ALGEBRAIC SURFACES OF GENERAL TYPE WITH $c_{1}^{2}=3 p_{g}-7$

Tadashi Ashikaga and Kazuhiro Konno

(Received May 1, 1989, revised April 12, 1990)

Introduction. Let S be a minimal algebraic surface of general type defined over the complex number field \boldsymbol{C}. Castelnuovo's second inequality states that if the canonical map of S is birational, then $c_{1}^{2}(S) \geq 3 p_{g}(S)-7$ (see [4], [10, II, §1], [1]).

In the present paper, we study minimal algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-7$. These surfaces are classified into two types according to the nature of their canonical map Φ_{K} :

Type I: Φ_{K} is a birational holomorphic map onto its image.
Type II: Φ_{K} birationally induces a double covering of a ruled surface.
Historically, surfaces of type I were already known to Castelnuovo [4]. He showed that the canonical image of a type I surface is always contained in a threefold of minimal degree and he determined its divisor class. For a modern treatment of his argument, see Harris [6]. On the other hand, Horikawa [9], [10, IV] has studied, among others, surfaces of types I and II in detail when $\left(p_{g}, c_{1}^{2}\right)=(4,5),(5,8)$. Especially he completely determined their deformation types. Surfaces of type I with $p_{g}=7$ and $c_{1}^{2}=14$ were recently studied by Miranda [12].

The paper consists of two parts: $\S \S 1-4$ and $\S \S 5-6$. The former part is devoted to surfaces of type I. In $\S 1$, we show that surfaces with $c_{1}^{2}=3 p_{g}-7$ are divided into two types mentioned above and review Castelnuovo's argument to classify surfaces of type I according to the threefold W on which the canonical image lies. We remark that, in most cases, W is a rational normal scroll (see, [6] and [5]). We prove that the canonical image has only rational double points and that almost all type I surfaces have a pencil of nonhyperelliptic curves of genus three (Theorem 1.5). Proof of some Claims needed in $\S 1$, concerning the liftability of the canonical map to a nonsingular model of W, is postponed to §2. The technique employed here is essentially due to Horikawa [10]. In $\S 3$ and $\S 4$, we study deformations of type I surfaces and compute the number of moduli (Theorem 3.2 and Proposition 4.3). Though we try to determine their deformation types, many cases are left unsettled. In §4, we construct a family of surfaces in which the central fiber is of type II and a general fiber is of type I.

The latter part, §§5-6, is devoted to surfaces of type II. In view of the vanishing of irregularity of a type I surface (see, §1), we restrict ourselves to regular surfaces of type II. Our concerns here are pencils of hyperelliptic curves. From a remarkable result of Xiao [16], we know that a surface of type II has such a pencil of genus less than
five provided $p_{g} \geq 46$. In $\S 5$, we construct minimal surfaces with pencils of hyperelliptic curves of genus 3 whose invariants (p_{g}, c_{1}^{2}) cover a certain area in the zone of existence, which of course contains the line $c_{1}^{2}=3 p_{g}-7$ (Theorem 5.7). By the same method, we can show the existence of type II surfaces with pencils of hyperelliptic curves of genus 2, 3 or 4 (Proposition 6.3).

Acknowledgement. We thank the referee for pointing out several mistakes in the earlier version. We are also informed that Professor Eiji Horikawa studied type I surfaces more than ten years ago (unpublished).

1. Canonical map and surfaces of type I. Let S be a minimal algebraic surface of general type defined over the complex number field \boldsymbol{C} for which the geometric genus $p_{g}(S)$ and the Chern number $c_{1}^{2}(S)$ satisfy the conditions $c_{1}^{2}=3 p_{g}-7$ and $p_{g} \geq 3$. We let $\Phi_{K}: S \rightarrow \boldsymbol{P}^{p_{g}-1}$ denote the rational map defined by the canonical linear system $|K|$. We put $S^{\prime}=\Phi_{K}(S)$ and call it the canonical image of S. We denote by $\phi_{K}: S \rightarrow S^{\prime}$ the natural map induced by Φ_{K}.

Lemma 1.1. Let S be as above. Then we have the following two possibilities:
(1) $|K|$ is free from base points and ϕ_{K} is a birational holomorphic map.
(2) ϕ_{K} is a rational map of degree 2 and S^{\prime} is birationally equivalent to a ruled surface.

Proof. We remark that ϕ_{K} is generically finite, since $|K|$ is not composite with a pencil by [1, Lemma 5.3]. Since S^{\prime} is irreducible and nondegenerate (i.e., is not contained in any hyperplane in $\boldsymbol{P}^{p_{g}-1}$), we have the inequality

$$
c_{1}^{2} \geq\left(\operatorname{deg} \phi_{K}\right)\left(\operatorname{deg} S^{\prime}\right) \geq\left(\operatorname{deg} \phi_{K}\right)\left(p_{g}-2\right) .
$$

Thus we have $\operatorname{deg} \phi_{K} \leq 2$. If $\operatorname{deg} \phi_{K}=1$, then $|K|$ has no base points by [10, II, Lemma (1.1)] and [9, Lemma 2]. If $\operatorname{deg} \phi_{K}=2$, then we get $\operatorname{deg} S^{\prime}<2 p_{g}-4$. Therefore it follows from [1, Lemma 1.4] that S^{\prime} is birationally equivalent to a ruled surface. q.e.d.

We say that S is of type I or of type II according as whether the degree of ϕ_{K} is 1 or 2 .
1.2. Surfaces of type I were essentially known to Castelnuovo [4]. Here we recall his argument. Our reference is [7] and [6].

We recall fundamental properties of the Hilbert function h_{X} defined for any projective variety $X \subset \boldsymbol{P}^{r}$ by

$$
h_{X}(n)=\operatorname{dim}_{\boldsymbol{C}} \operatorname{Im}\left\{\rho: H^{0}\left(\boldsymbol{P}^{r}, \mathcal{O}(n)\right) \rightarrow H^{0}(X, \mathcal{O}(n))\right\},
$$

where ρ is the restriction map and n is a nonnegative integer. If Y is a general hyperplane section of X, then we have for any $n>0$

$$
\begin{equation*}
\delta h_{X}(n):=h_{X}(n)-h_{X}(n-1) \geq h_{Y}(n) . \tag{1}
\end{equation*}
$$

We remark that X is projectively normal if $\delta h_{X}(n)=h_{Y}(n)$ holds for any n.

Now let S be a surface of type I and put $r=p_{g}-2$. Since $|K|$ has no base point, a general member $C \in|K|$ is irreducible nonsingular and has genus $g(C)=3 r$. If we put $C^{\prime}=\Phi_{K}(C)$, then it is an irreducible nondegenerate curve in $\boldsymbol{P}^{r} \subset \boldsymbol{P}^{\boldsymbol{r + 1}}$ and $\operatorname{deg} C^{\prime}=K^{2}=3 r-1$. We let Γ denote a general hyperplane section of C^{\prime}. Since it is a nondegenerate set of $3 r-1$ distinct points in uniform position, we have

$$
\begin{equation*}
h_{\Gamma}(n+1) \geq \min \left\{3 r-1, h_{\Gamma}(n)+r-1\right\} \tag{2}
\end{equation*}
$$

Since $\left.2 K\right|_{C}$ is the canonical divisor of C and $h_{C^{\prime}}(1)=r+1$, it follows from (1) that

$$
3 r=h^{0}\left(C, \mathcal{O}\left(\left.2 K\right|_{c}\right)\right) \geq h_{C^{\prime}}(2) \geq r+1+h_{\Gamma}(2)
$$

This and (2) show $h_{\Gamma}(2)=2 r-1$ and $h_{C^{\prime}}(2)=3 r$. By a similar calculation, one gets $h^{0}\left(C, \mathcal{O}\left(\left.n K\right|_{C}\right)\right)=h_{C^{\prime}}(n)$ and $\delta h_{C^{\prime}}(n)=h_{\Gamma}(n)$ for any $n>0$. This implies that C^{\prime} is projectively normal.

We turn our attention to the canonical image S^{\prime}. By the well-known formula for pluri-genera of minimal surfaces of general type combined with (1), we get

$$
4 r+2-q(S)=h^{0}(S, \mathcal{O}(2 K)) \geq h_{S^{\prime}}(2) \geq h_{S^{\prime}}(1)+h_{C^{\prime}}(2)=4 r+2 .
$$

From this, we have $q(S)=0, h^{0}(2 K)=h_{S^{\prime}}(2)$ and $\delta h_{S^{\prime}}(2)=h_{C^{\prime}}(2)$. By a similar calculation, one can show $h_{S^{\prime}}(n)=h^{0}(S, \mathcal{O}(n K)), \delta h_{S^{\prime}}(n)=h_{C^{\prime}}(n)$ for any $n>0$. Therefore, S^{\prime} is also projectively normal and the multiplication map $\operatorname{Sym}^{n} H^{0}(S, \mathcal{O}(K)) \rightarrow H^{0}(S, \mathcal{O}(n K))$ is surjective for any $n \geq 0$. This implies that the canonical ring of S is generated in degree 1 and therefore S^{\prime} is isomorphic to the canonical model of S. In particular, S^{\prime} has only rational double points (RDP's, for short) as its singularity.

We show that S^{\prime} is contained in an irreducible threefold W of minimal degree $r-1$ in \boldsymbol{P}^{r+1}, cut out by all quadrics through S^{\prime}. Since $h_{\Gamma}(2)=2 r-1$, Castelnuovo's Lemma (see, e.g., [7]) shows that Γ lies on a rational normal curve R of degree $r-1$ in \boldsymbol{P}^{r-1} cut out by all quadrics containing Γ. From this, we get $h^{0}\left(\boldsymbol{P}^{r-1}, \mathscr{I}_{\Gamma}(2)\right)=h^{0}\left(\boldsymbol{P}^{r-1}\right.$, $\left.\mathscr{I}_{R}(2)\right)=(r-1)(r-2) / 2$, where \mathscr{I}_{X} is the ideal sheaf of X. On the other hand, we have $h^{0}\left(\boldsymbol{P}^{r+1}, \mathscr{I}_{S^{\prime}}(2)\right)=h^{0}\left(\boldsymbol{P}^{r+1}, \mathcal{O}(2)\right)-h^{0}(S, \mathcal{O}(2 K))=(r-1)(r-2) / 2$. Therefore, the linear system $\left|\mathscr{I}_{S^{\prime}}(2)\right|$ of quadrics through S^{\prime} is restricted onto $\left|\mathscr{I}_{\Gamma}(2)\right|$ isomorphically, and its base locus W is an irreducible threefold of minimal degree.
1.3. To describe W, we introduce some notation. Let \mathscr{E} be a locally free sheaf of rank p on \boldsymbol{P}^{q} and let $\varpi: \boldsymbol{P}(\mathscr{E}) \rightarrow \boldsymbol{P}^{q}$ be the associated projective bundle. Then the Picard group of $\boldsymbol{P}(\mathscr{E})$ is generated by the tautological divisor T such that $\varpi_{*} \mathcal{O}(T)=\mathscr{E}$ and the pull-back F by $\boldsymbol{\sigma}$ of a hyperplane in \boldsymbol{P}^{q}. We note that the canonical boundle of $\boldsymbol{P}(\mathscr{E})$ is given by

$$
\begin{equation*}
K_{\mathbf{P}(\mathscr{E})}=\mathcal{O}(-p T+(\operatorname{deg}(\operatorname{det} \mathscr{E})-q-1) F) \tag{3}
\end{equation*}
$$

According to the classification of irreducible nondegenerate threefolds of minimal degree in $\boldsymbol{P}^{p_{g}-1}$ (cf. [5] or [6]), W is one of the following:
(A) $\boldsymbol{P}^{3}\left(p_{g}=4\right)$.
(B) a hyperquadric ($p_{g}=5$).
(C) a cone over the Veronese surface, i.e., the image of the \boldsymbol{P}^{1}-bundle $\tilde{W}=\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{2}} \oplus \mathcal{O}_{\boldsymbol{P}^{2}}(2)\right)$ under the holomorphic map Φ_{T} induced by $|T|\left(p_{g}=7\right)$.
(D) a rational normal scroll, i.e., the image of the \boldsymbol{P}^{2}-bundle $\boldsymbol{P}_{a, b, c}=$ $\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{1}}(a) \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(b) \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(c)\right)$ on \boldsymbol{P}^{1} under the holomorphic map Φ_{T} induced by $|T|$ ($p_{g} \geq 6$), where a, b, c are integers satisfying

$$
\begin{equation*}
0 \leq a \leq b \leq c, \quad a+b+c=p_{g}-3 . \tag{4}
\end{equation*}
$$

1.4. We study S more closely in each of the above cases. Claims I-III below will be proved in the next section.

The first two may be clear:
Case (A): $\quad S^{\prime}$ is a quintic surface in \boldsymbol{P}^{3}.
Case (B): $\quad S^{\prime}$ is a complete intersection of a quadric and a quartic.
These are extensively studied by Horikawa in [9], [10, IV].
Case (C): The map $\Phi: \tilde{W} \rightarrow W$ is the contraction of the divisor $T_{\infty} \sim T-2 F$, where the symbol \sim means the linear equivalence.

