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Let α be an action of a compact abelian group on a separable prime C*-algebra A,
such that also the fixed point subalgebra, A", is prime. Several conditions on α are shown
to be equivalent, among which are the following:

for each g e G, either ag = 1 or α^ is properly outer;
there exists a faithful irreducible representation of A which is also irreducible on AΆ\
there exists a faithful irreducible representation of A which is covariant.
An example of a nontrivial action satisfying these conditions is the infinite tensor

product action on M2ao = ($™=i M2 obtained from a sequence of nontrivial inner ac-
tions on Af2, each one appearing infinitely often. In earlier work, this example was
shown to be, in a certain sense, typical of nontrivial actions satisfying the third
condition. This fact is the key to deducing the first two conditions from the third.

The second condition is noteworthy in two respects. First, it involves only the fixed
point subalgebra AΛ^A, not the action α itself. (This is not evident in the case of the
other two conditions.) Second, while a representation verifying the third condition is

required to be co variant, a representation verifying the second condition must in fact be
as far as possible from being covariant.

1. In [26], Olesen, Pedersen, and St0rmer obtained results concerning the system
consisting of a prime C*-algebra and a compact abelian group of automorphisms such

that the fixed point subalgebra is prime. They showed that if the group is either the circle
group or is finite of prime order, then

(i) the only multipliers commuting with the fixed point subalgebra are the scalars,

and
(ii) the only automorphism in the group that is determined by a multiplier is the

identity.
In addition, assuming that the group is finite but not necessarily of prime order, and

that the C*-algebra is simple, they showed that the properties (i) and (ii), which need no

longer hold, are equivalent. (The nontrivial implication is (ii) -* (i).)
In the present paper, we shall improve these two results substantially. Our methods

require that the C*-algebra be separable. We shall formulate properties (i)' and (ii)' (14
and 15 below) which are stronger than (i) and (ii), but reduce to these in the case that the
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C*-algebra is simple. We shall show that the stronger properties still hold if the group is
the circle group or is finite of prime order, and that, in any case, they are equivalent. The
latter result is new even in the case that the C*-algebra is simple, there being no

restriction on the compact abelian group. Furthermore, and in fact as part of the proof,

we shall show that the properties (i)' and (ii)' are equivalent to a number of other
properties (1 to 13 below).

Properties (i)' and (ii)' are stated in terms of the limit multiplier C*-algebra, which

was used in [13], after a suggestion by G. K. Pedersen, and was considered further by

Pedersen in [29]. (See also [26, Appendix].) Recall that the limit multiplier C*-algebra,
MCO(A), of a C*-algebra A is defined as the inductive limit of the net of multiplier C*-
algebras of essential closed two-sided ideals of A. In this connection, note that if/^/are
two such ideals, then M(I) c M(/), and that if / and J are any two such ideals, then also
/ f l / is such.

Two of the properties (4 and 15) involve the proper outerness of certain auto-
morphisms (either άy, y^O, or αβ, 0%0). Proper outerness of an automorphism of a
C*-algebra A was defined in [14] to mean that the restriction to any nonzero invariant
closed two-sided ideal is at distance two from any automorphism of that ideal
determined by a multiplier. It was shown in [13] and [14] that, at least in the case that A
is an AF algebra (i.e., a separable approximately finite-dimensional C*-algebra), the
condition for an automorphism of A to be properly outer fails—and, moreover, with

respect to an essential ideal—if, and only if, the canonical extension of the automor-
phism to MCC(A) is inner. Various other reformulations of proper outerness in the case
of AF algebras were also given in [13] and [14], and most of these are now known to be

valid for any separable C*-algebra, as a result of work of Kishimoto in [17] and Brown
in [6]—see also [18] and [25] (a complete summary is given in Theorem 6.6 of [25]). The
reformulation in terms of MGC(A) follows from a result of Pedersen in [29]—see

Proposition 3.2 below. In Propositions 3.1, 3.2, 3.3, 3.4, and 3.5 we also establish other
facts concerning MCC(A) that we shall need.

Two other properties (1 and 12) refer to the action on the algebra of the unitary

group of the fixed point subalgebra; the first is topological transitivity of this action, in
the sense of [21], and the second is strong topological transitivity, in the sense of [3]. (It is

open in general whether these two properties are equivalent.)
Another property (13) is an analogue of Tannaka duality. It is stated for

automorphisms of M™(A), instead of just for automorphisms of A, in order to deduce

the other properties from it. (Stated just for A, it is already known to follow from the
property 1—see [21].)

In Section 4, a more general form of this analogue of Tannaka duality is given, in
which some of the automorphisms are allowed to be inner. (In 13, none of the
automorphisms can be inner, as follows from 13 ̂  15.)

In Section 5, we prove that strong topological transitivity and ergodicity are
equivalent notions for an action on a von Neumann algebra. This is used for proving the
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implication 10^12 in Theorem 1; this result also yields a new proof of the Tannaka
duality theorem for von Neumann algebras given in [2].

In the following theorem, G denotes the dual group of G, G(α) denotes the Connes
spectrum of the action α ([30]), πω denotes the cyclic representation defined by the state
ω, and J® πagdg is viewed in the canonical way as a representation on Hπ®L2(G), where
Hπ is the Hubert space of the representation π.

THEOREM. Let A be a separable C* -algebra, and let α be a faithful action of a
compact abelian group G on A. Suppose that G\Q.

The following fifteen conditions are equivalent.

1. Ifx,yeA\{Q}, thenxA*y*Q.
2. Any sub-C* -algebra of A containing A* is prime.
3. For any closed subgroup HofG such that G/H= T or G///= ZjnZ for some n —

1, 2, , the fixed point algebra AH is prime.

4. A* is prime and the dual automorphisms άy, γ ε G\{0}, of the crossed product C*-
algebra AxaG are properly outer.

5. A* is prime and there exists an ^-invariant pure state ω of A such that πω is
faithful.

6. G(α) = G and there exists an en-invariant pure state ω of A such that πω is faithful.
1 . For any sequence (ξn) of finite-dimensional unitary representations of G there

exists an ^-invariant sub-C* -algebra B of A and a closed α** -invariant projection q in the
bidual A** of A such that

(i)
(ii)

(iii) qeJ** cΆ** for any nonzero closed two-sided ideal J of A,
(iv) the C* -dynamical system (Bq, G, α** | Bq) is isomorphic to the product system

8. B and q exist as in 7 in the case that dimξn = 2 and ξn= l©χw, where (χn) is a
sequence in G in which each element of G appears infinitely many times.

9. There exists an ^-invariant state ω of A such that πω is faithful and

10. There exists a faithful representation π of A such that

π(A*)'ϊ\π(A)" = C.

11. There exists a faithful irreducible representation n of A such that

π(ΛT = π(Λ)".

11 '. There exists a faithful irreducible representation π of A such that
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(A)\ = τφ4)"(x)LQO(G).

12. For each pair (xί9 - -, xn) and (jμ1? , yn) of finite sequences in M™(A) such

that Σl=ι χί®yi^Q> there exists aeA* such that £?=1 x^y^Q.
13. A and A* are prime, and if β is an automorphism of MCC(A) such that β | AΛ= 1

then β = ocg for some gεG.
14. A* is prime, and (A*)' fl MCC(A) = C.
15. A and A* are prime, and ag is properly outer for each ge G\{0}.
Furthermore, ifG is the circle group or a finite cyclic group of prime order, then these

conditions are equivalent to the following one.
16. A and A* are prime.

(If G = 0, the equivalence of all the conditions, with the exception of 7 and 8,
remains valid, but the theorem then reduces to the well-known fact that a separable C*-
algebra is primitive if and only if it is prime.)

2. Proof of Theorem 1. We shall prove the following implications:

l-*2->- -* 10-* 12 •*•••-* 15-»4-»l; 8-»l l-»10; 11«*11'.

The implications 1 -* 2 and 2 ̂  3 are obvious.

Ad 3^4. Assume 3. Putting H= G we see that A" is prime. Now fix 0 ̂  γ e G, and
let us show that άy is properly outer.

With //=Kery, we have that G///is isomorphic to y(G), which by compactness of
G is a closed subgroup of T, and therefore either Γ itself, or a cyclic group of finite order
n = 2, 3, . In particular, AH is prime by 3.

. It follows, as we shall now show, that the double crossed product (;4xαG)
xiίltfi HL is prime.

