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Introduction. In algebraic geometry, double coverings are very useful, and many
results on them are well-known. On the other hand, there are not so many papers about
triple coverings ([1], [5], [7]). In this paper, we construct a triple covering of a certain
type of an algebraic surface by using a different method from Miranda's in [5], and
consider its application. For general references on triple coverings of algebraic surfaces,
see Miranda [5] or Tokunaga [7].

Let Σ be a nonsingular algebraic surface and let Ao, A^, Bo, B^ be smooth divisors
on Σ satisfying the following conditions:

(i) Ao~A,, and BQ-B^
(ii) The divisor AQ + A ^ + BQ + B ^ has only simple normal crossings as its

singularities.
By #o> βoo> ^o a n d £oo> w e denote the defining equations for Ao, A^, Bo and 2?^,

respectively.
(iii) For suitable α, β e C, the divisor defined by the equation

is reduced and the divisor defined by the equation

has singularities at most at AQ(\A^ Boΐ\B^ Aor\Bo and A^nB^.
Under the above conditions, we consider a cubic extension of C(Σ) defined by the

equation

Let θ be a solution of the above equation, and let S' be a C(Σ)(0)-normalization
of Σ. Then 5" is a normal finite triple covering of Σ. By p: S'^Σ we denote its covering
map. We now state our results:

THEOREM (A). Singularities of S' are rational triple points of the following form:
(1) The points lying over Ao n A^ and Bo n B^. The singular points whose minimal
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Θ
(i)

resolutions have the following configuration of the exceptional set as in Figure 1, (i).

(2) The points lying over A^nB^. The singular points whose minimal resolutions

have the following configuration of the exceptional set as in Figure 1, (ii).

THEOREM (B). The branch divisor of p is a divisor on Σ defined by the equations

a^albl + β2albl) = O, and 6^ = 0,

Moreover, p~γ{x) for x e A^u (<x3alb2

ti + β2a3

aob
2

)) consists of two points, while

P~1(y) for y e ^oo consists of one point.

By using the above Theorems (A) and (B), we can compute c\ and c2 for a smooth

model of S\ and we obtain the following result as an application of Theorems (A) and (B).

THEOREM 5.2. There exists a minimal surface of general type S with invariants

C?(S) = 4 A Z - 8 , c2(S) = 20n-4, pg(S) = 2n-2,

which has the structure of a non-Galois trigonal fiber space over Pι.

As for the definition of a trigonal fiber space, see Defintion 5.1.

Note that all surfaces which have the numerical invariants as above satisfy

Noether's equality c\ = 2pg — 4.

Section 1 starts with a summary on triple coverings of algebraic surfaces without

proof. In Section 2, we consider the ramification in codimension one for p, and prove

Theorem (B). In Section 3, we examine the singularities of S' and its resolutions, and

prove Theorem (A). In Section 4, we give easy examples and compute their c\ and c2.

In Section 5, we define trigonal fiber spaces and prove Theorem 5.2.

The author would like to express his gratitude to Dr. Yoshio Fujimoto for useful

comments.

NOTATION AND CONVENTIONS. In this paper, the ground field is always the com-

plex number field C.
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g(C): = the genus of a curve C.

pg(X): = dimc H\X, Θx) with n = dim X.
C(X): the rational function field of X.
Sing (X): the singular locus of X.
ct(X): the i-th Chern class of X.
Let / : X^> Y be a morphism from a normal variety to another normal variety Y.

/ i s said to be ramified at xeX if / i s not etale at JC. / i s said to be branched over
ye Yif/is not etale over y. Hence the ramification divisor is a divisor on Ύ, while the
branch divisor is a divisor on Y.

For a divisor D on Y,f~ι{D) denotes the set-theoretic inverse image of D, while
f*(D) denotes the ordinary pullback.

Let Dl9 D2 be divisors.
Dί^D2: linear equivalence of divisors.
D1^D2: numerical equivalence of divisors.
A rational curve with self-intersection number — n (n>ϋ) is called a ( —«)-curve

and is represented by a circle with — n inside. A possibly irrational curve with
self-intersection number — n is represented by a line with —n beside it.

