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1. Introduction. Let L*(x), α> — 1, be the Laguerre polynomial of degree n and
of order α defined by

n!

Then the functions τ*L*(x)e~x/2xα/2, « = 0, 1, 2, , are orthonormal on the interval
(0, oo) with respect to the ordinary Lebesgue measure dx, where

f
o

This orthonormal system leads us to the formal expansion of a function/(x) on (0, oo):

Λχ)~ Σ <Su>:L;(x)e
π = O

where #*(/) is the Az-th Fourier-Laguerre coefficient of order α of f(x) defined by

f(x)τa

nL*n(x)e-χl2x*12 dx.
Jo

We note that the integral converges and aΛ

n(f) is finite if α>0 and \<p<co, or if
- l < α < 0 and (1 +α/2)~1</?<oo.

Our theorem is as follows:

THEOREM. Let α, β> — 1 α«J y = min {α, β}. Ifγ>0, then

Γoo oo p Γoo

(1.1) Σ ^(f)t;L»-"¥ 2 rfx<C |/(
Jo "=0 Jθ

/or 1 </?< oo, where C is a constant independent off. If — 1 <y <0, then (1.1) holds for

Historically, Guy [11] proved a transplantation theorem for Hankel trans-
forms. Schindler [14] proved Guy's theorem showing an explicit integral representation.
For other classical expansions, Askey and Wainger [3], [4] gave transplantation
theorems for ultraspherical coefficients and its dual. Furthermore, Askey [1], [2]
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generalized their theorems to Jacobi polynomial expansions. In [1], he also proved a
transplantation theorem [1, Theorem 3] for Laguerre coefficients of orders α and
β = oc + 2. Our theorem is the dual to his theorem with arbitrary β. Some other related
transplantation theorems are found in Gilbert [10] and in Muckenhoupt [13].

An advantage of our transplantation theorem is that, if a norm inequality of
Laguerre series of some order α is proved, then the corresponding norm inequality of
any other order β holds automatically. We give an application. Let Λ = {λn}™=0 be a
bounded sequence. We define a multiplier operator M\ with multiplier A by

λχn(f\ n = 0, 1, 2, , that is,

We denote by LP the Lebesgue space of all measurable functions/(x) defined on (0, oo)
such that \\f\\p = {\™ \f(x)\pdx}1'p<cχ). We may denote \\f\\p by ||/(x) | |p.

COROLLARY. Let λ(x) be a four times differentiable function on (0, oo) satisfying

supχ>o\λu\x)xj\<B (/ = 0, l ,2,3,4), and let Λ = {λ(s{2n+ l))}π°°=o for * > 0 . Then,

\\^aΛ(f)\\p<CB\\f\\p{fGLp) ifoc>O and \<p<oo, or if - l < α < 0 and ( l + α / 2 ) " 1 <

p< — 2/α, where C is a constant depending only on α and p.

The corollary is obtained instantly by applying our theorem to the following result
due to Dlugosz [6].

(A) Dlugosz's criterion (cf. [6, § 1]). Let λ(x) and A be a function and a sequence

given in the corollary. 7/α = 0, 1, 2, , then || JK'Jf) \\p<CB \\f\\p {feL")for \<p<oo,

where C is a constant depending only on p.

We use this criterion to prove our main theorem.
In §2, we shall extend the parameter β of Tβ(f) to complex /?, where Tβ(f) is the

function defined by the series Y^=oa
β

n{f)τlLa

n(x)e~xl2xa'2. Using (A), we shall reduce
the estimate of the ZΛnorm of Tβ(f) to that of the operator Tβ

t(p(f) defined in (2.8)
which is easier to treat. We extend the parameter β to complex numbers β = oc + k + iθ,
fc = 0, 2, — oo <θ< oo, and apply an interpolation theorem. In §3, we shall estimate the
ZΛnorm of Ta

a%
iθ{f). To do so, we deal with Ta

a+φ

ε + iθ(f), ε>0. We shall modify
T%*φ

ε + iθ(f). The essential part of our proof is to use the formula

K+ε+iθ(y) =

and estimate the ZΛnorm of the operator by the singular integral operator theory and
Hardy's inequality. In §4, the LP norm of T^φ

2 + iθ(f) will be evaluated by an argument
similar to that of §3.