LEMMA 2.1. Let G be a compact abelian group, let α be a faithful action of G on a
C*-algebra A, and let H be a closed subgroup of G. The following two conditions are
equivalent:

1. AH is prime.
2. (A xα G) xά HL is prime.

PROOF. Note that (A xα G) x& HL is the fixed point subalgebra of (A xα G) x& G
under αH. By [32], the system ((A XΛ G) xά G, α) is isomorphic to the system
(A®K(L2(G)), α(x)A), where K(L2(G)) denotes the algebra of compact operators on
L2(G), and λ is the representation of G on K(L2(G)) determined by the left regular
representation. Since G is compact, we have a canonical system of matrix units

KA/eG for K(L\G)), with eχχ,eKλ(χ-χ')9 i.e. «,(έ^0 = <*-*', 0>*z*' Clearly
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Denote by / the closed two-sided ideal of (A®K)H generated by AH®e00. By

Theorem 1.6 of [28], / and the hereditary subalgebra AH<S)e00 have the same spectrum,
and, in particular, one is prime if and only if the other is.

The implication 2 ̂  1 is now immediate: if (A® K)H is prime, then / is prime and

hence AH is prime.
To prove the implication 1 -*2, moreover, it is now enough to show that if AH is

prime, then the ideal /of (A®K)H is essential. Suppose that AH is prime, and denote the

largest closed two-sided ideal of (A® K)H orthogonal to AH®e0() by /. We must show
that /=0.

Since G is abelian, both (A®K)H and AH®eQQ are invariant under α(x)Λ, and

therefore J is invariant. Hence (as G is compact), if there exists a nonzero element in J
then there exists one of the form a®eχχ> withaeAΛ(χ' — χ). (By the proof of Proposition
3.3, below, A* contains an approximate unit for A. The tensor product of this with finite
sums Σ?χχ is an approximate unit for A®K, invariant under α(χ)Λ,. Hence, if

0^jte«/α®A, then, after multiplication on the left by an element of A*®eχχ for some χ,
and similarly on the right, x has the desired form.) Fix χ, χ'eG and aeA^χ'-χ) with

a®eχχ,εJ, and let us show that 0 = 0. Since A*(χ + Hλ)®e0x^(A®K)H

9 we have

0 = (Λ*(g)£00)(Λ«(χ + ̂ )®e^

Since H is compact, A" contains an approximate unit for A. (See proof of Proposition

3.3.) Hence,

= 0, i.e.,

But A\χ+HL)*A\χ + HL} is a two-sided ideal of AH, and aa* belongs to A" (in fact to
AΛ\ Hence, since AH is prime, either A"(χ + Hλ) = Q, or a = 0. But by Lemma 2.2, below,
with ( A 9 H , c ί \ H ) and χ+ HL e H in place of (A, G, α) and χ, since α is faithful and AH is
prime, ^(χ+T/1)^. Therefore α = 0, as desired.

LEMMA 2.2. Let G be a compact abelian group, let α be a faithful action of G on a

C* -algebra A, and suppose that A" is prime. It follows that Spα = G, i.e., for every

PROOF . First, let us show that Sp α is a subgroup of G. If A*(χ) ^ 0 and A*(χ ') ̂  0,

then

and AΛ(χ)*A"(χ), A*(χ')* A\χ') are nonzero two-sided ideals of the prime algebra AΛ, so

have nonzero product. This shows that A*(χ — χ')^Q.

Second, as Spa is a subgroup of G, we have Spα = //1 where //=
Hence, in H,
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Sp(α I //) - (Sp α)///1 - Hλ/Hλ = 0 .

In other words, α | H is trivial. Since α is faithful, //=0, i.e. Spα = G.

Returning to the proof of the implication 3 -* 4, we now have that (A xα G) x$ HL

is prime. Hence by Theorem 5.8 of [24] (with A xα G in place of A, Hλ in place of G, and

ά Hλ in place of α),

Since HL is the cyclic subgroup of G generated by y, it follows, either by Remark 2.5
of [18] or by Theorem 6.6 of [25], that άy is properly outer, as desired. (Let us expand on
Remark 2.5 of [18]: If β is an automorphism of a C*-algebra which is not properly outer,
then to show that the Connes spectrum T(β) (or the Borchers spectrum TB(β)) is equal to
{!}, it is enough by 1.3 (or 2.1) of [18] to consider the case β = expδ where δ is a

derivation. Since Sp β" = (Sp β)", we have T(βn)^T(β)n (and TB(βn)^TB(βT), and so to

prove that T(β) = {\} we may replace δ by n~ίδ and suppose that ||]8— 1|| <|e2πι/3-l |,
so that Spβ does not contain any nontrivial subgroup of T. But then T(β) equals {1}
because it is a subgroup of Γ([30], 8.8.4; to get TB(β) = {1} use [30], 8.8.5). Incidentally,
combining this argument with Lemma 3.6 of [25] and using compactness of 7, we have a

different proof of Lemma 4. 1 of [25], that every derivation is close to zero on some
invariant hereditary sub-C*-algebra. However, this proof does not seem to give a
subalgebra which is invariant under all automorphisms commuting with the derivation,

as does that in [25].)

Ad 4^5. (We prove this implication by combining ideas from the proof of
Theorem 2. 1 in [17] and the argument on page 161 in [19].) Assume 4. In particular, A* is
prime, and it follows by Lemma 2.1, with G in place of //, that A xα G is prime. (This
does not use the hypothesis of proper outerness.)

Since A xα G is separable, there exists a sequence (/„) of nonzero closed two-sided

ideals of A xα G such that every nonzero closed two-sided ideal contains some Jn ([9],
3.3.4). (If (xn) is a dense sequence in the unit sphere of A xα G, we may take Jn to be the
smallest closed two-sided ideal of Ax^G such that \\xn + J n \ \ ^ \ / 2 9 for if J is any
nonzero closed two-sided ideal there is some n such that ||xn + /|| < ||jcJ/2= 1/2.) Since
A xα G is prime, we may replace Jn by Jl Π Π JΠ and suppose that the sequence (/„) is
decreasing.

Denote by T the set of aεAx^G such that α^O, ||0|| = 1, and there exists
0 ̂  b e A χα G with ab = b. By spectral theory, T is not empty, and if a e T then there
exists b e T such that ab = b.

Choose a dense sequence of unitaries (wm) in (,4xα(j)~, the C*-algebra AxΛG
with unit adjoined, and let (σn) be an enumeration of the automorphisms (Ad wm)άy, m =

1,2, ...,7 6G\{0}.
Construct as follows a sequence (en) in T such that
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enen + ι=en + ι, eneJn, and \\enσn(en)\\^n-1 .

Suppose that we have constructed eke T for 1 ̂ k<n such that ek__ίek = ek, ekeJk, and

\\ekσk(ek)\\^^~1- Choose xeT such that en_1x = x. (If w = l , just choose xeT.) By
Proposition 6.4 of [25], applied to the properly outer automorphism σn and the
hereditary sub- C* -algebra /„ Π (x(A xα G).x) ~ , there exists en in this subalgebra such that

°^n, IKH = 1, and \\enσn(en}\\ <n~l. Necessarily, en_len = en, and modifying en slightly
using spectral theory ensures that, in addition, en e T, as desired.

As (en) is a decreasing sequence of positive elements of A xα G of norm one, the set

of states of A xα G with value 1 on en for all n is a nonempty compact face in the state
space of A xα G. Therefore, there exists a pure state φ0 ofAx^G such that φ0(en) = 1 for
all n. Denote by φ the unique α-invariant extension of φ0 to a state of (A xα G) xά G.
We shall show that πφ is faithful and that φ is pure.

Since </>0(O = 1 and en E ./„, /„ is not contained in Ker πφo for any n. Hence
Ker πώ = 0. Since Ker πώ is α-invariant, if it were nonzero its intersection with the fixed

ΨQ Ψ

point subalgebra A xα G would be nonzero, but this intersection is clearly contained in
KerTΓx , which is zero. Therefore Kerπώ = 0.

