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Introduction.

0.1. Hermitian forms, or lattices in Hermitian metric spaces, have been studied by
many authors in various context. Over global fields or rings, one defines in a given
Hermitian space the genera and the classes of lattices, which are of central interests in
the arithmetic of Hermitian forms. Especially to determine the number of classes in a
given genus is one of the fundamental problems. If the form is indefinite, this problem
was solved by Shimura [19], and the class number is then equal to the class number of
the base field, up to certain elementary factors. On the other hand, if the form is definite
at all Archimedean places, very little is known about the class numbers, except some
special results that we mention below. In fact, it is quite difficult to compute the class
numbers of definite Hermitian forms of higher ranks. Even in cases of low ranks, one
has to specify a number of parameters (the base field, isometry class of Hermitian space,
and genus), as well as the group (i.e., unitary, or special unitary group, etc.) with respect
to which the class number is defined. This is perhaps another reason that there are only a
few results for the class numbers, compared with those for quadratic forms (cf. (0.3)).

In a series of papers which follow, we shall determine the class numbers of positive
Hermitian forms of low ranks, over the rings of integers of the imaginary quadratic
fields. In this first paper, we deal with general results which provide an effective
procedure to compute the class number of definite Hermitian forms of a given genus:

We present, among others, (1) a general formula (Theorem 3.2) for the class
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number of a given genus, which is a reformulation of a result of the first author (cf. [6]).
Up to the local factors, it is a sum of the masses of (idelic) arithmetic subgroups of the
centralizers of certain torsion elements in the unitary group. We shall also give (2)
explicit formulas for these masses with respect to the principal genera, and as an
application we give (3) a lower and an upper estimate for the class number, in terms of
the mass. These are the first main results of this paper. Using these results, we shall
derive in our forthcoming paper [10], explicit formulas for the class numbers of an
arbitrary genus consisting of unimodular Hermitian lattices of rank fwo, and the
principal genus of rank three. As for the second point noted above, we shall give (4) a
relation between the class numbers with respect to the unitary group and the special
unitary group (Theorem 2.9), which holds under some conditions.

0.2. Now we mention briefly the explicit results which have been known. The first
general result on the class numbers of definite Hermitian forms is that of Hayashida [12].
There he gave an explicit formula for the class numbers of the positive unimodular
Hermitian matrices of rank two, with coefficients in the ring O of integers of an arbitrary
imaginary quadratic field. As we shall see in § 2, this result can be interpreted as giving
the class numbers of certain genera of unimodular Hermitian lattices. We shall give in
[10] a simplified proof for it, as well as its generalization. The next general result is that
of Otremba [18], where he computed explicitly the mass (or average) for the repre-
sentation numbers of definite Hermitian matrices over (), using a result of Braun [4].
Especially he gave an explicit formula for the mass of a given genus, from which one
can derive a list of genera having class number one (cf. Proposition 5.13). This result is
very important, because the mass of a genus is regarded as giving the main term for the
class number formula, when the discriminant of K and % increase (see Theorem 5.11).
While Otremba computed the mass by means of Gauss sums, we shall reproduce the
same result in the special case of the principal genus, by a more direct and elementary
method, which is easily generalized to the cases where the basic field is an abelian
extension over Q. We should refer also to a work of Iyanaga [13], who determined the
class numbers of unimodular Hermitian forms over the ring Z[i] of Gaussian integers of
rankn=1,2,---,7. However the method he used (i.e., Kneser’s method of adjacent
lattices) does not seem to be extended easily to the general base field.

0.3. The method we shall use to compute the class numbers is an arithmetic
version of the trace formula (cf. Hashimoto [6]). This has been proved to be useful for

the class number calculations by many authors such as Eichler, Pizer, Ponomarev, Asai
and Hashimoto-Ibukiyama, in the cases where the groups are obtained from quaternion
algebras (cf. [5], [8]), or orthogonal groups (cf. [2]). Although the general procedure in
our calculation does not differ from those in the above works, there are some features
which are proper to the unitary groups. For example, the fact that the base field has a
parameter causes an essential difference. This is one of the reasons why we think it
convenient to collect here basic facts in the form useful for our purpose, although some
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of them could be found in the literature.

0.4. This paper is organized as follows:

In § 1, we recall the definitions and basic facts on the unitary groups and genera of a
given Hermitian space. In §2, we study the relation between the class numbers with
respect to the unitary group and the special unitary group. A general formula for the
class numbers will be given in § 3. In §4, we study the structure or the parametrization of
conjugacy classes in the unitary group over a field of characteristic zero. Then we
specialize to the case of local and global fields, and describe the image under the natural
mapping of the conjugacy classes over global fields, in the conjugacy classes of the idele
groups. This part follows from Asai [1], who omitted the details in the case of unitary
groups. In § 5, we calculate the mass of the principal genus of positive Hermitian forms
by a method different from Otremba [18]. Applying the mass formula, we also give new
remarks on the lower and upper bounds for the class numbers. In § 6 we recall briefly
results of Landherr [15], Jacobowitz [14], on the Hermitian spaces and genera of
unimodular lattices.

NOTATION. As usual, @, R, C denote the field of rational, real, and complex
numbers, respectively, and Z denotes the ring of rational integers. For an algebraic
object B over Q or Z, we denote by B, the p-adic completion of B. Thus Q, (resp. Z,) is
as usual the field (resp. ring) of p-adic numbers (resp. integers). Also we denote by B,
the idelization of B. If G is a group, and H is a subgroup of G, we denote the set of H-
conjugacy classes in G by G /| H, and its element containing g by [g]y. When H=G is a
Q-group, we put simply [gly : =[9gls, [g],: :[g]GP, where G= Gy, G, are the group of Q-
rational, @ -rational points of G, respectively. Also, we denote by G(g) the centralizer of
g in G. The cardinality of a finite set S is written as #(S). Throughout this paper, K
denotes an imaginary quadratic field. For ce @ * and a place v of Q, we denote by
(c, K/Q), the local norm residue symbol of ¢, i.e., (¢, K/Q),=1 or — 1 according as cis a
norm of an element of K or not. Notice that we have (¢, K/Q),=(c, m), (: =the Hilbert
symbol) if K=Q(y/m). Also we denote by x(x)=(K/*) = (d(K)/*) the Dirichlet character
attached to K, where d(K) is the discriminant of K.

1. Hermitian forms and unitary groups. Let K be an imaginary quadratic field
and let 0= Ok be the ring of integers of K. For any place v of Q, we put K,:=K®4Q,.
Also we put 0,:=0 ®zZ, at any finite place p of Q, and Z_:=R, 0 :=C at the
infinite place co. Denote by p the non-trivial automorphism of K/Q. Let (V, H) be a
non-degenerate p-Hermitian space over K. Namely V is a (left) vector space over K, and
H: VxV—Kis a Q-bilinear form which satisfies the following conditions:

(i) H(ax,y)=a H(x,y) for any aeK, x, yeV.

(i) H(y, x)=H(x, y)* for any x, ye V;
and (V, H) being nondegenerate means that

(iii) if H(x, y)=0 for any ye V, then x=0.
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Now we put G:=U(V, H). Namely G is the unitary group of (V, H), which is a
reductive group defined over Q whose set G= G, of Q-rational points is given by

G:={geGL(V); H(xg, yg)= H(x, y) for any x, ye V}.

For any place v of Q, we denote by (V, H), or (V,, H) the completion of (V, H) at v, i.e.,
V,:=V®,0, and H is the unique continuous extension of H: VxV—-K to
V,x V,—K,. It is a non-degenerate p-Hermitian space over K,.

Let L be an O-lattice in V. Namely, L is a finitely generated ¢-module in ¥ which
contains a basis of V over K'so that K-L=V. We put L,: =0, L at any place v of Q and
see that L, is an O -lattice in V. Let U, be the open subgroup of G,:=U(V,, H) defined
by

U, ={9eG,; L, g=L},
and put
(1.1) U=uUL):=[]U,.

This is an open subgroup of G,, the idele group of G. As a subgroup of GL(K,),
the group G, acts naturally on the set of (-lattices in V:

L-g:=(L,g,nV).