1. A triple covering of an algebraic surface. Let Σ be an algebraic surface and

C(Σ) be its rational function field. Let K be an algebraic extension of C(Σ) determined
by an equation

X3 + 3aX+2b = 0

with a, beC(Σ). Let S be a ^-normalization of Σ so that C(S) = K. (For the definition
of ^-normalization and its property, see Iitaka [3].) Assume that K is not a cyclic
extension. Then as in [7] there exists a double covering βx: D(S/Σ)^Σ of Σ associated
with the triple covering/?: S^Σ. We call D(S/Σ) the discriminant surface of p\ S-+Σ.
Moreover, there exists a cyclic triple covering β2: S-^D(S/Σ) of D(S/Σ) associated with
the triple covering p: S-+Σ. We call S the minimal splitting surface of p: S^Σ. For
details, see [7]. We obtain a diagram

D(S/Σ)

Σ

where pλ: S-*Σ is the Galois covering with Galois group of S 3 .

REMARK. If p: S-+Σ is a cyclic triple covering, then D(S/Σ) = Σ and S=S.
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In the above notation, the following hold:

PROPOSITION 1.1 (cf. [7]). Let p: S-+Σ and p1: S^Σ be as above. By con-

struction, C{S) is a Galois extension of C(Σ) with the Galois group Ga\(C(S)/C(Σ))~

S 3 or Z/3Z. The birational maps of S into itself over Σ induced by the elements of

G<ύ(C(S)/C(Σ)) are automorphisms of S.

LEMMA 1.2 (cf. [7]). Let p: S-^Σ, and pγ: S^Σ be as above. Assume that Σ is

smooth. Then by the purity of branch locus {see Zariski [6]), the branch loci of p and px

are divisors on Y. We denote their support by A(S/Σ) and A(S/Σ), respectively. Then

A(S/Σ) = A(S/Σ).

REMARK. There is another approach to triple coverings due to Miranda [5]. He

studied triple coverings by means of rank two vector bundles called Tschirnhausen

modules.

2. The codimension one ramification of a triple covering. In this section, we assume

that Σ is always smooth. By the purity of branch locus, the branch locus A(S'/Σ) of

the triple covering p: S'-+Σ is a divisor on Σ.

LEMMA 2.1. Let p: S'->Σ be a normal finite triple covering over a smooth surface

Σ. Assume that C(S') = C(Σ)(Θ), where θ satisfies an equation

X3 + 3aX+2b = 0, with α = — , Z> = — eC(Σ).

Then

A{S'IΣ) c (a« = 0) u (b^ = 0) u (aftl + alb% = 0).

PROOF. Consider the surface

S": = {(JC, /) e Σ x P1 \t3 + 3a(x)t + 2b(x) = 0} ,

where / is an inhomogeneous coordinate of P1. Let Sr" be a normalization of S'". Then

we get a commutative diagram

where s is the Stein factorization, n is the normalization S'"-*S" and qx is the projec-

tion: ΣxP1-^Σ.
Let x be a point which is not contained in the closed subset
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(β α o = 0) u ( 6 β = 0) u {albl + alb2

0 = 0 ) .

Then qx ( s,,: £"-•£ is etale over x. Therefore by the above diagram, p is etale over x.
q.e.d.

By Lemmas 1.2 and 2.1, to study the ramification of/?: S'^Σ, it is enough to
investigate the ramification of/?!: Sf-+Σ. Hence we consider ramifications of two cyclic
coverings

βx: D(S'/Σ)-+Σ and β2 : S'^>D(S'/Σ).

Assume that a finite triple covering/?: S'->Σ is obtained by an algebraic extension
associate with

which satisfies the conditions (i), (ii) and (iii) in the introduction.
Put

Then C(D(S'/Σ)) = C(Σ)QΊΪ). Therefore, the ramification locus of βx: D(S'/Σ)^Σ is
the divisor

We next consider the branch locus of β2 along divisors. By Lemma 2.1, and the
above argument, if β2 is ramified over some divisors, then it must be β^B^). (Note
that β2 cannot be ramified over the ramification divisor of /?x.)

CLAIM 2.2. β2 is ramified over βΐ(BJ.

PROOF. Since the problem is local, we restrict ourselves to an affine neighborhood
where β*{B^) is smooth. Moreover, it is enough to consider our problem over an affine
open subset U in Σ which satisfies the following:

(i) £/=Spec(C[>,7]).
(ii) The defining equation of B^ in U is x = 0.

(iii) The equation X3 + (3(xao/aao)X+(2βbo/bao) = 0 is represented in U as

Under the above assumption, we obtain R = (x2 + l)/x2. Hence the double covering
βϊ\U)is of the form

We investigate the ramification of β2 over the double covering β^^U). It is well-
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known that

C(S') = C(Σ)( -β*(— ) + V Λ ) (Cardano's formula).