2. Reduction. We extend the definition of the n-th Fourier-Laguerre coefficient
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aβ(f) to complex β as follows. By the explicit representation

the definition of the Laguerre polynomial is extended to complex β. Lβ(x) is analytic
in β except at the points β=—n—l, — n — 2, for fixed x. The coefficient

τβ = [Γ(n +1 )/Γ(n + β +1)}1 / 2 is analytic in β in the cut plane | arg (β + n +1) | < π, where
we take the branch of the square root equal to 4-1 for β = 0. Let Cc°° be the space of
infinitely differentiable functions with compact support in (0, oo). For/eCc°°, the
definition of aβ

n(f) is extended to complex β and is analytic in | arg (j8 + n+ 1) | <π.

LEMMA 1. Letfe C™. Let α> - 1 and Δ>Q. Then, for every j= 1, 2, 3, , there
are a constant C and a number n0 such that

(2.1) \

for n>n0, —co<θ<oo and 0<δ<A, where β =

PROOF. By the formula (cf. [7, 10.12 (28)])

n! \dy

we have

aβ

n(f) = τβ^~^- Γ
n! Jo

f(y) e y ( ^

By integration by parts

Since/is a function with compact support in (0, oo), we may assume supp/c=[α, b],
0<a<b<oo. Thus

τί\n~^ Γ |L βt j
Jα

Iaί(f)\<C(1 + \ΘK)I

where C is a constant independent of n and 0, and is bounded in 0<δ<A. We apply
the formula (cf. [7, 10.12 (30)])

Reμ> - 1 , Re v>0 with μ = oc+j-1, v= 1 + 5 + iθ and m = n-j to the integrand L*±j(y).
Then, we have
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Γ
Jawhere AntP = \τl\\Γ(n + β+l)\/\Γ{n + aL)\. Since Γil+δ + iθy1 =B(l/2 + <5, l/2 + iθ)

) } " 1 and |Γ(l/2 + ϊ0)|2 = π/coshπ0, we have

(2 4) 1 J d A i ^ l c o s h π g y ^ /2

\Γ(l+δ + iθ)\ i f Γ ( ) 1 J ~

for — oo <Θ< oo and δ>0, where A is an absolute constant. We estimate Anβ. We have

I 1/2

It follows from the identity (cf. [7, 1.3 (3)])

(2.5)

with x = n + α + (5+l and j> = 0 that |Γ(π + α + ̂ + l + iθ)/Γ(n + α + 5 + 1 ) | < 1 for

n = 0,l,2, ',δ>0 and — oo<0<oo. Thus, we have

(2.6) Anfβ<Cn{Δ-" + 2)l2

for « > AI0, where the constant C and n0 depend only on A and α. To estimate the integral

on the right side of the inequality (2.3), we note that the integral is independent of β.

We have

rt rι ri rvb
tf+J-1\L"Htj-1(υy)\dvdy=\ \L"nVr\t)\dtv*+i-2 dv

J a J 0 J 0 J va

+ [ \L'ntj-
1(t)\dtυfΛ+J-2dΌ = D1+D29

0 J l/(n-j)J J va

say. It follows from the asymptotic formula [15, (7.6.8)] of the Laguerre polynomial

that

(2.7)

rί/(n-j) Γvb

/)i< (Cwα+ / " 1 )Λι; α

Jo J va

D2< f1 f"*C(n/ί) ( β + J"1 ) / 2(π
J l/(n-j)Jva

for large «, where C is a constant independent of «. Combining (2.4), (2.6) and (2.7),

we complete the proof. q.e.d.

Let α > - l and R e β > - 1 . We define an operator Tβ

a by al(
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1, 2, , for/eCc°° , that is,

It follows from (2.1) that TβJJ) e L2(0, oo) for/e Cc°°. Let {φπ} be the sequence defined by

f Γ(n + α + l) I 1 ' 2

(Pn = \— : — f ' « = 0,l,2, , - o o < 0 < o o .
(Γ(n + α + l + ί0)J

We choose the branch of the square root which is equal to +1 for 0 = 0. We define

also an operator T^φ by

(2.8) T>JU)~ Σ φnai{f)<L*n(x)e-*12*"2

n = 0

for feC™. Since the sequence {φn} is bounded for every 0, we have Γfφ(/)eL 2(0, oo)

for /eCc°°. We state here two propositions. Theorem will follow from Proposition 1,

which in turn is deduced from Proposition 2.