The group U(L) is the stabilizer of L in G,. The G-genus &£ = ¥ (L) is by definition the
G -orbit of L. Namely, it consists of the @-lattices L" in ¥ such that for any v there exists
g,€G, with L,=L,-g,. Obviously, #(L) is stable under G. Each G-orbit in Z(L) is
called a G-class in £(L). It follows that the set of G-classes is in omne-to-one
correspondence with the double coset space U(L)\G4/G. The cardinality of this set is
called the class number of #(L) with respect to G and denoted by A(Z(L)). Thus we
have, for the G-genus ¥ =2(L).

(1.2) h(£L)=#U(L)\Ga/G].

Now let G":=SU(V, H)=U(V, H)nSL(V) be the special unitary group of
(V, H). Then, in exactly the same way as for G, we can define the genus £V = #%(L) as
the G{-orbit of L, and see that the class number A‘(£Y) of £ (with respect to G))
is equal to

(1‘3) h(l)(gm)=ﬁ[U(“(L)\GA”/Gm] .

Now the reduction theory of Borel and Harish-Chandra [3] shows that the homo-
geneous space G{/G" has finite volume with respect to an invariant measure of G,
from which follows that the class numbers AV(#™) and h(Z) are finite for any genus of
O-lattices. Moreover, if (V, H),, is indefinite, then by Shimura [19] we know, as an
application of the strong approximation theorem, that AV(#®) is always equal to one,
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and that (%) is equal to the class number #(K) of K multiplied by certain elementary
factors. If, on the other hand, (V, H) is definite, it is in general quite difficult to deter-
mine the class number for a given genus.

2. Class number relation between U(n) and SU(n).

2.1. In this section, we consider general questions concerning (possible) relations
between genera and class numbers in a given Hermitian space (V, H) with respect to
G=U(V, H) and G =SU(V, H), which are suggested by our main results in binary
and ternary cases. Namely, for a given G-genus .Z of (-lattices, we ask:

(2.1)  How can one describe the decomposition of .# into the disjoint union of G-
genera?

(2.2) Let £ be one of the G"-genera in .#. Then in which way the class numbers
h(¥) and hV(ZL") are related? Can one show that the latter is independent of
the choice of #1)?

There is another question concerning the class number of a genus % and that of the
equivalence classes in the integral Hermitian matrices. For simplicity, let us assume that
& is the principal genus. Then we may ask:

(2.3)  Describe, if any, a relation between the class numbers of ¥, #* and those of
the integral unimodular Hermitian matrices.

We note that complete answers to these questions were given by Shimura [19], in the
case (V, H) is indefinite. Following his method, we can give answers to them also in the
case (V, H) is definite. Suppose we are given an O-lattice L hence the genus ¥ =% (L).
For each member M of % we define a fractional ideal [L: M] in K by

(2.4) [L:M]:={det(g); ge Endg(V), L-g=M}0 .

Then it is easily seen that [L: M] has the following properties (cf. [19]):
(i) [L:M]M:N]=[L:N]

(1)) If LoM and L/M ~0/a as O-modules, then [L: M]=a.

(i) [L:L-g)=(det(g9))0 for any ge GLk(V).

(iv) [L:Ml®zZ,=[L,: M,] for any p,
where [L,: M ] is the ideal in K, defined similarly as in (2.4). Denote by [P the group of
fractional ideals a in K such that Ngg(a)=(1). Then we have P~ K{/O’. Here, for a
subgroup J of Kz we put J®V:=JnKer(Ng,o: K& =Qx). For aeP, we put

2.5) Lo={Me¥;,[L:M]=a}.
Then the following lemma is immediately checked.

LEMMA 2.1. We have & =] qcp £, (disjoint), hence the mapping ¥ —P, sending



6 K. HASHIMOTO AND H. KOSEKI

Me 2, to a, gives a fibration of ¥ over P. Moreover, each fibre £, is stable under the
natural action of GV,

It follows that, if we let G, act on P through the multiplication of the
determinant of its elements, the above fibration is G,-equivariant. Now define sub-
groups G*, G of G, G,, respectively, by

(2.6) Gi :={geGu; det(g)e 01},
G":=G{'NG={geG;det(g)e W(K)(:=0")} .

Then we see, more precisely, that each &£, is G4 -stable and that the stabilizer of each
point in P is G&, since we have

Ga/Gh 5 KDIKV~P.
det

LEMMA 2.2. We have
W)= ) #ZLJG1T,

[aleP/KW
where the summation is taken over the ideal classes [a] (in the principal genus) represented
by aeP.

PrROOF. First note that P/KW~ {ideal classes in the principal genus}, which
follows from Hilbert’s theorem 90. Then the assertion is a consequence of the fact that
Gh (resp. G) acts on each &, (resp. ideal class [a]) transitively, and that the stabilizer of a
is G*. q.e.d.

Since G* and G'") are normal subgroups of G, we have the following from the above
argument:

COROLLARY 2.3. Suppose [a]=[b] for a, beP. Then we have
HLGI=HL, /G, LGV =HL,/GV].

Next we decompose &, into the union of G{’-orbits. For this purpose we put e=
e(#):=[0Y: det(U(L))]. Note that e is determined by .# and is independent of the
choice of L.

LEMMA 2.4. (i) Each &, is a disjoint union of exactly e G{)-genera.

(i) We always have e<2; and e=1 if L, (p=2) contains a normal modular
component at the prime p=2 which is always the case for n=odd or (K/2)#0.

(iii) If n=2, and L is unimodular, then e=2<d(K)=12 (mod 16) and L is
subnormal.
(See § 6 for the definition of normal, or subnormal unimodular lattices).

PROOF. The first assertion is a direct consequence of the fact that £ consists of a
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single G4 -orbit, and that, if we write M e ¥, as M =L-g (ge Gp), the stabilizer of M in
G, is UM)=g 'U(L)g. The assertions (ii), (iii) are easy consequences of the results in
[10, §3], and we omit the details. q.e.d.

Now we assume, throughout the following, that (¥, H) is positive definite. Denote
by I'(M) the unit group of an ¢-lattice. The following result refines Proposition 1.8 of
Iyanaga [13].

PROPOSITION 2.5. ForeachaeP,let M, ---, M, be a complete representatives of
the G"-orbits in ¥,. Then we have

a 1
LGV =4 WEK) Y —
[Z./GV]=#W(K)) j; FLdet(F(M )]
PrROOF. Let M (1<i</) be a complete representatives of the G'"-orbits in
Z., so that Z,=J; G- M. If we let G* act on the set of these G'"-orbits, we see
that it factors through the quotient G*/G™ ~ W(K), which is a cyclic group with a gen-

erator, say, {. Now if M;=M", --- M are the members of a W(K)-orbit under this
action, we clearly have det(I'(M))=<{(™>, hence m=#(W(K))/#[det(I'(M})]. Summing
these equalities over j, we get the result. q.e.d.

COROLLARY 2.6. Suppone n=odd, and either K+ Q(/—3) or (n,3)=1. Then:
(i) Each £, consists of a single GMV-genus.
(i) A(Z)=#ZL./G",
(il) A(L)=) wepe h(L,).
PrROOF. (i) follows from our assumption #=o0dd and Lemma 2.4. Moreover, the
additional assumption implies (n, #(W(K)))=1, so that { —{" is an automorphism of
W(K). 1t follows that the determinant of the scalar matrix (-1, (e '(M)) generates

W(K), hence det(I'(M))=W(K) for any Me ¥. (ii) and (iii) follows from this and
Proposition 2.5. g.e.d.

COROLLARY 2.7. Notation being as above, we have

LGV =h(2),

[a]eP/K™
where the equality holds if and only if det(I'(M))= W(K) for all Me &.
PROOF. By Proposition 2.5, we have

v HW(K)) _ v
#[ga/G(l)]—j§1m2K—ﬁ[ga/G ] .

If we put Z i = Upea £ (disjoint), we immediately have

2.7) HZ./G")=#[Z /G,
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from which the assertion follows. q.ed.
From the above arguments, we can give an answer to the questions (2.1), (2.2).

PROPOSITION 2.8. (i) If(n, h(K)/2'"Y)=1, then the class numbers 4% ,/G""] and
#(.%,/G"] are independent of the ideal aeP (t:=#{p; p|d(K)}).

(ii) If, moreover, e(¥)=1 (see Lemma 2.4), then the class number h(¥") is
independent of the choice V) of a GY-genus in £.

