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1. Introduction. Let L%(x), a> —1, be the Laguerre polynomial of degree n and
of order a defined by

L:(x): ex " <_i>" (e—xxn+a) .

n! dx

Then the functions t2L%(x)e *?x%2, n=0,1,2, - - -, are orthonormal on the interval
(0, c0) with respect to the ordinary Lebesgue measure dx, where

ay—2 __ * a 2 —x.,a _ F(n+a+l)
(rn) _J‘o {Ln(x)} e x%dx= F(n+l)

This orthonormal system leads us to the formal expansion of a function f(x) on (0, o0):

SO~ Y (e Lix)e2x?

n=0

‘where aZ(f) is the n-th Fourier-Laguerre coefficient of order « of f(x) defined by
aﬁ(f)=j SOty Ly(x)e™ 2 x*? dx .
. 0

We note that the integral converges and a%(f) is finite if «>0 and 1< p< oo, or if
—l<a<0and (1+a/2)"'<p<co.
Our theorem is as follows:

THEOREM. Let o, f> —1 and y=min {a, B}. If y>0, then

(1.1) r
0

for 1 < p< oo, where C is a constant independent of f. If —1<y<0, then (1.1) holds for
(1+y/2) " t<p<—=2/y.

0

Y ah(N)raLi(oe 2 x0?

n=0

pdeCJ‘oo |f(x) P dx
0

Historically, Guy [11] proved a transplantation theorem for Hankel trans-
forms. Schindler [ 14] proved Guy’s theorem showing an explicit integral representation.
For other classical expansions, Askey and Wainger [3], [4] gave transplantation
theorems for ultraspherical coefficients and its dual. Furthermore, Askey [1], [2]
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generalized their theorems to Jacobi polynomial expansions. In [1], he also proved a
transplantation theorem [1, Theorem 3] for Laguerre coefficients of orders a and
B=o+2. Our theorem is the dual to his theorem with arbitrary . Some other related
transplantation theorems are found in Gilbert [10] and in Muckenhoupt [13].

An advantage of our transplantation theorem is that, if a norm inequality of
Laguerre series of some order « is proved, then the corresponding norm inequality of
any other order f holds automatically. We give an application. Let A={1,};°, be a
bounded sequence. We define a multiplier operator 4% with multiplier A by
ay( M (f)=72,a%f), n=0,1,2,---, that is,

M)~ Y, Apal(fITELYx)e ™2 x*2 .
n=0

We denote by L? the Lebesgue space of all measurable functions f(x) defined on (0, o)
such that || 1 ,={[g |/(x)|?dx}'/?<oo. We may denote I£1, by /() I,

COROLLARY. Let A(x) be a four times differentiable function on (0, c0) satisfying
sup,. o [A9x)x/|<B (j=0,1,2,3,4), and let A={A(sn+1))};%o for s>0. Then,
| A5%(f)|,<CBIfll, (feLP) if x>0 and 1 <p<co, or if —1<a<0and (1+2/2)"'<
p< —2/a, where C is a constant depending only on o and p.

The corollary is obtained instantly by applying our theorem to the following result
due to Dlugosz [6].

(A) " Dlugosz’s criterion (cf. [6,8§1]). Let A(x) and A be a function and a sequence
given in the corollary. If =0, 1,2, - - -, then | #%(f) | ,<CB| fll, (fe L?) for 1< p< o,
where C is a constant depending only on p.

We use this criterion to prove our main theorem.

In §2, we shall extend the parameter B of T4(f) to complex B, where T4(f) is the
function defined by the series Y af(f)t2Li(x)e”**x*2. Using (A), we shall reduce
the estimate of the LP-norm of T4(f) to that of the operator 7% ,(f) defined in (2.8)
which is easier to treat. We extend the parameter f to complex numbers =+ k+i6,
k=0, 2, —oo0 <f< o0, and apply an interpolation theorem. In §3, we shall estimate the
LP-norm of T2%L?(f). To do so, we deal with T2} %(f), ¢é>0. We shall modify

@
T2t " ®(f). The essential part of our proof is to use the formula

Fn+a+e+i0+1) (!

v (1—v) 1Y L%vy)do ,
Fe+i)ntati)), "0 vy

La+e+i0(y)=

and estimate the LP-norm of the operator by the singular integral operator theory and
Hardy’s inequality. In §4, the L” norm of T3}>**(f) will be evaluated by an argument
similar to that of §3.

2. Reduction. We extend the definition of the n-th Fourier-Laguerre coefficient
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al(f) to complex B as follows. By the explicit representation

L= 3 <”+ﬁ> =

k=o\n—k k!

the definition of the Laguerre polynomial is extended to complex f. L4(x) is analytic
in B except at the points f=-—n—1, —n—2,--- for fixed x. The coefficient
t8={I(n+1)/[(n+ B+ 1)}'/* is analytic in B in the cut plane |arg(B+n+ 1)| <=, where
we take the branch of the square root equal to +1 for §=0. Let C be the space of
infinitely differentiable functions with compact support in (0, 0). For fe C®, the
definition of a?(f) is extended to complex B and is analytic in |arg (B+n+1)|<m.