ΨQ Ψ

Since φ0 is pure, to show that φ is pure, it suffices to show that φ is the unique
extension of φQ to a state of (A xα G) xά G. Let φ be a state of (A xα G) xά G such that
ιl/\AxΛG = φQ. To show that ψ = φ, we must show that ψ is α-invariant, i.e. that
ψ(bu(y)) = Q for any beAx^G and any O^yeG. Here u(y) denotes the unitary
multiplier of the crossed product by G canonically associated with γ e G. Since any C*-

algebra is spanned linearly by its unitary elements (Proposition 3, page 4 of [8]), it is

enough to suppose that b is unitary, and then of course b can be approximated by a
subsequence of (wm). In the enumeration, above, of (Ad wm)άy as σn, let us denote by σm y

and emty the σn and £„ corresponding to (Adwm)άr Thus, for fixed O^yeG,

In other words, with yeG\{0} fixed, we have

em, yUmU(y)em, y = em, y°m, y(

Since ^(em ? y) = 00(ew y) = 1 for all m, we have

whence ψ(bu(y)) = Q. Therefore, ψ = φ. This shows that </> is pure.
Let us again identify (A xα G) xά G with ^® K(L2(G)), and α with α(χ) /I. Then, with

eyy as above, in the proof of Lemma 2.1, for any y e G the positive functional φγ =

(\®eyy)φ(\®eγy), if nonzero, is a scalar multiple of an α-invariant pure state of
A®eyy<^A®K, i.e. an α-invariant pure state, say ωy, of A. Furthermore, for some y eG,
(/>y is nonzero, and then πφγ is faithful, since πφ is. Since πφΎ(a®eyy) = πωy(ά)®eyr it
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follows that, for such y, πωγ is a faithful representation of A. This shows that, with

ω = ωγ for such a 7, ω is an α-in variant pure state of A, and πω is faithful, as desired.

Ad 5+6. Condition 5 implies that both A and A* are prime, whence by 8. 10.4 of

[30], G(α) = Sp α. In particular, as G(α) is group ([30], 8.8.4), so also is Sp α, and since α is

faithful this implies Sp α = G.

Ad 6 + 1. Except for the property (iii), this is exactly Theorem 2.1 of [5].
Referring to the proof of that theorem, we ensure that B and q have the extra property

as follows.
Since A is separable and prime there exists a decreasing sequence (/„) of nonzero

closed two-sided ideals of A such that any nonzero closed two-sided ideal of A contains
some Jn (see proof of 4 ̂  5 above). Also, since A is prime and G is compact we have

Π α^)*0

geG

for any nonzero closed two-sided ideal / of A. (First, by strong continuity of α, for any

heG there is a neighbourhood Uh of h in G such that Ih= Γ)βeί/h

α0(Ό^O; by
compactness of G, there are A l 5 , hkeG such that Uhί U U Uhk = G\ finally, by

primeness of A, Ihί Π Π/ h l ^O, i.e. f|geGα

g(^)^0 ) It follows that

for any nonzero closed two-sided ideal / of A. In particular, (JnΓ\A*) is a decreasing
sequence of nonzero closed two-sided ideals of A*.

Now note that the quasimatrix system (en), (1^;)?=! °f Lemma 2.7 of [5] can be
constructed so that

n= 1, 2, . Then the projection qnεA** defined in the proof of Theorem 2.1 of [5] is

contained in /**, and hence the limit q = lim qn is contained in f ] J Ϊ * . Since any nonzero
closed two-sided ideal J contains some /„, (iii) holds.

Ad 1 + 8. 8 is a special case of 7.

Ad 8+9. Assume 8. Denote by τ the unique tracial state of the C*-algebra qAq,
which is isomorphic to the Glimm algebra M2oo, and denote by ω the corresponding
state of A,

ABO, \ — *τ(qaq) .

Since q is α**-invariant, and τ is unique, ω is α-in variant.

Since ω(q)=l, ?£Ker(π**)2(Kerπω)**, and hence by 8(iii), Kerπω = 0.
That πω(A*y Π πω(A)" = C was shown in the proof of Theorem 3. 1 of [1 5]. (The case

q= 1 is Lemma 4.2 of [4].)
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Ad 9 -* 10. This is evident.

Ad 8 -* 1 1. Assume 8. Let (</>„) be any sequence of pure states of M2 such that, for

each χeG, the (infinite) subsequence (φn)χn=χ contains a subsequence that converges to

a nondiagonal pure state, i.e. to a pure state with density matrix not equal to I ) or

0 0\ V J

I. For instance, φn may be taken to be a fixed pure state with density matrix

different from ί I and ί j (e.g. the pure state with density matrix — ί \).

Denote by φ the pure state oϊ qAq obtained from (x)^°=1 φn by identifying qAq with
(x)^=1 M2 as in 8, and denote also by φ the corresponding pure state of A,

Aea*-+ φ(qaq) = ( (x) π°°= ί φn)(qaq) .

Since φ(q)=l9 4<£Ker(π**)^(Kerπ0)**, and hence by 8(iii), Kerπφ = 0.
We shall show that πφ(A*)" = πφ(A)". We shall show this, or, equivalently, that

πφ(A"Y = C, in two steps: first, we shall show that Φ, the canonical cyclic vector for πφ(A),
is also cyclic for πφ(A"), and thus separating for πφ(A*)'\ and, second, we shall show that

πφ(A*)'Φ = CΦ.

Let us show that Φ is cyclic for πφ(AΛ). To do this, we shall show that, for each

where the bar denotes ultra weak closure. Then, for each χ e G,

πφ(A*( - χ))Φ CΞ πφ(A\ - ti)πφ(A\χ)) ~ Φ c nφ(A\ - χ)A\χ)) ~ Φ

where the last bar denotes weak closure in Hφ, which on a linear subspace is the same as

norm closure. Since the closed linear span of (JχeG^α( — X) is equal to A9 and Φ is cyclic
for πφ(A), this shows that Φ is cyclic for πφ(A*}.

Let, then, χ be an element of G and let us show that Φeπφ(AΛ(χ))~Φ. (If χ = 0 this

follows from the fact that A" contains an approximate unit for A9 — see for example the
proof of Proposition 3.3, below.) For each k such that χk = χ denote by ck the image of

'0 0\
1 e M2 under the &-th embedding of M2 in qAq = (x) ̂ °= ί M2. Then, by the choice of

(Φnl

(Here k is such that χk = χ.) Passing to a subsequence of (ck)9 we may suppose that
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and then, since (ck) is a central sequence in qAq, and nφ(qAq) is irreducible on πφ(q)Hφ,

πφ(ck)^λπφ(q) ultra weakly .

Since qeB', the map

B$b i — >bqεBq = qAq

is a morphism, and so we can choose bkeB with bkq = ck, and ||6k | |^2 (even with

\\bk\\ = 1). Replacing bk by JG <χ, gyoLg(bk)dg, we may suppose that bkeBΛ(χ). If now 6 is
any ultra weak limit point of the sequence πφ(bk)9 we have

and as πφ(q)Φ = Φ we have

as desired.
Now let us show that πφ(A*)'Φ = CΦ. Since q is an α**-invariant projection in ^4**

and also is closed, we have #e(/4α)** c^4**. (1 _ ̂  is the unit of the ultraweak closure in

Λ** of an α-invariant hereditary sub- C* -algebra of A, and so is the limit of an

approximate unit of this subalgebra; this approximate unit may, as remarked above, be
chosen to be α-invariant.) In particular, πφ(q) e πφ(A*y . Moreover, for each χeG, it was
shown in the preceding paragraph that πφ(q)eπφ(AΛ(χ))~ (where the bar denotes

ultraweak closure). Hence, for each

\ - χ)q) £ nφ(A\ -

Since the closed linear span of (J )ceόA
tχ( — χ) is equal to A, and nφ(A) is irreducible, this

shows that nφ(qA"q) is irreducible on nφ(q)Hφ. Now we have πφ(q)επφ(A*)" and

Λq)'πφ(q) = Cnφ(q) .

Since πφ(q)Φ = Φ it follows that πφ(AcγΦ = CΦ.

Ad 11-^10. This is evident.

Ad 10 •*» 12. This is Corollary 5.4, below.

REMARK. It is interesting to inquire whether the implications 9 -*> 1 1 and 11^9

(which are now established, since 12 -* 1 is evident) can be proved directly. Certainly,
our proof of 8^-11 yields an alternative proof of 8 -* 9, since the pure states φ
constructed in the proof of 8 •*• 1 1 constitute a direct integral decomposition of the

invariant state ω constructed in our proof of 8 •* 9 above. Given a state ω as in 9, and a
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direct integral decomposition of πω as f ® n(ζ)dμ(ζ), must almost every π(Q verify 1 1 ?