PROOF. (i): Since det(a-1,)=0a" (xe KY), we find, for each aeP, an ideal be P
and ce K such that a=b"(c). Then we have #[.Z,/G"]=#[Z;./G"] by Corollary 2.3.
Writing b= @ we then see that £.=.%-a. Since « is in the center of G, we see that
M, o and M, o are in the same G"-orbit if and only if so are M,, M, (¢ #). This
proves (i). (i) is a direct consequence of (i) and Z,=2", which follows from the
assumption. g.ed.

Summing up, we now have the following:

THEOREM 2.9. Notation being as above, suppose that (i) (n, W(K)/2'"")=1, (ii)
e(L) =1 and (iii) det(I'(M)) = W(K) for any M e ¥. Then for any ac P, &, consists of a
single G")-genus, and we have

h(L)=((K)2 ™) RLY)  forany D=

a-

2.2. Next we consider the question (2.3).
For simplicity, we assume that L is a free ¢-lattice. Then we have:

LEMMA 2.10. For a member M of ¥ =L(L), the following conditions are
equivalent:
(1) M is a free O-lattice.
(i) [L:M]=(a) for an ac K.
(i) MeZy,

Indeed, this is an immediate consequence of the well known facts that the class
number of SL,(K) is one and that, for any ideals a, b, one has a®b~0®ab (as O-
modules).

Now to each member M of #;,, we associate an equivalence class of the Hermitian
matrix

Hy :=(H(e; e)),

where {e,, - - -, €,} is a basis of M over @. Recall that two Hermitian matrices H,, H, are
called (integrally) equivalent, if there exists 4 € GL,(0O) such that H,=AH,'4. Then the
equivalence class of H), is independent of the choice of the basis. Denote by # (%) the
image of this correspondence M +— H,, when M ranges over #|;,, From the above
remark, we have a canonical bijection
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(2.8) Ly/G=H(L)|GL,(0).
We note also that, in the above correspondence, we have
(2.9) r(M)~I'(Hy):={AeGL,(0); AH,,'/A=H,} .

DEFINITION 2.11. (i) Two Hermitian matrices H,, H, are called properly
equivalent, if there exists 4 e SL,(0) such that H,=AH, 4.

(ii) Let = be a subgroup of W(K). Then Me ¥, or H,, is said to be properly of
type =, or E-proper, for short, if det(I'(H,,))= Z.

For M e %, denote by O*(M) (resp. O'(M)) the G*-orbit (resp. G*-orbit) of M in Z.
The proof for the following two lemmas are immediate:

LEMMA 2.12. Suppose that Me ¥ is E-proper. Then
(i) O“(M) consists of [W(K): E] GWV-orbits.
(ii)y Each member M; of O (M) is again E-proper.

LEMMA 2.13. Suppose that H="'H is Z-proper. Then:
(i) The equivalence class of H consists of [W(K): E] proper equivalence classes.
(ii) Each member H; of the class of H is again E-proper.

Combining these results, we get:
THEOREM 2.14. There exists a canonical bijection
Zo/GY =~ H(L)/SL,(0)

which satisfies the following conditions:

(1) It preserves the unit group, that is, I(M)~I'(H,,). In particular, M is ZE-proper
if and only if H,, is E-proper.

(ii) The following diagram is commutative:

L,/GP ~ H(ZL)[SL,(0)

l (2.8) l
Lo/G > Z1)|G =~ H(ZL)|GL,(0).

We remark that, if &£ is a genus of unimodular @-lattices, then # (%) consists of
the integral Hermitian matrices in M, (0) of determinant one, with the condition that the
greatest common divisor of their diagonal elements are odd or even, according as & is
normal or subnormal.

3. General class number formula. Here we give a closed expression for the class
numbers h(#) and h(FLD) of the genera £, £V in a given Hermitian space (V, H),
which we assume, throughout this paper, to be positive definite. This is a special case of
the trace formula for the Brandt matrices given in [6].
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For the sake of simplicity, we treat the class number A(¥) with respect to the
unitary group G, and note that the result for A*)(£V) is obtained simply by changing
notation. Thus, suppose we are given in (V, H) a genus ¥ = % (L) of (-lattices, and let
h=h(%) be its class number. Then one can express G, as a disjoint union of the double
cosets:

h
i=1
so that the O-lattices L;:=L-¢; (1<i<h) form a complete set of representatives of the
classes in .£. We put for each i

(3.2) ri:=Gné& 'UE={yeG; Li-y=L;}.

Since (V, H),, is definite, U is a compact subgroup of G, ; and each I';, being a discrete
subgroup of U, is a finite subgroup of G (see Lemma 5.10). Therefore each element of I';
has a finite order, and hence its characteristic polynomial is a product of cyclotomic
polynomials over K. Let F be the (finite) set of all possible characteristic polynomials of
the torsion elements of G. For each fe F, denote by G(f) (resp. I'/(f)) the set of elements
of G (resp. I';) having f as their characteristic polynomial. Then one has an obvious
expression for the class number h:

| 2]
i= 1#[r] erthl #r.] .

Note that G(f) is stable under the G-conjugation. In general, however, it consists of an
infinite number of G-conjugacy classes (see §4). We say that a G-conjugacy class [g]y is
locally integral, if I';N[glp # & for some i (1 <i<h). This is easily seen to be equivalent
to UNl[gls, # &, where [glg, is the G5-conjugacy class of g. From Lemma 5.10 below
and the above expression, we see that the number of locally integral G-conjugacy classes
of finite orders is finite.

Next we put, for each [g]y=[g]s

o #LI'iNgle]
i=zl 8 '

Note that this is an invariant of the G-conjugacy class [g]y and does not depend on the
choice of the representatives {£;} in (3.1). Let G(g) be the centralizer of g in G. It is
known that G(g) is again a reductive group over @, if g is a semisimple element of G. Let
V be an idelic arithmetic subgroup of G(g), which can be decomposed as in (1.1) for U.
Then in the same way as for G5, we have a decomposition

(3.3) h([glg: &)=

y
G(ga= U Glgn;V  (disjoint),

i=1

and obtain a system of (global) arithmetic subgroups
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Aji=n¥Vn;7 ' 0G(g) (I<j<h’).
Now we put
'i 1
(3.4 M(V):= ,
#4;]

j=1

and call it the mass of V in G(g).

PROPOSITION 3.1 (Hashimoto [6]). We have
(35) h([g]Q7 3)2 Z M( V) l_[cp(g9 Up7 Vp) ’

W) )
where L (V) ranges over a (finite) set of genera of the idelic arithmetic subgroups of G(g),
and

(9, Up, V) :=#{G(9)\M (9, U, V)| U],

x 1gxeU, and G(g),NxU x !
Mg, U, Vp)={x€Gp(g)' 7 b P :

’ is conjugate in G(g), to V,

We note that ¢ (g, U,, V,) is the number of U,-conjugacy classes in [g],N U, such
that G(g) NxU,x "' is conjugate in G,(g) to V. If we choose and fix one ¥V in G(g)a and
put

Mg, U):={xeG,;x ‘gxeU,},
Ind,(x; g):=[V,: G,(9)nxU,x""]
(=the generalized index for commensurable groups),

then we have another expression for k([gly; £):

(3.6 h(lglg; D)=M(V) - [] {Z Ind (9; g)} ,

p
where the summation is taken over a complete set of representatives of
G, (9)\M,(g, U,)/U,. Substituting this into the above formula we get:

THEOREM 3.2. The class number of the G-genus & is given by the following
expression:

3.7 KL)=3, ) kgl L),

feF [glo
where the second summation is taken over the locally integral G-conjugacy classes [gly=
lgle in G(f), and h(lgly; &) is given by (3.5) or (3.6).

In the subsequent paper [10], we shall be interested in the evaluation of the right
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hand side of (3.7) to obtain explicit formulas in the cases where n=dimg(}V)=2 or 3.

