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Introduction. In this paper we shall describe a class of non-algebraic manifolds,
which extends several previously known classes. In [15] I constructed a class of
manifolds Y of dimension n having πί(Y)^Zn~1. Tsuchihashi ([18]) describes a class
with π^Fj^Z, one of which is an earlier example of Kato ([12]). All these reduce in the
surface case to the well-known Inoue-Hirzebruch (hyperbolic Inoue) surfaces ([10]). The
manifolds we describe in this paper have free abelian fundamental group with

l<rkπί(Y)<n—\. Up to bimeromorphic equivalence they are, in the surface case,
precisely those occurring in [10] and, in the 3-fold case, precisely those occurring in the
union of [15] and [18]. We are really interested in bimeromorphic equivalence classes,

but what we shall do is take a convenient representative and do our calculations with
that.

The paper is divided into six sections. Section 1 covers the basic construction of
what we call the indecomposable manifolds. Section 2 is devoted to establishing that the
objects used in the construction really do exist. In Section 3 we construct one-parameter

degenerations and in Section 4 we explain what happens if the condition of inde-
composability is dropped. Section 5 is short and easy and calculates the Kodaira
dimension and the algebraic dimension. In Section 6 we calculate all the Hodge and
Betti numbers. The calculation of H\Y, (9Ύ) is the main difficulty here (Theorem 6.3):
our method is quite different from the method used in [18] to prove the result in the case
rkπ1(Y)=\. The method we do use may be considered as an extension of an idea of
Freitag [6]. The patience and alertness of the referee in detecting mistakes in the proof of
Theorem 6.3 deserve much praise.

An earlier, incomplete, version of this paper dealt only with the case rkπ1(F) =
n — 2, but receipt of a preprint of [18] alerted me to the arbitrariness of this restriction. I
should like to thank Professor Tsuchihashi for the preprint, Eduard Looijenga for
listening to me, and the Science and Engineering Research Council of the United
Kingdom for financial support.

1. Construction of the manifolds, indecomposable case. The outline of the
construction is similar to those in the papers mentioned above. We fix a free abelian
group M of rank n and another W of rankb<n—\, together with an action of W on M
given by a faithful representation p: W^GL(M\ so that M becomes a ί^-module. Then
we construct an (infinite) fan Σ which fills up a suitable part of M®R and is W-



44 G. K. SANKARAN

invariant. We form the (non-Noetherian) torus embedding XΣiM, which has an action of
W induced by p, and show that a certain open (in the Hausdorff topology) subset X of
XΣ M is such that Y= X / W i s a compact complex manifold. For the toric geometry, we

refer to [4] and to [13].
We mention two notational conventions. We shall use multiplicative notation for

W but additive notation for M, and if we write G<G' we mean that G is a proper
subgroup of G' (otherwise we write G<Gf).

To begin with we make the following assumption, which is less restrictive than it
may appear.

ASSUMPTION A. M is a rationally irreducible ^-module, i.e., M®Q is irreduc-
ible as a Q ̂ -module.

Manifolds constructed under Assumption A will be called indecomposable.
We also make, this time permanently, another assumption about the ^-module

structure of M; it follows from Assumption A but we shall need it later in the absence of

Assumption A.

ASSUMPTION B. M®C has a basis consisting of eigenvectors of W.

Of course this makes sense because W is abelian. The construction of parabolic
Inoue surfaces ([9]) can be described by toric methods using an action of W ( = Z) for
which Assumption B fails, and this is done in [13]. With Assumption B, W can be
thought of as a subgroup of GL(M) ^ GL(n, Z), diagonalizable over C. By passing from

W to W2, which amounts to taking an unramified double cover of Y, we can assume

W<SL(n,Z\
Assumption A enables us to apply the following standard result ([16, p. 23]).

PROPOSITION 1.1. Under Assumption A there exist a number field K and embed-
dings φ:Mc+@κ, φf: W<^(9% such that φ'(η)φ(ni) = p(η)(m) for any ηeW, meM.
Moreover, \(9K\ φ(M)\ is finite.

Here θκ denotes the ring of integers of K and (9\ the group of units.

In view of Proposition 1.1 we can consider M as an ideal in a number field and W as

a subgroup of the group of units. In particular b<n—l, since the last clause of
Proposition 1.1 implies that \K\ Q\ = n.

Next we fix an isomorphism M®R = Rn as follows. Suppose K has r real and s
complex places, so r+2s = n. Take these in some fixed order, the real ones first, and let
the corresponding embeddings be σ,: Kc+R, \<i<r and τj9 τ^\ Kc+C, l<j<s. Then
x i—>(σ1(x), , σr(x), τ^x), , τs(x)) gives an embedding σ: Kc+Rr x CS = R" (iden-

tifying C with /?2), and σ gives an isomorphism of M®R with /?". σ is somewhat

arbitrary (we chose the order of the places and which complex embedding to call τ and
which τ) but it respects the action of W on M.

In order to proceed with the construction we require W to preserve a degenerate
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convex open cone Ω in V=M®R. Recall that a cone Ω is degenerate if its closure Ω
contains a line. Let H be the largest linear subspace of V contained in Ω, dimH=h>Q.

LEMMA 1.2. H={x σiι(x) = =σin h(χ) = 0}. In particular h>2s.

PROOF. Clearly H must be preserved by W. The linear subspaces preserved by W
are those given by the vanishing of some of the σf's and τ^'s. But if τj(x) = 0 on H then
ij(Ω) is a convex cone in τ/ V) = C preserved by W. On τ^V) an element ηe F^acts by
multiplication by τ^η) e C. If in fact τ^η) e R for allηeW then {ra e Λf | τ/ra) = τ/w)} is
a proper Q ̂ -submodule of M, contradicting Assumption A. So for some ηeW,

ij(η) e C\R : but then τ^Ω) = C because multiplication by a non-real complex number
preserves no proper cone in C=R2. In particular, 0 e τ/Ω), so HftΩ^0. But this, as is
easily seen, contradicts the convexity of Ω. |

We relabel the σf's so that H is given by σ1(x)= - - = σn_h(x) = 0.

LEMMA 1.3. Ω = HxL+, where L = {σn_h + ΐ(x) = - - = σr(x) = τi(x) = = τs(x) =
0} and L+ is one of the orthants {xeL\ ±σf(jc)>0, \<i<n — h}.

PROOF. Obvious.

We may as well suppose that L+ is the first orthant (σi(x)>Q for all /). If it is not,
we simply multiply M by a suitable element of (9K and start again.

Next, we must have b = n — h, so that L+/W is (or could be) a compact real

manifold.

