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Introduction. Let X be a complex space form with the complex structure J and

the standard Kaehler metric < , >, M be an oriented 2-dimensional Riemannian manifold

and x: M->X be an isometric minimal immersion of M into X. Then the Kaehler angle

α of x, which is an invariant of the immersion x related to 7, is defined by

cos(α) = (Jeu e2}, where {eu e2} is an orthonormal basis of M. The Kaehler angle gives

a measure of the failure of x to be a holomorphic map. Indeed x is holomorphic if and

only if α = 0 on M, while x is anti-holomorphic if and only if α = π on M. In [4], Chern

and Wolfson pointed out that the Kaehler angle of x plays an important role in the

study of minimal surfaces in X. From this point of view, we would like to know all

isometric minimal immersions of constant Kaehler angle in X.

In this paper, we shall mainly discuss this problem when X is a complex space

form of positive constant holomorphic sectional curvature. So, let Pn{C) be the complex

projective space with the Fubini-Study metric of constnat holomorphic sectional

curvature 4p. Let S2(K) be a 2-dimensional sphere of constant Gaussian curvature K.

Examples of minimal surfaces of constant Kaehler angle in Pn(C), are given in [1] and

[2]: For each integer p with 0<p<n, there exist full isometric minimal immersions

φnp: S2{Knp)-+P\C\ where Knp = 4p/(n + 2p(n-p)). Each φnp possesses holomorphic

rigidity, that is to say, such two immersions differ by a holomorphic isometry of Pn{C).

The Kaehler angle ocnp of φnp is given by cos(αΠ p) = (n — 2p)/(n + 2p(n — p)). Note that

Kn,p = 2p(l -(2/7+ l)cos(αΠ,p))/p(p+ 1).

Characterizing minimal surfaces of constant Kaehler angle in Pn(C), Ohnita [10]

recently gave the following theorem: Let φ: M^Pn(C) be a full isometric minimal

immersion of a 2-dimensional Riemannian manifold M into Pn(C). Assume that the

Gaussian curvature K of M and the Kaehler angle α of φ are both constant on M.

Then the following hold.

(1) If K>0, then there exists some/7 with 0<p<n such that K=4ρ/(n + 2p(n — p)),

cos(oc) = (n — 2p)/(n + 2p(n — p)) and φ(M) is an open submanifold of φn p(S2(K)).

(2) If K=0, then cos(α) = 0, that is to say, φ is totally real. Such φ's were already

classified by Kenmotsu [6].

(3) The case of Λ^<0 is impossible.

In [10], Ohnita conjectured that the theorem will hold without the assumption
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that the Kaehler angle is constant. On the other hand, Bolton et al. [2] conjectured

that, if the Kaehler angle of an isometric minimal immersion x: M^Pn(C) is constant,

then the Gaussian curvature of x is also constant, when the immersion is neither

holomorphic, anti-holomorphic nor totally real. They gave an affirmative answer to

this conjecture for n<4. We would like to discuss this conjecture under some additional

conditions. We prove the following:

THEOREM. Let X be a Kaehler manifold of complex dimension n of positive constant

holomorphic sectional curvature 4p and M be a complete connected Riemannian 2-manifold.

Let x: M—>X be a full isometric minimal immersion with constant Kaehler angle α, which

is neither holomorphic, anti-holomorphic nor totally real. If the J-invariant first osculating

space of x is of constant dimension on M and the Gaussian curvature K of M satisfies

K>(\ — 7cos(α))p/6>0 on M, then K is constant on M. Moreover, x is locally congruent

to either φnΛ, φn2, or φn3.

COROLLARY. Let x\ M-+X be a full isometric minimal immersion with constant

Kaehler angle α, which is neither holomorphic, anti-holomorphic nor totally real. If the

Gaussian curvature KofM satisfies (1—5 cos(α))p/3 > K> (1 — 7 cos(α))/p/6, then x is locally

congruent to φn 3 .