LEMMA 1. Let feCZ. Let o> —1 and A>0. Then, for every j=1,2,3, - - -, there
are a constant C and a number n, such that

2.1 [aP(f)| < C(1+|0)) 1012 pa=iyz+1/4
for n>ny, —oo<f<oo and 0<3< A, where B=0+6+16.

Proor. By the formula (cf. [7, 10.12 (28)])
Ligyeryr= 1! ( ) (LE* i),
n! dy

we have

—)! [ j
0 e L f 1) 2y 2 (L (18 igyer iy dy

n! o dy

By integration by parts

s p (n—J)! ISR 2,-p/2 () o= B+

a(f)=ti———(=1y —— UGy ) Litiy)e ™y Hidy .
n! 0 dy

Since f'is a function with compact support in (0, c0), we may assume supp f<[a, b],

0<a<b<oo. Thus

b

Iaf(f)ISC(l+I9|j)lrfln“jj |LiZi)dy,

a

where C is a constant independent of » and 0, and is bounded in 0<5< 4. We apply
the formula (cf. [7, 10.12 (30)])
I'm+u+v+1) (!
(2.2) L":'+V( - ul_ v—lLu
D= ot s, T Lo,
Rep>—1,Rev>0with u=a+j—1,v=1+06+i0 and m=n—j to the integrand LE*i(y).
Then, we have
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ca+op) _. N o
(2.3) la,’f(f)lsmi—_l_él_'_llé)—‘n ’A,,»,,Jj‘ VT Lt Yy) | dudy
0

where A, ,=|7%||F(n+p+1))/| (n+a)|. Since I(1+8+i6) 1 =B(1/2+8, 1/2+i6)-
{r(1/2+6)r(1/2+i0)} ! and | I(1/2+i6)|* = n/cosh nf, we have

1 <B(1/2, 1/2){cosh no
|T(1+0+i0)| inf I'(x)

x>1/2

a

(2.4)

1/2
SAe"WVZ
T

for — o0 <6< o and 6 >0, where 4 is an absolute constant. We estimate A, ;. We have

y _{ll"(n+1)1"(n+oc+5+1)| }1/2
" | Fn+a) |2 ‘

It follows from the identity (cf. [7, 1.3 (3)])

I'n+oa+d+1+i0)
I'n+a+d+1)

i 0 iylk
2.5) FCetiy) iy X e
I(x) x+iy k=1 1+iy/(k+x)
with x=n+a+d6+1 and y=60 that |I'h+a+d+1+i0)/[(n+a+d+1)|<1 for
n=0,1,2,---,0>0and — oo <f<oo. Thus, we have
(2.6) A, ,<Cpd-a*2r2

for n>n,, where the constant C and n, depend only on 4 and «. To estimate the integral
on the right side of the inequality (2.3), we note that the integral is independent of f.
We have

b (1 1 fob
f J U“”_llLﬁfj:'l(vy)Idvdy:J‘ J | L3~ Yoy | dev* =2 do
aJo 0 Jva

1/(n—j) 1 vb . .
=U +f H |Lyti~ Y1) |dtv* ™I~ 2dv=D,+D,,
0 1/(n—j) va

say. It follows from the asymptotic formula [15, (7.6.8)] of the Laguerre polynomial
that

1/(n=j) (vb ) .
Dlsf J (Cna+1—1)dtva+1—2dvscn—1’
2.7) 0 va
1 vb
Dzsj J Cln/0 I~ DP2(nt) 1% dp o712 dy < Cnte 2 =304
1/(n—j)  va

for large n, where C is a constant independent of n. Combining (2.4), (2.6) and (2.7),
we complete the proof. q.e.d.

Let a>—1 and Ref> —1. We define an operator T# by a%(T%(f))=al(f),
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n=0,1,2,---, for fe CZ, that is,
T~ Y ab(f)aLix)e ™ x*2.
n=0
It follows from (2.1) that T4(f) e L*(0, o) for fe CZ. Let {¢,} be the sequence defined by
{ I'n+a+1)
On=

1/2
————} , n=0,1,2,--+, —c0<f<o0.
(n+a+1+i0)

We choose the branch of the square root which is equal to +1 for 6=0. We define
also an operator 7% , by

8 T4~ $ aaalLi) e

for fe CZ. Since the sequence {¢,} is bounded for every 6, we have T4 (f)e L*0, o)
for fe C®. We state here two propositions. Theorem will follow from Proposition 1,
which in turn is deduced from Proposition 2.

ProrosiTiON 1. (I) Ifa=0,1,2, -, then
I T2 1,<M@O) I fl, (feCP)

for l<p<oo, —o<bO<oo and k=0, 2 where M(0) is independent of f and satisfies the
condition

(#) sup e *1%logM(20)<o0  for some Kk<m.

— o0 <0<o0
() If a=0, then
2.9 TS 2D 01,<CIfl,  (feCP)

for 1< p< oo, where C is a constant independent of f. If —1<a<0, then (2.9) holds for
(14a/2)"*<p<—2/a.