PROPOSITION 1. (I) 7/*α = 0, 1, 2, , then

\\T:+k + iθ(f)\\p<M(θ)\\f\\p {feC?)

for \<p<oo, — oo < 0 < oo and k = 0,2 where M(θ) is independent off and satisfies the

condition

(#) sup e~κ | θ |logM(20)<oo for some κ<π.
θ- oo <θ< oo

(II) 7/α>0, then

(2.9) l l ^ + 2 ( / ) l l p < C | | / | | p (feC?)

for \<p<co, where C is a constant independent off. If — 1 < α < 0 , then (2.9) holds for

PROPOSITION 2. Ifoc>O, then

(2.10) || T^φ

k+iθ(f) \\P<M(Θ) \\f\\p (feC?)

for \<p<co, —co<θ<oo andk = 0, 2, where M(β) is independent off and satisfies (#).

/ / - l < α < 0 , ίΛe« (2.10) with k = 2 holds for ( l+α/2)" 1 </?< -2/α.

We show first that Proposition 2 implies Proposition 1. Since φn—\ for 0 = 0,

Proposition 1, (II) is a special case of Proposition 2. We apply Dhigosz's criterion to

the function

\ Γ(x + a+l/2) J
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We have λ((2n + \)/2) = φn

 ι. Here, the branch of the root is so chosen that λ(x)= +1
for 0 = 0. Let Λ = {φ-ί}^0. Then we have JίΛ

Λ{T^k + i\f))=Tl+k + i\f). Thus,
Proposition 1, (I) follows from Proposition 2 by Lemma 2 below which shows that the
function λ(x) satisfies Dhigosz's condition with the constant B=C(l +04), where C is
a constant depending only on α.

LEMMA 2. Let oc> - 1/2 andj=0, 1, 2, . Then,

sup\λU)(x)xj\<C(l + \θ\j)
x>0

for — oo < # < oo, where C is a constant independent of θ.

PROOF. By (2.5), we have sup x > 0 | A(x)|<l. Let φ(z) be the logarithmic deriva-
tive of Γ(z\ that is, φ(z) = Γ{z)/Γ(z). Let u = x + α+l/2. We note w>0. We have
λ'(x)=iλ(x){\l/(u + iθ) — ιl/(u)}/2. Differentiating in x both sides of the identity j times, we
have

2 ktio \k

We see by the identity that it is enough to show that

s u p I φW(u + iθ) - φik)(u) \xk + 1<C\θ\
x>0

for every fc = 0, 1, 2, • . For k = 0, we use the formula (cf. [7, 1.7 (24)])

~tzdtφ(z) =

for Rez>0. We have

I φ(u + iθ) — φ(u) I < log

+ 2

Since

(cf. [7, 1.17 (9)]), we have

u

\θ\

. 0

u

ί"
Jo

+ tan

1

u

1

ί
1

utdt<C
\θ\

^'Σ
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1 1

u + iθ + m u + m

1 1 1

[(u + iθ + m)k (u + iθ + m)k ~ \u + m) (u + m)k

Thus, we have

-m)

where C is a constant not depending on θ and x. q.e.d.

We show that Proposition 1 implies Theorem. Let/and g be in C?9 and let z satisfy

0 < R e z < l . We write z = δ + iθ. We define

Φα(z)=f°° TΛ

a

+2z(f)(x)g(x)dx
Jo

for α> — 1. Then, it follows from (2.1) with7 = 4 that

< Σ \a*n + 2z(f)\2 Σ
π=0 π=0

for 0<δ< 1 and — 00 < θ < 00, where C is a constant not depending on δ and θ. Thus,

Φα(z) is analytic in the strip 0 < δ < 1, and continuous in the closed strip, and of admissible

growth there, that is, sup{e"~κ|β|log|Φα(z)|; 0<<5<l, — oo<0<oo}<oo for some κ<π.