Therefore, the cyclic triple covering β^iβϊ1^)) is obtained as

β'i \βϊ\U)) =

where

Note that

X J \ X

where the bar means the equivalence class in A. Then/can be written as

Therefore, β2 is ramified over the divisor defined by ζ= ± 1, that is, x = 0. q.e.d

By the above argument, it is easy to show that the ramification index of p~ί(B) is

equal to 2, while the ramification index of p~1(BO0) is equal to 3.

We summarize what we obtained in this section.

THEOREM (B). Let p: Sf-+Σ be a finite normal triple covering. Assume that Σ is

smooth and the rational function field C{S') is an algebraic extension of C(Σ) satisfying

the conditions in the introduction. Then the branch divisor of p is a divisor on Σ defined

by the local equations

floo(α3flo*« + /ί2fl«*o) = 0 and ^ = 0 .

Moreover, p~1(x) consists of two points for a general xeA00\j(oc3albl0 + β2al0bl = 0),

while p~1(y) consists of one point for a general ye B^.

3. Singular points of 5 ' and their resolutions. In this section, we investigate the

singularities of 5" and their resolutions. To this aim, we examine the singularities of

D(S'/Σ) and S' and their resolutions.

(I) Singularities of D(S'/Σ). First of all, we investigate the singularities of

D(S/Σ). Since D(Sf/Σ) is a normal finite double covering, the singularities of D(S'/Σ)

lie over those of the branch locus. In Section 2, we have seen that the branch locus of

βγ to be Aao\j(a?alb2

ao+ β2a?aobl = 0). Hence, by our assumption, its singularities are
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AonBo\x3+y2 =

Note that we always take a suitable local coordinate system. Therefore the singularities
of D(S'/Σ) are

simple elliptic singularities over AQΓΪA^,

^-singularities over AonBo,
/^-singularities over A^ aB^,
A!-singularities over Bo n B^.
We now investigate the singularities of S'. For this purpose, we consider a smooth

model S of §'. From now on, we will use the following notation:

S'

where π is a.succession of blowing-ups, μ: D(S/Σ)~ -+D(S/Σ) is the minimal resolution
of D(S'/Σ), β2 i s the n o t necessarily finite morphism induced by β2, βι is the induced
double covering, and S is a smooth model of S'.

(II) Analysis of the morphism β2, and a resolution of the singularities of S'.
In a neighborhood of a smooth point of D(S'/Σ), μ is an isomorphism. Hence β2 is
the same as β2. Therefore, it is sufficient to examine β2 in a neighborhood of each excep-
tional set. We study β2 for each type of singularities of D(Sf/Σ).

Case (i) A simple elliptic singularity.
Let px be a point of AQΠA^. It is enough to consider our problem over an affine

open subset Uγ in Σ such that

and that x = 0, y = 0 are the defining equations for A^ and Ao, respectively. Moreover,
the equation X3 -\-(3a0/aoΰ)X+(2b0/boo) = 0 is represented in U as Ar3 + (3j/x)Z+2 = 0.

Let π P l : Uί^>U1 be the blowing-up at p 1 ? and choose an affine open cover of 01

defined by

01 = V1uV2 with Kx = Spec(C[x,j]), K2 = Spec(C[>,ί]), y = xs, x=yt.
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Under the above assumption, on t/ l9 Vγ and V2, we obtain

o n

Therefore, the double coverings j^fH^i) and βϊι(V2) are

Γ1(^1) = Spec(C[x, 5, ζJ/(C?-5 3-l))

fr H F2) = Spec(C[>, /, f J/(C| - f - 0)

Moreover,

Let E denote the exceptional elliptic curve of the above simple elliptic singularity. By
the results in Section 2 and the fact that β2 i s n o t ramified over the ramification divisor
of βu we see that if β2 is not ramified along some divisor over β^iVJ and βϊί(V2),
then the divisor is the exceptional divisor E. But, from (*x), it is easy to see that β2 is
not ramified over E. Therefore, β2 is etale over E. Hence, as the inverse image of E,
there are two possibilities:

(i) $2\E) is irreducible,
(ii) β2

1{E) has three irreducible components which are isomorphic to each other.

CLAIM 3.1. β2

1{E) is irreducible.