4. Conjugacy classes in the unitary groups.

4.1. Let Fbe a field of characteristic zero and E be either a quadratic extension of
F or the sum of two copies of F. We denote by p the non-trivial automorphism of E/F.
Let (V, H) be a non-degenerate p-Hermitian space over E, and put Gg:=U(V, H). We
investigate the semi-simple conjugacy classes of G. Put n=rankg(V). Let f=f(X) be a
monic polynomial in X of degree n with coefficients in E such that f(0)e E*. Denote by
G(f) the set of all semi-simple elements of Gy with the characteristic polynomials f. If
p=p(X)e E[X] is monic and p(0)e E*, we define its dual p* € E[X] by

P*X):=(p(0)") 'pP(X~HX',
where /=deg(p) and p —p” is the natural action of p on E[X]. It is easy to see that
f=f*if G(f)+# &. Hereafter, we assume that f=f* Then we can write

r

(4.1) JX) =[] m{X),
i=1

where each m; is a *-invariant monic polynomial in E[X] of positive degree which cannot
be expressed as a product of such polynomials. Note that when E is a field, m; is either
irreducible over E, or is of the form nn} with n;e E[X] monic and irreducible over E,
and with n; #n¥. We then put m(X):=[[i-, m;, 4:=E[X]/(m(X)), A;:=E[X]/(m(X)),
hence we have 4= @, 4;. Note that 4 and 4, are semi-simple algebras over E. Since m =
m*, m;=m}¥, there exists a unique involution ¢ of A4 such that

4.2) E°=F, O‘|E=p, and XX°=1

(we abbreviate “X mod (m(X))” as X), and that each 4, is stable under o. The restriction
of g to A; will be denoted by the same letter 6. We define the subalgebra B of A by B:=
{aeA;a’=a}, and put B;:=BN A, Note that each B, is a field containing F.

Let (W, I) be a o-Hermitian space over 4. By the scalar restriction, we may regard
W as an E-module. Let Tr, =), Tr, ¢ be the reduced trace of 4/E. We define on Wa
p-Hermitian form Tr, (/) over E by putting

Trye(D)(x, 3):=Trg(I(x,y))  (x,yeW).

For a given g-Hermitian form /; over an 4;-module W,, we define on W, a p-Hermitian
form Tr, g(I(x, y)) over E in the same way.

Now suppose that G(f) # J for a polynomial f'satisfying (4.1), and fix an element g
of G(f). Then m(X) is the minimal polynomial of g. We introduce an 4-module
structure on V via x-X=x-g (xe V), and denote it by V@ Let (x, ) be an element of
V x V. Since (V, H) is non-degenerate, there exists a unique element H9(x, y) of 4 such
that the equality
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(4.3) H(x"a, y)=Tr,ga- H(x, y))

holds for any a € 4. It is easy to see that the map (x, y) — H?(x, y) is a non-degenerate
o-Hermitian form on 7. The principle of Milnor [16] and Springer-Steinberg [21] in
the unitary group case is described in the following way:

LEMMA 4.1. (i) The set G(f) is not empty if and only if there exists a non-
degenerate o-Hermitian space (V, H) over A such that (V, TrA/E(FI )) is isomorphic to
(V, H).

(i) Suppose that G(f)# . Then the map g —(V9, H%) induces a canonical
bijection

G(f) ) G~ The isometric classes of o-Hermitian spaces
f (7, H) over A such that (V, TrA/E(f{')):(V, H)("

Moreover, the right hand side is canonically identified with the set
{([171, ﬁl]s T, [17,, ﬁr])’ @ (I7i’ TrAi/E(ﬁi))z(V’ H)} B

by the map [V,Hl+—(V-4,, H|V-A4,),---,[V-A4,, H|V-A,). Here [V, H] (resp.
[V, H))) denotes the isometry class of o-Hermitian spaces over A (resp. A;) containing
(7, H) (resp. (Vi, H)).

In the two special cases described in the following lemma, the isometry class of
(V, H) or (V,, H) is uniquely determined by (V, H), (V,, H)):

LEMMA 4.2. Let the notation be as in Lemma 4.1.

(i) Suppose that E=F®F. Then any non-degenerate o-Hermitian space (V, H)
over A belongs to a unique isometry class. Moreover, we have (V, Tr, /E(f{ ) ~(V, H) ifand
only if rankg(V)=rankg(V). Therefore G(f) | G consists of a single conjugacy class.

(ii) Suppose that E'is a field, and that m;=nn¥. Put A;= A, ®A,,, A;; being a field
and A% = A,. Then any non-degenerate o-Hermitian space (V,, H,) over A; with a given
rank belongs to a unique isometry class. The class of (V,, Tr A ,E(ﬁ ) is characterized by the
fact that the restriction of TrA‘/E(ﬁi) to 17,--A,.j (j=1, 2) are totally isotropic.

These facts are proved quite easily, so we omit the proof. In the situation of Lemma
4.1, we can determine the discriminant d(7;, Tr A'_,E(ﬁ,-)) € F* /Ng,p(E™) from the discrim-
inant d(V,, H)e B[N, 5(A]) of (V,, H). Put l;=rankg(4,), and for each E-basis
a, -+, a, of A;, put

4.4 AA.-/E[ap T azi] : =det((TrA.-/E(ajaZ))j{k=1) .
Then we have the following:

LEMMA 4.3. (i) Ad,la,, -, a,] belongs to F* NN, g (B;), and its class modulo
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Ny p(E™) does not depend on the choice of the basis (a;).
(ii) The above two discriminants are related by
(4.5) d(V;. Tru(H))
=Alay, -, az,-]e‘ : NB,-/F(d( Vi, H;)) (mod NE/F(EX)) .

PROOF. The first assertion is easy to see. We prove (ii). First suppose that £ and
A; are fields. For simplicity, we put /;=/and e¢;=e. Let x,, - - -, x, be an orthogonal basis

field of the algebraic closure F of F, and denote by a —a" (1 <s</) the distinct em-
beddings of A; into F which stabilize each element of E. The involution ¢ is carried over
to that of 4, which we denote again by ¢. Then the matrix

(Tr o, (H)(x;a,, x,a,))=(Tr, (a,as Hx;, x,)) € M, (E)

is written as

TJ,'T° 0
0 TJ,'T°

with

a(ll) e a(ll) ﬁi(xw xs)(l) 0

T:= | - e- , Ji= ’ )

a;” T a}l) 0 ﬁi(xw xs)(l)
(1<s<e). Since T'T°=(Tr, g(a;af)), we get (4.5). When E or A, is not a field, the
assertion is proved by reduction to the above case. q.e.d.

4.2. Now we assume that K is an imaginary quadratic field and p is the nontrivial
automorphism of K. Let (V, H) be a positive definite p-Hermitian space over K. We
denote by G the unitary group U(V, H) of (V, H). In order to describe the conjugacy
classes of G and G,, we need the classification theorem of Hermitian spaces in local
and global versions over various extensions of Q or @,, which was proved by Landherr
[15]. We first review those results of [15] which we need in this paper.

Let N be a totally real number field of finite degree over @, and let M be a totally
imaginary quadratic extension of V. For any place w of N, we put M,,=M ®y N,,. We
denote the non-trivial automorphism of M/N and that of M, /N,, by 0. Then we have:

LEMMA 4.4 (Landherr [15]). (i) If wis a finite place of N, the isometry class of a
non-degenerate o-Hermitian space (W, I) over M, is determined by the rank n, and the
discriminant d(W,, e N, [Ny n. (M )).

(ii) If'w is an infinite place of N, the isometry class of a non-degenerate o-Hermitian
space (W, I) over M,, (~C) is determined by the rank and the signature (p,, 4.,)-
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LEMMA 4.5 (Landherr [15]). The isometry class of a non-degenerate o-Hermitian
space (W, I) is determined by the rank, the discriminant d(W, I)e N |Ny,n(M ™) and the
signatures {(P.» Gw)}w> Where w runs through all infinite places of N. They can take
arbitrary values subject to the following conditions for every infinite place w:

pw+qw=n’ and (d(V)>M/N)w=(_1)qW

Here (¢, M/N),, is the local norm residue symbol of ¢ at w. Note that the above lemmas,
together with the Hasse principle for the norm map in a cyclic extension, imply the
Hasse principle for the isometry of the Hermitian spaces. Namely, two non-degenerate
o-Hermitian spaces (W, I) and (W', I’) over M are isometric if and only if so are (W, I),,
and (W', I') at any place w of V.

