deduce an absurdity. We may suppose that 7+ J is essential,
and then M (4")= M>(I)+ M*(J), where M*(I)M>(J)=0. Since «, =Adu(r), te H, it
follows from u(s), u(f)e M*(A") for s, t € H that a(I)a,(J)=0, for any s, € H and hence
for any s, te H. Denote by I, and J, the smallest closed two-sided ideals of A"
containing I and J and invariant under ag. Then I,J,=0, and since (A")F = AN = A€,
I,nA% and J,NA® are orthogonal nonzero ideals of A% (Note that I,nA%=1F,
JonA%=JH ) This contravenes the hypothesis that 49 is prime.

PROOF OF 5. Denote by o the action of H on 4" obtained by restricting .. Denote
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by ¥, the composition of y: H—G and the restriction map G—H. For each fixed te H
we have, as shown in the proof of 4, u(f)e M*(A)® =« M*(A"). Furthermore,

oa(u(®)=<h, Yy (u(ty,  heH,

and it follows, as we shall now show, that ¥,(f)eSpo. As shown in the proof of
Proposition 3.3,

MOO(AN) = 11.rnla-inven'iam M(I) 5

and so there exist sequences (/,) and (a,), I, a nonzero o-invariant closed two-sided ideal
of A" and a, e M(1,), such that a, converges to u(¢). Then with b, = [z dh<h, Y, ())o4(ay,),
the integral converging in the strict topology of M(1,), we have

a(b,) =<h, Y, ()b,
and, as we shall show, b,—u(t), and in particular, b, 0, at least for large n. To see that
b,—u(t), note that for each n, and for each cel, invariant under o,

(b, —u(t))c= j dh<lh, ¥(1)) o,(a, —u(t))c) ,

H

the integral converging in norm, and hence, if |c|| <1,
(b, —u(n)c|| < |[(a, —u(D)c| < lla,—u(D)] .

Since A" is prime (by 4), and is separable, there is a faithful irreducible representation of
A" necessarily nondegenerate on /,, and extending to a faithful representation of
M=(A"). Hence

16, — (Dl =SUPees, 1 <1 1y —u(®)cl < [|la, —u(®)[| -0,

as desired. This shows that, at least for large n, b, 0, whence, for some o-invariant
c,€l,, b,c,%0. As b,c, belongs to the spectral subspace of I, for the action ¢ of H
corresponding to ¥, (1) e H, I2(,(t)), and therefore to the spectral subspace (4™)°(\, (1))
of A", this shows that (AV)’(¥,(1))%0, i.e. Y,(f)eSp o, as asserted.

We have shown that y,(H)<=Spo. Let us show that ,(H)=Spo. Let he H be an
element of ,(H)*. Then a,(u(f))=u(r), te H, and so x(h)=0, i.e. he N. This shows that
HNNoy,(H)*, or, in other words, (HNN)*NH<y,(H). Since o| AN N is trivial, one
has Spa<=(ANN)*nH. This shows that Spa <y, (H), and so Sp o=y, (H).

Since fo,=o,p for te H, and Centre M*(A)=C (Proposition 3.1), there is a pe H
such that

B(u(1))=<t, pou(t), teH.

For each te H, and each a e (A")°(— (1)), one has au(t)e M*(A) (since, by 3, NH=G,
and since o, (u(t)) = <h, Y, (£)>u(t) for he H and a(u(f))=u(t) for se N). By hypothesis,
B|A°=1,and it follows that | M*(4)%=1. (This can be seen by examining the proof of
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Proposition 3.3, which identifies M*(4)¢ with a subalgebra of M*(A4€): since each a-
invariant closed two-sided ideal 7 of 4 has an approximate unit consisting of elements
that are a-invariant, and therefore f-invariant, I is also S-invariant; hence f(M(1))=
M(I), and therefore | M(I)¢=1; it follows in the limit that 8| M*(4)=1.) From this
we obtain

Blaw(D))=au(r),  teH,

and as f(u(f)) = {t, pYu(?) it follows that B(a)=<t, ppa. This shows that B(A")’(—¥,(£)))=
(A™)°(—(?)) for each te H, and since H is compact and Spo=y,(H), it follows
that B(A™)= A", as desired.