PROOF OF CLAIM 3.1. Since our concern is a cyclic triple covering over E, it is
enough to consider the restricted morphisms β2\fe\E) a n c * βiU By our construction,
the rational function field of the elliptic curve E is C(E) = C(Px)(x9 y), where y2 = x3 + 1.
By the theory of elliptic functions, we may assume that x = ̂ β, y = ty\ where β̂ is the
Weierstrass ^3-function of E, while φ is the differential of Sβ. Moreover, C(β2

1{E)) is
equal to

From a general theory of cyclic coverings (see [3]), if β2 \E) is reducible, then
8' + 1 must have the form

<P'+1=/ 3 , for feC(E),
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twelve

ramification
points

P.

v '*OUΓ r a r n ' f i c a t o n points

the blowing-up at pj (— 0

FIGURE 2

which is impossible. Therefore, jf2

1(E) is irreducible. q.e.d.

A smooth model S of S' is obtained as a quotient surface S/i where i is an

appropriate involution induced by an element of the Galois group. It is clear that i has

a fixed point on ^2

λ{E). There are four fixed points. Hence a resolution of the singular

point / Γ H P i ) e p ~ \ A 0 n AJ is

and its exceptional set is β(E)/(ι}, that is, a rational curve whose self-intersection

number is —3. Figure 2 explains the above argument.

Case (ii) ^-singularity.

Let p 2 be a point of AonBo. In the same way as in Case (i), we consider our

problem over an affine open set

such that x = 0, y = 0 are the defining equations for Ao and A^, respectively. Moreover,

the equation X3 + (3a0/aao)X+(2b0/boo) = 0 is represented in U as X3 + 3xX+2y = 0.

Let π P 2 : U2^U2 be the blowing-up at p 2 , and choose an afrine open cover of ϋ2

defined by

U2 = Vx u V2 with Vx = Spec(C[;c, s]), V2 = Spec(C[^, t])9 y = xs , x=yt.

In the above notation, we obtain

R=y2 + x3 on C/2

on Vί

) on K 2 .

Therefore, the double coverings Pϊ1^) and j5>Γ1(K2) are

>̂ 5̂ CiJ/CCi ~^~>y))

Moreover,
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on

on
•(*2)

Clearly,

.Γ2 + I
f

Γ2-I

Therefore, β2 is ramified over the divisors defined by the equations

ζ1+s = O and ζ1-s = 0 .

Note that these divisors are the inverse images of the exceptional curve of the blowing-
up at p 2.

By the above argument, in a neighborhood p~ 1(p2)> the surface S can be regarded
as a resolution of the singularity defined by an equation

z3-wt;2 = 0,

which is a rational triple point. The configurations of exceptional sets on π"1(ί7),
$ΐι(V\V vi) a n d ft"1 (Pi u Vi)* respectively, are as in Figure 3. Note that the above
resolution is not minimal. By contracting (—l)-curves, we obtain the minimal resolu-
tion. S' turns out to be smooth over Ao n Bo, and the structure of the triple covering
is the same as that in [7, §2, Example 3].

Case (iii) Z>5-singularity.
Let p 3 be a point of A^nB^. In the same way as in the preceding two cases, it

is enough to consider our problem over an affine open set

£/3 = Spec(CΊ>,χ])

p~ι(p2)

V

(-D (-1)

(-3)-

/ pi pi

the minimal resolution

\

the branch locυs

FIGURE 3

^ι-v-2)



TRIPLE COVERINGS OF ALGEBRAIC SURFACES 571

Λ=0-
(s, s3)

FIGURE 4

such that jt = O, }> = 0 are the defining equations for A^ and B^, respectively. Moreover,
the equation X3 + (3ao/aao)X+ (2bo/bao) = 0 is represented in ί/as X3 + (3/x)X+ {21 y) = 0.

Let π P 3 : U3-+U3 be a succession of blowing-ups such that the branch locus of &
is a smooth divisor on U3. We introduce an affine open cover

U3=V1ΌV2UV3ΌV4UV5

with Ki = Spec(CΊ>, J J ) , K2 = Spec(C[>2, j j ) , K3 = Spec(C[j, J 3 ] ) , K4 = Spec(C[/, /2]),
F5 = Spec(C[^, /J), where

y = xs = x2s = s2s2 = s3s3 =

x=yt=y2t1 = t2t2

y = tt2.

Figure 4 describes the configuration of the exceptional curves, coordinates and the
branch locus on U3. In this notation, we get the following forms of R on each affine
open set K£ ( ι=l, 2, 3, 4, 5):

R=-
xsj

x4y2

Therefore, the double coverings βϊι{V^) (i= 1, 2, 3, 4, 5) are

s39 ζ

/2, f

1)))
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We obtain the following on each open set β^iVi), (/= 1, 2, 3, 4, 5):

'<Γ,2

χ2f ^3^2 ^3^2- β t t -
\y.