Let f=f(X) be a monic polynomial in ¢[X] of degree n whose roots in Q are all
roots of unity. We also assume f to satisfy f=f*. Decompose f into the form (4.1) in
K[X], and let A4, 4, 0, B, and B; be as before. Then each A, is a field, which can be
regarded as a subfield of Q. It is easy to see that B, is totally real and A, is a totally
imaginary quadratic extension of B;, By Lemma 4.1, each element of G(f)/G
corresponds canonically to an r-ple ([ 171, H P AEE [17,, 17,]) satisfying the condition that
@V, TrAi,E(fI,.)):(V, H). From this condition we see that, for each i/, rank, ( I7i)=ei
(fixed by (4.1)) and V., ﬁi)w is positive definite at any infinite place w of B;. Then
applying Lemma 4.5, we see that the isometry class of (¥, H,) is determined by
d( VE)EBEX /N, 8(Bi). By Lemma 4.3, the above condition is expressed as
(4.6) [T(44,0)°NpodV)=d(V) (mod Ny,o(K ™)

1

where 4, x stands for 4, kla;, - - -, a,] defined by (4.4).

Now we localize everything above. Let p be a finite place of Q. For each i, let
{P;1, ", P} be the set of all places of B; lying above p. Then the decomposition
(4.1) applied to m; e K,[X] becomes

t(i, p)

my(X)=[] m; (X).
i=1

Now put
A4, =400, B ,=B;®eQ,, 'Aip ;:=A4:®gB» ,
A; ;i =KJX)/(m; ;(X)), and B, ,;:=B; ,NA4;,;.
Then we may assume that 4; p =4, , ;and B; p, /=B, , ;. By Lemma 4.1, each element

of G,(f)// G, corresponds canonically to a system ([I7(Pl-,j), 17(P,-,j)]) (I<i<r, 1gj<
1(i, p)), where each [V(P, ;), H(P, ;)] is an isometry class of o-Hermitian space over

A They satisfy the condition
V,H)~3P (V(Pi,j)a TrAi,p,j/Kp(g(Pi,j))) .

i,Jj

i,p,J
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By Lemma 4.5, this is equivalent to
4.7 [1(44,, k)" Ns,, 0, dV(P; )=d(V)
i

(mod NKP/QP(K;‘ )), where A4,y K, is defined by (4.4). In the local case, we have the
following:

PROPOSITION 4.6. Let f be a monic polynomial of degree n (=dimg(V)) which is a
product of cyclotomic polynomials over K. Let v be a place of Q.

(i) When v=c0, G (f)/ G, consists of a single conjugacy class.

(i) Let v=p be a finite place, and let the notation be as above. For any ge G ,(f),
define an A,-module V' as in Lemma 4.1. Let d(V'9-A, , ;) be the discriminant of
the p-Hermitian subspace V&- A; , . in (V, H),. Then the mapping g —(d(V9- 4; , )); ;
induces a canonical bijection

d;,p,;€Qp [Nk, i0,(Kp);
Gp(f) / Gp: (di,p.j)i,j; ni,jdi, p,j=d( Vp)a and
(@, .5 KI@)y=(—1, KJQ);B-5700
where, on the right hand side, we delete the last condition if A; , ; is a field.

PROOF. The first assertion is easy to see. We prove (ii). The above d( Vﬁﬁ” “A; i)
is nothing but the factor corresponding to (i, /), on the left hand side of (4.7). The
surjectivity of the mapping follows immediately from this remark. On the other hand,
the translation theorem in local class field theory shows that d(I7(PI.‘ i) 1-I(Pi‘ ;) is
uniquely determined by d(V9- 4; ».;)- Then the injectivity follows. q.e.d.

In the global case, we have the following:

PROPOSITION 4.7. Let f,geG(f) and V© be as above. Then the mapping
gr— (@79 A Np<ow.1<i<ri<jerip induces a canonical bijection

d, €07 Nk, 0,(K}), |

[1i.;d:.p.,=d(V,) for any p< o

G(f) // G~ (di,p,j)p,i,j; (di.p.j’ K/Q)p:(_ 1’ K/Q)epi[Bi,p,jZQp] (ifA,-_,,,jsﬁﬁeld)
d;. ,.j» KIQ),=+1 for almost all p,

y [1,./(:. . KIQ)p=+1 for any i

i,pJ

where d(V®- A, , ;) is as in Proposition 4.6.

Lp.J

We can prove this proposition by using (4.6) and an argument similar to that in the
proof of Proposition 4.6. From the above two propositions, we get the following result
which was proved by Asai [1]:
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PROPOSITION 4.8 (The Hasse principle for conjugacy classes). The notation being
as above, the natural map

GNIG— [ GANIG,

p<o©

is injective.
5. Mass formulas. In this section we use the notation of § 1, §3 and §4.

5.1.  We shall calculate the mass M(¥) which appears in (3.4). As is well known,
this is equivalent to evaluating the volume vol(G(g)./G(g)) with respect to the invariant
measure normalized by vol(V)=1.

Let f=f(X)e O[X] be as in Theorem 3.2, and let 4, B, A;, B; (1<i<r)beasin§2.1.
Let g be an element of G(f). Then we get a non-degenerate g-Hermitian space (P9, 79
over A (see (4.3)). For each i, we put

Glg; i): =LV, H)

(5.1 - N o
(Vgg), H?)::(V‘g)'A,-, H9| V(")'Ai).

Each G(g; i) is a reductive group defined over the totally real field B,. We can identify
G(g) with [ ]; Resg, /Q(G(g; i)), where Resg, o denotes the restriction of the base field from
B; to Q. Therefore we have

(5.2) G(9)a/G(9)o>[15(g; i)a/G(g; i), -

Thus the calculation of M(¥) is reduced to that of vol(G(g; i)a/G(g; i)g,) for each i.

We start with the following situation: Let N be a totally real number field and M be
a totally imaginary quadratic extension of N with a non-trivial automorphism ¢ over N.
Let R=R,, and S=Sy be the ring of integers of M, N respectively. Like Z, and 0O, we
define the completions R, and S, at each place w of N. Let m be a positive integer and /
a o-Hermitian matrix in M,,(R), which we assume to be positive definite at all infinite
places of N. We put I(x, y)=x-1-')° for x, ye M™. Let M,,() be the mass of the genus
containing the standard lattice R™ in the o-Hermitian space (M™, I) with respect to
UM™, I). Namely, we have

M,.(1) : = vol(U(M™, D)4 /UM™, I); duy) ,

where dup : =[], du,, is the normalized Haar measure of U(M™, I), such that

(5.3 f dus=1.
UM, DA NGL,(RA)

When N=Q and M=K is an imaginary quadratic field, Braun [4] gave a formula
for M, (), which is analogous to Siegel’s formula (cf. [20]). Modifying Braun’s
argument, or using the fact that the Tamagawa number of the unitary group UM™, I) is
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two (cf. Ono [17]), one easily gets the following:

PROPOSITION 5.1.  Notation being as above, the mass M, (I) is expressed as
(54 Min(1) =2 d(N)™"'2- Ny o(d(M/N)™"* D4 N g o(det(T))" [T oo (1)

Here d(N) and d(M|N) denote the discriminant of N and the relative discriminant of M|N,
respectively; and for each place w of N, a,(I) (=the local density of I at w) is defined as
follows: If w= P (finite),

ap(l):= lim Ap(I)/N(PY™

Apl):=#{Xe M, (R/P"); XI'X° =1} .

If w is an infinite place,
l_[ 2m)/(j—1)!

Otremba [18] computed ap(]) in the case M/N= K/Q, by the technique using Gauss’
sums. Here we compute the number Ap«(/) directly in the case I=1,,, from which the
results of Otremba are reproduced easily. Althouglr this method can be applied only to a
restricted class of Hermitian matrices I, it would be of some interest, since it is
immediately generalized to more general cases of M/, which we need for our purpose.

Now we return to our case M/N=K/Q. For each finite place p we abbreviate
U,.(O/p*, 1,) to U,,(0/p"), and consider the natural projection:

¢ U(O/p") = U, (0/p*7 ).

Then the first two assertions in each of the following lemmas are proved immediately,
since in these cases every non-degenerate p-Hermitian matrix in M, (O/p) which is
equivalent to 1,, can be lifted to a p-Hermitian matrix in M,(¢,), equivalent to 1,,.

LEMMA 5.2. Suppose (K/p)= + 1. Then we have:
(1) ¢, is surjective for all k>2.
(i) Ker(p)~{1+p""'X; Xe M,(Z,/p")} ~ M, (Z|p).
(iii)  Ap(1,)=p* """ #(GL,(Z)p)).
(iv) (L) =[] (1= (KIpYp~).