PROPOSITION 2. If a>0, then
(2.10) I T DI, <MO) 1 fl, (feC)

for l<p<oo, —oo <0< o0 and k=0, 2, where M(6) is independent of f and satisfies (#).
If —1<a<0, then (2.10) with k=2 holds for (1+a/2) ' <p< —2/a.

We show first that Proposition 2 implies Proposition 1. Since ¢,=1 for =0,
Proposition 1, (II) is a special case of Proposition 2. We apply Dtugosz’s criterion to
the function

i(x)_{r(x+a+1/2+i9)}”2 2> _1)2
| I'x+a+1/2) ’ ‘
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We have A(2n+1)/2)=¢, *. Here, the branch of the root is so chosen that A(x)= +1
for 6=0. Let A={¢,'},>. Then we have #%(T2}}"*(f)=T2"***(f). Thus,
Proposition 1, (I) follows from Proposition 2 by Lemma 2 below which shows that the
function A(x) satisfies Diugosz’s condition with the constant B= C(1 +6*), where C is
a constant depending only on «.

LEMMA 2. Leta>—1/2 and j=0,1,2, - -. Then,

sup | A9(x)x/ | <C(1+|6}))
x>0

for — oo <B< o0, where C is a constant independent of 0.

ProOF. By (2.5), we have sup,. o] A(x)|<1. Let Y(z) be the logarithmic deriva-
“tive of I'(z), that is, Y(z)=I"(z)/I(z). Let u=x+a+1/2. We note u>0. We have
A(x)=Ax){Y(u+i0)—y(u)}/2. Differentiating in x both sides of the identity j times, we
have

. 1 & (i),
AUt D(x)=— Z <J>l(’_k’(x){|/l“"(u+iH)—x//"‘)(u)} )
2 k=0 \k
We see by the identity that it is enough to show that '
sup | y®(u+i0) —y©w) | ¥ 1 < C| 0|
x>0

for every k=0, 1,2, - - -. For k=0, we use the formula (cf. [7, 1.7 (24)])

l//(z)zlogz+j {1 ! - +_1_—1}e_"dt

0

for Rez>0. We have

| (u+i0)—y(u)| <log 1+ii|+ tan” ! —
u u
® 1 0
+2|0|J ! +w—1’e"“tdtsC—|—l.
o |1—€¢ ¢t u
Since
& 1
(k) — _1 k+1k!
YyP(2)=(-1) mgow(z+m)k+1

(cf. [7, 1.17 (9)]), we have
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YW +i0) — P u)=(—1)** k! i{ .1 - }
m=0 (u+i@+m u+m

1 1 1
{(u+i0+m)"+(u+i9+m)"‘l(u+m)+ o (u+my } )

Thus, we have

1 k+1
[P +i0)—yPw) |- x* T <k!| 0] xF+! <C|8],
YO u+i0)—y O |- 16] ...Zo wrm? rmp 16
where C is a constant not depending on 6 and x. q.e.d.

We show that Proposition 1 implies Theorem. Let fand g be in C®, and let z satisfy
0<Rez<1. We write z=0+i6. We define

4>a(z)=r TS 25(f)(x)g(x) dx
0

for «a> — 1. Then, it follows from (2.1) with j=4 that

0

| ®(2) = Z » 2(Nake) P

8

<X lai* = (NP Zolai(g)lzsc(l+0“)262"""Ilglli,

for 0<6<1 and — o0 <6< 0, where C is a constant not depending on é and 6. Thus,
@ (z)is analytic in the strip 0 <4 < 1, and continuous in the closed strip, and of admissible
growth there, that is, sup {e *!°!log |®,(z)|; 0<d<1, —o0 << 00} < 0o for some k <.
Let «=0,1,2, -+, l1<p<oo and 1/p+1/g=1. By Proposition 1, (I), we have
| ®,(k+i0)|<M(20), k=0, 1, for Ifl,=llgll,=1. It follows from the lemma of
Hirschman [12, Lemma 1] that | ®,(6) | < C for 0 < <1, where C is a constant depending
on 6. Thus, we have

(2.11) ITENI,<CIfl, (feCP)
for a, f and p satisfying the condition
(*) a=0,1,2,--+, a<f<a+2 and 1<p<oo,

where C is a constant not depending on f. Note that we may obtain the above in-
equality by using a special case of Stein’s complex interpolation theorem. Since
[TENg=Y. al(f)aig)=[fTHg), it follows from the duality argument that

(2.12) TN 1<CIfl,  (feCO)

for a, B and p with (x). By the standard density argument, 7# is extended to the whole
space L?. We denote the extension also by T%. Then, (2.11) and (2.12) hold for all fe L?
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and for a, B and p with (). We note that a®(T4(f))=a’(f) for all fe L? and for a,
and p with (x). The same argument is applicable to T%*2, > —1. It follows that

(2.13) ITaN1,<CIfl,  (fel?),

and aX(TA(f)=ab(f) (felL?) if 0<y=min{a, B}, |a—B|=2 and 1<p<oo, or if
—1<y<0, |a—B|=2 and (1+7y/2)"'<p< —2/y. By duality it is enough to show
| TE(f) I, <CIlfll, (feL?) in the following three cases (i) 0<a<p, 1<p<oo, (ii)
—1<a<0<p, (1+a/2)"'<p<—2/a and (iii) —1<a<f<0, (14+a/2) ' <p<—2/a.
We use the property T80 T 3()=Tf) (fe L?) for suitable «, B, { and p which follows
from a%(T%(f))=al(f) (fe LF). We show only the case (ii) since the other cases are
proved by a similar argument. Let N be the integer such that 2N<f<2(N+1). It
followsthat TE=T2*2. T2, ,0 T30 - -0 T4,. We have the desired inequality by applying
(2.13) to the operators T3*2, T2, ---, T3N _,), and (2.12) to T, ,, and (2.11) to T4,
Therefore, we see that Proposition 1 implies the theorem.