Let us analyze β2 on each affine open set βlx{V^ (i= 1, 2, 3, 4, 5).
On jίf 1(K1), the action of the Galois group is

Γi — Γ i

Moreover, by the relation ζ\ — \ = x2s1 we see that the branch locus of β2 contains the
divisors defined by the equations JC = O, or sx =0. Hence S is obtained as a resolution
of the two singularities over χ = s1=0.

On i?f 1(K2), the action of the Galois group is

Moreover, by the relation ζ\ — 1 =s4 we see that the branch locus of β2 is a divisor
defined by the equation s4 = 0.

On βΐ1(V2), the action of the Galois group is

Moreover, by the relation ζ\ — s\ = s\ if jS2 is ramified over some divisors on jfjf1(K3),
then it is the divisor defined by the equation £3 = 0. But this is a part of the ramification
divisor of βx. Since S cannot have a ramification divisor whose ramification index is
6, we see that β2 is etale over Pϊι{V^).

By the same argument as above, we can conclude that β2 is etale over the double
coverings βΐ1^^), βϊι(V5). The configuration of the exceptional curves is as in Figure
5. To obtain a minimal resolution of the singularity p~ 1(p3), we need to investigate the
action of the Galois group with respect to exceptional curves. To this aim, it is enough
to look at the structure of the Galois covering

(-4) (-2) (-2) (-2) (-2)

(-0

-(-1)

(-2) (-6)

/ / / \
(-2) (-2) (-2) (-3) (-3)

All curves are isomorphic to Pι.

FIGURE 5
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By our construction, it is easy to show that ^ 1 (j^Γ 1 ( y = O)) is the Galois covering
associated to a triple covering of /ί1( = Spec(C[w])) defined by the equation

where u is a coordinate of A1, while β21(βϊ1(s2 = ®))ιs the Galois covering associated
to a triple covering of ^ 1 ( = Spec(C[w])) defined by the equation

where υ is a coordinate of A1.
By the above fact, and a calculation similar to that in [7, §2, Example 1], we see

that the structure of the Galois covering

is the same as that in [5, §2, Example 1] (i.e., the action of the Galois group is the
same). Therefore, it is easy to show that the resolution of/?~1(p3) has the configuration

(-2) (-4) (-1)

(-3)

A
/ \

the double covering

<-3> (-

All curves are isomorphic to Pι.

FIGURE 6

/M
/ \

(-6)

\K

(-2) (-3) (-2)

\

•(-2)

(-2)
All curves are isomorphic to Pι.

FIGURE 7
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of the excepional set as in Figure 6. Note that the above resolution is not minimal. By
contracting exceptional curves of the first kind, we obtain the minimal resolution of
the singularity/?"1(p3). The resulting configuration of exceptional curves is as in Figure
7.

Case (iv) Aγ-singularity.
Let p 4 be a point of Bo n B^. In the same way as in the preceding cases, we consider

our problem over an affine open set

£/4 = Spec(C|>,>>])

such that x = 0, y = 0 denote the defining equations for Bo and B^, respectively. Moreover,
in t/4, the equation X3 + (3ao/aao)X+(2bo/bao) = 0 has the form X3 + 3X+(y/x) = 0.

Let π P 4 : U4-+U4 be the blowing-up at p 4. We take an affine open covers

OA= V1 u V2 with Vx = Spec(C[>, s]), K2 = Spec(C[>, /]), y = xs , x=yt.

In this notation, R has the following form on each open set:

χ2 , 2

2
on (y,ή.

Therefore, the double coverings/t \V^ (/= 1, 2) are

I κ •*• / Λ/ \ __ CtΛf̂ Γ*/'(~*V v c /* Π I(K^1 — c* 1 Λ̂
I p i \ 1 / ~~" i ^ p w l L' I Λ,, o, (̂  1 I /1 L 1 ~~ O — 1 II

I β~ι(V \ — ̂ ner(CY\) t ΐ ~\l(ΐ2 t2 λWκ.P\ \ v 2) — kjpcc^i,' [_y, ί, s>2J/v^2 — ̂  —*•))

Moreover,

„»
Let us analyze β2

 o n e a ch affine open set βϊ1^) (i= 1, 2).
On ff^iVi), the action of the Galois group is

Moreover, by the relation ζ\ -s2 = 1, we see that /?2 is etale over βϊ1^).
On βϊ1{V1), the action of the Galois group is

c > — r2.
Moreover, by the relation ζ ^ - 1 = f2, we see that β2 is ramified along the divisor defined
by the equation f = 0.