Let α = 0, 1,2, •••, \<p<oo and 1//?+ l/q=l. By Proposition 1, (I), we have

|Φβ(k + iθ)l<Af(2θ), ik = 0," 1, for | | / | | p = || g \\q= 1. It follows from the lemma of

Hirschman [12, Lemma 1] that | Φa(δ) \ < C for 0 < δ < 1, where C is a constant depending

on δ. Thus, we have

(2.H) \\Tβ

a(f)\\p<C\\f\\p (feC?)

for α, β and /? satisfying the condition

(*) α = 0, 1,2, •••, α<j5<α-f2 and

where C is a constant not depending on /. Note that we may obtain the above in-

equality by using a special case of Stein's complex interpolation theorem. Since

gl it follows from the duality argument that

for α, β and p with (*). By the standard density argument, Tβ

a is extended to the whole

space ZΛ We denote the extension also by Tβ

Λ. Then, (2.11) and (2.12) hold for all/e U
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and for α, β and p with (*). We note that aΛ

n(T'£(/)) = aβ

n(f) for all/eZ/ and for α, β

and p with (*). The same argument is applicable to Γ* + 2, α> — 1. It follows that

(2.13) II W ) | | P < C | | / | | P

and aa

n(Tβ(f)) = aβ(f) (feLp) if 0<y = min{α, β}, |α- jS | = 2 and l</><oo, or if

- l < y < 0 , | α - / ? | = 2 and (1 +γ/2)~1<p< -2/γ. By duality it is enough to show

\\Tβ(f)\\p<C\\f\\p (feLp) in the following three cases (i) 0<a<β, l<p<oo, (ii)

- l < α < O < 0 , ( l + α / 2 ) ~ 1 < j p < - 2 / α and (iii) - l < α < β < 0 , (1 +α/2)~1 </?< -2/α.

We use the property Γf o 7^(/) = Γ£(/) (/e Lp) for suitable α, β, ζ and /? which follows

from a%(Tβ(f)) = aβ(f) (feLp). We show only the case (ii) since the other cases are

proved by a similar argument. Let N be the integer such that 2N<β<2(N+\). It

follows that Tβ = T*Λ

+ 2 o T°a + 2 o T2

0 o o Tβ

2N. We have the desired inequality by applying

(2.13) to the operators ΓJ + 2, Γ 2, , Γ 2 ^_ 1 ) ? and (2.12) to Γ? + 2 , and (2.11) to Tβ

2N.

Therefore, we see that Proposition 1 implies the theorem.

The rest of the paper is devoted to the proof of Proposition 2. We shall estimate

the Lp norm of TΛ

a+φ

w(f), α>0, in §3 and that of T"a+φ

2 + iθ(f), α> - 1 , in §4.

3. Estimate of Lp norm of T^\f\ α > 0. Let ε > 0, We define

(3.1) G%f){x)= Σ φ

n = 0

for α > — 1, / e Cc°° and x > 0, where

(3.2) ω«

We take the branch of the square root which is positive for 0 = 0. It follows from Lemma

1 that limε^ + 0 G%f){x) = Ta

Λ+φ

iθ(f)(x) for every x>0. We shall show that

(3.3) || Gθ

ε(f) \\p<M(θχ\\f(x)x^2 | |p + \\f(x)χ-*/2 \\p)

forα>0, l</7<oo, 0 < ε < l , — oo <θ<oo and/eCc°°, where M(θ) is independent of/

and ε, and satisfies the condition (#) in Proposition 1. Then, letting ε-•+(), we have

\\T:+φ

iθ(f)\\p<M(θ)\\f\\p for α>0, Kp<co, -oo<θ<oo and /eCc°° by Fatou's

lemma and Lebesgue's convergence theorem. This is the inequality to be proved for

To prove (3.3), we shall express Gθ

ε(f) in an integral form (3.10) for α> — 1, ε>0

and — oo <θ< oo. The expression for Gθ

ε(f) with ε = 2 and α> — 1 will be used also in

§4. We define

for 0< r < 1. We note that l im_ 1 _ Gθ

ε,r(f)(x) = Gθ

ε(f)(x) for every x. By the formula (cf.

[15, (5.4.1)])
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exχ-<xl2 Λoo

%x) = : — e-Ύ+'
n> Jo

we have

n=o J o n\

n!

for α > - 1 and 0 < r < 1. We remark that α« + ε + ί θ (/) = 0("~ J ) («->oo) for largey by (2.1).