REMARK. If b>n-h the construction breaks down totally, but if b<n — h it

gives a non-compact Y. The case b=l, h = 0 gives the resolution of a Hubert modular
variety cusp.

REMARK. A>2j, so b<n — 2s, an inequality sharper than the b<n — s— 1 of the
Dirichlet units theorem. Thus, in general we cannot take W= (9%.

We fix notation Yli = σi(n) if z^ r and ni = \τι-r(n)\ if r<i<r + s. We make one
further assumption (and we shall need a genericity condition to ensure the truth of 1.4,

below).

ASSUMPTION C. lϊl^ηeW, either there is an i<b such that r\} f »yί for ally > b or
there is an i<b such that ηj<ηι for all7>Z?.

Clearly Assumption C is not true for a general W< (9% of rank b. We shall see in § 2,
below, that such W do exist for any K. For the present we shall make do with a few
remarks.

REMARK. If W is of finite index in (9%, so that b = r+s—l, Assumption C is
automatically true. However the bound b<n — 2s in the remark above shows that then
5 = 0 (as in [15]) or 5=1.
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REMARK. If b= 1 Assumption C implies that the condition of Definition 1.1 of
[18] is satisfied by either η or η~l.

PROPOSITION 1.4. For general W, the action of W on Ω is free and properly

discontinuous.

PROOF. The precise meaning of the term "general" in this context will be
explained below. It is enough to show that the action of IV on L+ is free and properly

discontinuous, since the projection πL: Ω = HxL+-+L+ commutes with the action of

W. If ηεW has a fixed point ( p ί 9 - -9pb)eL+ then ^ = 1, since η(p1, , pb) =

O/i Λ? ' ' ' > ΆbPb)\ but σl: K^R is an embedding, so η = 1. To prove discontinuity we go
to the logarithmic space &. Here (see [2, Ch. II, §3]) &^Rr+s is the linear subspace

defined by xί + +xr+s = Q and @% (modulo torsion) is embedded as a full lattice in &

by/: η-+(/ι(η),' ' ,/r+s(^)), where/ι(η) = logη t for i<r and^(f/) = 2log| ̂  | for i>r. Let
π': Rr+s-+Rb be the projection on the first b coordinates. We must show t h a t π ( / ( W ) ) Ί s

a lattice in Rb. For a general real linear subspace &' c <£ of dimension ft, π': 3?'^>Rb is
an isomorphism: in particular the image of any lattice in <£' is a lattice in /?b. So if the
real span of/(W)is such a"general" linear subspace we are done. The subspaces <£' are
parametrized by the Grassmannian ^(ft, r + s— 1) of real ft-planes in Rr+s~1 and the

subgroups W by the rational points of ^(ft, r+s— 1). The general JS?' and W are
parametrized by a Zariski-open subset.

Suppose I" is a fan which is ^-invariant (that is ησ e Σ if σ e Σ and ηeW) and such
that Σ/^is finite and | Σ | = (Ω\L+)U{0}-Ω / (see Figure 1).

w

FIGURE 1

Let XΣ be the torus embedding corresponding to the pair (Σ, M). (I avoid calling it
a variety since Σ is infinite and XΣ is therefore non-Noetherian.) XΣ is a partial
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compactification of the big torus ΓM = SpecC[Mv] (with the usual toric notation). TM

may also be described as follows: we complexify V=M®R so that V is the imaginary

part of V^C". Then M acts on Vby translation, and TM is V\M. Write F= XΣ\
TM and

denote by q : Cn= V-+ TM = V/M the quotient map. Hb x Ch, where H denotes the upper

half-plane, is the preimage in V of Ω; X=q(Hb x Ch) U F is a connected subset of A^,
open in the complex topology. IV acts on ^because of the ^-invariance of Σ and Ω and
ί^-equivariance of q. By a standard process ([!]) if a Σ satisfying the above conditions

exists at all it can be chosen so that XΣ is smooth and the action of W on X is free and

properly discontinuous. Then Y=XjW is a complex manifold, containing a distin-

guished analytic closed subset F= F/ W of codimension one.

THEOREM 1.5. The complex manifold Y is compact.

PROOF. Assume that b<n- 1; for the case b = n—\ we refer to [15]. Denote by

G = G(M, W) the split extension of Mby ^determined by p. From the discussion above

it is clear that Fis the disjoint union of F with Y0 = (Hbx Ch)/G. Fhas simple normal
crossings and is therefore a deformation retract of a tubular neighbourhood ^VF. Write

Jf$ for JfF\F. The first few terms of the Mayer- Vietoris sequence associated to the

couple { 70, JfΈ} are

since 70n^F = J^?. H2n_l(Λr

F) = H2n_1(F) = Q since the real dimension of Fis 2n-2.

Y0 is a K(G, 1) so it is homotopy equivalent to a real n- torus bundle over a real £-torus.

So the homological dimension of F0 is n + b<2n— 1, so ff2n.ί(Y0) = 0, too. On the

other hand #2«-i(^*)^°> from the Gysin sequence ([5, VIII. 12.1]) and the fact, which
follows from the finiteness of Σ/ W, that F is compact. Thus H2n( Y) ̂  0, so Y must be a

compact real 2«-manifold, by [5, VIII. 3. 4] (F is orientable because it is a complex

manifold).

A more geometric idea of why Y is compact, and of the structure of Y, can be got

from the manifold with corners Mc(M, Σ) discussed in [13]. It is a real manifold with
boundary which is a partial compactification at infinity of V, whose structure accurately

reflects that of XΣ as a partial compactification of TM. Specifically Mc(M, Σ) = XΣ/CTM

(in the notation of [13]) and the quotient map is proper and (in this case) ^-invariant.

Consequently it would be sufficient to write down a fundamental domain for the action

of W on Ω c V whose closure in Mc(M, Γ) is a compact fundamental domain for the

action of ^Fon XjCTM c Mc(M, Σ): see Figure 2. Unfortunately this does not seem to be

practical in general, and we must have recourse to the topological argument above.

2. Existence theorems. In this section we shall prove the existence of W

satisfying Assumption C for any field K, and (using Assumption B and Assumption C

only) the existence of a fan Σ satisfying the conditions specified in the previous section.
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W ,

Fundamental domain

Mc(Λ/, Σ)

FIGURE 2

THEOREM 2.1. With the notation of the previous section, for given K, b and H there

exists a W<(9\ verifying Assumption C.

PROOF. Write g = r-\-s — b. To each ηe(9% we associate a point of Rbg by

η i—>(tij), 1 <i<b, 1 </<#, where

We let n^R^^R9, !</<£, be the projection ('u)i<i<M<;<0 ^('u)i<;<,r τhe

statement of Assumption C is that for any η e ̂  (η φ 1) there is an /, 1 < /< b, such that
πt(η)EQ9 where β is ± the open first orthant in R9 (i.e., where the ttj all have the same
sign). By abuse of notation we shall continue to denote by W and 0j£ the images of W
and (91 in Rbg.