Now let us show that f=a, for some g G. First, we shall show that | 4" =g, for
some he H, where, as in the proof of 5, ¢ denotes the action of H by « on 4". What we
showed in the proof of 5 is that there exists peFl such that, for each te H,

BI(AYY (D) =<1, p> .

In particular, <1, p> depends only on y,(¢); that is, there exists a character A, of
Y,(H)< H such that

Cho, i (> =<t,p>, teH.
Extending #, to a character on ﬁ, we have he H such that <h, Y, (1)) =<t, p)>, te H. Then

BI(ANY (W, (D) =<, Y, (6> =0, | (AV) (1 (1))
te H, and since y¥,(H)=Sp o (this was shown in the proof of 5), it follows that
ﬁlAN=Gh=ah|AN .

Set «, !f=B,. Then B, \ AN =1, and we wish to show that B, = o, for some se N. By
2, NNH=0. In other words, a, is properly outer for every se N\{0}. Since 4 is
separable and prime, and (by 4) also A" is prime, this shows that Condition 15 of
Theorem 1 is verified with N in place of G (and | N in place of «). Hence Condition 13
of Theorem 1 is also verified, with f; in place of 5, and so B, =a, for some se N. This
shows that B=o,, with g=hse G, as desired.

4.2. REMARK. Ifaisergodic under the assumptions of the theorem, then by [1]
(see also [27]) H is dense in G. In particular, in this case A¥ = 4, and so the assumption
that A" is prime follows from the assumption that 4¢ is prime.

In general, the hypothesis that A" is prime does not follow from the other
hypotheses, and is necessary for the conclusion of the theorem. This is seen from the
following example.

4.3. EXAMPLE. Let o be an outer automorphism of the Glimm C*-algebra 4 =
M, .. with period two, and define an action « of Z/2Z x Z/2Z on M,® A by
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1 0
a(1,0)=Ad<O _1>®1’

0 1
%o, 1)=Ad (1 0)@0’.

Then 4*={(a, o(a)); ac A}~ A, H=Z2Z x0, A"=Ax A, and f=Ad ((1) 9>veriﬁes the
i
conditions f|4*=1, fo,=o,p, te H.

5. Duality for an action on a von Neumann algebra.

5.1. One purpose of this section is to give a new proof of the following von
Neumann algebra analogue of the Tannaka duality theorem, given in [2], [33], and [22;
Theorem VII.3.8]:

THEOREM (Araki, Haag, Kastler, Takesaki). Let M be a von Neumann algebra,
and let o be an action of a compact group G on M. Let H be another group and t an action
of H on M such that [a, ©]=0 (i.e. o7, =140, for all ge G, he H). Suppose that t is ergodic
(i.e. M*=C, where M~ denotes the fixed point subalgebra for 7). It follows that for any
automorphism B of M such that ﬂ| M*=1 and [, 1]1=0, there exists a ge G such that

B=ua,.

For example, if (M*)'N M =C, then H could be taken to be the unitary group of
M*, and 7 to be the adjoint mapping, h —(Ad h)| M.

We shall deduce this theorem from the C*-algebra analogue, given later in [3], in
which the hypothesis of ergodicity of  is replaced by a stronger condition called strong
topological transitivity. To do this, we shall show that for an action of a group on a von
Neumann algebra, the two conditions are equivalent: ergodicity implies strong topologi-
cal transitivity.

One way in which our proof is new is that it does not depend on the type of the von
Neumann algebra. The original proof consists of first reducing to the infinite case, and
then using Roberts’s construction of Hilbert spaces in the algebra ([31]). Our proof does
not use Hilbert spaces in the algebra.