LEMMA 5.3. Suppose (K/p)= —1. Then we have:
(1) ¢y is surjective for all k>?2.

(i) Ker(¢)~{XeM,(Op); X+'X°=0} (k=2).

(i) Ap(1,)=p* "™ #(U,(O/p)).

(iv) (L) =[] (1= (K/p)’p™).

LEMMA 5.4. Suppose (K/p)=0, and p+#2. Then we have:
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(i) ¢, is surjective for all k>?2.
(i) Ker(¢)~{XeM,(Z/p); X+'X=0) (k=>2).
(il))  Ap(l,)=p*™ D" mD2 3@, (Z)p)).

-1 rn/2 -m/21-1 . .
() 21 =2[T- (1= (KIp)p" f)x{[ HE P e

Here we understand that (K/p)’= +1 if j is even, and (K/p)’=0 if j is odd.
LEMMA 5.5. Suppose that (K/p)=0 and p=2. Write p=P? in K, and consider the

following diagram consisting of natural projections:

Un(@/p") N Un(O/7F)

o 0P

We have:
(1) ¢y is surjective for all k>?2.
(i) #(Coker ¢$?)=2""", #(Coker ¢{*)=2" (k=3) - - - 4||d(K),
#(Coker ¢ @) =2""", #(Coker ¢2)=2" (k=2, k#3) - - - 8] d(K).
(iii) #(Ker V) = #(Ker ¢2)=2""*12 for gll k>2.
(iv) Ap(l,)=pk Dm0, (Z)p)) (k=3),
Ap(1,)=p" "2 K, (Z)p) x {” ;‘H o

-mj—1 _ . .
W) o1, =2T]7= (1= (KlpYp ) x {“ tp T een
Here d(K) is the descriminant of K, and we apply the same convention in (v) as in Lemma
5.4.
The proofs of these lemmas will be given in the next paragraph. Now, substituting these
results for a,(1,) to (5.4) and applying the well-known formula for the values of
Dirichlet’s L-function at integral points, we get the following:

THEOREM 5.6 (cf.. Otremba [18]). When M=K and N=Q, the mass M,(l,,) is
expressed as follows:

(5.5) Mat)=2 [T 2520 7 iz 1/
=1 4 1;|d¢(120

2"—1 - 4||d(K)
x| am2m_1) - - 8| d(K
1 (2,dK))=1 (m: even),

Bl

T (m: odd) .

My (1,)=21 " [ Baze!

j=1
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Here y(x):=(K]/*) is the Dirichlet character attached to K, and B; ,; is the j-th generalized
Bernoulli number attached to the primitive character y’ (see the convention above).

Our method can be applied without any difficulty, to more general cases of M/N. In
particular, we have the following generalization of Theorem 5.6 which we need later in
[10] (cf. Hashimoto [7]).

THEOREM 5.7. Suppose that M is abelian over Q, and m is odd. Let X(M|Q) be the
set of primitive Dirichlet characters attached to M|/Q in class field theory. Then the mass of
the genus of Ry, in the Hermitian space (M™, 1,) is given as follows:

(5.6) Ma(l)=2""TT] I IB"’.“’I :
=1 yexamg Y
Y(—1)=(—1)J

where T is the number of distinct prime divisors of d(M|N).

Since the proof of this theorem is exactly the same as that of Theorem 5.6, we omit

Next we mention the relationship between the masses with respect to the unitary
and the special unitary groups. To avoid unnecessary complications, we consider the
simplest case of principal genera. Let G = U(V, H) be as usual, and let G®'=SU(V, H)
be the special unitary group, where (V, H)=(K™, 1,,) is the standard Hermitian space.
Let &, £V be the principal genus of G, G, respectively. Then we have the following:

PROPOSITION 5.8. For the masses M,(G; &) and M, (G"); V) of the principal
genus with respect to G and GV, we have

Mn(G; £)=M,(G; £) M, (G D), M(G; £)=|B, |/27".

PROOF. We normalize the measure df, =[],d?, of G5 by the condition
vol(U,; dt,)=1 for all v. Since the ¢ -lattice L, has an orthogonal basis, we see that the
image of the determinant of U,=U(L,) is the set O}’ of norm one elements in @, for all
L in the principal genus. Therefore we can define the measure ds, =] [, ds, in such a way
that vol(U'"; ds,)=1 for all v, and that the quotient dt, /ds, induces on G, /G{’ ~ K
the same measure as that we defined for G, with m=1. Applying Theorem 5.6 to m=1,
we get the assertion. q.e.d.

5.2. Now we prove Lemmas 5.2, 5.3, 5.4 and 5.5. In the first three of these
lemmas, the assertions (i), (ii) are easy consequences of the remark preceding Lemma
5.2. Then (iii), (iv) follows from the following formulae for the orders of the classical
groups over finite fields.

LEMMA 5.9. LetF,=Z/p, andletF, (q =p?) be the quadratic extension of F,. Then
we have:

(i) #GL,E)=[[= (P"=P"™".
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(i) #U,(F/F)=p " V2T, (/= (= 1))).
(iti) If p#2, then

{tm = 1)/2] ‘
HOWF)=2p""""2 ] (1-p~?)

i=1
5 {1 —(=1/p)y™2p~™2 - - - m: even
1 ‘e m:odd.
(iv) If p=2, then
{m=1)/2] _
HOLF)=p™ "2 T] (1-p ¥).
ji=1

PROOF. (i), (ii) and (iii) are well-known (cf. Wall [23], see also Siegel [20, Hilfssatz
18], for (iii). So we prove (iv). Note first that our group O,,(F,) is not equal to the group
of linear transformations in X, - - -, X,, which leave the quadratic form X?+4 - - - + X2 =
(X, + -+ X,,)? invariant. Pute,:='(1,0, - - -, 0), e*="'(1, - - -, 1)e F,. We note that, for
any vector ee [y, we have the equality (e, €)=(e, e*) for the inner products. We claim
that the orbit E, of the vector ¢, under the natural action of O,,(F,) is given by the set

(*) E,={ecly;(e,e)=1,e#e*}.

To prove this, take an arbitrary vector e, belonging to the right hand side of (x). We
look for the vectors e, ---,e, inductively, satisfying the conditions (e;, €)=
(e, e)="-=(e; e;_;)=0. The existence of e,, - - -, ¢,,_, is easily seen from the above
remark. To find e, is equivalent to solving the system of linear equations in e,

(*%) (e, e¥)=1, (em> €;)=0 (I<jsm—-1).

Hence it is also equivalent to the linear independence of e*,e,,---,e,_; over [F,.
Suppose they satisfy a linear equation

m—1
Zl djej+doge*=0  (L€F,).
ji=

Taking the inner product with e, one gets 4;=4, (1 <j<m—1). Again taking the inner
product with e*, one then has

m—1

0= ) A+ Aole*, eM)=(2m—1)i,,
Jj=1

which shows that 4;=0 for all j, hence the existence of e,. Then we see that the matrix
(e;, - -+, ¢,) belongs to O,(F,), and it transforms ¢, to e,. This proves our claim.
Now it follows easily that

$(E,)=#(0,(F,)/0p-(F))=2""" or 2" '-1
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according as m is even or odd. Our assertion (iv) follows from this by induction.
q.e.d.

PROOF OF LEMMA 5.5. First note that U,(0/p*)=U,(0,/p"), U, (0/P* )=
U,.(O,/P*~") for all k. Hence it suffices to prove the assertion with @, instead of ¢. We
denote the prime elements of Z,, Op by the same letters p, P, respectively. It satisfies

6.7 p’=p, PP=P (modp).

(i): Fix an arbitrary element X, of M,,(0,) satisfying X,'X4=1,, (mod P*~1). Put
C:=p'X1,,— X,'X5). Then C is a Hermitian matrix in P- M, (0,). So, writing C=(c;;),
we have
(5.8) ci=chep0,, cti=c;eP-0, (i#j).

It suffices to show that there exists X, € M,,(0,) such that X,+p* "' PX, (mod p*) belongs
to U.J,,,(@,,/p"). Thanks to (5.7), we can rewrite this condition as

(5.9) P-(X,'X?—X,'X8)=C (modp).