To obtain the minimal resolution of/?"1(p4), we use the same argument as in Case
(iii). Namely, we look at the structure of the Galois covering
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By our construction, it is easy to show that β21(βϊ1(χ==®)) *s the Galois covering
associated to a triple covering of A* = Spec(C[w]) defined by the equation,

where u is a coordinate of A1. Therefore the Galois covering

is the same as that in [7, §2, Example 1]. Therefore, the resolution of/?"1(p4) has a
rational curve with self-intersection number — 3 as its exceptional set.

In summing up, we have obtained the following result in this section:

THEOREM (A). Let S' be a normal finite triple covering of a smooth surface Σ which
satisfies the conditions in the introduction. Then the singularities of S' are rational triple
points of the following form:

(i) The points lying over Ao n A^ and 2?0 n i?^. The singular points whose minimal
resolutions have the configuration of excepional sets as in Figure 1, (i).

(ii) The points lying over AQΠA^. The singular points whose minimal resolutions
have the configuration of exceptional sets as in Figure 1, (ii).

4. Elementary examples.

EXAMPLE 4.1. Let Σ — P2 and consider the equation

where /0, /^ are linear forms. Assume that /0, /^ satisfy the three conditions in the
introduction. Let S" be the corresponding normal finite triple covering of P 2, and S be
a smooth model. Then S is a minimal rational ruled surface of degree 3, and we obtain
5" by contracting the negative section of S. Moreover, both D(S'/Σ) and S are ruled
surfaces whose base curves are elliptic curves. We see these properties by the blowing-up
at/on/,,.

REMARK 4.2. In the above example, 5' is isomorphic to a triple covering of P2

in [7, §2, Example 2], while both S and D(S'/Σ) are different from those of [7, §2,
Example 2].

EXAMPLE 4.3. Let Σ = P2 and consider an equation

where both Go and G^ are homogeneous polynomials of degree n. Assume that the
divisors C/o = 0, 6^ = 0 satisfy three conditions in the introduction for some <x,βeC.
For brevity, let us assume α = β = 1. Let S' be the corresponding normal finite triple



576 H. TOKUNAGA

covering of P2, and S be a smooth model. Then

= (n-3)(5n-9)

Indeed, let π : P2^>P2 be a succession of blowing-ups at the n2 intersection points

of Go = 0 and G ^ O . Since

the branch locus of βx: D(S'/P2)~-+P2 is reducible of the form

Bz=B^-\-B2^ BιB2 = 0.

Let B be the divisor G Q H - G ^ = 0 , and B^ the strict transformation of the divisor

0^ = 0. As is well-known, we have

By what we saw in Section 3, we have

We need to consider the ramification locus of α: S^S. It is easy to show that

and that the ramification divisor of α is of the form iζ + R", for some /. We may assume

ι = l . Then, we obtain

Since Rf2 = R'(2 = 0, and since both R\ and R'[ are smooth divisors isomorphic to Bλ

and B2, respectively, we obtain

'i) = M"-3), and A: |=2(#I — 3)(7/i — 9).

Therefore, we get

Let us now compute the second Chern class c2(S) of S by a Hurwitz type argument.

We need the following important claim, which easily follows from Claim 2.2.

CLAIM. The divisor βϊiB^) on D (S'/P2)~ consists of two components, both of which
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are isomorphic to B^.

By the above claim and a Hurwitz type argument, we see that

577

c2(D(S'/P2)~) = 2c2{P2) + 2{2g{Bγ) - 2),

c2(S) = 3c2(D(S'/P2)~) + 2 x 2 ( 2 ^ ) - 2 ) = 2c2(S) + 2(2g(Ri)-2),

where g(C) denotes the genus of a curve C. By the above equalities, we obtain

REMARK 4.4. Set n = 1 in the above example. Then, S is the same as that in [7,
§2, Example 2]. We can easily check that the above formulas hold in this case.

REMARK 4.5. Note that S is not necessarily minimal.

EXAMPLE 4.6. Let Σ = P1xPί with homogeneous coordinates (|>0: ί j , [/0: t^J).
Let S' be the C(Σ)(0)-normalization of Σ where θ satisfies the cubic equation

It is clear that the conditions in the introduction are satisfied, and we have

Hence the branch locus of p\ S-^PίxP1 is the divisor defined by the equation
•*ooCΦi + ̂ o)'oo==0, and p is totally ramified along ^ = 0 (see, Figure 8). There is a
unique singularity of S lying over (̂ 00 = 0 ) 0 ( ^ = 0). In the following, we study the

: the branch locus of/?