The author would like to express particular thanks to Professor K. Kenmotsu for

his advice and encouragement during the development of this work.

1. Preliminaries. Let I be a Kaehler manifold of complex dimension n of

constant holomorphic sectional curvature 4p, and {ωα} be a local field of unitary

coframes on X so that the metric is represented by ds2 = £ ω α ώ α , where α, β, y, run

from 1 through n. We denote by {ωaβ} the unitary connection forms with respect to

{ωα}. Then we have,

(1.1) dωa = ΣωaβΛωβ, ωβ β

(1.2) dωaβ = YωΛy A ωyβ + Ωaβ ,

(1.3) Ω*β=-P(ωα Λ ώβ + δΛβYωy Λ ώγ).

We set ωα = 0 2 α _ 1 + / 0 2 α , ωβ0 = 0 2 α _ 1 > 2 0_ 1 +/0 2 β t 2 0_ 1 . Then {02α_i, 02α} is a canonical

1-form of the underlying Riemannian structure of X and {02α-i,2^-n ®2<χ,iβ- il *s t n e

Riemannian connection form with respect to {02α-i> θ2a}. Let {e2a-1, e2a] be the dual

frame of {Θ2a-ι, Θ2oc}. Then it is an orthonormal frame with Je2a-ι=e2a. Such a frame

is called a J-canonical frame.

Let U be a neighbourhood of a point of X. We choose and fix a local orthonormal

system {eu e2] of vector fields on U which may not be a /-canonical frame. Generalizing

the notion of the Kaehler angle of an immersion x, we use the same notation α defined

by cos(α) = (Jeλ, e2y. We denote by Oι

p the subspace of the tangent space TpX spanned
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by eu e2, Jex and Je2. If cos2(α)^ 1 on U, then the dimension of O\ is equal to 4 for

each pe U. Let Nι

p be the orthogonal complement of O\ in TpX so that TpX= O\ + TV*.

Since O\ and TV* are /-invariant subspaces of TpX, we can define vectors £3, <?4, e^ <?2,

e 3 and e 4 as follows:

e3 = — cot(α)^1 — cosec(α)/£2 •> $4. ~ cosec(α)/^1 — cot(a)£2 •>

(A~ (A~
(1.4) ex =cosl — l^i + sinl — \e3 , ^ 2 = c

3̂ = sinί y k - cosί yJ^3 , e4 = - sinί y )e2 + cosί y

{eγ, e2, e3, e4} is an orthonormal basis of O\ and {eu e2, e3, e4} is a 7-canonical basis

of O\ for /7eί/. This shows that starting from any orthonormal system {eue2} of

vectors satisfying (Jel9 e2}φ ± 1 on U, we can construct a 4-dimensional subspace O^

of regenerated by {eί9 e2, Jeu Je2] which has a J-canonical basis {eί, e2, e3, e4}. Let

{eA} be a local orthonormal frame on X which extends {eu e2, e3, e4}, where A runs

from 1 through In. Let {0 }̂ denote its dual frame. Then {eί9 e2, e3, e4; eλ, λ>5] is a

local orthonormal frame such that {e1, e2, e3, e4] is /-canonical. Putting ωa — Θ2a^1 +

iθ2a, we have, by (1.4),

( \ / \

— Jα^+sinί — \ώ2 ,

(1.5) $3 + /$4 = sin( — b j - c o s ί — \ώ2 ,

We set cos{β) = (Je5, e6}. If cos2(jS)^ 1 on an open subset U' of U, then in the same

way as above the subspace Λ^ has a splitting with respect to the {e5, e6} such that

Nl = O2

p + N2

p, peU', Op is a /-invariant 4-dimensional subspace of Λ^ spanned by

{e5, e6, Je5, Je6} and N2

p is its orthogonal complement in Nι

p. Then we have an

orthonormal basis {e5, e6, eΊ, e8} and a /-canonical basis {e5, e6, e7, e8} of O2

p over U'.