Here (5.8) shows the existence of Ye M, (0,) such that P-(Y—"Y?)=C (mod p). Since
X, is invertible, we may put X, = Y('X8) "!. Now it follows that this X, satisfies (5.9),
which completes the proof of (i).

(i): We give a description of the homogeneous space U, (0,/p*!)/Im(¢?) as
follows. Let X, be an arbitrary element of M,(0,) such that X, (mod p*1) belongs to
Un(0,/p*"1). Put C=C(X,): =p' *(1,,— X,'X8), C=(c;;). Then C="C*e M, (0,). We
define an element e =e(X,) of F} by

€2=(Cu, s Com) (modp),
and a subset E(k) of Fj by
E(k):={e€Fp; 3X,€ M,(0,) with X, (mod p*~*)e U,(0,/p* ") and e(X,)=e} .
For any ge U,(0,/p* ") and any ec E(k), write
g=X (modp*™Y), XeM,(0,),
e=e(X,), XoeM,(0,), X, (modp* )eU,(O,p ).

It is easy to see that e(XX,) does not depend on the choice of X or X,, and we can define
an action of U,(0,/p*"') on E(k) by

g-e(Xo)=e(XXp) .

Here we can show, as in the proof of (i), that the stabilizer of e=(0, - - -, 0) is nothing but
Im(¢?"). Hence we have

Un(Op/p* ™)/ Tm(?) ~ E(k) .
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Moreover, it is not difficult to show

€,y &) EF™, g=0p " k=2
E(k)= {(1 ) ".-Z‘l }

p

(5.10) @||d(K)),
{(81,"',8'")&”:';; Zslzo}k=3

i=1
" s k>2, k#3

p

(5.11) E(k)= 8| d(K)).

The assertion (ii) is a consequence of these results.

(ili): Let g be an element of Ker(¢{'). Then we may write g=1,+p* ' PX,
(mod p*) with X, eM, (0,), and g is seen to be determined by X, (mod P). Here, a
straightforward calculation shows that the unitarity of g is translated into the equality
X;+'X?=0 (mod P). Now it is easy to see that

#(Ker(¢i")) =#{X, (mod P); X, +'X{ =0} =2"""D2
Similarly we get #(Ker(¢>))=2mm*172, q.e.d.

5.3. Here we give some remarks on the above results. Let again K be an
imaginary quadratic field, and let (V, H) be a positive definite Hermitian space over K of
rank m. Let L be an O-lattice, and ¥ = % (L) be the genus containing L. Let L, - - -, L,
be a complete set of representatives of the classes in £, and let I';: =U(L;) (1 <i<h) be
the unit group of L;. As remarked in §3, the positivity of (¥, H) implies that I';’s are
finite groups. The following lemma shows that the orders of these groups are bounded
by a constant which depends only on the genus .%.

LEMMA 5.10. Let d(&) be the product of the local discriminant d(L,) of L,
d&):=[lp™, dL)Z,=p™Z,,
p

extended over the finite places p. Let p be any finite place not dividing 2d(¥). Then we
have:

(i) If (K/p)=+1, then each T is isomorphic to a subgroup of GL,(F,).

(i) If (K/p)= —1, then each T; is isomorphic to a subgroup of U,(F,/F,), where
q=p-.
(i) If (K/p)=0, then each I'; is isomorphic to a subgroup of an orthogonal group of
degree m over [,

PROOF. We prove (ii). Let p be as above, and (K/p)= — 1. Then it is easy to see
that H induces a non-degenerate Hermitian form on L,/pL,, which is an m-dimensional
vector space over [F,. Since I';=Aut(L;, H), the elements of I'; induce naturally
isometries on L;,/pL;,~L,/pL, We claim that the correspondence
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I'i=Aut(L;, H) —» Aut(L,,/pL,,, H)~Aut(L,/pL,, H)

ip>
is an injective homomorphism. Indeed, if geI; corresponds to the identity of
Aut(L,/pL,, H), it follows that all the eigenvalues { of g must satisfy {=1 (modp),
which implies g = 1,,, because g is of finite order (hence {’s are roots of unity), and we are
assuming that p > 2. This proves the assertion (ii). The other assertions are proved quite
similarly. q.e.d.

The above lemma has the following important application:

THEOREM 5.11.  Notation being as above, let C be the greatest common divisor of
the orders of the finite groups GL,(F,), U,(F,/F,) and O, (F,), where p varies as in Lemma
5.10. Then C depends only on the genus ¥, and we have the following estimates for the
class number h=h(%) of &:

(5.12) HW(K)) - M(G; L)<h(ZL)<C-M(G; &),
where M(G; £) is the mass of &.

ProOoOF. This is an immediate consequence of the above lemma and the definition
(3.4) of the mass M(G; ¥)=M(U(L)), together with the fact that W(K)=0" is a
subgroup of every I';. q.e.d.

By a more detailed argument using the method of Hashimoto [6], it would be
possible to decide all possible subgroups of GL,(F,), U,(F,/F,) and O,(F,) which
appear as the image of some I';, provided the rank m is small enough and & is
sufficiently simple. However, we shall not go into this problem here and content
ourselves with the following observation:

PROPOSITION 5.12. Let K be imaginary quadratic, and (V, H) be a positive
Hermitian space. Take, in this space, a genus ¥ of O-lattices. Then the contribution T, =
T(f,) from the identity element to the class number formula (3.7) is equal to M(G; £). In
particular, if (V, H)=(K™, 1,)), & is the principal genus and m=3, it is given by

h(K)B; ,

This follows from Theorem 5.6 and a well-known formula:
(5.14) — B, ,=2h(K)/#(W(K)) .
As a corollary to the above lemma, we have:

PROPOSITION 5.13 (cf. Otremba [18]). Let (V,H)=(K™,1,) and & be the
principal genus, and suppose that m>1. Then h(¥)=1 exactly in the following cases:

(i) m=2:dK)=-3, —4, -7, —8.

(i) m=3:dK)=-3, —4.
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(i) m=4: dK)=-3, —4.
(iv) m=5: dK)=—3.

PROOF. For the standard lattice O™ € &, we know that its unit group is the semi-
direct product of (W(K))" and the symmetric group of degree m, hence its order is
(m!)-(#W(K))™. On the other hand, we see from the table of the generalized Bernoulli
numbers given below, that 1/M(G; £) is equal to this number exactly in the cases listed
above. Since h(£)=1 if and only if these two numbers are equal, we have the assertion.

q.e.d.

TABLE OF THE GENERALIZED BERNOULLI NUMBERS. In the following table,
we give, for each imaginary quadratic field K with discriminant |d(K)|<250, the
Bernoulli numbers B, ,, B; ,, and B; ,, where y is the Dirichlet character attached to X,
that is, y(x)=(d(K)/*).

) d(K) ramified primes B, , B;, B;,
) -3 3 —1/3 2/3 —10/3
) -4 2 —1/2 32 —25/2
3) -7 7 -1 48/7 —160
“) -8 2 -1 9 —285
5) —11 11 -1 18 —12750/11
6) —15 3%5 -2 48 —4960
@) -19 19 -1 66 —13450
8) -20 2x5 -2 90 —17610
9) =23 23 -3 144 — 34080
(10) —24 2%3 -2 138 —39850
(11) -31 31 -3 288 — 129600
(12) -35 5%7 -2 324 —211860
(13) -39 313 —4 528 — 365600
(14) —40 2x5 -2 474 —395210
(15) —43 43 -1 498 —530410
(16) —47 47 -5 864 — 849600
17 —51 3x17 -2 804 — 1148500
(18) -52 2x13 -2 906 — 1286570
(19) -55 Sx11 —4 1200 —1709920
(20) —56 2+7 —4 1188 —1811700
(21) -59 59 -3 1206 —2221950
(22) —-67 67 -1 1506 —3902410
(23) —68 2x17 —4 1908 —4337940
(24) =71 71 -7 2448 — 5440800
(25) -79 79 -5 2976 — 8724800
(26) —83 83 -3 2790 —10315230
27 -84 237 —4 3156 —11186900
(28) —87 329 -6 3888 — 13515360
(29) —88 211 -2 3354 — 13725770