FIGURE 8



578 H. TOKUNAGA

the branch locus of βγ

FIGURE 9

D(S'/PιxPιΓ

FIGURE 10
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smooth models of S", S\ and D(Sf/P1 x P1). Consider a succession of blowing-ups
at (s0 = 0)n(t0 = 0) and (soo=0)n(too = 0) as in Figure 9. Note that by blowing down
suitable rational curves, we obtain a rational ruled surface Σ2, and the corresponding
branch locus is an effective divisor which is linearly equivalent to JQ + 3 ^ , where we
denote the negative section and the positive section on Σ2 by Δo and Δ^, respectively.
Hence, it is easy to check that the minimal resolution of DiS'/P1 x P1), which we denote
by D(S//P1 x P1)", is a rational elliptic surface with sections and its two singular fibers
are of types IV and IV* in the notation due to Kodaira [4] (See Figure 10). From
results in Section 3, the branch locus of β2 consists of Et (/= 1, 2) and Ej (j= 1, 2, 3,
4), and we have a smooth model of S' as in Figure 11. Hence, by blowing down suitable
rational curves, the above smooth model becomes a rational elliptic surface of the same
type as DiS'/P1 xP1)". We thus have a smooth model of S' as in Figure 12. Finally,
we have the minimal resolution S of S' as in Figure 13. Note that the (— l)-curves map
to the divisors t0 = 0 and t^ = 0, respectively, and that .Sis also a rational ruled surface.

5. Trigonal fiber spaces. In this section, we apply the preceding results to
construction of surfaces of general type.

DEFINITION 5.1. Let S be a surface and/: £->C a morphism from S to a curve
C with a connected fiber. We call / : £->C a trigonal fiber space if there exists a dominant
rational map Φ of degree 3 from S to a ruled surface Σ over C such that the following
diagram commutes.

Φ

We call/: S-+C a non-Galois trigonal fiber space if a general fiber of/is equipped with
the structure of a non-Galois triple covering of P1 through the rational map Φ.

We devote this section to proving the following theorem:

THEOREM 5.2. There exists a minimal surface S of general type with invariants

c2

ι(S) = 4n-S, c2(S) = 20n-4, pg(S) = 2n-2 («>3),

which has structure of a non-Galois trigonal fiber space over P1.

REMARK 5.3. Note that the surface whose numerical invariants are the same as
above satisfies Noether's equality, c\ = 2pg-4. It is known (cf. Horikawa [2]) that such
a surface is always a double covering over a suitable rational surfaces. It is an interesting
problem to express S in Theorem 5.2 in this manner.

From now on, we use the following notation:
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Σn\ a rational ruled surface of degree n (n>2).

s0 : the negative section of Σn.

s^: the positive section of Σn.

f : a fiber of the ruling for Σn.

Theorem 5.2 is an easy consequence of the following:

PROPOSITION 5.4. Let C(Σn)(θ) be an algebraic extension of C(Σn) defined by an

equation

X3 + 3X+2b = 09 beC(Σn).

Assume that b satisfies the condition in the introduction for oc = β= 1, and denote B0 = (b)0,
Bao=(b)aoe\2sJ' τ h e n t h e smooth model S of the C(Σn)(θ)-normalization S' of Σn

(cf Iitaka [2, §2.14]) as in the preceding section is a minimal surface with numerical invari-

ants

c\(S) = An - 8 , c2(S) = 20n - 4 , pg(S) = In - 2 .

PROOF. We first compute c\(S). Let π : Σn-*Σn be a succession of blowing-ups at

the An intersection points of Bo and B^. In the same way as in Example 4.3, the branch

locus of /?! is reducible of the form

As is well-known, we have

KDiSΊΣn) ~ - ftπ*(KΣn + 2s J ~ βίπ*({n - 2)f),

where j?f: D(S'IΣn)~-*Σn. Note that \KD{SΊΣn)~\ is base-point-free since n>2.

Since β2 : S-*D(S'/Σn)~ is a cyclic triple covering branched along jSf 5^, where

is the strict transformation of B^, we obtain

To compute cl(S), we now represent K§ in terms of K< and the ramification locus

of α: S^S, which has the following form:

Set

# # Φ i ) = 2(i?; + Λ'2 + R'3), βi0KD2)

Then we may assume /?j = R\ + R'[ to be the ramification locus of α. We get

?! = £$. Hence,

^5-Λi ~j^?(3π*((«-2)f) + 2 5 J -Λ t .

By our construction, we can easily show

R't = R} = R'i = R'f = Rf = K? = 0 ,

/ζΛ}=ΛJ'iϊ}' = 0 for i>7,
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Hence we get (oc*Ks)
2 = 8n-\6, and AΓ|=4« —8.