If ζ e Θ\ then obviously

So -(^-lK1 + i 1 2+"*+^i,= -(^-l)^2i + ̂ 2 2 + - - - + ^ similarly ίn-(0-lK2 +
• +t\g = t2ι — (9— 1)^22+ ' ' ' +*20> and so on, so we get g equations relating ( t ί j ) and

(t.j)9 iφ\. It is easy to see that g— 1 of these relations are independent, and we can

therefore write down (g— l)(b— 1) independent linear relations satisfied by the linear
subspace &%®R in Rbg. But ά\m(Θ%®R} = b + g- \=bg-(b-\)(g- 1), so these equa-
tions define 0£(χ)/?. From the equations it is clear that we do not get any relations
involving (ttj) for only one /: that is to say, 7^(0$® J?) is the whole of R9.

We shall have shown the existence of W if we can exhibit a fe-plane A in (9%®R
which is rational (generated as a linear space by points of @$) and such that for any

, πi(p)εQ for some /; then W=Aϊ\®\.

Let ^(k, n) be the Grassmannian of real A:-planes in /?", with the real topology.
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Write P = Rβ\Q and P = (&%®R) Π f|?=i πΓ1^)- We require Λ to intersect P only at 0,
or, projectively, that the projective hyperplane of dimension b— 1 in Rpb+β~2 miss the

projectivization of P. P is closed, and it is easy to see that the condition that A miss it in

this sense is an open one on $(b, b + g— 1). Since the rational points of ^(b, b + g— 1) are

dense it will be sufficient to exhibit an A missing P, as A can then be perturbed to make it

rational and to satisfy the genericity condition of 1.4.

The existence of A will be proved by induction on b. For b= 1 we can take for A the

line through the origin and any point of Q. Write U for ®%®R^Rb + g~l. Let Γbe a
codimension one linear subspace of R9 contained in P and let U' = π^1(T). For generic

Γ, U' will have the property πf( £/') = /?*, 1 <ί<b— 1, so we can assume this. Then, by

induction, there is a hyperplane A' of dimension b—l in the (b + g — 2)-dimensional
space U' meeting U/Γ\f]^πi~

ί(P0) only at the origin. Let πA,: U-+R9 be the

projection along A', πA.π^1 : R9-*R9 is an element ofGL(g, R) and QA- = nA,n^l(Q) an

open double cone in RA,. Let / be a line in QA>, and take A = πA,
ί(l). It is easy to check

that A ΓiP= {0}, and this completes the proof of Theorem 2.1.

The point of Assumption C is that it ensures that every infinite cyclic subgroup

of W collapses nondegenerate closed cones in Ω onto L, and, as we shall see, ensures

the existence of Σ.

PROPOSITION 2.2. If CcΩU{0} is a nondegenerate closed cone and ηεW, then

PROOF. C^Cδ = {veΩ\^i=ίlv^">δ^j>bυf} for some <$>0, so it is enough to

show that Παez^Q — £+• Without loss of generality, we may suppose that

ηι/ηj>N>l for ally > 6. For veCδ, (£?=1 t>?)/5(£,.>bi#> 1, so

Σ (fv)f UN'S Σ (ηaυ}2λ>(ηav)l (Naδ Σ (ηav)j}>N°v2Jδ Σ υj>ί for α»0.
i = l / \ j>b / I \ j>b / I j>b

So ηaveCNaδ for α»0. This proves the result.

COROLLARY 2.3. W acts discontinuously and without fixed points on P = P(Ω').

Here and later we use P(A) to denote the image of a subset A of Fin P(V) = RPn~1.
Corollary 2.3 is not by itself enough for our purposes: we need a compact

fundamental domain and for this to exist Assumption C is essential.

THEOREM 2.4. The action ofWonP admits a compact fundamental domain Z, and

the quotient PjW is homeomorphic with Sh~l x (Sl)b.

PROOF . The idea is to show that the choice of N and a in the proof of Proposition

2.2 can be made uniformly for all η and to use this to determine a subgroup of W of

finite index for which we can write down a fundamental domain.

With notation as for Theorem 2.1, it is clear that Assumption C is equivalent to
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"for all f?OO)e W®R there is an i (\<i<b) such that π^eβ". Let A be the ball of
radius 1/2 in W®R and dΔ its boundary: for ε>0 define

β(ε) = {f = (f f l , - , ̂ )eΛ β | ίy>ε, Vy or f£j.<ε, V;} .

For O^ηe P^®/? write (uniquely) η = λη0, /l>0, η0edA. For each / there is a unique

ε. O/o) given by εi(ηQ) = sup{ε\η0eQ(ε)} or ε^0) = 0 if η0φQ. Put φ/0) = maxεf(*70). By
Assumption C, e(η0)>0. Clearly e\ dΔ-*R is continuous, so it is bounded below
by e0>Q. If ηe W then λ>0 so Assumption C also implies that for all ηe W there is
an i (1 <ί<b) such that ni(η)eQ(e0).

So in the proof of Proposition 2.2 we can choose N uniformly for all η such that
γ\i>γ\j for some i<b. Explicitly, we require that, for all such η, there be an /<b such that
ηi/ηj>N>\ for al ly>£, and this can be arranged by choosing N=Qxp(e0). We may

suppose that ηι>ηι for ί<b', then

i<b

so υ\l(δ Σj>b v]) > 1 \b and Navl/(δ ΣJ>b v]) > 1 as long as a > b/\og N. Thus a can also be
chosen uniformly, so that ηaCδdCNaδ for all η such that ηι>ηj for some i<b.

Consider now the group Wa={ηa\ηeW}. It is of finite index in W and acts on
P(L+\ Let U< Wa be any group such that Wa/U^Z. The action of U on P(L+) is

fixed-point free (W has no eigenvectors in L + ) and discontinuous and is therefore
equivalent to the action of a full lattice in Rb~l ~P(L+), so it has a fundamental domain
Z0.

Let W\ be the set ofηeW0 for which ηi>ηj for some i<b and a\\j>b. Put Z' =

P(Cδ\\Jηewa

+ ηCδ)^nL 1(ZQ). Z7 is closed by its construction, clearly bounded and
hence compact. From the choice of Wa and of Z0 it follows that Z7 is a fundamental
domain for Wa. Since \W\ Wa \ < oo it is easy to see that there must also exist a compact
fundamental domain Z for W, namely Z= Z' \ (J η ηZ' where η runs through those η for
which ^Z / nZV0 or η~lZ' Γ\Z' ^0 but not both. The last part of the theorem is
clear.