L e t {^2A-I^ eiλ) (^^5) be a /-canonical basis of TV2 over U and put e2λ.ι =e2λ_ί and

e2λ = e2λ for 2>5. Let {^a-i^ia} a n d {Θ2α-i^2α} be dual coframes of {e2a_^e2a}

and {̂ 2α_!, e2a}, respectively, over U. Putting ωα = ̂ 2 α _ 1 +/^ 2 α, we have the following

relations, by (1.4):

θί + iθ2 = cosl — \ω1 + sinl — \ω2 ,

/ \ / \
$3 + iθ4 = sinl — lωj —cosl — \ώ2 ,
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— )ω 3 + sinί — )ώ 4

( β\ ίβ\-
ΘΊ + iθs = sin! — )ω3 — cosl — jω 4

Let {Θ2lχ-i,2β-u ^2α-i,2α? ̂ 2α,2/?} be the Riemanniati connection form with respect

to the orthonormal coframe {02α-i> Θ2a\. By taking the exterior derivative of (1.6)t and

using (1.1) and (1.6), we get

(1.7)

= - ί ω 1 2 + - —

- —(rfα-sin(αXα>1 1+ω2 2))

. /<x\ fβ\ . / α \ .
+ sinl — I cosl — lω 2 3 + sinl — I si

~ s i n ( τ ) c o s ( y ) ώ 2 3 + s i n ( y s i n ( y ) ώ

• (A (β\ (A fβ\
+ s m ( y I s m l y )ω23-sml y 1 cosl — Jώ2

ί y j cosί yjω14

) s i n T ) ώ 2 3 ~ s i n ( y ) c o s ( y ) ώ~ s i n ( τ ) sin\
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ί yjω lλ-sinί yjώ2Λ , (λ>5).

By taking the exterior derivatives of (1.6)2-(1 6)5, we get other identities related

to θλv and ωΛ v, which we omit to show.

2. Minimal surfaces of Kaehler manifold. Let M be an oriented 2-dimensional

Riemannian manifold and x: M^X be an isometric immersion of M into a Kaehler

manifold X of constant holomorphic sectional curvature 4p. Let {eί9e2} be a local

orthonormal frame on M. By definition, cos(α) = (Jeί9 e2} is the Kaehler function (α is a

Kaehler angle) of x (cf. [4]). The immersion is said to be totally real if cos(α) = 0 on M.

It is said to be complex if cos2(α)= 1 on M. We assume that x is not a complex immersion

at a point peM. In the open subset cos 2(α)^ 1, we extend {ex, e2) to a neighbourhood

of X and using results of Section 1, we get canonical 1-forms {θ1, 02, θ3, 04} defined

on the neighbourhood of X. Let {ΘA}, A = \, , 2«, be a local orthonormal frame on

X which contain the {θl9 θ2, θ3, θ4}. We denote the restriction of {ΘA} to M by the same

letters. Then we have ^ = 0 (3</<2«) on M. Putting φ = §1 + iθ2, the induced metric

of M is written as ds2 = φφ. By taking the exterior derivative of (1.5) restricted to M,

we get

— {da + sin(oc)(ω1 x + ω 2 2 ) } =a

(2.1)

/α
COS —

V2

sinί γ)ωλ2 = bλφ + cλφ, 3<λ<n,

where α, b, c, αΛ, feλ and cλ are complex-valued smooth functions defined locally on M

and depend only on the choice of {eί9 e2}. Let {htij} be the components of the second

fundamental form so that θit = Yjjhtijθj. By using (1.7) and (2.1), all hti/s can be expressed

in terms of by α, b, c, aλ, bλ and cλ. Indeed, we have

A3 1 1 = {a + ά + 2(b + b) + c + c] ,

hn^ — ί + ά )
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h412 = —-

(2.2) h422 = j

By (2.2), the mean curvature vector of this immersion is written as — (

Σ^A(^2A-1 + ̂ 2λ) + [conjugate]). The immersion x is said to be minimal if htί x + ht22 = 0

on M for any /, or equivalently, if b = bλ = 0 on M for any λ. x is said to be superminimal

if it is minimal and c = 0 o n M (cf. [4], [6]). Note that a complex immersion is always

minimal and | c \2 is a scalar invariant of x.