The rest of the paper is devoted to the proof of Proposition 2. We shall estimate
the L? norm of T2%*(f), >0, in §3 and that of T%'2*¥(f), «> —1, in §4.

3. Estimate of L” norm of T"*'e( f), a=0. Let e>0. We define

3.1 GUf)(x)= Z @uwiat et O(f)TELA(x)e ¥/ x4/

for a> —1, feCP and x>0, where
(3.2) oi={I(n+a+i0+1)/I(n+a+if+1+e)}'/*.

We take the branch of the square root which is positive for § =0. It follows from Lemma
1 that lim,_, , o G2(f)(x)=T23(f)(x) for every x>0. We shall show that

(3.3) 1G2) 1, < MEOULSCX? 1], + 1 fGe)x =2 1] ,)

fora>0, 1<p<oo,0<e<l, —c0<f< oo and fe C2, where M(0) is independent of f
and ¢, and satisfies the condition (#) in Proposition 1. Then, letting é— +0, we have
I T"“"(f) l,<M@®)|fl, for «a>0, 1<p<oo, —w<O<oo and feCZ by Fatou’s
lemma and Lebesgue’s convergence theorem. This is the inequality to be proved for
Ta+ ;0(f)

To prove (3.3), we shall express G(f) in an integral form (3.10) for a> —1, ¢>0
and — oo <0< 0. The expression for G¢(f) with e=2 and a> —1 will be used also in
§4. We define

GLNE= Y Powiay (fyLitde " x,
n=0

for 0 <r<1. We note that lim, ., , - G¢ ,(f)(x)=G%f)(x) for every x. By the formula (cf.
[15, (5.4.1)])
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a, exx—d/2 00 —tmta/2 1/2
Lix)= o e "R )V Hdt, a>—1,
' 0

we have

G ()) =2 Z a 0% I f)e f O 2 g (o(1x02) e

I {Z 0% aa+a+:9(f) a (rt) }Ja(z(tx)I/Z)e—ttalz di

for a> —1and 0 <r<1. We remark that a2***(f)=0(n"’) (n— o) for large j by (2.1).
It follows from the definition of a%**%(f) that

X [ aaela(rt)n a+e+il
(34 atinm=e [ (T3 pommeag O pprenay
0 0 :
S(y)e ™2 yETeOR g (2ex) 2y e~ 12 dydt
for a> —1 and 0<r<1. We apply the formula (2.2) with y=a, v=¢+i6 and m=n to
L**¢*(y). Then we have

G* (f)(x)=irrflv“(1 R YL LA S
or r(£+10) o Jo Jo n=0 F(n-l—oH—l) "

.f(y)e—y/Zy(a+c+i0)/2Ja(2(tx)1/2)e—r a2 dvdydt
for «> —1 and 0<r<1. By the formula (cf. [15, (5.1.16)])
00 w'l

i L% x)=eY —a/2 1/2
(3.5) n;) In +a+1)L"(x) e (xw) " S (2(xw) %)

and a change -of variables, we have

(3.6) 2 (Nx )“mj J J A —y2)2 10 g (112 gyz)
gU2)J((2x)! 2 5)e = 12 s dudzds

where: g%(z)=1(z%/2)e " *"1%(z?/2)¢* 2z for a>—1 and O<r<1. We remark that
this identity with a+2 in place of a will be referred to in §4. In the rest of this sec-
tion, we assume 0<r<1. We can change the order of integration in the above
triple integral. Since ge CZ, it is enough to show that h(u, s) is integrable in (u, s)
for fixed z, where h(u, s)=u*" (1 —u?)y~ | J(r'2%suz)| | J((2x)"/2s)|e =1 "M 125, We
write [ [oh(u, s)duds={[; [+ |7 1/S+ §o f1 b, s)duds=H, + H,+ Hs, say. By the
asymptotic formulas

3.7) J()~t(t>+0)  for a>—1,and J()=0( "?) (t—o0),
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we have H; <Cfq[ou ' (1—u)F~ (sufs*e™ """ 2sduds< oo for a>—1, and H,<
of by cl,/su” Y1 —u?)* ™ Ysu)s~ V2e 1M 25 dyds < oo fora> — 1, and H, < Cj;”ﬁ/su"“ .
(1 —u?) ™ Y(su)~ V25~ 12e~1=1* 25 dyds < oo for arbitrary «. By inverting the order of

integration and changing variables, we have

2e*/2 1

@ DI2re446)