Ad 1 1 ««*• 1 Γ. If π is an irreducible representation of A, then, as we shall show, π
verifies 11 if, and only if, it verifies 11 ' . (See also [20].)

11 •*• 1Γ, for π, is just Lemma 3.5 of [15]. (The proof in [15] does not require that π

be faithful.)
Assume 11 '. Set J® πagdg = p. p is α-co variant, and α is implemented by the right

regular representation of G on Hπ®L2(G) (we do not need here that G is abelian). Since

G is compact,

P(A γ = (P(Aγγ = (π(A

But p(A*) = π(A*)®\, so

(We have not used here that π is irreducible.)

Ad 12^13. Assume 12. Let β be an automorphism of MCO(A) such that β \A* = 1.
Let us prove that β = ocg for some geG.

By Proposition 3.3, below, MGO(^)αcM°°(^α), and it follows that β\Mcc(Aγ=L
We now note that, except for continuity of α from G into Aut MCC(A), all the hypotheses
of Theorem 2.1 of [3] are fulfilled, with M™(A) in place of A, and (U(M™(A)*\ Ad) in
place of (//, τ). The proof of Theorem 2. 1 of [3], which is valid without continuity of α
until the very last line — provided that Afco(A)F is defined as the set of all xeM™(A) such
that the linear span of αG(x) is finite-dimensional — , yields that, for some g e G,

β(x) = ag(x) for all c e M*(A)F .

In particular, this holds for all x E AF, and since AF is dense in A (continuity is known for
α : G— >Aut^4), this shows that β = oίg. (Here we have not used that G is abelian. A proof
in the case that G is abelian can also be obtained by modifying, in a somewhat less triv-
ial way, the proof of Theorem 3.1 of [21].)

Ad 13^14. Assume 13. Then for each unitary ue(A*)' Γ\M™(A)9 A d w = αg for
some geG. By Proposition 3.1, as A is prime, Centre MCC(A) = C. By commutativity of
G, it follows that κg(u)eTu for every U€(AΛ)f[\MVί(A) and every geG. But, for fixed
such u, and fixed g e G, it follows from the fact that %g(v) e TV for every unitary v in the
C*-algebra generated by u, that ag(u) = u. Since g is arbitrary, it follows that u is in
M°°(^)α, which by Proposition 3.3 is contained in M°°(^α). But UE(A*y, so u belongs to
Centre M°°(;4α). By Proposition 3.1, as A* is prime, this is equal to C. Since any C*-
algebra is spanned linearly by its unitary elements (Proposition 3, page 4 of [8]), we have
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We should like to point out that if G is not abelian, then the implication 13 -̂  14
may fail. For example, it fails if A = Mn, n = 2, 3, , and G = Aut A. However, this may

be essentially the only case in which the implication fails.

Ad 14^-15. Assume 14. Let us first show that A is prime. Clearly,
Centre M°°(^) = C; by Proposition 3.1, this just says that A is prime.

Let 0eG, and suppose that ag is not properly outer. By Proposition 3.2, there is a
unitary u in M°°(Λ) such that α^ = Ad u. Since ue(A*)'Γ\M«>(A), by 14 we have ag= 1.
Since α is faithful, 0 = 0.

Ad 15 -*4. Assume 15. In particular, A* is prime. Hence by Lemma 2. 1 (as in the
proof of 4 ̂  5), with H= G, also A xα G is prime.

Let 7 6 G, and suppose that άy is not properly outer. We must prove that γ = 0. By
Proposition 3.2, as A xα G is prime, there exists a unitary u e MCC(A xα G) such that άy =
Ad u. By Proposition 3. 1 , Centre M™(A xα G) = C. Therefore u is unique up to a scalar

multiple. By commutativity of G, it follows that u~l&£u) e T for every ξ e G. Therefore

the map ξ \ — *u~*6ίξ(u) is a character of G, and so there exists 0eG = G with

Since also

where Λ,(#) is the canonical unitary multiplier of A xα G corresponding to #, it follows
that, with v = λ(g)u*,

By the choice of M, A(ί)wA(ί) ~ * = < — 7, />M, f e G, and hence as G is abelian, λ(t)vλ(t) ~ 1 =

<7, f>ι;, /eG. Since uAu~1=A, also vAv~1=A. Hence by Proposition 3.4,

Since (Adιθ|^ = αβ, it follows by Proposition 3.2 that α^ is not properly outer.
Therefore, by 15, 0 = 0. This shows that

Recall that λ(f)wλ(f)~1 = <-y, 0", 'eG, and w^w'1^. Hence by Proposition 3.4,

u e M°°(^) c M°°(^ xα G) .

By the choice of w, Adw = άy, and in particular, (Adu)\A = l. Therefore, we Centre Af°°(Λ).
As ^ is prime, by Proposition 3.1 Centre M°° (^4) = C, and so we Γ. Hence άy = Ad w= 1,
and y = 0, as desired.

Ad 4*+ 1. This follows from 4^12, established above, since 12 is clearly
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stronger than 1. Let us, however, give a more direct proof of 4 ̂  1.

Assume 4. Let x and y be nonzero elements of A9 and let us find aeA* such that

xay^Q. Replacing x and y by x*x and yy*, we may suppose that x and j are positive.
As in the proof of Lemma 2.1, above, we shall identify the systems ((AxΛG)

x*G, α) and (A®K(L\G)\ α®λ), and the subalgebras ^xαGc(v4xαG)x ί G and
(A®K)Λ®λ<^A®K. Recall that

where e00 is the projection onto the one-dimensional subspace of L2(G) generated by the
trivial character.

Since x and y are positive and nonzero, so also are x0 = JGαff(x)φ and y0 =

$Goιg(y)dg. We shall prove the following inequality, which is stronger than what is
needed:

Let us identify x, y with x®eQO, y®e00EA®e0Q. Recalling that
(A xα G) xa G, we may replace x and y by finite approximating sums

Σ xyu(y) , £
yeF yeF

where jcy, jμy e A xα G for each 7 in the finite set F^ G. Here we cannot insist that all xy

and yy be the canonical (Fourier) coefficients of (the original) c and y, since the Fourier
series only converges in the Cesaro mean in general. However, we may certainly assume

that x0 and y0 are as defined above (the zeroth Fourier coefficients). We may also assume

that all xγ and yy lie in A*® <?00, the cutdown of A xα G by 1 ® e0o From now on we shall
suppose that x and y are equal to such finite sums. We shall also suppose that \\x\\ =

W = i
We shall now use Proposition 6.4 of [25], as extended in Lemma 7.1 of [25]. (We

could equally well use Lemma 3.2 of [17].) Let us apply Lemma 7.1 of [25], with

(A®K)Λ®λ = AxΛG in place of A, (άy)yeFχ{0} in place of α1? , αM, and, successively,

(xy)y€F and (yy)yeF in place of α0, aί9 , an. This yields, for each ε>0, elements w and z
of Λ xα G, of norm one, such that

\\wx0w\\ ^ \\x0\\ -ε , \\zy0z\\ ^ \\y0\\ -ε , and

The proof of Lemma 7. 1 of [25] in fact produces w and z that belong to the hereditary
sub-C*-algebras generated by x0 and jμ0, which are contained in AΛ® e00, and so we may

suppose that w, Z6^α®^00.
Since Λα®e00 is prime, there exists ^6^4α®e00 such that ||6|| = 1 and

\\wx0wbzy0z\\ ^ \\wx0w\\ \\zy0z\\ -ε .



146 O. BRATTELI, G. A. ELLIOTT, D. E. EVANS AND A. KISHIMOTO

Hence, with a = wbz, we have ||α||< 1, aeAΛ®e00, and

\\xay\\ ^ ||wxwbzyz||

^ \\wxo\vbzy Oz|| - X \\wxyu(y)wbzyy>u(Y)z\\

\\zy0z\\-ε-

where n = card(F\ {0}). Since ε>0 is arbitrary, the desired inequality is proved.

Finally, suppose that G= T or G = ZjpZ with /? prime, and let us show that 16 is
equivalent to 1 to 15.

Ad 3 -* 16. This is evident.

Ad 16 •+> 3. In the case G = ZjpZ with p prime, this is evident, as G is simple.