5.2. THEOREM. Let M be a von Neumann algebra, H a group, and t an action of
Hon M.

The following three conditions are equivalent.

1. 7 isergodic, ie. M*=C.

2. 1 is topologically transitive, i.e.

XTy(y)=0=>x®y=0.

3. 1 is strongly topologically transitive, i.e.
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Y xn(y3)=0 VheH = Y x,®y;=0.

(finite)

ProoF. The implications 3 =2 and 2=-1 hold in any C*-algebra, the first
trivially, and the second by spectral theory. (If M*x C then there exist (positive) nonzero
x, ye M* with xy=0, whence x7,(h)=xy=0 for all he H.)

Ad 1 =3. We may suppose that M is represented covariantly on a Hilbert space,
for example by taking the crossed product by 7. In other words, we may suppose that 7 is
determined by a unitary representation U of H: 1,=(Ad U(h))| M, heH.

Assume that t is ergodic, and let (x;), (¥;) be finite sequences in M such that, for
each he H,

Yxm(n)=0, ie Y xUMh)y=0.
It follows that

Y x;Uh)z'y;=0, heH, zZeM’.
Hence,
(*) Y xby;=0

for any b in the weakly closed linear span of U(H)M’. But since U(h)M ' U(h)* =M’ for
each he H, the linear span of U(H)M’ is a *-algebra, and so by the bicommutant
theorem its weak closure is

(M’ UUH)Y' =(MNUHYY =(M?) =C",

i.e. the algebra of all bounded operators on the Hilbert space.

In particular, (%) holds with b an operator of rank one, ie. with b=E(®@n*:
{ —(¢|mé, and from

Y x(E®@n*)y;=0, ie. Y xL®(yin*=0,
follows
Yxé®y¥n=0, ie. Qx®@yHNERn)=0.

Since Zx,@ y¥ is a bounded linear operator and the vectors £ and # are arbitrary, this
shows that )’ x;®y#=0. Therefore, ) x;®y;=0.

5.3. COROLLARY. Let A be a C*-algebra, and let © be an action of a group H on
A. Suppose that there exists a faithful t-covariant representation © of A such that the
extension of T to n(A)" is ergodic (i.e. (n(A)") =C).

It follows that 7 is strongly topologically transitive.

5.4. COROLLARY (special case of 5.3). Let A be a C*-algebra, and let B be a sub-
C*-algebra of A. Suppose that there exists a faithful representation n of A such that
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n(B)' Nn(A)" =C.
It follows that the unitary group of B (with unit adjoined, if necessary) acts strongly
topologically transitively on A. (Compare 10 = 12 of Theorem 1.)

5.5. PROOF OF 5.1 (using 5.2 and [3]). Let 8 be an automorphism of M such
that 8| 4*=1 and [, 7]=0. All the hypotheses of Theorem 2.1 of [3] are now verified,
except that the system (M, G, a) is assumed only to be a W*-dynamical system, not
a C*-dynamical system. It is straightforward, however, to modify the proof of Theo-
rem 2.1 of [3] by putting the ultraweak topology of M in place of the norm topology.
The conclusion f=a, for some ge G follows.

Alternatively, as in the proof of 12 = 13 of Theorem 1 above (in Section 2), we may
note that the proof of Theorem 2.1 of [3] is valid without any assumption of continuity
of « at all until the last line—provided that M is defined as the set of all xe M such that
the linear span of ag(x) is finite-dimensional. This yields that, for some ge G, f=a, on
M. By the Peter-Weyl theorem generalized to boundedly complete locally convex
spaces (including Banach space duals, and therefore W*-algebras), M is ultraweakly
dense in M, and hence f=a,.

5.6. We note, finally, that the condition that the relative commutant of the fixed
point subalgebra be trivial appears in recent work of Doplicher and Roberts ([10], [11],

(12)).
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