From now on, we assume that x is minimal. Let K be the Gaussian curvature of

Λf, defined by dθl2= —(i/2)Kφ A φ. By virtue of (1.6)! and (2.1)1? the Gauss equation

of x becomes (cf. [6, Prop. 1])

(2.3) ^ ( l + 3 c o s 2 ( α ) ) p - 2 ( μ | 2 + k | 2 + X j α λ | 2 + X j c A | 2 ) .

By taking the exterior derivative of (2.1) and using the structure equation, we get, for

some locally defined functions ah ch aλi and cλi (i= 1, 2),
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da — iaθ1 2 = a1φ + a2φ ,

with a2 = I a | 2 c o t ( a ) - £ | aλ | 2 tanί — ) + £ | cλ | 2 cotί — ) + — p sin(2α),
A \2J x \2j 4

(2.4) dc + 3icθ12 = c1φ + c2φ , with cx = — #ccot(α),

daλ-2iaλθ12-YJaμωλμ = aλΛφ + aλaφ , with α A f 2 = -ctfAcot( — ) ,

δ Ί X 0 , with cA,x = cαΛ tanί

We put φ = eikφ and ώ λ = ̂ A «Λμω

μ? where A: is a locally defined real-valued function

and (aλμ) is a unitary matrix (λ, μ>3). Then we have ώ1=eikωl9 ώ2 = e~ιkω2 and hence,

by (1.1), we get ώ11

 2 i k Y ik

μ

TJμ

(^)2μaμv=ze'ikω2v' BY ( 2 1), we have ά = e~ίka, c = e3ikc, dλ = e~2ikaλμaμ and

cA = e2ίkaλμcμ. Thus | « | 2 , | c | 2, ^ ] | αA | 2 and ^ | cA | 2 are scalar invariants of x. We wish to

compute the Laplacians of these functions. Let Δ be the Laplacian for the metric of M.

LEMMA 2.1. Let x: M^X be an isometric minimal immersion of M into a Kaehler

manifold X of constant holomorphίc sectional curvature Ap with the Kaehler angle α. Then

we have

Δα = 4| a | 2 cot(α)-4£\aλ |
2 tan W + 4^ | cλ \

2 c o t W + 3p sin(2α),

- 4XI cλ 1
2 cos(α) cosec2ί — j - 12p cos2(α).

PROOF. By adding (2.1)! to its conjugate, we get da = aφ + άφ. Hence dcot =

i(άφ — aφ). Because of ddcoc = (i/2)(A(x)φ A φ, we get the formula for Δα by (2.4)^ By

(2.4)2, we get the formula for Δ log \c\2.

REMARK. The first formula in Lemma 2.1 was also proved by Chern and Wolfson

[4, p. 72]. Using this, we get formulas for Δ log (sin(α/2)) and Δ log (cos(α/2)), which

coincide with the formulas (2.1) and (2.2) in [5], if n = 2.

Using Lemma 2.1, we have Δlog( |c | 2 sin 2 α) = 6Â , which coincides with (2.2) in

[6]. Hence, in the same way as Theorem 3 in [6], we get the following.

PROPOSITION 2.2. Let X be a complex n-dimensional Kaehler manifold of positive
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constant holomorphic sectional curvature Ap and M a complete connected 2-dimensional

Rίemannian manifold. Let x: M^X be an isometric minimal immersion which is not

complex. If K>0, then either c = 0 or K=0 on M.

Note that Proposition 2.2 is an extension of Theorem 3 in [6] and Theorem 6.1

in [5].