In the case G=T, there are nontrivial proper closed subgroups, but these are all
finite. Assume 16. Let //be a closed subgroup of G, where now G=T. IfG/H^Z/nZfor
some n= 1, 2, , then necessarily n= 1 and H=G, and so AH is equal to ^4α, which is
prime by 16. If G///= Γ, then H is finite and cyclic; choose an element h generating H.
We must show that AH is prime.

By 16, A is prime. Therefore, by Theorem 1 of [26], it is equivalent to show that, if β
denotes the restriction of α to the subgroup H^G, then the Connes spectrum of β is
equal to the Arveson spectrum of β — i.e., H(β) = Spβ. In terms of the automorphism αΛ,

this says that, for every nonzero hereditary sub- C* -algebra B of A which is invariant
under αh,

(*) Sp(αΛ

By 16, A* is prime, and so by Theorem 1 of [26], G(α) = Sp α. In particular, (*) holds

if B is α-in variant. By Proposition 5. 1 of [23], applied to αh, and as simplified using that A
is prime, there exists a canonical nonzero closed two-sided ideal J of A, invariant under
αΛ, such that (*) holds when both sides are restricted to /, i.e.

That / is canonical entails that / is invariant under α. (/ is in fact constructed to contain
all other such ideals. See also Proposition 3.1 of [18].) Therefore (as G(α) = Spα), (*)
holds for /. Hence, for any αΛ-invariant B,

i.e. (*) holds for B, as desired.
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3. Auxiliary results concerning the limit multiplier algebra.

3.1. PROPOSITION. Let A be a C*-algebra. The following four properties are
equivalent.

(i) A is prime.
(ii) MCO(A) is prime.

(iii) Centre M*(A) = C.
(iv) Centre M(7) = C for every nonzero closed two-sided ideal I of A.

PROOF. Ad (i) -* (ii). As pointed out on page 303 of [29], this follows from the fact
that each nonzero closed two-sided ideal of MCC(A) has a nonzero intersection with A.

Ad (ii) •*• (iii). This is evident.

Ad (iii) •*• (iv). Assume (iii). Let /be a nonzero closed two-sided ideal of A. To show
that Centre M(/) = C it is sufficient to do this with / replaced by I+J where 7.7=0.
Therefore, we may suppose that 7 is essential, so that M(I)^M^(A). If .7 is any essential
closed two-sided ideal of 7, then Centre M(I) c Centre M(J\ as follows by considering a
faithful representation of 7 which is nondegenerate on J. Hence

Centre M(7) c Centre M°°(Λ).

In particular, from (iii) follows Centre M(7) = C.

A natural question arises here: is Centre Afcc(A) the inductive limit of Centre M(7)
(7 an essential ideal)?

Ad (iv) -*>(i). If A is not prime, then there exist nonzero closed two-sided ideals 71

and 72 of A with 7^ = 0. Set 7j+72 = 7. Then 7 is nonzero and Centre M(7) ̂  C.

3.2. PROPOSITION. Let A be a separable prime C*-algebra, and let α be an
automorphism of A. The following three properties are equivalent.

(i) α is not properly outer.
(ii) α is inner in MCO(A).

(iii) α is weakly inner in every faithful factor representation of A.

PROOF. Ad (i) -* (ii). Assume (i). By definition, there is a nonzero invariant closed
two-sided ideal 7 of A such that for some unitary u in M(7), ||α 17— (Ad u) \ I\\ < 2. By the
Kadison-Ringrose theorem ([16]), there exists a derivation δ of 7 such that

α |7=(Adw)exp(3.

By Proposition 2 of [29], as A is separable, δ is inner in M°°(7). Since A is prime,
MCO(I) = MCO(A), so α is inner in Af°°(Λ), as desired.

^4d (ii) -* (iii). This follows from the fact, stated on page 303 of [29], that any
faithful factor representation of A extends to a representation of MCO(A). (Here we do
not need A to be separable. Also, the implication (ii) -*>(i) holds for any C*-algebra.)
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Ad (iii) -* (i). Assume that α is properly outer. By the proof of Theorem 2. 1 of [17],

with Lemma 1.1 of [17] replaced by Proposition 6.4 of [25] (see also Proposition 6.5 of
[25]), there exists a pure state φ of A such that φα is disjoint from φ. A modification of
the proof of Theorem 2.1 of [17], using that A is separable and prime in the same way as
in the proof of 4 ̂  5 of Theorem 1, above, shows that φ may be chosen so that πφ is
faithful. Thus, πφ is a faithful factor representation in which α is not weakly inner.

3.3. PROPOSITION. Let Abe a C* -algebra, let G be a compact group, and let α be
an action of G on A. Then Mco(A)a^MCD(AΛ).

PROOF. As shown in the proof of 6 ̂  7 of Theorem 1, above, if / is a nonzero
closed two-sided ideal of A, then (as G is compact) /contains a nonzero α-in variant closed
two-sided ideal; the largest such is of course f|3eG^(/). It follows easily that if / is

essential, then also ΠgeGα

g(^) is essential.
This shows that, in the definition of M™(A), as the inductive limit of multiplier

algebras M(7) over all essential closed two-sided ideals /, we may restrict / to be α-
invariant without changing the definition (or, at least, without changing the resulting
algebra). Thus,

Hence, using a second time that G is compact, we have

M-(Λ)« = lim/invaHantM(/)'.

Next, let us show that for invariant /, M(/)α = M (7α). We have

where the first inclusion is evident, and the second holds as /α contains an approximate
unit for /. (This uses again that G is compact: If (et) is an approximate unit for /, then so
also is (JGα^i)φ). To see this just note that eioc~1(a)-^oί~ί(a) uniformly in g since G is
compact, or, in other words, u.g(e?)a-+a uniformly in g.) Hence, immediately, M(/α) =
M(iγ.

We now have

M*>(A) = lim, invariant M(/«) cz M°V) .

3.4. PROPOSITION. Let Abe a C* -algebra, let G be a compact abelian group, and
let α be an action of G on A. It follows that

Assume that A is separable and prime, that A* is prime, and that G is separable, and let u be
a unitary element of Mcc(AxOLG)<x such that uAu~l = A, and, for some γεG,

= <7,gyu, gεG.
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It follows that ueM*(A).

PROOF. First, using only that G is compact, let us show that M°°(^)c

M»(AxΛG).
If / is an α-in variant closed two-sided ideal of A9 then /^ M(/xα G), and since an

approximate unit for /acts also as one on /χα G, also M(7) c M(/xα G). (This uses only

that G is locally compact.)
Since G is amenable, for each α-invariant essential closed two-sided ideal /of A, the

crossed product ideal IxΛG is essential in AxaG. (By 7.7.8 of [30], for any faithful
representation π of A, the representation of ^χαG on Hπ®L2(G) induced by π is

faithful. If π is chosen to be nondegenerate on /, so that / and A have the same weak
closure in the representation π, then 7χα G and AxΛG have the same weak closure in

the induced representation, and since this is faithful it follows that /χα G is essential.)
Hence by compactness of G, as in the proof of Proposition 3.3,

M*(A) = lim/ essential M(7) - lim/ essential and invariant Af(7)

<= lim/ essential and invariant M(Ixa G) C M°°(Λ Xα G) .

It of course follows, as G is abelian, that

Now, assume that A is separable and prime, and let ueM°°(AxΛGf and y e G be
such that u is unitary, uAu~l=A, and ^(gOwλQj)"1 =<y, 0>w, 0eG. Let us show that
ueMcc(A\ (If, in addition, weM(ΛxαG), then it follows from 7.8.9 of [30] that

ueM(A). What we are establishing is a very limited generalization of 7.8.9 of [30] to the
limit multiplier algebra. In particular, the assumption that A and A xα G are separable
and prime may be superfluous.)

First, let us show that there exists v e MCO(A) such that Ad υ agrees on A with Ad u.
By Proposition 3.2, for this it is sufficient to show that the automorphism β = (Adu) \ A

is weakly inner in every faithful factor representation of A. Let π be a faithful factor
representation of A, and denote by p the representation of ^4xαG induced by π on
Hn®L2(G). Note that ά, which extends to p(A χα G)", acts ergodically on the centre of
p(A xα G)" (as π is factorial). It follows, as we shall show below, that p can be extended
from A to MCO(A xα G)α , mapping this algebra into (p(A xα G)")α , and commuting with
AcU(0) for each geG. Since λ(g)p(u)λ(g)~l =<y, 0>p(w), 0eG, it follows that ρ(u) =

V®y with Veπ(A)". (p^Xl®?)'1 commutes with l(χ)£ and 1®%) for all ξeG and
#eG, and therefore with \®B(L2(G)). By construction, ρ(AxaiG)" is contained in
π(A)"®B(L2(G)\) We now have, for each aeA,

p(β(a)) = p(uau~1) = p(u)p(a)p(u) ~l=( V®y)p(a)

and since p(ά) is just the function 11—>π(αt(fl)), evaluating at ί = 0 we get
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and so β is weakly inner in π, as desired.