THEOREM 2.5. There exists a W-invariant fan Σ with ΣjW finite and such that

PROOF. Let Z be a compact fundamental domain for W in P, as in Theorem 2.4,

so P=\Jηew
rlZ Because the rational points of P are dense and the action of W is

discontinuous, for each point p e Z there is an open rational polyhedron S such that p e S
and 7/S n 5 = 0 for η( ± \ ) e W. Let ̂  , , Sk be a finite cover of Z by such polyhedra.
Put

ηeW
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ηSi Γ\St = 0 for all but finitely many η so S|υ is a rational polyhedron (neither open nor

closed). Inductively, we suppose that S\j) are polyhedra such that

Sp>cS., P= (J (J^P and
ηeW i=l

for all ηe W if /</ and /V/ Then if we put

, and

{5p+1)} satisfy the same conditions with /+ 1 in place of /. Consequently P =

lUw U?=ι ηS?-l) and the S\k-» are disjoint.
S ' 0 =U*=ιS' f k ~ 1 ) is thus a polyhedral fundamental domain for W in P. The

corresponding cone in Ω can then be subdivided in such a way that it, together with its

translates, gives a fan Σ as described. If we want Σ to be basic, simplicial or whatever,
that can also be arranged. An explicit description of the subdivision process can be
found in [14, Theorem 3] (the proof of that theorem, as was pointed out to me by C. T.
C. Wall, is incomplete, but the correction is easy).

REMARK. The proof of Theorem 2.5 follows the argument of [17, Proposition 2],
with minor modifications to adapt it to the present context.

3. One-parameter degenerations. By a method similar to that of Makio, who

gave one-parameter degenerations of Inoue-Hirzebruch surfaces (described in [13]), we
construct one-parameter degenerations of the manifolds described above.

Put M=M@Ze, V=M®R,H=H®Re, L = LcFc:F, L+=L + , Ω = HxL+ and
Ω' = (Ω\£+)U{0}. W acts on M by η: e \ — >e for all ηε W (so the representation
p : W^SL(M) is p0 1). According to Theorem 2.5 we can choose a rational polyhedral
fundamental domain S in P and a corresponding fan Σ in V. Let A be the fan in Re
whose cones are R + e, R + ( — e) and {0}.

THEOREM 3.1. There is a W-invarίant fan Σ with \Σ\ = Ω'9 such that {σe
Σ\σ<=V} = Σ and the projection M-*Ze induces a morphism (Σ, M)-+(Λ, Ze) of

fans, respecting the action of W.

PROOF. Let E={ηe W\ SΓ\ηS^0}. E is a finite set, by the choice of 5, and E
generates W. For if not, let W be the subgroup generated by E: each coset of W
determines a connected component of P, but P is connected unless h = 1 when it has two

connected components which are not equivalent under SL(M\
Let τ e Σ be a cone contained in exactly q translates of S, say τ c f| J=1 ξjS. Pick an

raeMand define τ± =Span(τ, {ξjm±e}). Let Σ= {faces of τ± |τeZ}. It is clear that Σ is
^-invariant, that {σeΣ\σcιV} = Σ, and that the projection induces a morphism of

fans, as long as Σ actually is a fan. It remains to show that Σ is a fan and that \Σ\ = Ω'.
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The map τ i — >Eτ = {ηe W\τ^ηS] is inclusion-reversing and defines a subdivision

into polyhedral cells (the dual complex arising from the decomposition P=
)- The cells are Γτ, where the faces of Γτ are the Γσ for σ a face of τ. We must

check that for σl , σ2 e Σ, σ^ Π σ2 is a face of both σ: and σ2. We may suppose that σί=τl +

and σ2 = f/τ 2 + for some -z^^ciS and some ηeW. Then σt Πσ2 = Span(τ1 ftητ2,

(Eτι (Ί ̂ Γ2)w + e). But since Σ is a fan, τγ Π τ/τ2 is a face of both τί and τ2. (Eτι Π ̂ ^/w + e =

{Eσm + e I T! and τ2 both faces of σ}, which is a face of Γτ., and the result follows. Finally,

I Σ\ = Ω', as E generates W (so that {ΓJ defines a subdivision of the whole of W® R).

The construction is illustrated in Figure 3.

FIGURE 3

COROLLARY 3.2. There is a complex analytic space ®J and a map φ : ^/-^P1 such

that

(i) φ is proper and flat

(ii) 0-1(0=^/^^0,oo
(iii) (/> "*(()) and φ~1(oo) are complete toric varieties with some pairs of disjoint

torus-invariant codimension one sub varieties identified.

PROOF, ty is constructed from Σ and M just as Y is from Σ and M. φ is induced

by M-+Ze and (ii) and (iii) follow from the construction of Σ.

A more precise description of φ'1^) is this: let N=M/Z(m + e). E can be listed as

{ξ±i I O</<Λ} with ξ-i = ^Γ1- Π is a fan whose 1-skeleton is {e±i} U {/)}, where e± f is the
class of ξ + ι(m -f e) in TV and/)- is the class in N of the generator of M n τj9 with τ7 e Σ(ί ] and

Tj-c:5; the larger cones in 77 are similarly described. Then φ"1^) is got by identifying

orb(^) with orb(^_t ) in XΠtN.
In general <3I and Xπ N are not smooth. It can be arranged that they be smooth by

subdividing Σ (in a W-invariant way): if this is done without altering Σ (which is

possible) the effect is of a bimeromorphic modification of ®J which is biholomorphic

away from the boundary (/)~1(0)U(/>~1(oo), so we get a smooth family in which the

special fibres have normal crossings.

^ is the simplest example of a decomposable construction, i.e., without
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Assumption A. If we are interested only in degenerating Y we can of course look at τ +
only and get a family over the affine line.