We assume that Λ:>0 on M, hence c = 0 by Proposition 2.2. Let H{ή = htll + ihtl2

with ί = 3,4, • ,2H, and we put H=YJt{H{t))2. Then we get H=4j^λdλcλ by (2.2).

Hence, \H\2 is a globally defined smooth function on M. Using (2.4), we get dH+

4iHθ12 = H2φ, where we put H2=4Σ(άλcλt2 + άλΛcλ). Hence Δ |// | 2 = 2(4#|// | 2 +

2| H2 | 2 ) . On the other hand, we have | H \2 < 4(£j aλ |
2 + £ | cλ | 2 ) 2 by Schwarz's inequality.

From these and the Gauss equation (2.3), if K>0, \H\2 is a subharmonic function

on M bounded above, hence is constnt ( = 0). We put Vιι=YJthtllet and V12 =

y ( 2 2)> w e h a v e

(2.5) Vlί = - — ^

Vi2=- — Σ(aλ-aλ-Cλ + cλ)e2λ-1- — Σ(aλ + άλ-cλ-cλ)e2λ.

Vll and Vί2 are independent of the choice of the normal frame field {et} (t>3). The

subspace O2 spanned by {F1 1 ? F 1 2 , / F u , JVί2} is called that J-invariant first osculating

space of x. The geometric meaning of | H\2 follows from the identity | H\2 = (|| Vί x | |
2 —

I|F 1 2 | | 2) 2 + 4<K11, V12}
2. We define a subset of M by Ω(2) = {/?eM, Vxl(p) = 0 or

V12(p) = 0}. For the set Tp(M) of unit tangent vectors of Tp(M), we define a subset of

Np(M) by ^ ( ^ ( M ^ f X ^ J ^ ; ^ I ^ e ^(M)}, which is called the ellipse of

curvature in the first osculating space ([5]). Summarizing these computations, we have

the following:

PROPOSITION 2.3. Under the same assumption as in Proposition 2.2, ifK>0 on M

and Ω{2) = 0, then the ellipse of curvature in the first osculating space is a circle.

3. Minimal surfaces with constant Kaehler angle. We wish to study a minimal

immersion x\ M-+X with constant Kaehler angle α, which implies a = 0. Suppose that

x is not complex and K>0 on M. Then, by Lemma 2.1 and Proposition 2.2, we have

-4tan(α/2)X|βA |2 + 4cot(α/2)X|cλ|
2 + 3psin(2α) = 0 and c = 0. Hence, the Gauss

equation (2.3) is expressed as χ μ Λ | 2 + X k Λ | 2 = (l/2)(l +3cos2(α))p-(l/2)Λ:. These

equations give

(3.1)
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l / α \
Σ I C A I 2 = = — s π l 2 ( — )(P — 3p cos(α) — K).

If K> (1 — 3 cos(α))p > 0, we then have K=(\ — 3 cos(α))p, which means that AT is constant.

Hence, by Ohnita's theorem [10], we conclude that x is locally congruent to φnl.

Summarizing these facts, we get:

THEOREM 3.1. Let M be a complete connected oriented 2-dimensional Riemannian

manifold and X a Kaehler manifold of complex dimension n of positive constant holomorphic

sectional curvature 4p. Let x: M^Xbe a full isometric minimal immersion with constant

Kaehler angle a which is not complex. If K>(\ — 3 cos(α))/9>0, then K is constant and x

is locally congruent to φnΛ. If K>{\ + 3 cos(α))p>0, then K is constant and x is locally

congruent to (?„,„_i

By (3.1), we have Σl«Al 2 -Σl c Al 2 = =(l/ 2 )( 4 P-^)cos(α) . By this and (2.5), we have

Q{2) = φ if cos(α)^0 on M. From now on, we assume that x is not totally real, i.e.,