Claim I. We have a holomorphic map $\mu: S \rightarrow \boldsymbol{P}^{2}$ of degree 3. Let $\phi: S \rightarrow W$ be the natural map induced by the canonical map. Then ϕ can be lifted to a holomorphic map $\psi: S \rightarrow \tilde{W}$ over μ such that $K=\psi^{*} T$. Further, $S^{\prime \prime}=\psi(S)$ has only RDP's.

We show that $S^{\prime \prime}$ is linearly equivalent to $3 T+F$. Since μ is of degree $3, S^{\prime \prime}$ is linearly equivalent to $3 T+\alpha F$ for some integer α. Then, since $\operatorname{deg} S^{\prime}=14$, we have

$$
14=T^{2}(3 T+\alpha F)=12+2 \alpha,
$$

where we used the relation $T^{2}=2 T F$ in the Chow ring of \tilde{W}. Therefore $S^{\prime \prime} \sim 3 T+F$. We note that the linear system $|3 T+F|$ is free from base points and contains an irreducible nonsingular member.

We compute the invariants of $S^{\prime \prime}$ for the sake of completeness. Since \tilde{W} is rational, we have $H^{q}\left(\tilde{W}, \mathcal{O}\left(K_{\tilde{W}}\right)\right)=0$ for $q<3$. By the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}\left(K_{\tilde{W}}\right) \rightarrow \mathcal{O}\left(K_{\tilde{W}}+S^{\prime \prime}\right) \rightarrow \omega_{S^{\prime \prime}} \rightarrow 0,
$$

we get $H^{q}\left(S^{\prime \prime}, \omega_{S^{\prime}}\right) \simeq H^{q}(\tilde{W}, \mathcal{O}(T)) \simeq H^{q}\left(\boldsymbol{P}^{2}, \mathcal{O} \oplus \mathcal{O}(2)\right)$ for $q<2$. This shows $p_{g}\left(S^{\prime \prime}\right):=$ $h^{0}\left(\omega_{S^{\prime \prime}}\right)=7$ and $h^{1}\left(\omega_{S^{\prime \prime}}\right)=h^{1}\left(\mathcal{O}_{S^{\prime \prime}}\right)=0$. Further, since $\omega_{S^{\prime \prime}}=\mathcal{O}_{S^{\prime \prime}}(T)$, we get $\omega_{S^{\prime \prime}}^{2}=14=$ $3 p_{g}\left(S^{\prime \prime}\right)-7$.

Case (D): This case is divided into three subcases

$$
\text { (D.1): } a>0, \quad \text { (D.2): } a=0, b>0, \quad \text { (D.3): } a=b=0 \text {. }
$$

We remark that W is singular in the cases (D.2) and (D.3).
Claim II. (D.3) cannot occur. If (D.2) is the case, then there is a lifting $\psi: S \rightarrow \boldsymbol{P}_{0, b, c}$
of the natural map $S \rightarrow W$ such that $K=\psi^{*} T$. Further, $S^{\prime \prime}=\psi(S)$ has only RDP's.
We let $\psi: S \rightarrow \boldsymbol{P}_{a, b, c}$ denote the map induced by Φ_{K} in Case (D.1) and the map in Claim II in Case (D.2). Put $S^{\prime \prime}=\psi(S)$. It is nothing but S^{\prime} in Case (D.1). We show that $S^{\prime \prime}$ is linearly equivalent to $4 T-\left(p_{g}-5\right) F$. For this purpose, put $S^{\prime \prime} \sim \alpha T+\beta F$. Note that the fibers of $\left.m\right|_{S^{\prime \prime}}$ are plane curves of degree α. Since $S^{\prime \prime}$ is birational to the surface S of general type, we have $\alpha \geq 4$. Recall that we have $T^{3}=\left(p_{g}-3\right) T^{2} F$ in the Chow ring of $\boldsymbol{P}_{a, b, c}$. Since $\operatorname{deg} S^{\prime}=3 p_{g}-7$, we have

$$
3 p_{g}-7=T^{2}(\alpha T+\beta F)=\left(p_{g}-3\right) \alpha+\beta
$$

On the other hand, it follows from (3) that $K_{\boldsymbol{P}_{a, b, c}}+S^{\prime \prime} \sim(\alpha-3) T+\left(p_{g}-5+\beta\right) F$. Since T and $K_{\mathbf{P}_{a, b, c}}+S^{\prime \prime}$ are equivalent on $S^{\prime \prime}$, we get

$$
0=T S^{\prime \prime}\left(K_{P_{a, b, c}}+S^{\prime \prime}-T\right)=\alpha(\alpha-4) T^{3}+\beta(\alpha-4) T^{2} F=(\alpha-4)\left(\alpha T^{3}+\beta\right) .
$$

From these, we get $S^{\prime \prime} \sim 4 T-\left(p_{g}-5\right) F$. The numerical invariants can be computed similarly as in Case (C): for $q<2$, we have $h^{q}\left(\omega_{S^{\prime \prime}}\right)=h^{q}\left(\boldsymbol{P}_{a, b, c}, \mathcal{O}(T)\right)=h^{0}\left(\boldsymbol{P}^{1}\right.$, $\mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c))$ and thus $p_{g}\left(S^{\prime \prime}\right)=a+b+c+3=p_{g}(S)$ by (4) and $h^{1}\left(\omega_{S^{\prime \prime}}\right)=0$; since $\omega_{S^{\prime \prime}}=\mathcal{O}_{S^{\prime \prime}}(T)$, we get $\omega_{S^{\prime \prime}}^{2}=3 p_{g}-7$.

As to the linear system $\left|4 T-\left(p_{g}-5\right) F\right|$, we have the following:
Claim III. The linear system $\left|4 T-\left(p_{g}-5\right) F\right|$ on $P_{a, b, c}$ contains an irreducible member with only RDP's if and only if

$$
\begin{equation*}
a+c \leq 3 b+2, \quad b \leq 2 a+2 \tag{5}
\end{equation*}
$$

Now we get the following theorem essentially due to Castelnuovo [4]:
Theorem 1.5. If S is a surface of type I , then the irregularity $q(S)$ vanishes. Its canonical image S^{\prime} is projectively normal and has only RDP's as its singularity. Furthermore, it is contained in an irreducible nondegenerate threefold of minimal degree. S^{\prime} is either
(1) a quintic surface in $\boldsymbol{P}^{3}\left(p_{g}=4\right)$,
(2) a complete intersection of a quadric and a quartic in $\boldsymbol{P}^{4}\left(p_{g}=5\right)$,
(3) the image in the cone over the Veronese surface of a member $S^{\prime \prime} \in|3 T+F|$ on $\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{2}} \oplus \mathcal{O}_{\boldsymbol{P}_{2} 2}(2)\right)$ under the holomorphic map defined by $|T|\left(p_{g}=7\right)$, or
(4) the image in the rational normal scroll of a member $S^{\prime \prime} \in\left|4 T-\left(p_{g}-5\right) F\right|$ on $\boldsymbol{P}\left(\mathcal{O}_{\mathbf{P}^{1}}(a) \oplus \mathcal{O}_{\mathbf{P}^{1}}(b) \oplus \mathcal{O}_{\mathbf{P}^{1}}(c)\right)$ under the holomorphic map induced by $|T|$, where a, b, c are integers satisfying $0 \leq a \leq b \leq c, a+b+c=p_{g}-3, a+c \leq 3 b+2$ and $b \leq 2 a+2\left(p_{g} \geq 6\right)$.
2. Lifting of the canonical map. In this section, we prove Claims I, II and III which are assumed in 1.4. We make use of the standard fact that if a surface admits a map of degree less than three onto a ruled surface, then the canonical map cannot be birational.

Among others, we use the following notation. For any nonnegative integer e, we denote by $\Sigma_{e}=\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}_{1}}(e)\right)$ the Hirzebruch surface of degree e. We let C_{0} and f denote the tautological divisor ($\left.C_{0}^{2}=e\right)$ and a fiber, respectively.
2.1. In the cases (C) and (D.2), the threefold W is a cone over a nonsingular surface V. Let Λ_{0} be the pull-back to S by Φ_{K} of the linear system of hyperplanes through the vertex of W. We can choose a basis $\left\{x_{0}, x_{1}, \cdots, x_{p_{g}-1}\right\}$ of $H^{0}(S, \mathcal{O}(K))$ such that $x_{1}, \cdots, x_{p_{g}-1}$ span the module of Λ_{0}. We let G denote the fixed part of Λ_{0} and put $\Lambda_{1}=\Lambda_{0}-G$. Since $|K|$ is free from base points, we can assume that $\operatorname{Supp}\left(\left(x_{0}\right)\right) \cap \operatorname{Supp}(G)=\varnothing$. In particular, we have $K G=0$. When G is not 0 , we denote by ζ the section of $\mathcal{O}([G])$ with $(\zeta)=G$.
2.2. Proof of Claim I. Since V is the Veronese surface, we have a net Λ such that $2 H \in \Lambda_{1}$ for $H \in \Lambda$ and $K \sim 2 H+G$. Since $K^{2}=14$ and $K G=0$, we have $7=K H=2 H^{2}+H G$. Since $K H+H^{2}$ is even, we get $H^{2}=1$ or 3 . Let $\mu: S \rightarrow \boldsymbol{P}^{2}$ denote the rational map induced by Λ. If $H^{2}=1$, then μ is birational. This contradicts the assumption that S is of general type. Therefore, we get $H^{2}=3, H G=1$ and $G^{2}=-2$. We claim that μ is holomorphic. Indeed, if μ is not holomorphic, then blow S up at any base point of Λ and let \widetilde{H} be the proper transform of H. Then we have $\tilde{H}^{2}<H^{2}=3$. This means that μ is of degree <3 onto \boldsymbol{P}^{2}, contradicting the fact that S is of type I. Therefore, μ is holomorphic and $\operatorname{deg} \mu=3$. The pair (ζ, x_{0}) defines a homomorphism $\mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(G) \oplus \mathcal{O}_{S}(K)$, which in turn gives a section $\sigma: S \rightarrow S \times{ }_{V} \tilde{W}$ because $\operatorname{Supp}\left(\left(x_{0}\right)\right) \cap$ $\operatorname{Supp}(G)=\varnothing$. We get a holomorphic map $\psi: S \rightarrow \tilde{W}$ by setting $\psi=p r_{2} \circ \sigma$, where $p r_{2}$ is the projection of $S \times{ }_{V} \tilde{W}$ on the second factor. It is clear from the construction that $\psi^{*} T_{\infty}=G$. Therefore $K \sim 2 H+G \sim 2 \psi^{*} F+\psi^{*}(T-2 F) \sim \psi^{*} T$. Note that \tilde{W} is obtained by blowing up the vertex of W, and $S^{\prime \prime}$ is the proper transform of S^{\prime}. Since S^{\prime} has only RDP's, we see that $S^{\prime \prime}$ has only RDP's.
2.3. Proof of Claim II, We separately treat (D.2) and (D.3).
(D.2) $a=0, b>0, b+c \geq 3$: W is a cone over $V=\Sigma_{c-b}$ embedded into \boldsymbol{P}^{b+c+1} by $\left|C_{0}+b f\right|$. Let X be the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}\left(\mathcal{O}_{\Sigma_{c-b}} \oplus \mathcal{O}_{\Sigma_{c-b}}\left(C_{0}+b f\right)\right)$ on Σ_{c-b}. We denote by π and L_{0} the projection map and the tautological divisor, respectively. Then W is the image of X under the holomorphic map $\Phi_{L_{0}}$ defined by $\left|L_{0}\right|$. Let L_{∞} be the divisor on X which is linearly equivalent to $L_{0}-\pi^{*}\left(C_{0}+b f\right)$. Then we have the holomorphic map $v: X \rightarrow \boldsymbol{P}_{0, b, c}$ which contracts L_{∞} to a nonsingular rational curve Z and satisfies $\Phi_{L_{0}}=\Phi_{T} \circ v, v^{*} T=L_{0}$.