4. The decomposable case. We now drop Assumption A and consider what
happens if p is reducible over Q. We retain Assumption B: according to this, ρc splits
over C into a sum of characters. Therefore pQ is completely reducible over Q, so suppose
pQ = Po®Pι For simplicity, we assume throughout this section that p0 and p1 are
irreducible over Q — the case where pQ has more than two irreducible factors is
essentially the same. So ρc\ W-+SL(M®C) = SL(n,C) is the direct sum of not
necessarily distinct characters χt indexed by ie&= {1, , n}. 0t is partitioned as ̂  =
^o II ̂ i with pv = 0, 6^v Xi & is also partitioned as & = &U tf , where {& | ieΛ} is a set
of real characters and Card & = b. Put ̂ V = ̂ Π^V, J4fv = Jfn$v, 6v = Card^v, etc. As
in § 1 we take V= M®R and define ^(the image of the faithful representation p) and £2,
L+ and £2' from ^ and J^. More precisely, K= ®ie<% Kf, where Kf is a subspace of Fto
which ρR restricts and such that pR \ Vi = Xi when χf is real (and dim F f= 1) or

-ImχΛ

Re*,- )

if χ, is not real (and dim K£ = 2). L= 0ί6^ Kt , L+ is an orthant and Ω = π^1(L + ).
With the obvious notation, Assumption C asserts that for every η e Neither there is

an ie& such that ^,>|^-| for all ye f̂ or there is an ieόS such that ^i<|^-| for a l lyeJ f .
From this it follows that ^acts on P = P(Ω') freely and properly discontinuously with a
compact polyhedral fundamental domain, and the construction of Σ and Y goes

through exactly as in §§ 1 and 2.
Put W/

v = pv(Kerp1_v), the subgroup of W which acts trivially on 0 ί e Λ l _ v ̂  Since

LEMMA 4.1. ^v AΛJ raw/: ί?v.

PROOF . If h > hv > 0 then PFV, which clearly satisfies Assumption C, has a compact
fundamental domain on Pv, so rk Wv = bv. If A v = 0, or if Λ V = A and Λ v = 0, this breaks
down since Pv is empty. If λv = 0 and bv<b the above argument works for IV1 _ v ; if hv = 0

and bv = b, which is the remaining alternative, W^ _ v must be zero since otherwise it fixes
Lv pointwise and W does not act freely on Ω.

LEMMA 4.2. Γ/ze cα^ λv =

PROOF. If A v = 0 then pv embeds Wv in SL(bv, Z), since bv = rv. Hence, by Pro-
position 1.1, Wv<@%> with I K ' : Q\ = bv. But then rk Wv < bv, contradicting Lemma 4.1.

•
THEOREM 4.3. If Y= Y(W) is decomposable then there exist a manifold 7, a

generically finite proper morphism φ : ?-> F, and a morphism ψ : ?-> Y± with connected
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fibres such that
(i) 71 is an indecomposable manifold arising from W^or Yί=P1 ίfbl=Q

(ii) ifpe Y does not lie on the exceptional divisor F1 of Yί (Fί = {0, 00} if Yί =

then ψ~l(p) = YQ, an indecomposable manifold arising from WQ

(iii) i f p e F Ί , Φ~^(p} consists of toric varieties crossing normally.

PROOF. We assume that b0^Q, interchanging the suffices if necessary. Write W
for WQ®Wlt W is of finite index in W, and we can take a finite etale cover Y'-+Y
(Y' = X/W in the notation of §1) and work with W instead of W. We define Vv =

®ΐ6^ v

 vι for v = 0> U and look at Ω0 = ΩΓ\ V0 and L0 = L Π V0.
In general {σ e Σ\ σ a Ω0} will not be a fan, if Σ is a H^'-invariant basic fan in Ω, but

it will be ^'-invariant. Therefore we can subdivide Σ in a ^'-invariant way to Σ f so that
Σ0 = {σ e Σ' I σ c ΩQ} is a fan in K0, basic with respect to M0 = M Π F0; note that M0 is a
full lattice in F0 since F0 is defined over (λ

Next we want the projection πVί to induce a ^-equi variant morphism of fans
I"->ZΊ for some suitable fan Σ1 in Fx. In general it will not and we shall have to
subdivide Σ' again: the rest of the proof consists of constructing a suitable subdivision.

Let S' be a cone in V such that P(S') is a compact fundamental domain for the

action of W on P. Let ̂  = p(πKl(5')): ̂  is a compact domain in Pl=P(Ωlr), where

Ω1 =πKl(Ω). Furthermore, (J^H^ ξ& = P1, since ifη = ζ+ξ,ηeW, ζe W^ ξe W^ then
/) = ̂ πK(5 t/) so

ξeWi ηeW \ηeW

We can also find an open fundamental domain ̂  for the action of W{ on P1, by
Theorem 2.4. Since ^ is compact we can write ^^[j^^ξ^ for some finite set

\ ί = l / i = l ί = l i ' = l

which is empty for all but finitely many ξ. So ξ0>f}0> = 0 unless ζe^ for some fixed

finite KTc^V
Because of the way Σ is constructed (Theorem 2.5) we can choose S' to be a rational

polyhedral cone such that if σeΣ' and σΠS"^{0} (σ relatively open) then σcS".
Obviously this property will not have been harmed when we subdivided Σ. The point is

that we can now work with just the set # of cones in V^ given by

<β = { π V ί ( σ ) I P(πVί(σ)) f}0>^0} = {πVί(σ) \σΓ\ξS'ϊ {0}, some ξ e W }

= {πVί(σ)\σ^ξS', some ξei^}

which is a finite set, indexed by /, say.
We need a fan Σl in Vί with the obvious properties and a ^'-invariant subdivision
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Σ" of Σ' such that for all σe Σ" there exists a τ e I\ such that nVl(σ)cτ; see the definition
of morphism of fans in [4] or [13]. We first construct Σl so that it is compatible with the
structure of Σf as far as possible, and then go back and amend Σ'. Obviously

(jξeWl \JjeIξτj = Ω1'. To build Σ^ we start with

which is a set of closed polyhedral cones covering πΓl(S"). Then we take

2Γ2 — zr^ u {τ I τ is a face of τ' <

and

These cones need not be convex and we shall have to subdivide them further to
ensure that they are: we must also ensure compatibility on 0*Πξ& when this is non-
empty. We also want Σ1 to be basic with respect to the lattice πVί(M) (not just Af l 9 which
is in general a proper sublattice of finite index). All this is just routine subdivision (see

[4]). Figure 4 shows a simple case.

Cone of Σ" C

A'F' C[B'

C{ B', etc. cones of Σ<

E'
I I

CD'

FIGURE 4

To construct ΣΛ', subdivide I" by replacing each σ such that πK l(σ)e# by
{σΓ\πγf(τ) \ τeΣΊ}, which is a finite set by the construction of Σ^ Actually it is sufficient
to do this for finitely many such σ, namely a set of representatives for the W-

equivalence classes. Let Σ" be the set of all ^'-translates of such cones (or, what is the
same thing {σΓ\πγ*(τ)\σeΣ\ τeZΊ}) suitably subdivided so that Σ" is a basic W-
invariant fan. Notice that the subdivision will not affect Γ0, nor will it damage the

compatibility of πVl with the fans since it will only make the σ's smaller.
The proof of the theorem is completed by taking Ϋ to be the decomposable

manifold constructed from Σ"', M and W'\ Y1 to be the indecomposable manifold
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constructed from Σ1, πVl(M) and W^\ and F0 to be the indecomposable manifold
coming from ΣQ9 M0 and W0, with φ the quotient by Wί of the toric morphism

XΣ",W'~*XΣI,WI induced by πVί. The conclusions of the theorem ((iii) may call for a little
more subdivision of Γ") are clear: see the diagram.