LEMMA 3.2. Under the same assumptions as in Theorem 3.1 we have

cos(α))(Σkλ |

PROOF. We only give the proof for the formula for Δ(Σl cλ | 2 ) , because the other

can be shown in a similar way. By (2.4)4, we have

(cλcλΛ+cλcλt2)Φ} and dcλΛ + icλΛff12-ΣμcμΛωλ

(1/2) sec2(α/2)αcαΛ)φ + (tan(α/2)βAc2 + tan(α/2)αλ>2c + (l/2) sec2(oc/2)άcaλ)φ. Hence, we get

-cosec2

where we put L = Σ{tan(α/2)αλc2 + tan(α/2)αA2c + (l/2)sec2(α/2)αβAc}<:Λ. By Theorem

2.1, Proposition 2.3 and (3.1)2, we have cλί=0, Σaλcλ = 0 and L = 0.

PROPOSITION 3.3. Letx: M^X be a full isometric minimal immersion with constant

Kaehler angle α, which is neither complex nor totally real; If there exists an open subset

U of M such that K\v<{\ —3 cos(α))p, then we have n>4.

PROOF. By (3.1), we have Vλlφ0 and Vί2φO on U, and e1,e2,Je1,Je2, VίU

V12, JVίl9 JV12 are linearly independent on U. This means that n>4.

Using the second formula in Lemma 3.2 and (3.1)2, we have:
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THEOREM 3.4. Let X be a Kaehler manifold of complex dimension n of positive

constant holomorphίc sectional curvature 4p and M a complete connected Riemannian

2-manίfold. Let x: M-+X be a full isometric minimal immersion with constant Kaehler

angle oc, which is neither complex nor totally real. If K>{\ — 5 cos(α))p/3 (>0) on M, then

K is constant, and we have K=(l — 5 cos(α))p/3 or ]Γ | cλ \2 — 0. In case K= (1 — 5 cos(α))p/3,

x is locally congruent to φn2, and in case ΣkAl 2 = O> x is locally congruent to φnl.

COROLLARY 3.5. Under the same assumption as in Theorem 3.4, if (1 —

3 cos(α))p>K>(\ — 5 cos(α))p/3, then x is locally congruent to φn2.

REMARK. Using the first formula in Lemma 3.2, we get a result analogous to

Theorem 3.4: If K>(\ + 5 cos(α))p/3 (>0) on M, then A îs constant, so that x is locally

congruent to φn^-x or φn,n-2. Hence, we can estimate ( Σ k J 2 ) when cos(α)>0, or

( Σ I ^ A I 2 ) when cos(α)<0. Hence, we may assume cos(α)>0.

Because of Proposition 2.3 and the assumption that x is not totally real, VX1 and

V12 are perpendicular to each other and of the same lengths. Normalizing these vectors,

we adopt them as a basis of O2, so that e's= V11/\\V11\\ and e'6= K 1 2/| |K 1 2 | | . We put

cos(/9 = </β'5,£'6>. Then we have cos(β) = (Σ\aλ\
2-Σ\cλ\

2)/(Σ\^\2 + Σ\^\2) I f

cos(j?)= ± 1 on M, then we have Σ\ ax I2 = ^ or ^ | cΛ | 2 = 0, and this case is reduced to

Theorem 3.1. Now we assume cos(jS)^±l at a point of M. Then dim(O2) = 4 in a

neighbourhood U of this point. So, as in Section 1, we get the equations (1.4) and (1.5)

on U. With respect to this new frame, we have V11=h'511e
r

5, Vl2 = h'ei2e'

h'6iι=h'nι=h'512 = h'tl2 = Q (/>7). From these equations, (1.6) and (2.1), we have

(3.2) c3 = c o t ί y W , c4 = tanίyjfl3 and aλ = cλ = 0, (λ>5).

Moreover, because of || K1X || = | |K 1 2 | | , c3 and cA are both real-valued and c3c4 = 0. We

may assume c3φ0. Hence h'5ίl= —sec(β/2)c3 and h'6ί2 = SQc(β/2)c3. Using (2.1), (2.4)

and the facts mentioned above, we get

v T / 3 2 = c ^ ' c o Λ T j 1 =

(3.3) dc3 + 2ic3θ12 - c3ω33 = c3t2φ ,

da4-2ia4θ12 -α4ω44 = aAΛφ ,

a4ω34=-a3Λφ, a±ωλ4=-aλΛφ, (λ>5).