Next, we compute c2(S) by a Hurwitz type argument. Note that the divisor jSf B^

on D(S'/Σn) consists of two components, both of which are isomorphic to B^ by the

Calim in Example 4.3. Hence it is easy to show that

c2(D(S'/Σn) ~ = 2c2(Σn) + (2g(Dί) - 2) + (2g(D2) - 2)

c2(S) = 3c2(D(Sf/Σny + 2 x 2(2g(Ba0)-2) = 2

Since,

2g(R\) - 2 = 2g{R[) - 2 = 2g(BJ - 2 = 2g(Dx) - 2 = 2g(D2) - 2 = 2n - 4 ,

we obtain c2(S) = 2n-4. As for the equality pg(S) = 2n - 2, we use Noether's formula

by which we have pg = 2n — 2 + q. Hence it suffices to show q = 0.

LEMMA 5.5. Let f: S-+C be a surjective morphism from a surface to a curve of

genus g with connected fibers. Assume that there exists a singular fiber off whose irreduci-

ble components are all rational curves. Then q(S) = g.

PROOF OF LEMMA 5.5. It is clear that q(S)>g. Assume that q(S)>g. Consider the

Albanese mapping α: 5'->Alb(5'). Since q(S)>g, the image of a general fiber of/ is a

curve in AlbίS). Let L be an ample line bundle over Alb^) . Then

L (α (a general fiber)) > 0 .

On the other hand, let F be the singular fiber as above. Then OL{F) is a point. Therefore,

L - (oc(F)) = 0. This contradicts the fact that Fis numerically equivalent to a general fiber.

q.e.d.

We now continue the proof of Theorem 5.2. Consider the fibration induced by

/ : S-tί^Σ^P1 .

By Lemma 5.4, it is enough to show that the fibration / has a singular fiber whose

irreducible components are all rational curves. To see this, consider a fiber f of Σn-^PX

such that f n(BonBoo)^0. There are two possibilities:

(i) fn(£ o n£oo)is a point,

(ii) f n (Bo n B^) consists of two points.

In Case (i), we can show that the singular fiber of/over f consists of two rational
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(i)

pi pi pi

(ϋ)

FIGURE 14

curves with three intersection points with the configuration as in Figure 14, (i).
In Case.(ii), we can show that the singular fiber of/ over f consists of five rational

curves with the configuration as in Figure 14, (ii).
We thus conclude that/: S-+P1 has a singular fiber whose irreducible components

are all rational curves. Therefore, we obtain # = 0.
It remains to show that S is a minimal surface. It sufficies to show that <x*Ks is

numerically effective. Since

and

we get

By our construction, (ι=U 2) and Rh R'( (/=1, 2, 3) are all
numerically equivalent to one another. Hence

Moreover, both β*β*(π*(Ό) a n d R\ are numerically effective divisors. Therefore, OL*KS

is numerically effective, and S is a minimal surface. This completes the proof of
Proposition 5.4.
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Type (0) Type (I)

Type (II) Type (III)

Type (IV)

FIGURE 15

REMARK 5.6. Note that a general fiber of/: S-+P1 is a curve of genus 2 as we

show in the Appendix below.

APPENDIX. A curve of genus 2 as a trigonal curve.

It is well-known that a curve of genus 2 is hyperelliptic. On the other hand, for

any divisor b of degree 3 on a curve C of genus 2, we have

by the Riemann-Roch theorem. Therefore, C can be regarded as a trigonal curve. As

for their structure of ramification as triple coverings over P1, there are five types (0) ~ (IV)

as in Figure 15.

For each type, there exists a cubic equation corresponding to the covering. The

proof of the following is easy.

THEOREM. Let t be an inhomogeneous coordinate of P1. Then the following holds:

The covering corresponding to the equation

is of Type (0).

The covering corresponding to the equation

X + 3
(t-b)

is of Type (I).

The covering corresponding to the equation

(aΦb, a,b = 0,
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2 0 >

0.(0
where go(t), g^it) are polynomials with degg0 = degg00 = 2, and no common zeros, is

of Type {\\).

The covering corresponding to the equation

•V3l3.Vl2 <2(t-a)+(t-\)\t-b) _ o ίaΦb, a,bΦ0,\,0 ίaΦb, a,bΦQ,\,\

\4ab-Sb+lφO J

is of Type (III).

The covering corresponding to the equation

where g0 and g^ satisfy the same condition as in the third case, is of Type (IV).
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