We first show that $\phi: S \rightarrow W$ can be lifted to a holomorphic map $\tilde{\phi}: S \rightarrow X . \Lambda_{1}$ induces a rational map $\mu: S \rightarrow \boldsymbol{P}^{b+c+1}$ whose image is V. We let $\rho: \tilde{S} \rightarrow S$ denote a composite of blowing-ups such that the proper transform Λ of Λ_{1} is free from base points. We can assume that ρ is the shortest among those which enjoy the property mentioned above. Let E be the exceptional divisor of ρ. Then the canonical divisor \tilde{K} of \tilde{S} is linearly equivalent to $\rho^{*} K+E$. Further, we have $\rho^{*} K \sim \tilde{\mu}^{*}\left(C_{0}+b f\right)+\tilde{E}+\rho^{*} G$,
where $\tilde{\mu}: \tilde{S} \rightarrow \Sigma_{c-b}$ is the holomorphic map induced by Λ and \tilde{E} is a sum of exceptional curves satisfying $\tilde{E} \geq E$. We put $L=\tilde{\mu}^{*}\left(C_{0}+b f\right)$. Then

$$
3(b+c)+2=\left(\rho^{*} K\right)^{2}=L^{2}+L\left(\tilde{E}+\rho^{*} G\right) \geq L^{2}=(\operatorname{deg} \tilde{\mu})(b+c) .
$$

Since $\operatorname{deg} \tilde{\mu}$ is at least 3 , we have $\operatorname{deg} \tilde{\mu}=3$ and $L\left(\tilde{E}+\rho^{*} G\right)=2$. We also remark that

$$
0=\left(\rho^{*} K\right)\left(\rho^{*} G\right)=L\left(\rho^{*} G\right)+G^{2}, \quad 0=\left(\rho^{*} K\right) \tilde{E}=L \tilde{E}+\tilde{E}^{2} .
$$

We have the following three possibilities:
(1) $L \tilde{E}=0, L\left(\rho^{*} G\right)=2$.
(2) $L \tilde{E}=1, L\left(\rho^{*} G\right)=1$.
(3) $L \widetilde{E}=2, L\left(\rho^{*} G\right)=0$.

If (1) is the case, then we have $L \tilde{E}=\tilde{E}^{2}=0$. By the Hodge index theorem, we get $\tilde{E}=0$. This means that ρ is the identity map. Further we have $G^{2}=-2$. If (2) is the case, then we get $G^{2}=-1$ which contradicts the fact that $K G+G^{2}$ is even. If (3) is the case, then we have $G=0$ and $\tilde{E}^{2}=-2$. Since $\tilde{K} L+L^{2}=6(b+c)+2+L E$, we see that $L E$ is even. Since ρ is the shortest, $\tilde{E} \neq 0$ implies the existence of a (-1)-curve E_{0} with $L E_{0}>0$ which is contained in both \tilde{E} and E. Thus $L E$ is positive. From this and $L E \leq L \tilde{E}$, we conclude $L E=2$. We see that $\tilde{\mu}(\tilde{E}-E)$ cannot be a curve, because $L(\tilde{E}-E)=0$ and L is the pull-back of the ample divisor $C_{0}+b f$. This in particular implies $\left(\tilde{\mu}^{*} f\right)(\tilde{E}-E)=0$. Then we get a contradiction, because $\tilde{K}\left(\tilde{\mu}^{*} f\right)+\left(\tilde{\mu}^{*} f\right)^{2}=3 f\left(C_{0}+b f\right)+(\tilde{E}+E)\left(\tilde{\mu}^{*} f\right)=$ $3+2 E\left(\tilde{\mu}^{*} f\right)$ is odd.

In summary, ρ is the identity map and μ is holomorphic. Then, as in 2.2 , we get a lifting $\tilde{\phi}: S \rightarrow X$ such that $\tilde{\phi}^{*} L_{\infty}=G$. We remark that $K \sim(\tilde{\phi} \circ \pi)^{*}\left(C_{0}+b f\right)+$ $\tilde{\phi}^{*} L_{\infty} \sim \tilde{\phi}^{*} L_{0}$. Thus we get the desired map ψ by putting $\psi=v \circ \tilde{\phi}$.

By the same reasoning as in the proof of Claim I, we see that $S^{*}=\tilde{\phi}(S)$ has only RDP's. Since $K G=0, G$ consists of (-2)-curves. Therefore, we obtain $S^{\prime \prime}$ from S^{*} by contracting some (-2)-curves. This implies that $S^{\prime \prime}$ has only RDP's.
(D.3) $a=b=0, c \geq 3: W$ is a generalized cone over a rational normal curve of degree $c+1$ in \boldsymbol{P}^{c+2} and the ridge of W is a line. We let Λ be the pull-back to S of the linear system of hyperplanes containing the rigde. Then it is composite with a pencil $|D|$ and we have $K \sim c D+G$, where G is the fixed part of Λ (see, [10, I, §1]). Since $3 c+2=K^{2}=c K D+K G$, we get $K D=1,2$ or 3 . Since $K D+D^{2}$ is even and $K D=c D^{2}+D G$, we have the following possibilities:
(1) $K D=2, D^{2}=0, D G=2$.
(2) $K D=3, D^{2}=1, D G=0$ (in this case $c=3$).

If (1) is the case, then S has a pencil of curves of genus two, a contradiction. If (2) is the case, then we get $G^{2}=2$ by $11=K^{2}=9 D^{2}+6 D G+G^{2}$. Since $D G=0$, this contradicts the Hodge index theorem. Therefore the case (D.3) cannot occur.
2.4. Proof of Claim III. We choose sections X_{0}, X_{1} and X_{2} of $T-a F, T-b F$ and $T-c F$, respectively, in such a way that they form a system of homogeneous fiber
coordinates on each fiber of $\boldsymbol{P}_{a, b, c}$. Then any $\Psi \in H^{0}\left(\boldsymbol{P}_{a, b, c}, \mathcal{O}\left(4 T-\left(p_{g}-5\right) F\right)\right) \simeq$ $H^{0}\left(\boldsymbol{P}^{1}, \operatorname{Sym}^{4}(\mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)) \otimes \mathcal{O}\left(-p_{g}+5\right)\right)$ can be written as

$$
\begin{equation*}
\Psi=\sum_{i, j \geq 0, i+j \leq 4} \psi_{i j} X_{0}^{4-i-j} X_{1}^{i} X_{2}^{j}, \tag{6}
\end{equation*}
$$

where $\psi_{i j}$ is a homogeneous form of degree $(4-i-j) a+i b+j c-\left(p_{g}-5\right)$ on \boldsymbol{P}^{1}. If $4 b<p_{g}-5$, then we can divide Ψ by X_{2} and, therefore, the divisor (Ψ) is reducible. If $3 a+c<p_{g}-5$, then (Ψ) is singular along the curve Z defined by $X_{1}=X_{2}=0$. Thus the condition (5) is necessary.

Conversely, assume that (5) holds. If $4 a \geq p_{g}-5$, then the linear system $\left|4 T-\left(p_{g}-5\right) F\right|$ has no base locus and contains an irreducible nonsingular member. So we assume $4 a<p_{g}-5$. Then (Ψ) contains Z, and $\left|4 T-\left(p_{g}-5\right) F\right|$ has no base locus outside it by (5). Thus it suffices to consider the singularity of (Ψ) in a neighborhood of Z. We shall identify Z with the base curve \boldsymbol{P}^{1} of $\boldsymbol{P}_{a, b, c}$. If $3 a+b \geq p_{g}-5$, then we can assume that ψ_{10} and ψ_{01} have no common zero. Then (Ψ) is nonsingular in a neighborhood of Z. We next assume $3 a+b<p_{g}-5$. If $3 a+c=p_{g}-5$, then ψ_{01} is constant. Unless it is identically zero, (Ψ) is nonsingular along Z. If $3 a+c>p_{g}-5$, that is, ψ_{01} is of positive degree, then we can assume that it has only simple zeros. Then in a neighborhood of a zero P of ψ_{01} on Z, Ψ can be expressed locally as

$$
\Psi=t x_{2}+\psi_{20}(t) x_{1}^{2}+\psi_{11}(t) x_{1} x_{2}+\psi_{02}(t) x_{2}^{2}+\cdots
$$

where $x_{i}=X_{i} / X_{0}$ and t is a local parameter of Z at P. Thus (Ψ) is defined locally by

$$
x_{2}\left(t+\psi_{11}(t) x_{1}+\cdots\right)+\psi_{20}(t) x_{1}^{2}+\psi_{30}(t) x_{1}^{3}+\psi_{40}(t) x_{1}^{4}=0 .
$$

This shows that P is an RDP if Ψ is general. Thus (5) is also sufficient.
We close this section with the following:
Proposition 2.5. Let S be a type I surface with $p_{g}=4$ and S^{\prime} its canonical image. S has a pencil of nonhyperelliptic curves of genus 3 if and only if S^{\prime} contains a line.

Proof. Assume that S^{\prime} contains a line l. We blow \boldsymbol{P}^{3} up along l to get $\boldsymbol{P}_{0,0,1}$. Then the proper transform $S^{\prime \prime}$ of S^{\prime} is linearly equivalent to $4 T+F$ and has a pencil of nonhyperelliptic curves of genus 3 induced by the projection map of $\boldsymbol{P}_{0,0,1}$.