Before proceeding to modify u using u, let us show as announced that if p is a
faithful representation of AxΛG such that the restriction of p to any ά-invariant
essential closed two-sided ideal of A xα G is nondegenerate, then p \ A can be extended
to Mco(AxaG)Λ . (It was pointed out earlier in the proof of this theorem that p as
defined in the preceding paragraph is faithful; the second property also holds for that p,
since ά extends to an action on p(AxΛG)" which is ergodic on the centre.) Let
xeM™(AxΛGγ , and let (Jn) be a sequence of essential closed two-sided ideals of
AxΛG such that there exists xneM(Jn) with \\x — xn\\ =εn->0. Then, for any m and n,
and any ξ,ηeG,

(this uses the triangle inequality and άξ(x) = x = όίη(x)). Denote by en the unit of p(Jn)", a
central projection in p(A xα G)" . For each «, the representation p Jn, on the Hubert

space enHp, has a unique extension to a representation of M(Jn), which we could denote

by (p I /„)**, but will denote by pn for brevity. Let ξl9 ξ2, ' ' ' be an enumeration of G,
which is countable since G is compact and separable. Fix «, and define projections
p\,p\, in Centre ρ(A xα G)" by orthogonalizing the units of ρ(άξί (</„))", p(άξ2(/J)",

• , which we shall denote by e\, ej, . Thus,

Then ykpk= \ίkel= 1> since V f c e £ is the unit of p(In)" where In is the smallest closed
two-sided ideal of AxΛG containing άξl(/w), άξ2(/Π), •••, and /„ is ά-invariant and
essential (so by hypothesis p is nondegenerate on /„). For each k denote by pn

k the unique
extension of p \ άξk(Jn) to a representation of M(άξk(yn)) = &ξk(M(Jn)) on the Hubert space

elHp. (Thus, PΪ = (p|ί4k(/II))**.) Set

Then ^ep^XαG)". Furthermore, the sequence (yn) is Cauchy:

<supkf l | |(p I άξk(/J nαA

ξ/(Λ))**(αA

ξk(^)-αA

ξί(^))||

- supfc, , II a4k(^:m) - &ξι(χn) || < εw + εn .

Here we have used that /??/?" ̂ ej^j1, and that e^e^ is the unit of p(&ξlf(Jm) n &ξl(Jn))". Set

From what we have shown, namely, that
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ym-yn^χm-χ + Xn-x\\ ,

it is clear that p(x) is independent of any choices made in the construction. Hence, in
particular, p(x) depends additively and multiplicatively on x, and p(jc*) = p(jc)*.
Furthermore, p defined on M^(A xα G)α in this way agrees with the unique extension of
p to a representation of M(A xα G) (or to M(J) for any closed two-sided ideal J of
A xα G on which p is nondegenerate). Finally, for use at the end of this proof, let us note
that, by construction, p is isometric on M°°(,4xαG)α.

Now let us return to the proof that ueM°°(A). As we have shown, there exists a
unitary veMco(A) such that (Adv)\A = (Adu)\A. Since (Adw)|/l commutes with

(Ad λ(g)) I A = <xg for each geG, it follows that υ~lu.g(υ) belongs to Centre M°°(A) for
each geG. By Proposition 3.1, as A is prime, Centre M*)(A) = C. Hence, by Proposition

3.5, below, the map g i — +v~]Lvίg(v) is continuous. This map is clearly multiplicative.
Therefore, there exists ξ e G such that

Replacing u by uv*, and γ by y — ξ, we then have that u fulfills the hypotheses of the
proposition and, in addition, uau~l =a for all aeA. In other words, we now have that
ueM°°(AxΛG)Λ and, replacing y by -y,

ά y = A d w .

Using only the hypothesis that A and A* have faithful irreducible representa-

tions, we shall now deduce that y = 0, and hence that u is a scalar multiple of 1.
First, let us show that y = 0. Since A is prime, by Theorem 3.4 of [24] we have

G(ά) = G. To show that y = 0, therefore, it is sufficient to show that yeG(ά)1. By
Proposition 4.2 of [25], for this it is sufficient to find a nonzero ά-invariant hereditary
sub-C*-algebra B of A xα G such that άy | B = exp δ for some ά-invariant derivation of B.
If B is ά-invariant and | Sp(άy | B) — 1 | ̂  1 then this of course holds, with δ = log(άy | B).

Since άy = A d w with ue Mco (AxΛG)9 άy is not properly outer. (The implication
(ii) -*(i) of Proposition 3.2 holds for any C*-algebra; just note that if an automorphism

β of a C*-algebra is, when restricted to a not necessarily invariant closed two-sided ideal
/, strictly within distance two of an automorphism of /, then β leaves / invariant.)
Hence, by (viii)-*(i) of Theorem 6.6 of [25] (this implication does not use sepa-

rability), there exists a nonzero άy -invariant hereditary sub- C* -algebra B0 of A xα G
such that I Sp(άy | BQ) — 1 1 ̂  1 . Using that u is ά-invariant, we shall show that if B
denotes the ά-invariant hereditary sub-C*-algebra of A xα G generated by B0, then also
|Sp(άy £)-l|^l, as desired.

We shall in fact show that Sp(άy | B) = Sp(άy | B0). To do this we shall proceed in two

steps, using a faithful irreducible representation π of A xα G. (Recall that by Lemma 2. 1,
with H=G, the hypothesis that AΆ is prime implies that ^x aG is prime.) Since π
extends to M°°(A xα G) (being both faithful and factorial), and άy = Ad u, we may extend
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άy to π(AxΛGy, writing άy = Adπ(w).

We shall prove first that

Sp(άy |/W = Sp(ίy|π(*0)"),

and second that

Since, for single automorphisms, spectrum and Arveson spectrum, and therefore also
point spectrum, coincide — see [30], 8.1.14 — , we have

Sp(αy I B0) CΞ Sp(αA

y I B) CΞ Sp(αA

y | π(B)") ,

and the desired equality,

follows.

Let us show that Sp(άy | B0) = Sp(άy | π(B0)"). By 8. 1 .9 of [30], λ e Sp β, where β is an
automorphism of a C*-algebra or a von Neumann algebra, if and only if, for each

fell(Z) with/(λ)^0, Σ/(/ι)j8Π%0. Applying this first with β = όίy \ B0 and then with β =
6ty I π(B0)", we see that Sp(άy | B0) = Sp(άy | π(£0)"), as desired.

Let us show that Sp(ά J π(/?0)") = Sp(άy | π(/?)"). As above, the inclusion of the
spectrum on the smaller domain in the spectrum on the larger domain holds since the

spectrum is point spectrum. Conversely, let λeSp(άy|π(£)"), and let us show that
λeSp(άy I π(B0)"). By Lemma 2.3.10 of [7], λ = A1λ2~

1 with λί9 λ2 eSpπ(w). We shall show
that λl9 λ2 e Spe0π(u) where e0 is the unit of π(B0)", using that u is ά-in variant. Since B is
the smallest ά-invariant hereditary sub- C* -algebra of A xα G containing £0, the unit of
π(B)", say e, is the smallest projection containing the unit of π(&ξ(B0))", say eξ, for every
ξeG. For each ξεG, since &ξ(u) = u, we have wά^^w"1 =άξ(50), and hence eξπ(u) =
π(u)eξ.