From now on λ, μ run from 5 to through n. By taking the exterior derivative

of (3.3) and using the structure equations, we have
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2θι2 - c^2ω44r = c4t22φ ,

λa2φ , with cλ2l = -c^2aλΛ/a4 ,

(3.4) da3Λ-3ia3Λθί2-a3Λω33 = a3Λ1φ,

^ Σ 20 ? With 0A,12 = ~ 03,1^,2^3

By the definition of e'5 and e'6, we have §'. j2λ_1 = ̂ '.f2λ = 0 (λ>5). By taking the exterior
derivative of these forms and using the structure equations, we can introduce the
quantities defined by the following equations:

λ - 1,1 λ - 1,112^2 ->

By taking the exterior derivative of (1.6)3, we get

cosί yjω3λ-sinί y

Hence, by (3.3), A 2 A - I , I I I > ^ 2 A - I , I I 2 ? *2A,IU a n d Λ2A,ii2 are expressed in terms of aλΛ

and cλ2 because of A r

5 1 1 = — hf

612= —sQc(β/2)c3. Indeed, we have

1 ,

(3.6)

A

y

2 A , 1 1 2 =

Using these quantities, we define normal vectors K i n and Vlί2 in the following way:
^III=Σ( / Z 2A-I,IU^2A-I+^2A,III^2A) and Vίί2 = Σ(h2λ_1Λ12e2λ-1+h2λΛ12e2λ). By
(3.6), K n i and K112 are of the following forms:
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(3.7) Viii=--jΣ(aλΛ+άλ,i+Cλ,2 + dλ,2)e2λ-i+-

THEOREM 3.6. Let X be a Kaehler manifold of complex dimension n of positive

constant holomorphic sectional curvature 4p and M a complete connected 2-dimensional

Riemannian manifold. Let x: M->X be a full isometric minimal immersion of constant

Kaehler angle α, which is neither complex nor totally real. If there exists an open subset

U of M such that 0 < K | υ < ( 1 — 5 cos(α))p/3, then we have n>5.

PROOF. By assumption, we get A^<(1—3 cos(α))p on U. Hence, by Proposition

3.3, we get n>4 and Σ k Λ | 2 # 0 . Assume that YJ\cλa\
2 = Q on U. Then we have

d(Σ I cλ | 2) = 0. On the other hand, by Lemma 3.2, we have Δ £ | cλ |
2 φ0, which contradicts

the constancy of Σ | c A | 2 . Hence, we have Σ k A , 2 l 2 ^ 0 Using (3.6), we have VmΦO
o r ^112^0 at a point of U. This shows that n>5.

REMARK. Combining Theorem 3.4 and Theorem 3.6, we can give another proof

of the fact that the conjecture by Bolton et al. [2] is affirmative if n<4.

Let {e\, e'2} be another local orthonormal frame on M such that e\ = cos(k)e1 —

sin(fc)£2 and ^ 2

 = s m ( ^ i + c o s ( ^ 2 Then we have Vf

11=cos(2k)V11 — sin(2k)V12 and

F /

1 2 = sin(2A:)K11+cos(2A:)F12. On the other hand, by the definition of c3, we have

F n = -sec(β/2)c3e5 and V12 = sec(β/2)c3e6. So, under such a change, we have, by (3.3),

c'3 = c3, a\ = a^ c'4j2 = e5ikc4j2 and c'^2 = eΎιk(^aλμc^2\ where we put ω'λ = Σaλμωμ for

a unitary matrix (aλμ) (5<λ, μ<ή). Hence | c 4 2 |
2 and £ | cλ 21

2 are scalar invariants of

x.