Conversely, assume that S has a pencil $|D|$ as in the statement. Then we have $K D=4, D^{2}=0$. We choose a general $D \in|D|$ and consider the exact sequence

$$
0 \rightarrow \mathcal{O}(K-(i+1) D) \rightarrow \mathcal{O}(K-i D) \rightarrow \mathcal{O}_{D}\left(K_{D}\right) \rightarrow 0
$$

for $i=0,1$. Since Φ_{K} is birational, $H^{0}(K) \rightarrow H^{0}\left(K_{D}\right)$ is surjective. Thus $h^{0}(K-D)=1$. We show $H^{0}(K-2 D)=0$. For this purpose, we take a general $C \in|K|$ and consider

$$
0 \rightarrow \mathcal{O}(-2 D) \rightarrow \mathcal{O}(K-2 D) \rightarrow \mathcal{O}_{C}(K-2 D) \rightarrow 0 .
$$

We have $H^{0}(-2 D)=0$. Further, since $C(K-2 D)=-3$, we have $H^{0}\left(C, \mathcal{O}_{C}(K-2 D)\right)=0$.

Thus $H^{0}(K-2 D)=0$. We can take $w_{0} \in H^{0}(K-D)$ and $w_{1}, w_{2} \in H^{0}(K)$ so that they span $H^{0}\left(K_{D}\right)$. Then, by using the triple (w_{0}, w_{1}, w_{2}), we can lift the canonical map to $\psi: S \rightarrow \boldsymbol{P}_{0,0,1}$ and have $K=\psi^{*} T$. Then $S^{\prime \prime}:=\psi(S)$ is linearly equivalent to $4 T+F$, since $\psi(D)$ is a plane curve of degree 4 (cf. $\S 1) . \Phi_{K}$ is the composite of ψ and the map Φ_{T} induced by $|T|$. Since $H^{0}\left(\boldsymbol{P}_{0,0,1}, \mathcal{O}(T)\right) \simeq H^{0}\left(\boldsymbol{P}^{1}, \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(1)\right)$, we can take $\left\{X_{0}, X_{1}\right.$, $\left.z_{0} X_{2}, z_{1} X_{2}\right\}$ as a basis, where $\left(X_{0}, X_{1}, X_{2}\right)$ is the same as that in 2.4 and $\left(z_{0}, z_{1}\right)$ is a homogeneous coordinate system of \boldsymbol{P}^{1}. Φ_{T} contracts the rational curve $X_{1}=X_{2}=0$. If $\left(\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right)$ is a homogeneous coordinate system on $\boldsymbol{P}^{\mathbf{3}}$ and if Φ_{T} is given by

$$
\zeta_{0}=X_{0}, \quad \zeta_{1}=X_{1}, \quad \zeta_{2}=z_{0} X_{2}, \quad \zeta_{3}=z_{1} X_{2},
$$

then, by substituting these to (6), we find that the equation of S^{\prime} can be written as

$$
\begin{gathered}
\alpha_{1} \zeta_{0}^{4}+\alpha_{2} \zeta_{0}^{3} \zeta_{1}+\alpha_{3} \zeta_{0}^{2} \zeta_{1}^{2}+\alpha_{4} \zeta_{0} \zeta_{1}^{3}+\alpha_{5} \zeta_{1}^{4}+\beta_{1} \zeta_{0}^{3}+\beta_{2} \zeta_{0}^{2} \zeta_{1}+\beta_{3} \zeta_{0} \zeta_{1}^{2}+\beta_{4} \zeta_{1}^{3}+\gamma_{1} \zeta_{0}^{2} \\
+ \\
+\gamma_{2} \zeta_{0} \zeta_{1}+\gamma_{3} \zeta_{1}^{2}+\delta_{1} \zeta_{0}+\delta_{2} \zeta_{1}+\varepsilon=0,
\end{gathered}
$$

where $\alpha, \beta, \gamma, \delta$ and ε are homogeneous forms of respective degrees $1,2,3,4$ and 5 in ζ_{2}, ζ_{3}. Therefore S^{\prime} contains a line l defined by $\zeta_{2}=\zeta_{3}=0$.
3. Number of moduli. In this and the next sections, we study deformations of surfaces of type I. Since we have Horikawa's works [9] and [10, IV] for $p_{g} \leq 5$, we assume $p_{g} \geq 6$ throughout. Further, we restrict ourselves to the case (D) in §1, because the case (C) can be found in [12]. Our main result here is Theorem 3.2 below. For a complex manifold M, we denote by Θ_{M} the tangent sheaf of M.
3.1. We say that S is a Castelnuovo surface of type (a, b, c) if W (or its nonsingular model) is $\boldsymbol{P}_{a, b, c}$, where the integers a, b, c satisfy the conditions (4) and (5). For the sake of simplicity, we put $W=\boldsymbol{P}_{a, b, c}$ even if $a=0$. We say S to be generic if it is the minimal resolution of a general member of $\left|4 T-\left(p_{g}-5\right) F\right|$.

Theorem 3.2. Let S be a generic Castelnuovo surface of type (a, b, c) with $c \leq 2 a+2$. Then

$$
h^{1}\left(S, \Theta_{S}\right)= \begin{cases}5 p_{g}+18, & \text { if } a>0 \\ 5 p_{g}+19, & \text { if } a=0\end{cases}
$$

Further, the Kuranishi space is nonsingular of dimension $h^{1}\left(\Theta_{S}\right)=5 p_{g}+18$ if $a>0$.
For the proof, we need some lemmas.
Lemma 3.3. Let S be a Castelnuovo surface of type (a, b, c) and assume that $p_{g}(S) \geq 6$. Let $|D|$ be the pencil of curves of genus 3 on S induced by the projection map of $W=\boldsymbol{P}_{a, b, c}$.
(1) If $a>0$, then $h^{0}(2 D)=3, h^{1}(2 D)=0$ and $h^{2}(2 D)=p_{g}-6$.
(2) If $a=0$, then $h^{0}(2 D)=3, h^{1}(2 D)=1$ and $h^{2}(2 D)=p_{g}-5$.

Proof. Let $S^{\prime \prime}$ be the image of S in $\boldsymbol{P}_{a, b, c}$ described in $\S 1$. Since it has only RDP’s,
we have $\psi_{*} \mathcal{O}_{S} \simeq \mathcal{O}_{S^{\prime \prime}}$ and $R^{q} \psi_{*} \mathcal{O}_{S}=0$ for $q>0$, where $\psi: S \rightarrow S^{\prime \prime}$ is the natural map. Thus $H^{p}(S, \mathcal{O}(2 D)) \simeq H^{p}\left(S^{\prime \prime}, \mathcal{O}\left(\left.2 F\right|_{S^{\prime}}\right)\right)$ for any p. We consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{W}\left(2 F-S^{\prime \prime}\right) \rightarrow \mathcal{O}_{W}(2 F) \rightarrow \mathcal{O}_{S^{\prime \prime}}(2 F) \rightarrow 0
$$

We have $H^{p}\left(W, \mathcal{O}_{W}(2 F)\right) \simeq H^{p}\left(\boldsymbol{P}^{1}, \mathcal{O}(2)\right)$ and $\left.H^{p}\left(2 F-S^{\prime \prime}\right)\right) \simeq H^{3-p}\left(\mathcal{O}_{W}\left(K_{W}+S^{\prime \prime}-2 F\right)\right)^{*}$ by the Serre duality. Since $S^{\prime \prime} \sim 4 T-\left(p_{g}-5\right) F$ and $a+b+c=p_{g}-3$, we have $K_{W}+$ $S^{\prime \prime}-2 F \sim T-2 F$. Thus $H^{3-p}\left(\mathcal{O}_{W}\left(K_{W}+S^{\prime \prime}-2 F\right)\right) \simeq H^{3-p}\left(\boldsymbol{P}^{1}, \mathcal{O}(a-2) \oplus \mathcal{O}(b-2) \oplus \mathcal{O}(c-\right.$ 2)). From these, Lemma 3.3 follows.
q.e.d.

Lemma 3.4. If $W=\boldsymbol{P}_{a, b, c}$, then

$$
h^{q}\left(W, \Theta_{W}\right)= \begin{cases}2(c-a)+8+(a-b+1)^{+}+(a-c+1)^{+}+(b-c+1)^{+}, & (q=0) \\ (b-a-1)^{+}+(c-a-1)^{+}+(c-b-1)^{+}, & (q=1) \\ 0, & (q \geq 2)\end{cases}
$$

where $m^{+}=\max (m, 0)$.
Proof. We recall the fundamental exact sequences

$$
\begin{equation*}
0 \rightarrow \Theta_{W / \mathbf{P}^{1}} \rightarrow \Theta_{W} \rightarrow \sigma^{*} \Theta_{P^{1}} \rightarrow 0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(T-a F) \oplus \mathcal{O}(T-b F) \oplus \mathcal{O}(T-c F) \rightarrow \Theta_{W / \mathbf{P}^{\mathbf{1}}} \rightarrow 0 \tag{8}
\end{equation*}
$$

where $\Theta_{W / \mathbf{P}^{1}}$ is the relative tangent sheaf. Since any automorphism of \boldsymbol{P}^{1} preserves $\mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$, the natural map $\operatorname{Aut}(W) \rightarrow \operatorname{Aut}\left(P^{1}\right)$ is surjective, hence so is the map $H^{0}\left(\Theta_{W}\right) \rightarrow H^{0}\left(\sigma^{*} \Theta_{\mathbf{P}^{1}}\right)$. By (7) and the isomorphism $H^{q}\left(\sigma^{*} \Theta_{\mathbf{P}^{1}}\right) \simeq H^{q}\left(\Theta_{\mathbf{P}^{1}}\right)$, we have $h^{0}\left(\Theta_{W}\right)=h^{0}\left(\Theta_{W / \mathbf{P}^{\mathbf{1}}}\right)+3$ and $h^{q}\left(\Theta_{W}\right)=h^{q}\left(\Theta_{W / \mathbf{P}^{\mathbf{1}}}\right)$ for $q>0$. Then a calculation using (8) shows Lemma 3.4.
q.e.d.

Lemma 3.5. Let S be as in Lemma 3.3 and consider the linear map $\psi_{p}^{*}: H^{p}\left(W, \Theta_{W}\right) \rightarrow H^{p}\left(S, \psi^{*} \Theta_{W}\right)$.
(1) If $a>0$, then ψ_{p}^{*} is bijective for $p \leq 1$ and $h^{2}\left(\psi^{*} \Theta_{W}\right)=p_{g}-6$.
(2) If $a=0$, then ψ_{p}^{*} is bijective for $p=0$ and is injective for $p=1$. Furthermore, $h^{1}\left(\psi^{*} \Theta_{W}\right)=h^{1}\left(\Theta_{W}\right)+1, h^{2}\left(\psi^{*} \Theta_{W}\right)=p_{g}-5$.

Proof. We use the commutative diagram

$$
\begin{gathered}
H^{p}\left(\psi^{*} \Theta_{W / \mathbf{p}^{1}}\right) \rightarrow H^{p}\left(\psi^{*} \Theta_{W}\right) \rightarrow H^{p}(2 D) \\
\uparrow \quad \uparrow \\
H^{p}\left(\Theta_{W / \mathbf{p}^{1}}\right) \rightarrow H^{p}\left(\Theta_{W}\right) \rightarrow H^{p}(2 F),
\end{gathered}
$$

where the bottom row comes from the exact sequence (7). By Lemmas 3.3 and 3.4, it suffices to show that $H^{p}\left(\Theta_{W / \mathbf{P}^{\mathbf{1}}}\right) \rightarrow H^{p}\left(\psi^{*} \Theta_{W / \mathbf{P}^{\mathbf{1}}}\right)$ is bijective for any p. Since we have
$H^{p}\left(\psi^{*} \Theta_{W / \mathbf{P}^{\mathbf{1}}}\right) \simeq H^{p}\left(S^{\prime \prime}, \Theta_{W / \mathbf{P}^{\mathbf{1}}}\right)$, we only have to show $H^{p}\left(W, \Theta_{W / \mathbf{P}^{1}}\left(-S^{\prime \prime}\right)\right)=0$ for any p in view of the exact sequence

$$
\left.0 \rightarrow \Theta_{W / \mathbf{P}^{1}}\left(-S^{\prime \prime}\right) \rightarrow \Theta_{W / \mathbf{P}^{\mathbf{1}}} \rightarrow \Theta_{W / \mathbf{P}^{\mathbf{1}}}\right|_{S^{\prime \prime}} \rightarrow 0
$$

If $\Omega_{W / \mathbf{P}^{1}}$ is the relative cotangent sheaf, we get $H^{p}\left(\Theta_{W / \mathbf{P}^{1}}\left(-S^{\prime \prime}\right)\right)^{*} \simeq H^{3-p}\left(\Omega_{W / \mathbf{P}^{1}}(T)\right)$ by the Serre duality. We recall that $H^{q}\left(\boldsymbol{P}^{2}, \Omega^{1}(1)\right)$ vanishes for any q. Thus we get $R^{q} \sigma_{*} \Omega_{W / \mathbf{P}^{1}}(T)=0$ for any q. Then it follows from the Leray spectral sequence that $H^{3-p}\left(\Omega_{W / \mathbf{P}^{1}}(T)\right)=0$ for any p.
q.e.d.