Let us show that, for each ξ e G, Sp eξπ(u) = Sp e0π(u). Since άy | ̂ 0 = (Ad w) | ̂ 0 with
MeM°°(^ xα G), and B0 is a hereditary sub-C*-algebra of ̂  xα G, so that every faithful
factor representation of B0 extends to a faithful factor representation of A xα G (and
hence of M°°(^xαG)) on a larger Hubert space, by Proposition 3.2 there exists
w 6 M°°(50) such that όty\B0 = (Ad w) | B0. Since π is irreducible, also the restriction of π
to B0 is irreducible on the Hubert space e0Hπ. It follows that π(w) is a scalar multiple of
e0π(u), and so we may modify w so that π(w) = e0π(w). Hence, for any a, beB0, awb =
aub. It follows that, for any ξ e G, on considering the irreducible representation πάξ of
A xα G, and its restriction to B0, which is irreducible on the Hubert space eξHπ, we have

πaξ(w)=eξπ&ξ(u) = eξπ(u). Since πάξ is faithful on £0 and therefore on M°°(50), we have
Sp πάξ(w) = Sp w. This shows that Sp^π(w) is independent of ξ, as desired.

Now let us show, as announced, that λ^ and λ2 belong to Sp£0

π(w) Note that, since

e=yξeόeξ, the homomorphism
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C*(eφ)) 3X ^(eξx) e Y\ξeό C*(eξπ(ύ)}

is injective, so that Speπ(u) = (\JξeόSρeξπ(u)y. Since Speξπ(u) = Spe0π(u) for each ξ,
this shows that Sp eπ(u) = Sp e0π(u). In particular, λl9 λ2eSpe0π(u).

Since A = ^1A2~
1, and άy | π(J50)" = (Ad £0π(w)) | π(l?0)", it follows by Lemma 2.3.10 of

[7] that AeSpά γ I π(/?0)", as asserted.
This completes the proof that, after w is modified as above, y = 0. Let us now show

that w, thus modified, is a scalar multiple of 1. Let π be a faithful factor representation of
A, so that, as noted above, the induced representation p of A xα G is also faithful, and,
moreover, extends from A c M(A xα G) to MCC(A xα G)α, and is faithful there. What we

must show, then, is that p(u) is a scalar multiple of 1. As shown above, p(ύ) = V® γ with
Ve π(A)". Since y = 0 e G, by which we mean that 7 is the trivial character 1 , we have u =
V® 1 . As shown above, π((Ad u)\A) = (Ad V)π. Since (Ad w) | A = 1 and π is factorial, it
follows that Kis a scalar multiple of 1, and therefore also u is. In particular, ueMcc(A).

We do not know if all the assumptions made in the second half of the proposition
are necessary.

3.5. PROPOSITION. Let A be a prime C*-algebra and let α be an action of a
compact group G on A. Let φ be a pure state of A such that πφ is faithful, so that φ extends
uniquely to a pure state of MCO(A). It follows that for any a, b, ce MCC(A) the map

is continuous.

PROOF. As shown in the proof of Proposition 3.3, we have M™(A) =

lim/ invariant M(l). Therefore it is sufficient to consider the case that αeM(7), where /is a
nonzero α-invariant closed two-sided ideal of A. Again as shown in the proof of
Proposition 3.3, /α contains an approximate unit (et) for /. Then \\φ — φeί\\-+Q, and the
same holds with bφc in place of φ. The conclusion follows as g \ — >θίg(eia) is continuous.

4. Duality for a partially inner action.

4. 1 . THEOREM . Let A be a separable prime C*-algebra, and let α be an action of a
compact abelian group G on A. Set

H={teG; α, is not properly outer} ,

and suppose that AG and AH are prime.
If β is an automorphism of A such that β | AG = 1 and βat = α,β, t e //, then there exists

geG such that β = ctg.

PROOF. We may suppose that α is faithful.
By Proposition 3.2, for each te H there exists a unitary u(f) e M°°(^4) such that αt =
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Adw(0; furthermore, this holds only for tεH. By Proposition 3.1, Centre Af°°(4) = C,
and so u(t) is unique up to a phase factor.

It follows in particular that H is a subgroup of G. Let us equip H with the discrete

topology. Since G is abelian we have αf = Ad ug(u(i)) for each tεH and gεG, and by
uniqueness of u(t) we have u(t)~lvίg(u(t))εT. Hence, for each fixed tεH, by Proposition
3.5, the map g \ — >u(t)~loLg(u(t)) is continuous. This map is clearly multiplicative, and is
therefore a character of G, say \l/(t). Clearly, also, ψ: H^G is a homomorphism.

Denoting by χ : G^H the dual of ψ, we have

Let N denote Kerχ = (Im^)1. We shall establish the following five assertions.

2. χ H is injective.
3. NH=G.
4. Λ N is prime.

5. 004*) = ̂ .
PROOF OF 1. Since χ(H) is a compact subgroup of H, it suffices to show that χ(H)

is dense in H. Let ίe#be such that <χ(A), />= 1 for all Ae#, i.e. <*h(u(t)) = u(t), hεH.

Hence, by continuity of g \ — >u(i)~lvig(u(f)) (see above), xh(u(t)) = u(t) for all hεH.
Therefore, u(t)ε(AΉ_)f KM*(Af. By Proposition 3.3, then u(t)e(Aπ)' ϊ\M™(Aπ\ i.e.,
u(t)e Centre M°°(^^). Since AE is prime, by Proposition 3.1, Centre Mao(Aπ) = C. This

shows that αr = 1 , and so / = 0.
PROOF OF 2. If A, t e //, then

It follows that if tεH and χ(t) = 0 then /eχ(//)1 = 0.
PROOF OF 3. Since χ(H) = H and Ker χ = N, we have NH= G.

PROOF OF 4. By definition of N=Ker χ,

i.e. ^(OeM00^)^, teH.Ry Proposition 3.3, it follows that u(t)εMco(AN\ tεH. Since G

is abelian, AN is α-invariant. Suppose that AN has nonzero closed two-sided ideals /and
/ such that IJ=Q, and let us deduce an absurdity. We may suppose that /+ J is essential,

and then Λ/00(^JV) = Λ/00(/)>+Λf00(/), where M00(/)Λf00(/) = 0. Since αf = Adw(f), ίe/^, it
follows from φ), w(ί) e M00^^) for s, t ε H that αs(/)αf(/) = 0, for any 5, ί e // and hence

for any s.tεH. Denote by /0 and /0 the smallest closed two-sided ideals of AN

containing / and / and invariant under OLB. Then 70J0 = 0, and since (AN)H = ANH = AG,
I0nAG and J0f\AG are orthogonal nonzero ideals of AG. (Note that I 0 f } A G = I$,
JOΓ\AG = JQ.) This contravenes the hypothesis that AG is prime.

PROOF OF 5. Denote by σ the action of ft on AN obtained by restricting α. Denote



ACTIONS OF A COMPACT ABELIAN GROUP ON A C*-ALGEBRA 1 55

by I/Ί the composition of ψ : H-*G and the restriction map G-+H. For each fixed teH
we have, as shown in the proof of 4, u(t)eMco(A)N^Mco(AN). Furthermore,

and it follows, as we shall now show, that ψ^fyeSpσ. As shown in the proof of
Proposition 3.3,

and so there exist sequences (/„) and (απ), /„ a nonzero σ-invariant closed two-sided ideal
of AN and aneM(In), such that an converges to u(f). Then with bn=\Ήdh(h, Ψι(φσh(an),
the integral converging in the strict topology of M(/π), we have

and, as we shall show, bn-+u(i), and in particular, bn\0, at least for large n. To see that
bn-*u(i), note that for each «, and for each cεln invariant under σ,

(bn - u(t))c = dhζh, <Mf )> σh((an - u(t))c) ,
JH

the integral converging in norm, and hence, if \\c\\ ^ 1,

Since AN is prime (by 4), and is separable, there is a faithful irreducible representation of

AN, necessarily nondegenerate on /„, and extending to a faithful representation of

M*(AN). Hence

!!/>„- w(OHsup,e/nJ(.K1 \\(bn-u(t))c\\*Z\\an-u(t)\\^Q,

as desired. This shows that, at least for large n, bn\Q, whence, for some σ-invariant
cneln, bncn^0. As bncn belongs to the spectral subspace of /„ for the action σ of H
corresponding to ψι(t)eH, I^ψ^t)), and therefore to the spectral subspace (AN)σ(φ^(t))

of AN, this shows that (^^(^^φ^O, i.e. ^(OeSpσ, as asserted.
We have shown that ι/Ί(//)^Spσ. Let us show that ^1(/f) = Spσ. Let hείϊbe an

element of \I/±(H)L. Then vLh(u(t)) = u(t), teH, and so χ(λ) = 0, i.e. heN. This shows that
HnN^ψ^H)1-, or, in other words, (HnN^ftH^ψ^H). Since σ \ H f t N is trivial, one
has Spσc(J^nΛ/r)1n^ r. This shows that Spσ^ψ^H), and so Spσ = \j/ί(H).