T r GAw/(r U)X, _ (w, (2)2) dwdu
0

G? ()x)
for a> — 1, where
X,(w, t)=J J(ws)J (ts)e "% sds , O<y<l.
0

It follows from the formulas [7, 7.7 (25) and 7.14 (27)] that

1 242 t
Xy(wa t)=—exp<— W >1a<i> 5
Y 2y Y
© x \1/2 12 2
X (w, )dw=[ — expl ——— Mol — 1=W. (1),
L 0 <2v> p< 4v> ’2<4v> A

say, for a> — 1, where I, is the modified Bessel function. By the asymptotic formula
(3.8) L(2)=Q2nz) " "?[e*{1+0( z|™ ")} +ie > {1+ 0(z| ")}],

—n/2<argz<3n/2 (cf. [7, 7.13 (5)]), we have W,(t)=0(1) (y— +0) for fixed . Thus,
we have | [& g%(w/(r**u)X , _,(w, (2x)*/*)dw|=0(1) (r—1—) uniformly in u for fixed x.
By Lebesgue’s convergence theorem, we have

and

(3.9) lim G9,(/)x) =25 r“’(l u2y 1o
. (Nx)= -
Reruind I'e+i0) ),

. lirln {j gow/(r*?u) X, _ (w, (2x)1/2)dw}du
r>1=Jo

for a> —1. Let Z(w, t)=W,(t)”'X(w, t) and let 0<a<b< co. Then, by (3.8), we have
Z(w, )< Cy~ 2 exp(—(w—1)?/(2y)) for a<t, w<b, where C is a constant independent
of t, w and y. This leads to the fact that the family {Z,}, is a summability kernel in
a<t,w<b.Thus we see that the limit on the right side of (3.9) is (2x)~}/2g%(2x)'/%/u)
by W, (t)>1/t (y— +0) and g€ C*. Therefore, by the definition of g¢ and a change of
variables, we have an integral representation

(3.10) GANx)=

ex/z 1 . .
va/2—1 I—U e—1+i0 x/v e—x/(ZU) x/v (e+19)/2dv
F(3+i0),[) (1—v) S (x/v) (x/v)

fora>—1,e>0and —co <0< 0.
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We shall evaluate the LP-norm of G%(f) for «>0. Let

1 ©fty _,._ ) x \e—1+i0
I¢ = T p-t=xyzyerionzf g _* dt
/) I"(s+i9)£ . ( t) t

Jg(f)(x)zf(s:—i(?) JwI(ti)eﬂr—x)/zt(s+io)/2{<_?>“/z_ 1}<1 **)—;—)E_det

for feCZ. Then, we note that G¥(/)=TI%f)+J%f). Since >0, it follows that
H{(x/H)? = 1}(1 —x/t)~* | < C for t>x, where C is a constant depending only on a.
We have |JUN)x)I<CIT(e+i0)|™ [T|f()|r/*"'dr. We remark that we have
|F(e+i0) |~ < A(1+|0])e"'*V2 by (2.4) and I'(e+i0)" ' = (e + i0)[(1 + &+ i)~ !, where A
is an absolute constant. It follows from Hardy’s inequality that

(3.11) 1720 1, < C(1+1 8112 | fax2 |,

forl<p<o,0<e<l,a>0andfe Cy, where Cisaconstantindependent of ¢, 0 and f.
We next treat I%(f). We extend fe C2 to the function on (— o0, 00) which coincides
with fon (0, 00) and vanishes on (— oo, 0]. We also denote the function by f. We define

where
1 .
— ~|ul/2 e—1+i6
Q(u) WF(8+i9) 4 Jul X(~go,0)(“)~

The function y_,, o (u) is the characteristic function of the interval (— oo, 0). We note
that T(f(t)|t|” ) (x)=1°f)(x) for x>0. We shall show that 7? is a singular
integral operator. It follows from the formulas [8,1.4 (7) and 2.4 (7)] that the Fourier
transform Q(y)=[*_Q(u)e™ "™ du is given by

O) = (1/4+ y?)~(c+ 012 gistan~ 1 25 p=0tan~ 12y
Therefore, we have | (y)|<2e™!°V?= B, say. We easily see that

_ g 1oy

22 A(14]0])2 ™02y 2 =By~ 2,
| T(e+i0)] A+10)7%e u 2U

d
’m Q(u)’

say, for u#0, where A4 is an absolute constant. By the Calderon-Zygmund theory of
singular integrals (cf. [9, II.5 Theorem 5.7]), we see that the Lebesgue measure of
{xeR; | T%f)x)|>4A} is bounded by A,(B?+B,+ DA™ 1| fll;<d4,e™' A7 |f],=
B34 f]l;, say, where A, and A4, are absolute constants. The Marcinkiewicz
interpolation theorem (cf. [9, I1.2 Theorem 2.11]) leads to

s - i/p 2 4 % 1/p
(3.12) {J llf(f)(x)l"dx} s{”—Bwﬂ} 1f1,=M,0) /1,
p—1 2-p

- 0
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say, for | < p<2. We note that M () is independent of ¢ and f, and satisfies the condition
(#) in Proposition 1. By the duality argument, we see that (3.12) holds for 2<p<
with My0), 1/p+1/g=1. Since [IJ(/)I,<{]*,|T0f@)]t|"*P?)x)Pdx}'?, it
follows that