Lemma 3.6. Let S be as in Theorem 3.2 and denote by $\mathscr{T}_{S / W}$ the cokernel of the natural map $\Theta_{S} \rightarrow \psi^{*} \Theta_{W}$. Then $H^{2}\left(S, \mathscr{T}_{S / W}\right)=0$. Further, the composite $P_{\circ} \psi_{1}^{*}$ of $\psi_{1}^{*}: H^{1}\left(W, \Theta_{W}\right) \rightarrow H^{1}\left(S, \psi^{*} \Theta_{W}\right)$ and $P: H^{1}\left(S, \psi^{*} \Theta_{W}\right) \rightarrow H^{1}\left(S, \mathscr{T}_{S / W}\right)$ is surjective.

Proof. We first assume that $4 a \geq p_{g}-5$. As we have seen in 2.4 , a general member of $\left|4 T-\left(p_{g}-5\right) F\right|$ is irreducible and nonsingular. Thus we can assume $S \in \mid 4 T-\left(p_{g}-\right.$ 5) $F \mid$. Then $\mathscr{T}_{S / W}$ is nothing but the normal sheaf $N_{S / W}$. Consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{W} \rightarrow \mathcal{O}_{W}\left(4 T-\left(p_{g}-5\right) F\right) \rightarrow N_{S_{S} W} \rightarrow 0 .
$$

We see that $H^{q}\left(S, N_{S / W}\right)=0$ for $q>0$, because we have $H^{q}\left(W, \mathcal{O}\left(4 T-\left(p_{g}-5\right) F\right)\right)=0$ for $q>0$ by the assumption $4 a \geq p_{g}-5$.

We next consider the case $4 a<p_{g}-5$. As we have seen in $2.4, S^{\prime \prime}=\psi(S)$ contains a rational curve Z defined by $X_{1}=X_{2}=0$. We denote by $v: X \rightarrow \boldsymbol{P}_{a, b, c}$ the blowing-up along Z. It is easy to see that X is the total space of the \boldsymbol{P}^{1}-bundle $\pi: \boldsymbol{P}\left(\mathcal{O} \oplus \mathcal{O}\left(C_{0}+(b-a) f\right)\right) \rightarrow \Sigma_{c-b}$. We denote by L_{0} the tautological divisor of X. If we let L_{∞} be the unique divisor linearly equivalent to $L_{0}-\pi^{*}\left(C_{0}+(b-a) f\right)$, then $L_{\infty}=v^{-1}(Z)$. The proper transform of $S^{\prime \prime}$ is in $\left|3 L_{0}+\pi^{*}\left(C_{0}+(2 a-c+2) f\right)\right|$. Since $c \leq 2 a+2$, this linear system has no base points. Thus we can assume $S \in \mid 3 L_{0}+$ $\pi^{*}\left(C_{0}+(2 a-c+2) f\right) \mid$.

By a simple calculation, we have $H^{q}(X, \mathcal{O}(S))=0$ for $q>0$. This implies $H^{q}\left(S, N_{S / X}\right)=0$ for $q>0$. Then by the exact sequence

$$
\left.0 \rightarrow N_{S / X} \rightarrow \mathscr{T}_{S / W} \rightarrow \mathscr{T}_{X / W}\right|_{S} \rightarrow 0,
$$

we have $H^{q}\left(S, \mathscr{T}_{S / W}\right) \simeq H^{q}\left(S,\left.\mathscr{T}_{X / W}\right|_{S}\right)$ for $q>0$. Since $\left.\mathscr{T}_{X / W}\right|_{S}$ is supported on a curve, we have $h^{2}\left(\mathscr{T}_{S / W}\right)=h^{2}\left(\left.\mathscr{T}_{X / W}\right|_{S}\right)=0$. By [10, III, p. 235], the following sequence is exact:

$$
0 \rightarrow N_{L_{\infty} / X} \rightarrow v^{*} N_{Z / W} \rightarrow \mathscr{T}_{X / W} \rightarrow 0 .
$$

We identify Z and L_{∞} with \boldsymbol{P}^{1} and Σ_{c-b}, respectively. Then we have $N_{Z / W} \simeq \mathcal{O}(a-b) \oplus \mathcal{O}(a-c)$ and $N_{L_{\infty} / X} \simeq \mathcal{O}\left(-C_{0}-(b-a) f\right)$. Thus $\mathscr{T}_{X / W} \simeq v^{*}\left(\operatorname{det} N_{Z / X}\right) \otimes$ $N_{L_{\infty} / X}^{*} \simeq \mathcal{O}\left(C_{0}-(c-a) f\right)$.

To show the surjectivity of $P \circ \psi_{1}^{*}$, it suffices to show that the map $H^{1}\left(X, v^{*} \Theta_{W}\right) \rightarrow H^{1}\left(S,\left.\mathscr{T}_{X / W}\right|_{S}\right)$ is surjective, since ψ_{1}^{*} is injective by Lemma 3.5. Note
that we have $H^{2}\left(X, \Theta_{X}\right)=0$ by the exact sequence

$$
0 \rightarrow \mathcal{O}\left(2 L_{0}-\pi^{*}\left(C_{0}+(b-a) f\right)\right) \rightarrow \Theta_{X} \rightarrow \pi^{*} \Theta_{\Sigma_{c-b}} \rightarrow 0
$$

Thus $H^{1}\left(X, v^{*} \Theta_{W}\right) \rightarrow H^{1}\left(X, \mathscr{T}_{X / W}\right)$ is surjective. Consider the exact sequence

$$
\left.0 \rightarrow \mathscr{T}_{X / W}(-S) \rightarrow \mathscr{T}_{X / W} \rightarrow \mathscr{T}_{X / W}\right|_{S} \rightarrow 0
$$

Since $\left.S\right|_{L_{\infty}} \sim C_{0}+(2 a-c+2) f$, we have $\mathscr{T}_{X / W}(-S) \simeq \mathcal{O}(-(a+2) f)$. Then $H^{2}(X$, $\left.\mathscr{T}_{X / W}(-S)\right)=0$ and thus $H^{1}\left(X, \mathscr{T}_{X / W}\right) \rightarrow H^{1}\left(S,\left.\mathscr{T}_{X / W}\right|_{S}\right)$ is surjective. q.e.d.

3.7. Proof of Theorem 3.2. By Lemmas 3.5 and 3.6, we have

$$
h^{2}\left(S, \Theta_{S}\right)=\left\{\begin{array}{ll}
p_{g}-6, & \text { if } \\
p_{g}-5, & \text { if }
\end{array} \quad a=0, ~\right.
$$

Since S is of general type, we have $H^{0}\left(S, \Theta_{S}\right)=0$. Thus the formula for $h^{1}\left(\Theta_{S}\right)$ follows from the Riemann-Roch theorem.

In order to show the second assertion, we use Horikawa's deformation theory of holomorphic maps [8]. By Lemma 3.3, we have $H^{1}(2 D)=0$. Thus it follows from [8, II, Theoren 4.4] that there is a family $p: \mathscr{S} \rightarrow M$ of deformations of $S=p^{-1}(o), o \in M$, such that the characteristic map $\tau: T_{o} M \rightarrow D_{S / \mathbf{P}^{1}}$ is bijective. Further, we see from [8, II, Lemma 4.2] that the Kodaira-Spencer map $\rho: T_{o} M \rightarrow H^{1}\left(\Theta_{S}\right)$ is surjective. Note that the parameter space M is nonsingular. Thus we can choose a submanifold N of M passing through o such that the Kodaira-Spencer map $\rho: T_{o} N \rightarrow H^{1}\left(\Theta_{S}\right)$ is bijective. This completes the proof.

Corollary 3.8. Let S be as in Theorem 3.2. Then the infinitesimal Torelli theorem holds for S.

Proof. By the criterion of Kii [11], we only have to show $h^{0}\left(\Omega_{S}^{1}(K)\right) \leq p_{g}-2$. Since $h^{0}\left(\Omega_{S}^{1}(K)\right)=h^{2}\left(\Theta_{S}\right) \leq p_{g}-5$, we are done. q.e.d.

4. A remark on deformations.

4.1. We construct a family of deformations of $\boldsymbol{P}_{a, b, c}$ (for a geometric treatment of deformations of scrolls, see [6]). We denote by d the greatest integer not exceeding $(a+b+c) / 3$. By Lemma 3.3, we can assume $(a, b, c) \neq(d, d, d),(d, d, d+1),(d, d+1, d+1)$, since in these cases $\boldsymbol{P}_{a, b, c}$ is rigid.

Let U_{1} and U_{2} be two copies of $\boldsymbol{C} \times \boldsymbol{P}^{2}$. We denote by ($z ; X_{0}, X_{1}, X_{2}$) and $\left(\hat{z} ; \hat{X}_{0}, \hat{X}_{1}, \hat{X}_{2}\right)$ the coordinates of U_{1} and U_{2}, respectively. Then we can construct $\boldsymbol{P}_{a, b, c}$ from $U_{1} \cup U_{2}$ by identifying $\left(z ; X_{0}, X_{1}, X_{2}\right)$ with $\left(\hat{z} ; \hat{X}_{0}, \hat{X}_{1}, \hat{X}_{2}\right)$ if and only if

$$
\begin{equation*}
X_{0}=\hat{z}^{a} \hat{X}_{0}, X_{1}=\hat{z}^{b} \hat{X}_{1}, X_{2}=\hat{z}^{c} \hat{X}_{2}, z \hat{z}=1 . \tag{9}
\end{equation*}
$$

We let t be a complex parameter and identify $\left(z ; X_{0}, X_{1}, X_{2}\right)$ with $\left(\hat{z} ; \hat{X}_{0}, \hat{X}_{1}, \hat{X}_{2}\right)$ if and only if

$$
\begin{equation*}
X_{0}=\hat{z}^{a} \hat{X}_{0}, \quad X_{1}=\hat{z}^{b} \hat{X}_{1}, \quad X_{2}=\hat{z}^{c} \hat{X}_{2}+t \hat{z}^{a+k} \hat{X}_{0}, \quad z \hat{z}=1, \tag{10}
\end{equation*}
$$

where k is an integer satisfying $0 \leq k \leq c-a$. Then we get a family $\left\{W_{t}\right\}$ of \boldsymbol{P}^{2}-bundles on \boldsymbol{P}^{1}. For $t \neq 0$, we put

$$
\begin{aligned}
& Y_{0}=t X_{2}, \quad Y_{1}=X_{1}, \quad Y_{2}=z^{k} X_{2}-t X_{0}, \\
& \hat{Y}_{0}=t^{2} \hat{X}_{0}+t \hat{z}^{c-a-k} \hat{X}_{2}, \quad \hat{Y}_{1}=\hat{X}_{1}, \quad \hat{Y}_{2}=\hat{X}_{2} .
\end{aligned}
$$