Since βat = (x.tβ for ίe//, and Centre MCC(A) = C (Proposition 3.1), there is a pefi
such that

For each / e ̂ , and each a e (^N)σ( - ^(0), one has au(i) e Λf °°(^)G (since, by 3, 7V^= G,

and since <xh(u(t)) = (h, ^ι(0>M(0 f°r ^e^and <x.s(u(t)) = u(f) for SEN). By hypothesis,
jg | ^G= 1, and it follows that j?| M°°(^)G= 1. (This can be seen by examining the proof of
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Proposition 3.3, which identifies MCC(A)G with a subalgebra of M<X>(AG): since each α-
invariant closed two-sided ideal I of A has an approximate unit consisting of elements
that are α-invariant, and therefore β-m variant, / is also β-in variant; hence β(M(I}} =
M(I\ and therefore β\ M(I)G = 1; it follows in the limit that β\ MCC(A)G= 1.) From this

we obtain

and as j8(w(0) = <f>/>XO it follows that β(a) = <Ap>a. This shows that β((ANγ(-ψί(t))) =
(AN)σ( — \l/1(t)) for each teH, and since ft is compact and Spσ = \I/±(H), it follows

that β(AN) = AN

9 as desired.
Now let us show that β = ug for some g e G. First, we shall show that β \ AN = σh for

some h e H, where, as in the proof of 5, σ denotes the action of H by α on AN. What we
showed in the proof of 5 is that there exists p e H such that, for each / e //,

β I (^)σOAιW) = <*,/>>.

In particular, <ί,/?> depends only on ι/Ί(0; that is, there exists a character h0 of
H such that

Extending /z0 to a character on //, we have h e //such that </?, ̂ (0) = <*» />>» teH. Then

j8|(^W1(0) = <A, ^ι(0> = ̂ |(^N)^1(0) ,

t e f f , and since φ1(H) = Spσ (this was shown in the proof of 5), it follows that

Set U k 1 β = βl. Then /^ \AN = 1, and we wish to show that /^ =αs for some seTV. By
2, NΓ\H=Q. In other words, αs is properly outer for every seN\{0}. Since A is
separable and prime, and (by 4) also AN is prime, this shows that Condition 15 of
Theorem 1 is verified with TV in place of G (and α | N in place of α). Hence Condition 1 3
of Theorem 1 is also verified, with βί in place of β, and so βλ =αs for some seN. This
shows that jβ = α^, with g = hseG, as desired.

4.2. REMARK. If α is ergodic under the assumptions of the theorem, then by [1]

(see also [27]) H is dense in G. In particular, in this case AH = AG, and so the assumption
that AH is prime follows from the assumption that AG is prime.

In general, the hypothesis that AH is prime does not follow from the other
hypotheses, and is necessary for the conclusion of the theorem. This is seen from the
following example.

4.3. EXAMPLE. Let σ be an outer automorphism of the Glimm C*-algebra A =
M200 with period two, and define an action α of Z/2ZxZ/2Z on M2®A by
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Then AΛ = {(a, σ(α)); aeA] ^A, H=Z/2ZxQ, AH = A x A, and β = Ad ( 1 ° Verifies the
\0 i/

conditions β\A«=\, βoίt = oίtβ, tεH.

5. Duality for an action on a von Neumann algebra.

5.1. One purpose of this section is to give a new proof of the following von
Neumann algebra analogue of the Tannaka duality theorem, given in [2], [33], and [22;
Theorem VII.3.8]:

THEOREM (Araki, Haag, Kastler, Takesaki). Let M be a von Neumann algebra,
and let α be an action of a compact group G on M. Let H be another group and τ an action

ofHonM such that [α, τ] = 0 (i.e. agτh = τhoίgfor allgεG,he H). Suppose that τ is ergodic
(i.e. Mτ = C, where Mτ denotes the fixed point subalgebra for τ). It follows that for any
automorphism β of M such thai β \ M* = 1 and [β, τ] = 0, there exists a g e G such that

For example, if (Mα)'ΠM = C, then H could be taken to be the unitary group of
Mα, and τ to be the adjoint mapping, h \ — >(Ad//) | M.

We shall deduce this theorem from the C*-algebra analogue, given later in [3], in

which the hypothesis of ergodicity of τ is replaced by a stronger condition called strong
topological transitivity. To do this, we shall show that for an action of a group on a von
Neumann algebra, the two conditions are equivalent: ergodicity implies strong topologi-
cal transitivity.

One way in which our proof is new is that it does not depend on the type of the von
Neumann algebra. The original proof consists of first reducing to the infinite case, and
then using Roberts's construction of Hubert spaces in the algebra ([31]). Our proof does
not use Hubert spaces in the algebra.

5.2. THEOREM. Let M be a von Neumann algebra, H a group, and τ an action of

H on M.
The following three conditions are equivalent.

1. τ is ergodic, i.e. Mτ = C.
2. τ is topologically transitive, i.e.

3. τ is strongly topologically transitive, i.e.
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Σ xfik(ya = 0 V A e t f - * Σ*,®tt = 0.
(finite)

PROOF. The implications 3-* 2 and 2^1 hold in any C*-algebra, the first
trivially, and the second by spectral theory. (If Mτ\C then there exist (positive) nonzero
x,yeMτ with xy = Q, whence xτh(h) = xy = Q for all heH.)

Ad 1^-3. We may suppose that M is represented covariantly on a Hubert space,
for example by taking the crossed product by τ. In other words, we may suppose that τ is
determined by a unitary representation U of H : τh = (Ad U(h)) \M, heH.

Assume that τ is ergodic, and let (.*;), (yt) be finite sequences in M such that, for

each h e //,

It follows that

Hence,

for any & in the weakly closed linear span of U(H}M'. But since U(h)M'U(h)* = M' for

each /?e#, the linear span of U(H)M' is a *-algebra, and so by the bicommutant
theorem its weak closure is

(M' u u(H)γ=(Mr\ u(Hγγ=(Mτy=c' ,

i.e. the algebra of all bounded operators on the Hubert space.

In particular, (*) holds with b an operator of rank one, i.e. with b = ξ®η*\

ί '— >(ί | fK> and from

follows

= 0, i.e.

Since Σ ^/®^? ^s a bounded linear operator and the vectors ξ and η are arbitrary, this
shows that Σ^(χ)^f = 0. Therefore, Σ

5.3. COROLLARY. Leί Abe a C* -algebra, and let τ be an action of a group H on
A. Suppose that there exists a faithful τ-covariant representation π of A such that the

extension of τ to n(A)" is ergodic (i.e. (π(A)")τ = C).
It follows that τ is strongly topologically transitive.

5.4. COROLLARY (special case of 5.3). Let Abe a C* -algebra, and let B be a sub-
C*-άlgebra of A. Suppose that there exists a faithful representation π of A such that
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It follows that the unitary group of B (with unit adjoined, if necessary) acts strongly

topologically transitively on A. (Compare 10 ̂  12 of Theorem 1.)

5.5. PROOF OF 5.1 (using 5.2 and [3]). Let β be an automorphism of M such

that β\ AΛ = 1 and [β, τ] = 0. All the hypotheses of Theorem 2.1 of [3] are now verified,
except that the system (M, G, α) is assumed only to be a W7* -dynamical system, not

a C*-dynamical system. It is straightforward, however, to modify the proof of Theo-

rem 2. 1 of [3] by putting the ultra weak topology of M in place of the norm topology.

The conclusion β = ag for some g e G follows.

Alternatively, as in the proof of 12^13 of Theorem 1 above (in Section 2), we may

note that the proof of Theorem 2. 1 of [3] is valid without any assumption of continuity

of α at all until the last line — provided that MF is defined as the set of all x e M such that

the linear span of OLG(X) is finite-dimensional. This yields that, for some g e G, β = (xg on

MF. By the Peter- Weyl theorem generalized to boundedly complete locally convex

spaces (including Banach space duals, and therefore W/*-algebras), MF is ultraweakly

dense in M, and hence β = αg.

5.6. We note, finally, that the condition that the relative commutant of the fixed

point subalgebra be trivial appears in recent work of Doplicher and Roberts ([10], [11],

[12]).
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