It follows from the definition of a*n

+ε + iθ(f) that

Uf)(x) = ex/2 Σ ΦMωX + ε + i θ τ ί ^ - L r ε + ί θ ( j )
Jo Jo U = o n! J

(3.4)

for α > — 1 and 0 < r < 1. We apply the formula (2.2) with μ = α, v = ε + /0 and m = n to

L«n

+ε + iθ(y). Then we have

x/2

ιθ) Jo Jo Jo « = o Γ(π + α

for α> - 1 and 0 < r < l . By the formula (cf. [15, (5.1.16)])

00 wn

(3.5) Σ ^

and a change of variables, we have

(3.6) G
o Jo

— Π — rV«2/
• g%z) JJilx)112 s) e ~(1"r)s1'2 s dudzds,

where fiff(z)=/(z2/2)e-z2/4(z2/2)(ε+iβ)/2z for α > - l and 0 < r < l . We remark that

this identity with α + 2 in place of α will be referred to in §4. In the rest of this sec-

tion, we assume 0 < r < 1. We can change the order of integration in the above

triple integral. Since gβ

εeCf, it is enough to show that h{u,s) is integrable in (u,s)

for fixed z, where h(u, s) = Mα + 1(l-w 2) ε" 1 \Ja(ril2suz)\ |yα((2x)1 / 2s)|e" ( 1- r ) s 2 / 25. We

write ^j1

oh(u,s)duds = {^X+^^s + ̂ i1

lls}h(u,s)duds = H1+H2 + H3, say. By the

asymptotic formulas

(3.7) Jx(ή~t*(t^ + O) for α > - l
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we have Hί <CγS0u
a + \\-u2)ε-\sufsΛe-{1-r)s2S2sduds<ao for α > - l , and H2<

C^$l/sua+\\-u2γ-\su)as-ll2e-{1-r)s2lhduds<ooto

(\-u2)ε~1{su)~ll2s~ll2e~{ί~r)s2l2sduds<cQ for arbitrary α. By inverting the order of

integration and changing variables, we have

2ex/2 Λl Γn

I *{\2γ-^iθ\ θ

ε(w/(r1'2u))Xί_r(wΛ2x)ll2)dwduI u*{\-u2γ-^iθ\ gθ

ε

'(fi + 10)

for α > — 1, where

Γ 0 0

χίw9 ή = JΛ{ws) Ja(ts) e ~γs2/2 sds, 0 < γ < 1 .

Jo

It follows from the formulas [7, 7.7 (25) and 7.14 (27)] that

I 9
2γ J \ y J

and

,1/2

io "'Xy(W,

say, for α > — 1, where /α is the modified Bessel function. By the asymptotic formula

(3.8) /α(z)

- π / 2 < a r g z < 3 π / 2 (cf. [7, 7.13 (5)]), we have Wy(t) = O(l) (y-•+()) for fixed u Thus,

we have |SS>gθ

ε(w/(r1/2u))X1_r(w,(2x)ί/2)dw\ = O(l) ( r-^1-) uniformly in u for fixed x.

By Lebesgue's convergence theorem, we have

(3.9) lim - ί' u*(l-u2y-1+i

ιθ)J0

lim

for α > - 1 . Let Zy(w, ί)= Wγ(t)~1Xy(w, t) and let 0 < α < b < oo. Then, by (3.8), we have

Zγ(w, t)<Cγ~1/2exp( — (w — t)2/(2γ)) for a<t,w<b, where C is a constant independent

of ί, w and y. This leads to the fact that the family {Zy}y is a summability kernel in

a<U w<fe.Thus we see that the limit on the right side of (3.9) is (2xy1/2gθ

ε((2x)1/2/u)

by Wγ(t)-+l/t(γ->+0) and gθ

εeCf. Therefore, by the definition of g\ and a change of

variables, we have an integral representation

ex/2

(3.10) Gθ

ε(f)(x) =
pi

iθ)J0Γ(ε + iθ)

for α > — 1, ε > 0 and — co<θ<oo.
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We shall evaluate the ZΛnorm of G%f) for α>0. Let

\ε'1+iΘ
1 Γ 0 0 fit)

Γ(ε + ιθ)Jx t

Γ00 fit)

Jx t

) dt,

- 1 1 - - dt

t ) ) \ t )

for /eCc°°. Then, we note that G%f) = I%f) + J%f). Since α>0, it follows that

I {(x/tf/2- \}(l-x/t)ε~1+iθ\<C for t>x, where C is a constant depending only on α.