Then we get $Y_{0}=\hat{z}^{a+k} \hat{Y}_{0}, Y_{1}=\hat{z}^{b} \hat{Y}_{1}, Y_{2}=\hat{z}^{c-k} \hat{Y}_{2}$. Thus $W_{t} \simeq \boldsymbol{P}_{a+k, b, c-k}$ if $t \neq 0$. Similarly, if we consider the families

$$
\begin{equation*}
X_{0}=\hat{z}^{a} \hat{X}_{0}, \quad X_{1}=\hat{z}^{b} \hat{X}_{1}+t \hat{z}^{a+k} \hat{X}_{0}, \quad X_{2}=\hat{z}^{c} \hat{X}_{2}, \quad z \hat{z}=1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{0}=\hat{z}^{a} \hat{X}_{0}, \quad X_{1}=\hat{z}^{b} \hat{X}_{1}, \quad X_{2}=\hat{z}^{c} \hat{X}_{2}+t \hat{z}^{b+k} \hat{X}_{1}, \quad z \hat{z}=1 \tag{12}
\end{equation*}
$$

for a suitable k, then we see that $\boldsymbol{P}_{a, b, c}$ is a deformation of $\boldsymbol{P}_{a+k, b-k, c}$ and $\boldsymbol{P}_{a, b+k, c-k}$, respectively. Thus we get:

Proposition 4.2. The \boldsymbol{P}^{2}-bundle $\boldsymbol{P}_{a, b, c}$ is a deformation of $\boldsymbol{P}_{d, d, d}, \mathbf{P}_{d, d, d+1}$ or $\boldsymbol{P}_{d, d+1, d+1}$ according as $a+b+c$ is 0,1 or 2 modulo 3 .

Proposition 4.3. Let S be a Castelnuovo surface of type (a, b, c) and assume that $c \leq 2 a+3$. Then S is a deformation of a Castelnuovo surface of type $(d, d, d),(d, d, d+1)$ or ($d, d+1, d+1$).

Proof. We showed in $\S 1$ that S is a minimal resolution of a surface $S^{\prime \prime} \sim 4 T-\left(p_{g}-5\right) F$ on $\boldsymbol{P}_{a, b, c}$.

If $3 a+1 \geq b+c$, then $H^{1}\left(P_{a, b, c}, \mathcal{O}\left(4 T-\left(p_{g}-5\right) F\right)\right)=0$. Thus if $s \in H^{0}\left(4 T-\left(p_{g}-5\right) F\right)$ defines $S^{\prime \prime}$, then it can be extended to any family of deformations of $\boldsymbol{P}_{a, b, c}$. Thus we get a family $\left\{S_{t}^{\prime \prime}\right\}$ with $S^{\prime \prime}=S_{0}^{\prime \prime}$ from the family (10) for example. Since $S^{\prime \prime}$ has only RDP's, so does $S_{t}^{\prime \prime}$ provided that t is sufficiently small. We simultaneously resolve RDP's (cf. [2] and [3]) and get a family $\left\{S_{t}\right\}$ of deformations of $S=S_{0}$. This family shows that S is a specialization of a Castelnuovo surface of type $(a+k, b, c-k)$. Continuing this procedure using (10), (11) or (12), we get the desired result.

If $3 a+1<b+c$ but $c \leq 2 a+3$, we consider the \boldsymbol{P}^{1-} bundle X in the proof of Lemma 3.6 instead of $\boldsymbol{P}_{a, b, c}$. Since X is a monoidal transform of $\boldsymbol{P}_{a, b, c}$, a sufficiently small deformation of the former is a monoidal transform of a deformation of the latter (see, [8, III]). Indeed, by blowing up the rational curve defined by $X_{1}=X_{2}=0$ in the family (12) simultaneously, we get a family $\left\{X_{t}\right\}$ of deformations of $X=X_{0}$. We remark that $H^{1}\left(X, \mathcal{O}\left(3 L_{0}+\pi^{*}\left(C_{0}+(2 a-c+2) f\right)\right)\right)=0$ if $c \leq 2 a+3$. Thus similar arguments also work.
q.e.d.

Remark 4.4. The moduli space of Castelnuovo surfaces has several components
in general. To see this, let $\mu=\operatorname{dim}\left|4 T-\left(p_{g}-5\right) F\right|-h^{0}\left(\boldsymbol{P}_{a, b, c}, \Theta\right)$ be the number of parameters on which Castelnuovo surfaces of type (a, b, c) depend. Then μ is sometimes strictly greater than the number $5 p_{g}+18$ of moduli of a generic Castelnuovo surface as in Theorem 3.2. For example, if $p_{g}=12$, we have

$$
\begin{array}{cll}
(a, b, c ; \mu)=(3,3,3 ; 78), & (2,3,4 ; 77), & (2,2,5 ; 74), \\
(1,3,5 ; 75), & (1,4,4 ; 76), & (0,2,7 ; 79) .
\end{array}
$$

4.5. Here we give a family of surfaces with $c_{1}^{2}=3 p_{g}-7$ such that the central fiber is of type II while a general fiber is of type I.

We let W be the \boldsymbol{P}^{2}-bundle $\boldsymbol{P}_{a, b, c}$, where a, b, c are integers satisfying (4) and (5). We assume that p_{g} is odd and put $2 k=p_{g}-5$. The linear system $|L|, L=2 T-k F$, is free from base points if $2 a-k \geq 0$, i.e., $3 a+2 \geq b+c$. We assume this condition for the sake of simplicity. We choose $\eta \in H^{0}(W, \mathcal{O}(L))$ which defines an irreducible nonsingular divisor Y. Let \hat{W} be the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}\left(\mathcal{O}_{W} \oplus \mathcal{O}_{W}(L)\right)$ on W. We put $\Delta_{\varepsilon}=\{t \in \boldsymbol{C} ;|t|<\varepsilon\}$, where ε is a sufficiently small positive number. Consider a family $\left\{S_{t}\right\}, t \in \Delta_{\varepsilon}$, of subvarieties of \hat{W} given by the equation

$$
S_{t}:\left\{\begin{array}{l}
Z_{0}^{2}+\alpha_{1} Z_{0} Z_{1}+\alpha_{2} Z_{1}^{2}=0 \tag{13}\\
t Z_{0}=\eta X_{1}
\end{array}, \quad t \in \Delta_{\varepsilon},\right.
$$

where $\left(Z_{0}, Z_{1}\right)$ is a system of homogeneous fiber coordinates on \hat{W} and $\alpha_{i} \in H^{0}(W, \mathcal{O}(i L))$, $1 \leq i \leq 2$. We assume that α 's are general.

If $t \neq 0$, then S_{t} is biholomorphically equivalent to a surface in W defined by the equation $\eta^{2}+t \alpha_{1} \eta+t^{2} \alpha_{2}=0$. Thus $S_{t} \in\left|4 T-\left(p_{g}-5\right) F\right|$ and it is of type I.

On the other hand, S_{0} is a double covering of Y via the projection map of \hat{W}. Since Y is a conic bundle on $\boldsymbol{P}^{1}, S_{0}$ has a pencil of hyperelliptic curves of genus three. Thus it is of type II.
5. Surfaces with hyperelliptic pencils of genus 3. We call a pencil on a surface a hyperelliptic pencil of genus g if its general member is a nonsingular hyperelliptic curve of genus g. In this section, we study the geography of surfaces with hyperelliptic linear pencils of genus 3 .
5.1. Let V be a normal Gorenstein surface and denote by $\sigma: V^{\prime} \rightarrow V$ the minimal resolution of an isolated singularity ξ of V. Then there exists an effective divisor Z_{ξ} on V^{\prime} supported on $\sigma^{-1}(\xi)$ such that $\omega_{V^{\prime}} \simeq \sigma^{*} \omega_{V} \otimes \mathcal{O}\left(-Z_{\xi}\right)$ (e.g., [14]). Then we have $\omega_{V^{\prime}}^{2}=\omega_{V}^{2}+Z_{\xi}^{2}$. On the other hand, the spectral sequence $H^{p}\left(V, R^{q} \sigma_{*} \mathcal{O}_{V^{\prime}}\right) \Rightarrow H^{p+q}\left(V^{\prime}, \mathcal{O}_{V^{\prime}}\right)$ implies that $\chi\left(\mathcal{O}_{V^{\prime}}\right)=\chi\left(\mathcal{O}_{V}\right)-p_{g}(\xi)$, where $p_{g}(\xi)=h^{0}\left(V, R^{1} \sigma_{*} \mathcal{O}_{V^{\prime}}\right)$ is the geometric genus of ξ. We call $\left(p_{g}(\xi):-Z_{\xi}^{2}\right)$ the type of singularity ξ. If ξ is a double point, then its type can be easily calculated by Horikawa's canonical resolution ($[9, \S 2]$ or [13, §1]).

Let $\left\{\xi_{i}\right\}_{1 \leq i \leq s}$ be a set of isolated singularities of V and assume that ξ_{i} is of type
$\left(m_{i}, n_{i}\right)$. If $V^{*} \rightarrow V$ is the minimal resolution of these singularities, then we have

$$
\begin{equation*}
\chi\left(\mathcal{O}_{V^{*}}\right)=\chi\left(\mathcal{O}_{V}\right)-\sum_{i=1}^{s} m_{i}, \omega_{V^{*}}^{2}=\omega_{V}^{2}-\sum_{i=1}^{s} n_{i} . \tag{14}
\end{equation*}
$$

We list the types of the singularities which we shall need later:
(i) If ξ is an RDP, then $Z_{\xi}=0$. Thus ξ is of type ($0: 0$).
(ii) If ξ is a simple elliptic singularity of type \widetilde{E}_{8} or \tilde{E}_{7} (see [15]), then $Z_{\xi}=E$, where E is the exceptional elliptic curve. Thus ξ is of type ($1: 1$) or $(1: 2)$ according as whether it is \tilde{E}_{8} or \tilde{E}_{7}.
5.2. Let $\pi_{0}: Y=\Sigma_{e} \rightarrow \boldsymbol{P}^{1}$ be the Hirzebruch surface of degree e. Put $L:=4 C_{0}+\beta f$, where β is an integer satisfying

$$
\begin{equation*}
e+\beta \geq 2 \tag{15}
\end{equation*}
$$

We consider the \boldsymbol{P}^{1}-bundle

$$
\pi: X=\boldsymbol{P}\left(\mathcal{O}_{Y} \oplus \mathcal{O}_{\mathbf{Y}}(L)\right) \rightarrow Y,
$$

and set $L_{0}=\mathcal{O}_{X}(1), D_{0}=\pi^{*} C_{0}$ and $F=\pi^{*} f$.
Lemma 5.3. Let V be an irreducible reduced divisor on X linearly equivalent to $2 L_{0}$. Then,
(1) $\left.\left.\quad \omega_{V} \simeq \pi^{*}\left(K_{Y}+L\right)\right|_{V} \simeq \pi^{*}\left(2 C_{0}+(\beta+e-2) f\right)\right|_{V}$,
(2) $\omega_{V}^{2}=16 e+8 \beta-16$,
(3) $p_{g}(V)=6 e+3 \beta-3, q(V)=0$.