(30) -91 7%13 -2 3300 — 15487700
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(02} d(K) ramified primes B, , B, , Bs,
31 -95 5%19 -8 5040 —20166240
(32) —103 103 -5 5712 —28772000
(33) — 104 2%13 -6 5598 —29370750
(34) —107 107 -3 5238 — 32344830
(35) —111 3x37 -8 7248 — 40477600
(36) —115 S5%23 -2 5892 —44394260
37 —116 2%29 -6 7326 —48004350
(38) —-119 Tx17 —-10 8928 — 55588800
(39) —120 2%345 -4 7620 — 55668020
(40) —-123 3x41 -2 7140 —60305620
(41) —127 127 -5 9600 — 73836800
(42) —131 131 -5 8874 — 80468850
(43) —132 2%3%11 —4 9636 — 85463540
44) —-136 2%17 —4 10164 —97412500
(45) —139 139 -3 9558 — 104207550
(46) —143 11x13 —-10 13968 — 126996000
47 —148 237 -2 12282 — 142408970
(48) —151 151 -7 15024 — 161000800
(49) —152 2%19 -6 14238 — 161914110
(50) —155 5x31 —4 13320 —171476520
(51 —159 3x53 -10 17808 —203962400
(52) —163 163 -1 13890 —213225610
(53) —164 241 -8 17496 —228069000
(54) —167 167 —11 20592 —255272160
(55) —168 2%3x%7 —4 17556 — 252966740
(56) -179 179 -5 19242 — 327860850
57 —183 3%61 -8 24816 — 383680480
(58) —184 2423 —4 21540 —379597300
(59) —187 11x17 -2 19716 —395673620
(60) —191 191 —-13 29088 —467361600
61) —195 3%5%13 —4 22920 —479879720
(62) —-199 199 -9 30096 — 557594400
(63) —-203 7%29 —4 25992 —577203240
(64) =211 211 -3 26982 — 681635550
(65) -212 253 -6 32526 —1723516510
(66) -215 5%43 —14 39024 —795959520
67) =219 3x73 -4 30696 —809210600
(68) -223 223 -7 39360 —930190720
(69) -227 227 -5 34506 —954428850
(70) —228 2%3%19 —4 37572 —999666740
(71) —-231 3xTx11 —12 45216 —1095201600
(72) —-232 2%29 -2 37770 —1076601770
(73) -235 5x47 -2 34980 — 1106475860
74) —-239 239 -15 50976 — 1281729600
(75) —244 2x61 —6 43902 — 1351919550
(76) —247 13x19 -6 50544 — 1473281760
an —248 231 -8 48456 — 1465634280
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6. Unimodular lattices.

6.1. In this section, we use the notation of §1; thus we assume that K is an
imaginary quadratic field, and (V, H) is a positive definite Hermitian space over K of
rank m. Here our purpose is to recall briefly some basic results on the local theory of
Hermitian lattices, which were settled by Jacobowitz [14] and Shimura [19]. Especially
the former’s result on the Jordan splitting of the general lattices will play an essential
role in our calculation of the class numbers. This fact also shows a limit of our
calculation, thus explaining our restriction to the genera of unimodular lattices.

Let us recall some definitions. An @-lattice L in (V, H) is said to be a-modular, for
an ideal a=a” of K, if it satisfies L=a-L*, where L*:={xe V; H(x, L) = 0} is the dual
lattice of L. In particular, an ¢-modular lattice is called unimodular. Let p be a finite
place of Q. For an ideal a=a” of ¢),,, we define a-modular lattices similarly. Let L, be an
0O -lattice in (V,, H). Define the discriminant d(L,) to be an element of Q /N K, /Qp((ﬁpx)
represented by det[H(x;, x;)], where x,, - - -, x,, is an O -basis of L,. Notice that d(L,)
does not depend on the choice of the basis. The following assertion is easily proved.

LEMMA 6.1.  For an O, lattice L, in (V,, H), the following three conditions are
equivalent:
(i) L, is unimodular.
(ii) d(L,) is represented by an element of Z ;.
(iii)) H(x, L,)=0, for any primitive vector xe L, (i.e. x¢ P-L,).

6.2. We denote by s(L,) the ¢),-ideal generated by {H(x, y); x, yeL,}, and by
n(L,) the ideal generated by {H(x, x); xe L,}. When (K/p)= +1, we have K,=Q0,®0,,
0,=Z,®Z, and we may put

(6.1) V,=K"=Q"®Q".

Then we may write
H(x, y)=(x1Hy'yy, x,'Hy'y) . x=(x1, X3), y=(y1,¥2)
G,={(g9,"Ho'9"""Hy');  geGL,(Q,)},

where H, is an element of GL, (Q,). Let L, be a unimodular ¢ -lattice in (V,, H). Then it
is easy to see that

(6.3) L,=L@®Lg,

6.2)

where L, is a Z,-lattice in Q7 and
L§:={xeQ%;yHy)'xe Z, for any ye Ly} .

From (6.2) and (6.3), we see that all unimodular lattices in (V,, H) are isometric, and the
automorphism group U(L,) of (L,, H) is
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(6.4) UL,y ={(g, 'Hy'g™"Hs "); g€ GLg (Lo)} -
Next let us assume (K/p) # + 1. In this case, we have the following:

LEMMA 6.2 (Jacobowitz [14]). (i) If (K/p)=—1, then (V,, H) contains a uni-
modular lattice if and only if (d(V,), K|Q,)=+ 1. In this case, any unimodular lattice has
an orthogonal basis, hence any two such lattices are isometric.

(i) If (K/p)=0, and p+#2, then there is a unique isometry class of unimodular
lattices in each Hermitian space (V,, H); and any member of this class has an orthogonal
basis.

(iii) If (K/p)=0 and p=2, then (V,, H) always contain a unimodular lattice. Two
such lattices L,, L), are isometric if and only if n(L,)=n(L},). Moreover, the set {n(L,);
L (< V,): unimodular} is equal to either {0,, p0O,} or {0,}.

We say that an O,-lattice L, in (V,, H) is normal, if n(L,)=s(L,), and subnormal
otherwise. If L, is a modular lattice, it is normal if and only if it has an orthogonal basis
(see [14, Proposition 4.4]). Thus every unimodular lattice is normal in the cases (i), (ii) of
the above lemma. As for (iii), we can state exactly when a subnormal unimodular lattice
exists in (V,, H); but for our purpose we need only the following:

LEMMA 6.3. Suppose (K/p)=0, p=2, and put m=rank(V ).

(i) If m is odd, then every unimodular lattice in (V,, H) is normal.

(i) Supposem=2. Then if either 8| d(K), or 4 || d(K) with (d(V ), K|Q),= —1, there
exist subnormal unimodular lattices in (V,, H). For any such L,, we have

0
(6.5) (Lp,H)=<1 é)"'if(—d(V), K/Q),=+1,
2 1 .

Here, (6.5) for example, means that there exists an (,-basis x, y of L, such that
H(x,x)=H(y,y)=0 and H(x,y)=1. If 4||d(K) and (d(V), K/Q),=+1, every uni-
modular lattice in (V,, H) is normal (m=2). The above lemma is verified easily by the
results in [14], so we omit the proof.

6.3. Summarizing the above lemmas, we have:

PROPOSITION 6.4. Let K be an imaginary quadratic field. In the set of isometry
classes of positive definite Hermitian spaces (V, H) of rank m, there exist exactly 2' ™!
classes which contain a unimodular O-lattice, where t is the number of distinct prime
divisors of the discriminant d(K) of K. They are characterized by the condition

6.7) V), K/Q),=+1 for all places p with (K/p)=—1.
They are parametrized by the local norm residues {(d(V), K|Q),; p|d(K)} which are
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subject to the condition

(6.8) [T @w), K/Q),=+1.

pld(K)

Moreover, for each (V, H) satisfying this condition, there exist at most two genera of
unimodular lattices with respect to the unitary group; one is normal and the other is
subnormal. The latter exists only if m is even and 2 | d(K).

Finally, we quote the following fundamental result:

LEMMA 6.5 (Jacobowitz [14]). Suppose (K/p)# + 1, and let L, be an arbitrary O ,-
lattice in (V,, H). Then there exists an orthogonal decomposition of L,

(6.9) L=L®L® &L,,

where each L, is a modular lattice and s(L,)&s(L,)S - - - S s(L,). The sequences
rank(L,), - - -, rank(L,), and s(L,),---,s(L,)

are uniquely determined by L,

A decomposition of this type is called a Jordan splitting.
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