Σ,M) (

 bιmer Y(W\Σ\M) . bimer Ϋ
I finite [φ

Y(W,Σ,M) Yι

REMARKS. 1. If neither b0 nor bί is zero the suffices are interchangeable and we

can arrange for the fibre to be Yί and the base Y0. But if b0 = Q then Ω0 = 0 and the
construction breaks down.

2. By an obvious induction argument the result can be adapted to the case of

more than two irreducible factors in pQ.
3. The degenerations described in §3 are just the special case bί =0 of Theorem

4.3. In that case W must always satisfy Assumption C, and Σί =Λ.

4. It is not hard to check that decomposable p, neither of whose factors are trivial,
satisfying Assumption C, do exist at least sometimes: for instance, if rk W0 = τkWί = \
(except when both come from the same real quadratic field). I do not know necessary
and sufficient conditions for such p to exist.

5. Kodaira dimension and algebraic dimension. We keep the notation above and
assume Y to be smooth. We denote the canonical divisor of Y by KΎ, the Kodaira

dimension by κ( Y) and the algebraic dimension — the number of algebraically inde-

pendent non-constant meromorphic functions on Y — by a( Y).

PROPOSITION 5.1. Kγ= — F, where F is the distinguished cycle coming from the

non-dense torus orbits on XΣ.

PROOF. The top differential dzj Λ Λί/zw, where (z1? , zπ) are the obvious
coordinates on Hb x CΛ, is clearly M-invariant and therefore defines a global meromor-

phic n-form on XΣ with, as is easily seen, simple poles along F. It is also ^-invariant,

since 77 e W acts on it by l\nη = UQtp(ή)=\. dz± A /\dzn therefore descends to a
meromorphic «-form on Y with simple poles along F.

COROLLARY 5.2. The Kodaira dimension κ(Y) is — oo.

Denote, here and later, the dual lattice of M by M v. W acts on Mv via p v , the

transpose of p (which, in the indecomposable case, is obtained in the same way as p — see

§ 1 — but with ij and fj interchanged).
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THEOREM 5.3. If Y is indecomposable it has no non-constant meromorphic

functions.

PROOF. Suppose/: Y-+P1 is a meromorphic function. Then there is a function

/: Hb x Ch-+Pl which is invariant for G(M, W\ got by lifting to Hb x Ch the restriction

of /to Y0= Γ\F. Since /is M-periodic we have

f(z)= Σ αpexp{2πιp(z)}
peM"

for zeHbx Ch<^Cn = M®C, and the series converges almost everywhere on Hb x Ch.

Since we have chosen a basis for M®/?, we can think of Mv as a lattice in K and

therefore embedded in M®C=C". With respect to this basis, P = (pί9 ' ' 9pn) and

(assuming K is not totally real, when the proof requires a trivial modification)

Pv(n}(Pn-ι,Pn) = (^nPn-ι-l™nPv Imηpn-i + ReηPn)' But ccp v (lί)(p) = αp by the W-
equivariance of/ and, by convergence, for any δ, ε>0 there are only finitely many

peMv with \pn\>ε and \ap\>δ; similarly for \pn-ι \. Hence αp = 0 unless pn_1=pn = Q,

but then /7G A: and τs(/?) = 0 so /? = 0. Therefore/ and hence/ is a constant.

COROLLARY 5.4. For general (decomposable) F, a( Y) is equal to the multiplicity of

the trivial representation in p. In particular, Y is not a Moishezon manifold.

PROOF. This follows at once from Theorem 5.3 and Theorem 4.3.

6. Cohomological invariants. In this section we shall investigate the cohomology

of some of the more interesting sheaves on Y and the Betti numbers.

LEMMA 6.1. The fundamental group is isomorphic to Zb.

PROOF. XΣ is simply connected by a result of Mumford ([13, Proposition 10.2]);

so, by the same argument, is X. Therefore π:( Y) ̂  W, since Y= XjW&nά IV acts without

fixed points.

Let w : X-+ Y= X/ W be the quotient map. For a locally free sheaf & on X let & be

the subsheaf of w^ consisting of the images of germs of JF-in variant sections (this is a

locally free sheaf on Y). According to [8] there is a spectral sequence

(S 1 ) E?(&) = Hp(

We shall want to consider the cases ^ = 0γ, ̂  = ΘY(-\ogF) and & = Q%(\ogF). In

these cases we have & = ®x, & = Θx(-\ogF) and & = Qp

x(\ogF) respectively.

THEOREM 6.3. dim H\ Y,0Y) = ( b ] where ( ) denotes the binomial coefficient.
\i J V l ' J

PROOF. We begin with some calculations about Hl(X, @x)9 with a view to using

(SI). The fan Σ determines an open cover {Xσ}σeΣ of XΣ. For σeΣ, define X'σ = XσΓιX

and an open cover & = {X'σ} of X. One checks easily that X'σ is Stein, so that X is acyclic
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for any coherent sheaf, in particular for ®x. Moreover % is closed under intersections, so
that Leray's Theorem applies even though 3£ is not locally finite ([7, II. 5. 4.1,
Corollaire]). So

where C ($ , (9) is the usual Cech complex

Now \ϊfεΓ(X'σ, (9) we can restrict it to X'(0} and lift it to/on Hb x Ch as in 5.3 above.
Again we get

/(*)= Σ «pexp{2πip(z)}

with certain restrictions on the αp's (αp = 0 if p φ σ and obvious conditions to ensure
convergence). For a W-orbit peM v /PΓ, put

pr(jr;, c?)- {/e r(jr;, 0) [αp=o for />*p}

so that

The PC*(# , 0) which are thus defined form a complex PC' (#Γ, 0): that is to say, the Cech
differentials commute with the projection maps.

In view of (SI), H*(Y, &γ) is the homo logy of the complex

where C'(W\ — ) is, say, the complex arising from the standard resolution ([3, III.l]).
Consider also the complex

which is equal to ΠpeMv/^ p C' with the obvious notation PC =C(W, »€'(&, Ox)). The
inclusion C* ->ί' induces a map /Γ(C" )->//"(<?'), because the differentials involve only
Cech differentials and ^-module operations in the coefficient modules. It is easy to see
that H'(C') = Y[peM,/wH' (*€'). Let K' be the kernel of H'(C')^H' (<?').