Proof. Since $K_{X} \simeq-2 L_{0}+\pi^{*}\left(K_{Y}+L\right)$ and $\left.\omega_{V} \simeq\left(K_{X}+V\right)\right|_{V}$, we get (1). Since $L_{0} D_{0}^{2}=e, L_{0} D_{0} F=1$ and $L_{0} F^{2}=0$, we get (2) by (1). Considering the cohomology long exact sequence for $0 \rightarrow \mathcal{O}\left(K_{X}\right) \rightarrow \mathcal{O}\left(K_{X}+V\right) \rightarrow \omega_{V} \rightarrow 0$, we easily obtain (3) by (15).
q.e.d.
5.4. Let V be as above. By a suitable system of homogeneous fiber coordinates $\left(X_{0}: X_{1}\right)$ of $\pi: X \rightarrow Y$, the equation ϕ of V can be written as

$$
\begin{equation*}
\phi=X_{0}^{2}+\phi_{2 L} X_{1}^{2}, \tag{16}
\end{equation*}
$$

where $\phi_{2 L} \in H^{0}(Y, \mathcal{O}(2 L))$. We note that V is a double covering of Y via $\left.\pi\right|_{V}$ and its branch locus is $B_{V}=\left(\phi_{2 L}\right)$. We assume that B_{V} is reduced. Then V is normal. Set $\lambda=\left.\pi_{0} \circ \pi\right|_{V}: V \rightarrow \boldsymbol{P}^{1}$. Then, by the Hurwitz formula, a general fiber of λ is a hyperelliptic curve of genus 3. Assume further that
(*) $\quad B_{V}$ has k infinitely close triple points (cf. [13, §1]) and l ordinary quadruple points, and the other singularities of B_{V} are at most double points.
The V is a normal Gorenstein surface with k singular points of type \tilde{E}_{8} and l singular points of type \tilde{E}_{7}. We remark that the other singularities are at most RDP's. Let $\sigma: V^{*} \rightarrow V$ be the minimal resolution of all singularities of V. Then by (14), (i) and
(ii) of 5.1 and Lemma 5.3, we have

$$
\begin{equation*}
\chi\left(\mathcal{O}_{V^{*}}\right)=6 e+3 \beta-2-k-l, \quad \omega_{V^{*}}^{2}=16 e+8 \beta-16-k-2 l . \tag{17}
\end{equation*}
$$

In order to construct B_{V} satisfying ($*$), we use the method essentially due to Persson [13]. For an integer $r \geq 0$, any $\psi \in H^{\circ}\left(Y, \mathcal{O}\left(2 C_{0}+r f\right)\right)$ can be written as

$$
\psi=\psi_{r} Y_{0}^{2}+\psi_{r+e} Y_{0} Y_{1}+\psi_{r+2 e} Y_{1}^{2}
$$

where $\left(Y_{0}: Y_{1}\right)$ is a system of homogeneous fiber coordinates of $\pi_{0}: Y \rightarrow \boldsymbol{P}^{1}$ and $\psi_{r+i e} \in H^{0}\left(\boldsymbol{P}^{1}, \mathcal{O}(r+i e)\right), 0 \leq i \leq 2$. We put $C_{0}=\left(Y_{0}\right)$ and $C_{\infty}=\left(Y_{1}\right)$. We often identify them with the base curve P^{1} of Y.

We define a sublinear system of $\left|2 C_{0}+r f\right|$ by

$$
\left|2 C_{0}+r f\right|_{P}=\left\{(\psi): \psi=\psi_{r} Y_{0}^{2}+\psi_{r+2 e} Y_{1}^{2}\right\}
$$

and call it Persson's system. As is easily seen, it has the following properties:
(a) Put $\psi \in\left|2 C_{0}+r f\right|_{P}$. If $\psi_{r+2 e}$ and ψ_{r} have simple zeros only and if they have no common zero, then (ψ) is nonsingular. We regard $\left(\psi_{r+2 e}\right)$ and $\left(\psi_{r}\right)$ as reduced divisors on C_{0} and C_{∞}, respectively. Set $\left(\psi_{r+2 e}\right)=\sum_{i=1}^{2 e+r} P_{i}$ and $\left(\psi_{r}\right)=\sum_{i=2 e+r+1}^{2 e+2 r} P_{i}$. Then the tangent line $T_{P_{i}}((\psi))$ of (ψ) at P_{i} is vertical for $1 \leq i \leq 2 e+2 r$, i.e., $T_{P_{i}}$ coincides with the fiber of π_{0} passing through P_{i}.
(b) Let k_{0}, k_{∞} and l be nonnegative integers satisfying $k_{0} \leq 2 e+r, k_{\infty} \leq r$ and $l \leq 2 e+2 r-k_{0}-k_{\infty}-1$. Let $P_{1}, \cdots, P_{k_{0}}$ and $Q_{1}, \cdots, Q_{k_{\infty}}$ be mutually distinct points on C_{0} and C_{∞}, respectively, and let R_{1}, \cdots, R_{l} be generic points on $Y \backslash\left(C_{0} \cup C_{\infty}\right)$. Let Λ be the linear subsystem of $\left|2 C_{0}+r f\right|_{P}$ consisting of those elements passing through all the $k_{0}+k_{\infty}+l$ points P_{i}, Q_{j}, R_{k}. Then a general member of Λ is nonsingular, and we have $\operatorname{dim} \Lambda=2 e+2 r-k_{0}-k_{\infty}-l \geq 1$. Moreover, the system Λ has no base point except P_{i}, Q_{j}, R_{k}.

By using these properties, we can show the following:
Lemma 5.5. Fix a nonnegative integer land put

$$
k_{\max }=\max _{\left(l_{1}, l_{2}\right)}\left\{\left[(2 / 3)\left(4 e+\beta-2 l_{1}-2\right)\right]+\left[(2 / 3)\left(\beta-2 l_{2}\right)\right]\right\},
$$

where l_{1} and l_{2} run through nonnegative integers satisfying $l_{1}+l_{2}=l, 4 e+\beta-2 l_{1}-2 \geq 0$ and $\beta-2 l_{2} \geq 0$, and $[q]$ is the greatest integer not exceeding q. Then, for any integer k with $0 \leq k \leq k_{\max }$, there exists a reduced divisor B on Y such that
(1) $B \sim 8 C_{0}+2 \beta f$,
(2) B has k infinitely close triple points and l ordinary quadruple points. The other singularities of B are at most double points.

Proof. Let k_{0}, k_{∞} be nonnegative integers satisfying

$$
\begin{equation*}
k=k_{0}+k_{\infty}, \quad k_{0} \leq\left[(2 / 3)\left(4 e+\beta-2 l_{1}-2\right)\right], \quad k_{\infty} \leq\left[(2 / 3)\left(\beta-2 l_{2}\right)\right] . \tag{18}
\end{equation*}
$$

We choose mutually distinct points $P_{1}, \cdots, P_{k_{0}}$ on C_{0} and $Q_{1}, \cdots, Q_{k_{\infty}}$ on C_{∞}. We also choose general points R_{1}, \cdots, R_{l} on $Y \backslash\left(C_{0} \cup C_{\infty}\right)$.

When β is even, we set $r_{i}=[\beta / 2]$ for $1 \leq i \leq 4$. When β is odd, we set $r_{1}=r_{2}=[\beta / 2]+1$ and $r_{3}=r_{4}=[\beta / 2]$. By (18), we can choose nonnegative integers $k_{0}(i)$ and $k_{\infty}(i)$ for $1 \leq i \leq 4$ such that
(i) $k_{0}(i) \leq 2 e+r_{i}-l_{1}-1, k_{\infty}(i) \leq r_{i}-l_{2}$,
(ii) there are subsets $\left\{P_{1}^{(i)}, \cdots, P_{k_{0}(i)}^{(i)}\right\}$ and $\left\{Q_{1}^{(i)}, \cdots, Q_{k_{\infty}(i)}^{(i)}\right\}$ of $\left\{P_{j} ; 1 \leq j \leq k_{0}\right\}$ and $\left\{Q_{j} ; 1 \leq j \leq k_{\infty}\right\}$, respectively, such that $\sum_{i=1}^{4}\left(P_{1}^{(i)}+\cdots+P_{k_{0}(i)}^{(i)}\right)=3 \sum_{j=1}^{k_{0}} P_{j}$ and $\sum_{i=1}^{4}\left(Q_{1}^{(i)}+\cdots+Q_{k_{\infty}(i)}^{(i)}\right)=3 \sum_{j=1}^{k_{\infty}} Q^{j}$.

Let Λ_{i} be the subsystem of $\left|2 C_{0}+r_{i} f\right|_{P}$ consisting of elements passing through all the $k_{0}(i)+k_{\infty}(i)+l$ points $P_{1}^{(i)}, \cdots, P_{k_{0}(i)}^{(i)}, Q_{1}^{(i)}, \cdots, Q_{k_{\infty}(i)}^{(i)}$ and R_{1}, \cdots, R_{l}. Let B_{i} be a general member of Λ_{i} and set $B=\sum_{i=1}^{4} B_{i}$. Then B satisfies (1) and (2). q.e.d.

Take k, l and B as in Lemma 5.5 and let $\mu:=\left.\pi\right|_{V}: V \rightarrow Y$ be the double cover branched along $B . V$ has k_{0} (resp. k_{∞}) singular points of type \widetilde{E}_{8} on $\mu^{-1}\left(C_{0}\right)$ (resp. $\left.\mu^{-1}\left(C_{\infty}\right)\right)$ with $k=k_{0}+k_{\infty}$ and l singular points of type \tilde{E}_{7} on $\mu^{-1}\left(Y \backslash\left(C_{0} \cup C_{\infty}\right)\right)$. Moreover the other singularities of V are at most RDP's. We let $\sigma: V^{*} \rightarrow V$ be the minimal resolution.

Proposition 5.6. Assume that $k_{0} \leq 3 e+\beta-2, k_{\infty} \leq e+\beta-2$ and $k+l \leq 6 e+3 \beta-7$. Then, we have:
(1) $p_{g}\left(V^{*}\right)=p_{g}(V)-k-l$ and $q\left(V^{*}\right)=0$.
(2) $\left|K_{V^{*}}\right|$ is free from fixed components, and has exactly k base points. Especially V^{*} is relatively minimal.
(3) The canonical map of V^{*} is generically 2:1 map onto its image.

Proof. Set $\tilde{\mu}=\sigma \circ \mu,\left\{\eta_{1}, \cdots, \eta_{k+l}\right\}=\left\{P_{1}, \cdots, P_{k_{0}}, Q_{1}, \cdots, Q_{k_{\infty}}, R_{1}, \cdots, R_{l}\right\}$ and $\xi_{i}=\mu^{-1}\left(\eta_{i}\right)$ for the sake of brevity. By (i) and (ii) of 5.1 and Lemma 5.3, we have

$$
\begin{equation*}
K_{V^{*}} \simeq \tilde{\mu}^{*}\left(K_{Y}+L\right) \otimes \mathcal{O}_{V^{*}}\left(-\sum_{i=1}^{k+l} E_{i}\right), \tag{19}
\end{equation*}
$$

where $E_{i}=\sigma^{-1}\left(\xi_{i}\right)$ is the exceptional elliptic curve. Hence from the exact sequence

$$
0 \rightarrow \mathcal{O}\left(K_{V^{*}}\right) \rightarrow \mathcal{O}\left(\tilde{\mu}^{*}\left(K_{Y}+L\right)\right) \rightarrow \underset{i}{\oplus} E_{i} \rightarrow 0,
$$

we get the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}\left(V^{*}, K_{V^{*}}\right) \rightarrow H^{0}\left(V^{*}, \tilde{\mu}^{*}\left(K_{Y}+L\right)\right) \xrightarrow{\rho} \underset{i}{\oplus} C_{E_{i}} \tag{20}
\end{equation*}
$$

where $C_{E_{i}}$ is the sheaf of constant functions on E_{i}.
Since V is normal, $\sigma_{*} \mathcal{O}_{V^{*}} \simeq \mathcal{O}_{V}$. Thus we have $\tilde{\mu}_{*} \tilde{\mu}^{*} \mathcal{O}_{Y}\left(K_{Y}+L\right) \simeq \mu_{*}\left(\mu^{*} \mathcal{O}_{Y}\left(K_{Y}+\right.\right.$ $\left.L) \otimes \sigma_{*} \mathcal{O}_{V^{*}}\right) \simeq \mathcal{O}_{Y}\left(K_{Y}+L\right) \otimes \mu_{*} \mathcal{O}_{V} \simeq \mathcal{O}_{Y}\left(K_{Y}+L\right) \otimes\left(\mathcal{O}_{Y} \oplus \mathcal{O}_{Y}(-L)\right) \simeq \mathcal{O}_{Y}\left(K_{Y}+L\right) \oplus \mathcal{O}_{Y}\left(K_{Y}\right)$. Hence $H^{0}\left(V^{*}, \tilde{\mu}^{*}\left(K_{Y}+L\right)\right)$ is isomorphic to $H^{0}\left(Y, K_{Y}+L\right)$ and its dimension is $p_{g}(V)$.