(3.13) I3 I, <MO) | fx)x™2 ], ,

for 1<p<oo,0<e<1, —o0<B< o0, where M(0) is independent of ¢ and f, and satisfies
(#). By (3.11) and (3.13), we have the inequality (3.3) to be proved.
4. Lr-estimate of T272**(f), a>—1. Let
3. —1/4
pp=0a+—+i0+ - ,
2 {(n+o+2+i0)(n+o+1+i0)}2+(n+a+3/2+i6)

{I‘(n+a+3+i0)}”2
o,={— ,
" Fn+o+1)

fora>—1, —co<f<oo and n=0, 1,2, - - -. For the above square roots, we choose the
branches positive for §=0. We define

U= Y (pafon)ast O fyeLax)e 2 x¥2
n=0

VA= S (nfon)ast 2 O(fyeLax)e " x¥2
n=0

fora>—1, —o0<f< o0, fe C¥ and x>0. Then, we have T2} 2*4(f)= U’ f)+ V°(f).
We shall estimate the LP-norms of U°(f) and V(f).

We first deal with U%(f). Let A={p,}2,. Then, by the definition (3.1) of G%(f)
we see that U(f)=#%(G5(f)). Since A is a quasi-convex sequence, .# % is bounded
in L”. Indeed, let || A [lpqe=2 " o(n+1)|4%p,|+1im,_, . |p,|, where 4%p,=p,—2p,,
+p, 4+, It follows from the result of Butzer, Nessel and Trebels [5, Theorem 3.2 and
p. 139] that

4.1 I HGSUN N, <C Il A lloge | GO I,

ifa>0and 1 <p<oo,orif —1<a<0and (1+0a/2)"!<p< —2/a, where Cis a constant
depending only on « and p. We have to estimate || A | pqe-

Lemma 3. If a> —1, then || A|,q <C(1+4]6]), where C is a constant depending
only on a.

PrROOF. Let n(x)={(x+a)x+a+1)}'%, a=a+1+if, where the branch is so
chosen that #(x) is positive for =0. Let p(x)=(n(x)+x+b)~* with b=(2a+1)/2. We
have p"(x)=n(x)"3. Thus, |4%p,|<2max {|p"(x)|; n<x<n+2}<2(n+a+1)"3. Since
lim,_, ,p,=a+3/2+i0, we complete the proof. g.e.d.
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To get the desired inequality for U%(f), it is enough to evaluate the LP-norm of
G%(f) for o> — 1. Applying Minkowski’s inequality to the integral representation (3.10)
of G%(f) with =2, and changing variables, we have

1 e o)
1G%(f) HPSDTZ:‘—'G)J v272(1 —v){f |f(x/v) et~ 1072 x i,,dx}l/” dv
! 0

0o

1 jl © 1/p
< v“/“””“(l—v){'[ |f(t)e“”‘”/2t|"dt} dv .
IT(2+i6)|Jo 0

Since e"®" 12t <2e" (1 —v)~! for 1>0 and O<v<]1, it follows that || G4(f) |, <2e " '"
|TQ2+i0) |~ fIl, fov¥2* /7~ *dv. We remark that the integral on the right side is finite
ifa>0and 1 <p, orif —1<a<0and p< —2/a. Combining this inequality with Lemma
3 and (4.1), we get

4.2) U I, <CA+10)e™ 2 f1,,

for —oo<f<oo and feCP if a>0 and l<p<oo, or if —l<a<0 and
(14+a/2)"!< p< —2/a. Here, C is a constant depending only on « and p.
We now estimate the LP-norm of V%(f). Define

0

VIN= Y (noy*?fa,)az 2 () riLix)e ™ x2,

n=0

fora>—1,e>0, —0<f< o0, feC® and x>0, where w?*? is as given in (3.2). Since

n

lim,, , o VU)(x)=VO(f)(x) for every x>0, it is enough to show that
(4.3) IV AN N, < MO S X2 N, + 1 fG)x =2,

for —oo<f<oo and feC? if a>0 and l<p<oo, or if —l<p<O0 and
(1+a/2)" ! < p< —2/a, where M(0) is independent of f'and &, and satisfies the condition
(#) in Proposition 1. We note that V(f) is G%(f) with nw?*?2/s, and £+ 2 in place of
0,0% and &, respectively. Thus, V'Y(f) has the form on the right side of (3.4) with r=1
and with substitutions as above. We apply the formula (2.2) with u=a+2, v=¢+i0
and m=n to L2*2*¢*¥(y) in the representation. Thus, we have
Vo(f)( ) ex/2 ® J‘GO Jq va+2(1 U)e-1+i0 i nt" La+2( )
HX)=—— — — L0
‘ T+ Jo Jo Jo S0 Tntoat2+1) Y
,f‘(y)e—y/Zy(az+ 2+e+i0)/2 Ja(Z(IX)I/Z)e—t[a/Z dvdydt
for «> —1. The formula (3.5) leads to
& nw"
 LYx)=e"(xw) W 20xw) ) — (xw) 2 T, 1 (20ew) )}
,.;or(n+cx+l) () = €"(xw) " 2{wJ2(xw)"12) — (ew) 12 11 (20xw) %)}