Suppose that yεH'(C') and py^0 for some p^{0}. Then we may define, for any
r E N, γ[r] by rpy[r] = py for all p, and v'γ[r] = 0 if pr ̂  rp for any p e M v / W. At the level of
Γ(X'σ, (9} it is given by /[r](z) =/(rz), so the convergence is assured and y[r]e//'(C").
Clearly the y|>]'s are linearly independent. But then H*(Y, (9Y) is infinite-dimensional,.
which is a contradiction since Y is compact.

I claim also that K' = 0. Suppose ξeK' . ξis determined by a (by no means unique)
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ΞeC' which in turn is given by a collection {^}/e/ of sections ξieΓ(X'σ, (9). The index
set /is countable, because ^and % are both countable. For notational convenience fix a
bijection ;V-»MV JW and write of 1Γ(X^(9) with teN instead of *Γ(X'σ,C)). The

statement that ΞeC' amounts to saying that the formal sums ξi(z) = YέteN

tξi(z)
converge for all zeHbx€h and all ie I. Given a cocycle Φ e C* and a function 0 : N-+R

we define #, Φ by '(#, Φ) = g(ί)CΦ). g\ Φ is also a cocycle.

FACT. There exists g1 : N-+R+ such that ̂ (O-*00 as ί->oo but #), ΞeC'; that is,

LeJv0i(OC&00) converges for all zeHbxCh and all iel.

Granted this, we observe that gj : t \ — »(0ι(0)1/J has the same property for any ye /V.
Take g0 = l, and write #/. ξ for the class of gjΊ Ξ in H' (C' ) (which is abuse of notation,
since gβξ depends on the choice of Ξ). Since H*(Y, ΘΎ) is finite-dimensional, there is a
relation

in H'(C'), and therefore there exists a ΨeC' such that

j=o

Choose Γso that lΣ5=o^(OI>l for t>T. This is possible (unless k = 0, when ξ = 0

immediately) because lΣj=oβ/0/(0 | ~*°° as ^-^°°-
We may assume that r Ξ = 0 and ίlF = 0 for all t < T. To arrange this, we replace Ξ by

Ξ — Σί<r f^ ?

 and similarly for !F. Obviously this does not affect the convergence of
Σ'e;vr£t(z)> because we are changing only finitely many terms. It does not affect the
co homo logy class of Ξ or of gβ Ξ either. For we have already shown that pξ = 0 for p ̂  0,
that is, ̂  = 0 for ί>0, by considering [̂r]; and the change in the cohomology class of

gji Ξ caused by changing Ξ as stated is £, < τ 0/OCO But that is zero, because if d('Φ) =

<E then δ(Xt<τflfJ.(0(ίΦ)) = L^τflfXOC2) and Σf<Γ^.(OCΦ) is certainly in C.
But now r-αΣ^o^)"1)!^^^-, and 5r=S, so ξ = Q.
The proof of the existence of gί is elementary analysis. Since ΣίeΛ/£i(z) converges

uniformly and absolutely on any compact subset B^HbxCh there is for each / a

function gBJ such that g^./ίO-^α) as /->oo but Σί6^^β,ί(OC^ (z)) converges on j5. For by
uniform convergence we may choose Rn so that Σf=Λn | ̂ i(^) | <2~2n for all ze5 and all
R>Rn; we may as well take Rn<Rn + ί for all w e TV. Then it is enough to take gB,i(t) = 2"
if Rn<t<Rn + 1. For then, if «' is such that Rn,>R

Σ l^. WCα^l^Σ *k+Σ 'ife.ίίίm^NΣ ^Σ 1 2 f c ι^ (z)i<Σ2 λ 2- 2 λ <2-" + 1

t=^n k=n t=Rk k=n t=Rk k=n

so ΣίeN0B,. (OC£i(*)) converges.
In general, if (h^eN is a countable family of functions each tending to infinity,
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there is an h : yV-»/?+ such that h(t)^> GO and hj(t)/h(t)-+ao for ally. (But not uniformly!
There is no reason why mfhfi), let alone mfhj(t)/h(t), should tend to infinity.) To see
that such an h exists, choose, for each neN,Nn such that hj(t)>n2 for ally<« whenever
t>Nn. Again we can assume that Nn<Nn + l, and it is enough to take h(f) = n if
Nn<t<Nn + ί.

Since Hb x Ch can be covered by countably many compact sets Bk, and since / is
also countable, we can get a suitable g^ by applying this construction to the family gBk > f .

Thus K' =0 and the only *H'(C) which can be non-zero is {0}//'(C). So

# (C')^{0}// (C*), which amounts to saying that the H*(Y, 0Y) can be calculated
entirely from the weight {0} pieces. {0}Γ(Jr;, 0) ^ C, so in (SI) we have Eξ* =

Hp(lV; H\%, Cx)\ But it is easy to see that Hq(3f9 Cx) also calculates Hq(Mc(M, Γ); C)
via the open cover {Mc(M, {faces of σ})}σeΣ. Mc(M,.Γ) is contractible, so
H°(3e, CX)^C and H\%, Cx) = 0 for q>0 and the result follows from (SI).

The construction of γ[r] from γ has a geometric origin: it arises from the r-fold cover
of XΣ defined by rMv c>Mv.

[18, Proposition 4.1] is a version of Theorem 6.3 under the stronger conditions

(6=1) which prevail in that paper, but is proved by quite different methods, using
degenerations (cf. Corollary 3.2, above). A closer relative of Theorem 6.3 is [6, Satz 6.1].
fa the referee of the present paper pointed out, in the case b = n—\ Theorem 6.3 can be

proved fairly simply using Freitag's method, which makes use of the fact that (in our

notation) ®veM-ιw*Γ(X'σ,(9) is dense in the Predict space Γ(X'σ,Θ). This is not
sufficient here: the extra complication comes from the use of the Leray Theorem, which
is not involved in the calculations of local cohomology in [6].

COROLLARY 6.4. For #>0 andp>Q,

H\Y, θY(-\ogF)) = H*(W-9 M®C)

and

PROOF. These follow from 6.2, 6.3 and the universal coefficient theorem.

The term H\W\ ΛP(MV®C)) which occurs in Corollary 6.4 is dual to the E\p-

term of the Hochschild-Serre spectral sequence ([3])

(S2) Eξq = Hp(Wι H\M\ C)) => Hp+q(G(M, W)\. C)

associated to the extension

Since HbxCh is contractible, H\G(M, W)\ C)^H\Y0; C).
Henceforth we suppose that Y is indecomposable.
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PROPOSITION 6.5. For q > 0 and 0 <p < n, Hq( W\ Λ P(M® C)) = 0.