LEMMA 3.7. Let x: M^X be an isometric minimal immersion with constant

Kaehler angle OL9 which is neither complex nor totally real. On an open subset U of M

such that cos(β)φ + 1, we have

l 2 ) 2)2/c§.+4| Σwχ.i l 2 K-8k 4 > 2 ι
2ΣkΛ,2 l

2/c2

where λ runs from 5 through n.

PROOF. We only prove the formula for Δ ( Σ | c Λ 2 l 2 ) here, because the other can
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be shown in a similar way. By (3.3) and (3.4)2, we have

\Cλ,2 I2) = Σ( C A,2^,22 + Cλt2Cλt2 l)Φ + Σ(Cλ,2dλ,21 + Cλ,2Cλ,2l)Φ ,

/ . / aλ,l aλ,

Hence, we can directly calculate ddc(Σ\ cλ>2 |
2)

PROPOSITION 3.8. Let M be a complete 2-dimensional Riemannian manifold and

x: M-+X be an isometric minimal immersion of constant Kaehler angle α, which is neither

complex nor totally real. If cos(β)φ ±1 on M and K is strictly positive on M (hence M

is compact), then we have \ c4 2 1 2 = 0 on M.

PROOF. By (3.2), (3.3), Lemma 3.2 and Lemma 3.7, we have A(al\c4.^2\
2)==

l0Kal\c4.2\
2 + 4\a4.c4.,22 + U4.,ιc4;2\2' which shows that al\cAf2\

2 is constant. Hence,
we get | c 4 > 2 | 2 = 0.

Let// ( 2 )(0 = A ί m + ̂ ί i i2with/ = 9, 10, , 2#i, and we put H{2) = Σt(H(2)(t))2. Then

we get H(2) = 4Σ^λ,ιcλ,2 by (3.7), where λ runs from 5 through n. \H{2)\2 is a globally

defined smooth function on M. By (3.3), (3.4) and Proposition 3.8, we have

dH{2) + 6iH{2)θ12 = 4Σ(άλΛcλ,22 + άλΛ1cλf2)φ because of X(5 λ f l c A f 2 1 +Λ A i l 2 c A f 2 ) = 0. By

the same calculation as in the proof of Proposition 2.3, we have the following:

PROPOSITION 3.9. Under the same assumptions as in Proposition 3.8, we have

Hi2) = 0onM.

cϊΣ\ cλ,2 I2 (5<λ<ή) is independent of the choice of normal vectors et, 5<t<2n.

By Lemmas 3.2 and 3.7 as well as Propositions 3.8 and 3.9, we have

(3.8) Δ{c 2Σk λ, 2 | 2} = 2 c 2 Σ | ^ ^

from which we obtain:

THOREM 3.10. Let X be a Kaehler manifold of complex dimension n of positive

constant holomorphic sectional curvature 4p and M be a complete connected Riemannian

2-manifold. Let x: M-+Xbe a full isometric minimal immersion of constant Kaehler angle

<x, which is neither complex nor totally real. If the J-invariant first osculating space of x

is of constant dimension on M and K>(\ — 7 cos(α))p/6 > 0 on M, then K is constant so

that x is locally congruent to either φKtί9 φnj2 or (/>„ 3 .

PROOF. By Theorem 3.4, we may assume that there exists an open subset U such

that K< (1 - 5 cos(α))p/3 on U. Hence, by Theorem 3.6, we get Σ \cx I2 Φ 0 and ΣI cλ,2 I2 ̂ 0

at a point of U. Hence by assumption we have cos(/?)# ± 1 on M. By (3.8) we have

6K— p + 7pcos(α) = 0, which shows that x is locally congruent to φn3.
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COROLLARY 3.11. Let x: M-> X be a full isometric minimal immersion with constant

Kaehler angle α, which is neither complex nor totally real. If (1 — 5cos(α))p/3>

A^>(1 — 7 cos(α))p/6, then x is locally congruent to φHt3.
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