Using this identity and changing variables, we have
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yo 2e* f ff a+3 2\e—1+i8
V() F(8+10) (1=u)

{5y 4 2(suz)—uz J o, 3(suz)}g¥2)J ((2x)/* s)dudzds

where g¥(z) is as given in (3.6). Let

Wo(f)(x)= r( ). J f w31 —uy 10 g L (suz)g¥z) J((2x) ' s)dudzds
x2
Ff(f)(x)—r( +/0)J‘ J j w1 —u?)E 102 (suz)g?(z) J(2x)? s)dudzds ,

for a>—1, e>0, —o0 <0< o0, fe C® and x>0. We see that V()= W f)—F(f),
since the iterated integrals in W9(f) and F%(f) are finite. Indeed, we can change the
order of the integrals in z and u. Furthermore, if >0 and he C?, then

4.4 C(su)™2 (su=>1) and <C (su<l),

J ) h(z)J g(suz)dz | <

0

which is easily proved by integration by parts and the formula (d/dt)(t"*' J,, (at))=
at?* 1 Jy(at) (cf. [7, 7.2 (50)]).
We express W9(f) as a sum of two integrals. Define

O(+] ex/2 foo foo (1 _ )
DI = e | f f w1 (suz)ge)
J,+1((2x)Y? s)dudzds ,
EXf)(x) 27 [ ”wj‘lu“”(l—uz)‘_”"’sJ (suz)gl(z)
F(3+19) 0o Jo Jo e )

“Jo+2((2x)!? s)dudzds

for a>—1, ¢>0, —c0<0<o0, feCZ® and x>0. Then, it follows from the identity
J(2x)25) =2(a+ 1)(2x) 257 T, 1((2X%)'? 8)— 1 2((2%)125) (cf. [7, 7.2 (56)]) that
WO(f)= D4 f)— E%f). We note also that the integrals in D%(f) and E®(f) are finite.
Therefore, we have V(f)= D f)— E%(f)— F%(f).

We first evaluate the LP-norm of EYf). We see by (3.6) that E(f) is equal to
G%(f) with «+2 in place of a. Since a+2>1>0 when a> — 1, we can use the inequality
(3.3), and so we have

4.5) I EZ) 1, < MO SG)x2 [, + L f)x =2 .}

fora>—1,1<p<o0,0<e<1, —c0<f< o0 and fe C>, where M(0) is independent of
f and &, and satisfies the condition (#) in Proposition 1.

We next express F?(f) as an integral. By the inequality (4.4) and the asymptotic
formula (3.7), we see that
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zex/Z '] 0 1 )
FO =1 at+4 1— 2\e—1+i6 J g
(N)x)= hm [t JO L L w1 —u’) z2J 3+ 3(s5u2)g:(2)
< J((2x)'%5)s ™ *dudzds .

The factor s~%, 1>A>0, enables us to invert the order of integration in the above
iterated integral. This fact is obtained by an argument analogous to that for integral
(3.6). It follows that

) 2 x/2 1 [foo .
FU(f)(x)= lim ¢ _ f J w1 —u?) 10 5%2)z R (u, z; x)dzdu ,
im+o I(e+i6) Jo Jo

where
R,(u,z; x)= '[ J 4 3(uzs)J ((2x)" /% s)s " *ds .
0

By the Weber-Schafheitlin integral [16, 13.4 (2)], we have

(2x)2T (o +2— 1/2)
2Huzf* ' A+ DIR +4/2)

(4.6) R (u,z; x)=

-2F1<oc+2—l/2,—1—1/2;a+1;2ix) for (2x)'?<uz,
(uz)?
WPt re+2-42)
@D Rl 2 = e e (4 L G2 —1)
(uz)?

-2F1<oc+2—)t/2,2—/1/2;a+4; x> for (2x)'?>uz,

when (¢+3)+a+1>4> —1. To invert the order of the limit lim, , , , and the integral
fo o dudz in FU(f), it is enough to show that, for fixed x and 0<a<b< oo,

4.8) [R(u,z; x)|<C (0<u<l,a<z<b,(2x)"*>uz),
-1
4.8) |R1(u,z;x)|$C{log<1—(2—x)2) +l} O<u<l,a<z<b, (2x)'?*<uz),
uz

for 0<A1<2(a+1), where C is a constant depending only on «. In the case (2x)'/?> > uz,
we have by the formula [7, 2.12 (1)] that

2
2F1<oz+z—,1/2,2—1/2;oc+4; (uz) >
2x
_ I'(a+4) 111_1/2(1—_’)“““/2{1_t (uz)? }—a—zu/zdt
FQ—12)I@+2+42) ), 2x
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y I(@+4) T W Can A
TQ2—22)(a+2+42) TQ+A2)T(a+2+42)
when a+4>2—1/2>0. This inequality and (4.7) give (4.8). In the case (2x)'/? <uz, we
use the formula [7, 2.12 (2)]. It follows that
2x )_ ie™ =YD (g + 1)[(2—A/2)
uz)? ) 2nl (o +2—A/2)
.J(l o ta+ 1—1/2(1 _t)—2+/1/2{1 —t 2X }1+M2dt