PROOF. Since M® C is completely reducible as a C ̂ -module (by Assumption B),

Λp(M(g)C) is also: the representation of Wm GL(Λp(M(χ)C)) splits into a sum of
P

characters given by the determinants of the/? xp minors of p(η). Non-zero cohomology

could only occur when one of these is 1 for all η e W, but if that were to happen for
some p xp minor with 0 <p <n it would define an invariant subspace of M(x)C defined

over (?, contradicting Assumption A.

Clearly the same argument shows that H\W\ ΛP(MV®C)) = 0 as well.

COROLLARY 6. 6. For q>Q and 0<p<n,

COROLLARY 6.7. Y is non-Kάhler.

PROOF. H°(Y, Ωl

γ)^H°(Y, β1

r(log/Γ)) = 0, butbi(Y) = b>0 by Lemma 6.1.

COROLLARY 6.8. There is a spectral sequence

(S3) E? = H*(Y9 Ωζ(logF))*>H> + *(Y0 9 C)

which degenerates at the E^-term.

Corollary 6.8 is a standard theorem in the case of divisors with normal crossings on
a Kahler manifold.

The weight filtration on the sheaf Ω?(logF) (which contains Ω% as a subsheaf) is

given, as usual, by

Write F as the union of its irreducible components, F=F^ U UFN, and for

/£{!, , N} denote f l ie/^i by F,. There are exact sequences

0 -> ̂

where P.R. denotes the Poincare residue map. Since dimFI = n — k>p — k and since we
may choose Σ so that every Fl is a smooth complete toric variety, we have
H\F19 Ωp

F-
k) = Q for qφp-k and Hp-k(Fj, Ω?;fc)^//2(p-fe)(F/; C) by [4, Proposition

12.7]. (Actually we do not need Fl to be smooth: it is enough that the fan of Fj be

simplicial, which is automatically true if Σ is simplicial). Also, by Corollary 6.6,
H\ 7, WPΩ

P

Ύ (log F)) = 0 for p Φ 0, n.

THEOREM 6.9. Forp^Qorn andqφp, H«(Y, βf) = 0.
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PROOF. Suppose first q>p. H\Y, Ωp

γ) = Hq(Y, W0Ω
p

γ(\ogF)) and from the long

exact sequences

• -> H"(Y, Wt-i«?dogF)) - H\Ύ, ^Ωf(logF)) -» 0 H«(F,,
»/ = fc

and the above remarks it follows that

foral l fc>l .
The result follows in general by Serre duality, Hq(Y, Ωζ)^Hn~q(Y, Qn

Ύ~pγ .

In fact it follows from this argument that Hq(Y, WkΩξ(\ogF)) = Q unless p = 0 or
q=p — k, using Theorem 6.9 to deal with the case q<p — k. We are therefore left with
short exact sequences

0 -> H'-\Y, WkΩ
p(\ogF)) -» 0 H2^-«(F/; C) -> H^k + 1(^, ̂ -^^logF)) -> 0

with l^Λ^. Putting ω<')) = dim //"-"( 7, ^Ω?(log^)), ^p) = Σ»/=^2(P-t)(^) (where
bi denotes the /-th Betti number) and taking the alternating sum, we get

k=l

But ω^-dim//p(Γ, Ω?) and ω^) = dim^°(y, Ωf(log/)) = 0 unless p = 0 or n by
Proposition 6.5. This enables us to write down a formula for HP(Y,

THEOREM 6.10. The dimension of HP(Y, Ωf) is

number of W-equivalence classes ofj-cones in Σ.

PROOF. β(kp) = Σ*ι = kb2(p-k)Fι = Σ<reΣM/wb2(p-k)F

σ, where Fσ = orb(σ), by the toric
description of F. Since dim Fσ = n — k,we may use Poincare duality on Fσ to write β(

k

p) =

Σ<τ^2(n-p)^r (tms ^s optional and again it is sufficient that Σ be simplicial). Now

(n-P)Fσ=Σ "Σ (-ιy-(π-p) ^-,-χFσ)
by [4, 10.8]), where ai(Fσ) = ${ /-cones in the fan of Fσ}. But from the description of the
fan o f F σ , ai(Fσ) = ${σΈΣ(i+k}/W with σ a face of σ'} and we get

n-k / : \

^1P) = Σ Σ (- iy~" + p ( _ 1 #{(n-7)-cones σ' of which σ is a face}
σ j=n-p \W P/
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#{/c-faces ofan(rc-/)-cone}
n — p/

so A^^iZM-1)"''**-'- p k «;> as c]aimed-

In particular, A1'1 =αj = number of irreducible components of F, as is in any case
obvious from the exact sequence

In principle we could now calculate the Euler characteristic of Y from the Hodge
spectral sequence, but there is a less laborious method.

THEOREM 6.11. χ(Y) = an, the number of ordinary n-fold points of F.

PROOF. We use the Mayer- Vietoris sequence

which we saw in §1, from which it follows that χ(Y}= -
χ(Λ^) = 0 from the Gysin sequence. F0 is a K(G(M, W), 1) so χ(Y0) = χ(G(M, W)) =
χ(M) χ(W) = Q. Finally χ(F) = an by the argument of [15, Proposition 3.3].

REMARK. Theorem 6.11 applies to any F, not just the indecomposable ones.

THEOREM 6. 12. The Hodge spectral sequence Eξq = Hq( 7, Ωf ) degenerates at the
Extern and abuts to Hp+q(Y; C).

PROOF. Standard Hodge theory says that E™ abuts to Hp+q(Y; C). Since £f* = 0
unless p = q or p = 0 and q<b or p = n and q>n — b, the only differentials that can
possibly be non-zero are dr : £?°-»£? -» + ι,r wjt^ r = (^+ i)/2 and their duals. It is clearly

enough to show that s: Hq(Y C)^Hq(Y, (9Y) is surjective for q<b. By Theorem 6.3,

H*(Y, &γ)^Hq(W; C). By Lemma 6.1, H\Y; C)^H\W-, C) is an isomorphism. But
the cohomology ring H*(W\ C) is generated by Hl(W\ C), so s is Surjective in all
degrees (it is an isomorphism on the part of the ring /f*(F;C) generated by

The Betti numbers of an indecomposable Fare entirely determined by 6.3, 6.9, 6. 10
and 6. 12.

Finally, the method of [18] gives an expression for Hl(Y, Θγ).

THEOREM 6.13. For indecomposable Y,
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H°(Y,ΘY) = 0 and H\Y9θΎ)=®γ^H\Fj9GFi(F$ for ι>0 .

PROOF. This follows exactly as in [18] from the exact sequence

and Proposition 6.5. |
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