We show that ρ in (20) is surjective. For any $\psi \in H^{0}\left(Y, K_{Y}+L\right) \simeq H^{0}\left(V^{*}, \tilde{\mu}^{*}\left(K_{Y}+L\right)\right)$, the map ρ is given by

$$
\rho(\psi)=\left(\psi\left(\eta_{1}\right), \cdots, \psi\left(\eta_{k+i}\right)\right) \in \bigoplus_{i} \boldsymbol{C}_{E_{i}}
$$

where $\psi\left(\eta_{i}\right)$ is the value of ψ at η_{i}.
Denote by $M_{i}, 0 \leq i \leq k+l$, the linear subsystem of $\left|K_{Y}+L\right|$ consisting of elements passing through $\eta_{1}, \cdots, \eta_{i}$. If η_{i+1} does not belong to the base locus of M_{i}, then the descending filtration

$$
\left|K_{Y}+L\right|=M_{0} \supset M_{1} \supset \cdots \supset M_{k+l}
$$

satisfies $\operatorname{dim} M_{i+1}=\operatorname{dim} M_{i}-1$ for any i.
On the other hand, for any $(\phi) \in\left|K_{Y}+L\right|=\left|2 C_{0}+(e+\beta-2) f\right|, \phi$ can be written as

$$
\phi=\phi_{e+\beta-2} Y_{0}^{2}+\phi_{2 e+\beta-2} Y_{0} Y_{1}+\phi_{3 e+\beta-2} Y_{1}^{2}
$$

where $\phi_{i e+\beta-2} \in H^{0}\left(\boldsymbol{P}^{1}, \mathcal{O}(i e+\beta-2)\right)$. Thus from our construction and assumption, it is easy to see that, for each $0 \leq j \leq k+l, M_{j}$ separates points on $Y \backslash\left\{\eta_{1}, \cdots, \eta_{j}\right\}$, that is, for any points $P, Q \in Y \backslash\left\{\eta_{1}, \cdots, \eta_{j}\right\}$, there exists $(\phi) \in M_{j}$ such that $\phi(P)=0$ and $\phi(Q) \neq 0$. Especially the base locus of M_{j} coincides with $\left\{\eta_{1}, \cdots, \eta_{j}\right\}$. Thus ρ is surjective. Then, by (20), we get (1). Moreover, since the rational map of Y associated with M_{k+l} is birational onto its image, (3) follows.

It remains to prove (2). By the above argument, the base locus of $\left|K_{V^{*}}\right|$ is contained in $\bigcup_{i=1}^{k+l} E_{i}$. Since a generic member of M_{k+l} passes through $\eta_{i}(1 \leq i \leq k+l)$ smoothly, E_{i} is not a fixed component of $\left|K_{V^{*}}\right|$ by (19). Thus $\left|K_{V^{*}}\right|$ is free from fixed components.

Let η_{i} be an infinitely close triple point of B. Let C be a member of M_{k+l} and C^{*} the proper transform of $\mu^{-1}(C)$ by σ. When C varies in M_{k+l}, C^{*} passes through the unique point on E_{i}. (This is easily observed by means of the canonical resolution.) However, it is not the case when η is an ordinary quadruple point. Thus $\left|K_{V^{*}}\right|$ has exactly k base points.
q.e.d.

Theorem 5.7. Let x, y be any pair of integers satisfying one of the following two conditions:
(a) $(8 / 3) x-8 \leq y \leq 4 x-16, y \neq(1 / 3)(8 x-i)(i=21,23)$.
(b) $y=4 x-i, x \geq 6$ and x is equivalent modulo 5 to j, where $(i, j)=(8,0),(9,2)$, $(10,2),(10,4),(11,1),(11,4),(12,1),(12,3),(12,4),(13,0),(13,1),(13,3),(14,0),(14,1)$, $(14,3),(14,4),(15,0),(15,2),(15,3),(15,4)$.

Then there exists a minimal surface S such that
(1) $p_{g}(S)=x, q(S)=0$ and $c_{1}^{2}(S)=y$,
(2) there is a fibration $\lambda: S \rightarrow \boldsymbol{P}^{1}$ whose general fiber is a hyperelliptic curve of genus 3,
(3) $\left|K_{S}\right|$ is free from fixed components and $\Phi_{K_{s}}$ is of degree 2 onto its image.

Proof. We set $0 \leq l \leq 4, e+\beta \geq 3$ and $(e, \beta, k) \neq(0,3,0)$. Then the assumptions in

Proposition 5.6 are satisfied. Under these conditions, we let k vary with $0 \leq k \leq k_{\max }$. By (17), Lemma 5.5 and Proposition 5.6, a calculation shows that the invariants of our surfaces cover the area (a) and (b). q.e.d.

Remark 5.8. If a regular surface has a hyperelliptic pencil of genus 3 , then it satisfies $c_{1}^{2} \geq(8 / 3) p_{g}-8$. See, [10, V] or [13].
6. Surfaces of type II. In this section, we give some remarks on surfaces of type II. Let S be a minimal surface of type II in the sense of $\S 1$. We assume that the irregularity of S vanishes. Then the canonical image S^{\prime} is a rational ruled surface. Thus S has a hyperelliptic pencil induced by the canonical map and the ruling of S^{\prime}.

For the hyperelliptic structure of S, we have the following theorem due to Xiao $[16, \S 1]:$

Theorem 6.1 (Xiao). Let S be a regular minimal surface of general type with a hyperelliptic pencil. Suppose that the invariants of S satisfy

$$
p_{g}(S)>(2 g-1)(g+1)+1, c_{1}^{2}(S)<(4 g /(g+1))\left(p_{g}(S)-g-1\right)
$$

for some integer $g \geq 2$. Then S has a hyperelliptic pencil of genus g. Moreover, the hyperelliptic pencil of genus less than $g+1$ is unique.

Corollary 6.2. Assume that S is a regular surface of type II with $c_{1}^{2}=3 p_{g}-7$. If $p_{g}(S) \geq 46$, then it has a hyperelliptic linear pencil of genus less than 5.

For the existence of surfaces of type II with hyperelliptic pencils of genus less than 5, we have the following:

Proposition 6.3. Let g be 2,3 or 4 . Then, for any pair of integers (x, y) satisfying $y=3 x-7$ and $x \geq 4$, there exists a minimal surface S with a hyperelliptic linear pencil of genus g such that $p_{g}(S)=x, q(S)=0$ any $c_{1}^{2}(S)=y$.

Proof. The case $g=2$ follows from a more general result of Persson [13, §3]. The case $g=3$ with $p_{g} \geq 6$ follows from Theorem 5.7. For $p_{g}=4,5$, consult [9] and [10, IV].

We consider the case $g=4$. Set $(k, l)=(1,3)$ or $(2,1)$. By an argument similar to that in $\S 5$, there exists a reduced divisor B on $Y=\Sigma_{e}$ such that
(i) $B \sim 10 C_{0}+2 \beta f(\beta \geq 0)$,
(ii) B has k infinitely close triple points and l ordinary quadruple points, and the other singularities are at most double points.

Let V be the double covering of Y branched along B. If S is the minimal resolution of V, then

$$
\begin{aligned}
& p_{g}(S)=10 e+4(\beta-1)-k-l, \quad q(S)=0 \\
& c_{1}^{2}(S)=30 e+12(\beta-2)-k-2 l=3 p_{g}(S)-7
\end{aligned}
$$

and S has the desired properties.
q.e.d.

Remark 6.4. For a given $g \geq 2$, there exists a regular surface of type II with a hyperelliptic pencil of genus g. Indeed, we have constructed in the proof of Proposition 6.3 a surface S using the double covering V of $Y=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ whose branch locus B is linearly equivalent to $10 C_{0}+2 \beta f$ for any $\beta \geq 3$. The second projection of Y induces on S another hyperelliptic pencil of genus $g^{\prime}=\beta-1$. So we cannot give an upper bound on the genus of hyperelliptic pencils.

References

[1] A. Beauville, L’application canonique pour les surfaces de type général, Invent. Math. 55 (1979), 121-140.
[2] E. Brieskorn, Über die Auflösung gewisser Singalaritëten von holomorpher Abbildungen, Math. Ann. 166 (1966), 76-102.
[3] E. Brieskorn, Die Auflösung der rationalen Singulatitäten holomorpler Abbildungen, Math. Ann. 178 (1968), 255-270.
[4] G. Castelnuovo, Osservazioni intorno alla geometria sopra una superficie, Nota II. Rendiconti del R. Instituto Lombardo, s. II, vol. 24, 1891.
[5] T. Fuilta, On the structure of polarized varieties with Δ-genus zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-155.
[6] J. Harris, A bound on the geometric genus of projective varieties, Ann. Sci. Norm. Sup. Pisa, IV. Ser VIII (1981), 35-68.
[7] J. Harris, Curves in Projective Space, Le presses de l'Université de Montreal (1982).
[8] E. Horikawa, On deformation of holomorphic maps I, II, III, J. Math. Soc. Japan 25 (1973), 372-396; ibid. 26 (1974), 647-667; Math. Ann. 222 (1976), 275-282.
[9] E. Horikawa, On deformation of quintic surfaces, Invent. Math. 31 (1975), 43-85.
[10] E. Horikawa, Algebraic surfaces of general type with small c_{1}^{2}, I, II, III, IV, V, Ann. Math. 104 (1976), 358-387; Invent. Math. 37 (1976), 121-155; ibid. 47 (1978), 209-248; ibid. 50 (1979), 103-128; J. Fac. Sci. Univ. Tokyo 28 (1981), 745-755.
[11] K. KII, The local Torelli theorem for varieties with divisible canonical class, Math. USSR-Izv. 12 (1978), 53-67.
[12] R. Miranda, On canonical surfaces of general type with $K^{2}=3 \chi-10$, Math. Zeitshrift 198 (1988), 83-93.
[13] U. Persson, On Chern invariants of surfaces of general type, Compositio Math. 43 (1981), 3-58.
[14] M. Reid, Elliptic Gorenstein singularities of surfaces, preprint.
[15] K. Saito, Einfach-elliptishe singularitäten, Invent. Math. 23 (1974), 289-325.
[16] G. XIAO, Hyperelliptic surfaces of general type with $K^{2}<4 \chi$, Manuscripta Math. 57 (1987), 125-148.

Department of Applied Physics
Faculty of Engineering
Tohoku Gakuin University
Tagajou 985
Japan

Department of Mathematics
College of General Education
Kyushu University
Ropponmatsu, Chûoku, Fukuoka 810
Japan