0 (“2)2

2F1<oz+2—}~/2, —1—-12; a+1; (

when a+2—12/2>0 and —1+4/2%#1,2,3,---. Here, the integral is taken along a
contour which starts from the origin, encircles the point 1 once counter-clockwise and
returns to the origin. All singularities of the integrand except 1 are outside the contour.
This formula and (4.6) lead us to (4.8"). Since ,F,(a, B; 7; z) is a continuous function
in (o, B) for fixed z and y, we have

a2
lim R,(u,z; x)=(—oL)(2x)~—2F1<cx+2, —1;a+1; ;2x_>
im 40 (uz)*+t (uz)?
_(oc+1)(2x)“‘/2{1 a+2  2x }
(uz)**1 at+1 (uz)?

for (2x)*/? <uz, and lim,_, , , R,(u, z)=0 for (2x)!/? > uz. Therefore, we have

21 +u/2(a+ l)ex/2xa/2
I'(e+1i6)

1 (o ) 2
J f ud(1 —uz)s_H'ogf(Z)z’“{l— at j%}dzdu
(2x)1/2/u a+1 (uz)

(oc+l)e"“J‘ J' it 2 iy /2{ a+2 x }
£ i e+i @, 1— d dv .
1) —0) Sy)e =y (x/y) 2t 1 o v

Fif)(x)=

Changing the order of integration, we get

(x+1)e*? [«
I'(e+1+i6) ),

e+i0 )
Sf(x,y)=<1—i> {1_a+2 X e+if <1_i>},
y a+1 y e+1+i0 y

0 C * e/2 < x )alz - (y-x)2
(4.10) IFa(f)(x)IS—~————I I‘(e+1+i0)|£ /D)y ) e dy,

(49) Fi()x)= S, Y )e ™2y O x/yy 2 dy

and thus,
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fora>—1, 1>¢>0, —w<f<oo, x>0 and fe CP, where C is a constant depending
only on o. We define a convolution operator K by K(h)(x)=[* _h(y)k(x—y)dy for h on
(— 00, 00), where k(u)=e 1“2y __ (u). We reduce the estimate for F®(f) to that for
K(h).

By (4.10) we have

KWy @>0)
@1y P <] TETTHO)]

_9_ (e—a)/2 . /2 _
IF(8+1+i9)|K(|f(y)||y| )(x)*| x| (—1<a<0)

for x>0. Here, fis extended to the whole real line so that f(x)=0 for x<0. When «>0,
we have by Minkowski’s inequality that

® 1/p
4.12) {J | K(SO) |1y F2)(x) |pdx} <CIf)x"2,,

for 1< p< oo, where C is a constant depending only on p. For —1<a<0, we use a
weighted norm inequality for a regular convolution transform. Since | x|" is an A4,-
weight for —1<ny<p—1, we have

(4.13) J |K(SW) Y1722 (x) [P | x |7/ dx

<c J " 13 xR = C | S |

for —1<ap/2<p—1and 1 <p<oo, where C is a constant depending only on o and p
(cf. [9, IV.3 Theorem 3.1]). Note that we may also obtain (4.13) by dividing the
integral on the right side of (4.10) to a sum of the integrals over (2x,2*¥*'x),
k=0, 1,2, - and estimating them pointwise. It follows from (4.11), (4.12) and (4.13)
that

0 C £/2
(4.14) I F2(N) “”SM]F(3+1+i0)| /)X 11,

for 1>¢>0, —oo<f<oo and feCZ if x>0 and 1<p<oo, or if —1<a<0 and
1< p< —2/a, where C is a constant independent of ¢, 8 and f.
We obtain the integral representation

Do(f)(x)_—f fly)e~ 0012 (me( >1/2<1__>s+10 dy
E [(e+1+i0) ; Z)

for D%(f) and thus, we have
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D 2(0+1) o e/2<i>“/2d_y
D (f)(x) m|r(+1+zo)| /D)y ) o

fora>—1,1>e>0, —o0 << o0, x>0 and fe CP. The proof is similar to that of (4.9)
and is omitted. By Hardy’s inequality, we have

e ¢/2 2 dy T (e—a)2-1 P ap2
LWy — dx= /W1y dy ¢ x*?1 dx
0 x y y 0 X

2 L R —a)p/2—
< xPtapl2| f(x)|PxE~DPI2=P gy = C x)x¢/2 ||P
{1+ap/2} L | /()] 1/ Ce)x = 17

and thus,

C
|[(c+1+i6)]

for I<p<oo, ap/2>—1 and fe CP, where C is a constant depending only on « and
p. Therefore, by (4.5), (4.14) and the last inequality, we have (4.3). The inequalities
(42) and (4.3) lead us to the desired estimate || 75%2%(f)|,<M(6) ||f||p for
—oo<f<oo and feC¥ if a>0 and 1<p<oo, or if —1<a<0 and (1+0a/2)"'<p<
—2/a, where M(6) is independent of f, and satisfies the condition (#) in Proposition 1.

I DY) NI, < 1£Cx2 11,
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