We have \J%f){x)\<C\Γiε + iθ)^1 j ^ \f{t)\fl2-ιdt. We remark that we have

I Γ(ε + iθ)\-1<A(l + \θ\)eπlθl/2 by (2.4) and Γ(ε + iθyι = (ε + iθ)Γ(l+ε + iθy\ where A

is an absolute constant. It follows from Hardy's inequality that

(3.11) IIΛβ(/)ll,<C(l + |^ | )e π | ί ) | / 2 | | /(xK / 2 | | p

forl</?<oo,0<ε<l,α>0 and/e Cc°°, where Cis a constant independent of ε, θ and/.

We next treat Iθ

ε(f). We extend/e Cc°° to the function on ( - oo, oo) which coincides

with/on (0, oo) and vanishes on (— oo, 0]. We also denote the function by/. We define

-oo<x<oo

where

The function ^(-oco^) ^s ^ e characteristic function of the interval (— oo, 0). We note

that ϊθ

ε(f(t)\t\-{ε + m/2)(x) = Iθ

ε(f)(x) for x > 0 . We shall show that ΐθ

ε is a singular

integral operator. It follows from the formulas [8,1.4 (7) and 2.4 (7)] that the Fourier

transform Q(y) = ̂ ooQ(u)e~iuydu is given by

Therefore, we have | Q(y)\<2eπ^θl/2 = B1, say. We easily see that

(1 + l β l ) -
Q(u)

du

say, for uφO, where A is an absolute constant. By the Calderόn-Zygmund theory of

singular integrals (cf. [9, II.5 Theorem 5.7]), we see that the Lebesgue measure of

{xeR; \Iθ

ε(f)(x)\>λ} is bounded by Aί(B2 + B2 + l μ " 1 \\f\\, <tA2e
κWλ'1 11/11! =

^3^~x H/lliJ s a v > where Aι and A2 are absolute constants. The Marcinkiewicz

interpolation theorem (cf. [9, II.2 Theorem 2.11]) leads to

CΓ* y/p C 2vB 4vB2l1/p

(3.12) I \7%f)(x)\pdx\ <l-J^JL + -f--L\ \\f\\p = Mp(θ)\\f\\p,
U-αo J (.P-1 2-pJ
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say, for 1 < p < 2. We note that Mp(θ) is independent of ε and/, and satisfies the condition

(#) in Proposition 1. By the duality argument, we see that (3.12) holds for 2<p<co

with Mq(θ), l/p+l/q=l. Since || /»(/) \\ ,£{!*„ \lθ

ε(f(t)\ t Γ^^XxJI 'dx} 1 ' ' , it

follows that

(3.13) \\Iθ

ε(f)\\P<M(θ)\\f(x)χ-^2\\p,

for l</?<oo,0<ε<l , — oo < 0 < oo, where M(θ) is independent of ε and/, and satisfies

(#). By (3.11) and (3.13), we have the inequality (3.3) to be proved.

4. //-estimate of T* + 2 + iθ(f), α > - 1. Let

3 -1/4

I J '

for α > — 1, — oo < 0 < oo and n = 0, 1, 2, . For the above square roots, we choose the

branches positive for 0 = 0. We define

tΛ/)M= Σ (PnK)
n = 0

^(/)M=ΣWO'

for α > - 1 , - oo < 0 < oo, fe C? and x> 0. Then, we have T°£2 + iθ(f) = U\f) + V\f).

We shall estimate the ZΛnorms of U\f) and V\f).

We first deal with U\f). Let A = {pn}^0. Then, by the definition (3.1) of G%f)

we see that Uθ(f) = Jfa

Λ(Gθ

2(f)). Since A is a quasi-convex sequence, Jίa

Λ is bounded

in ZΛ Indeed, let || A llbqc^ΣΓ^o^"1" l)M2Pπl+n'mπ-^oo I pw U where A2pn = pn — 2pn + 1

+ ρn + 2. It follows from the result of Butzer, Nessel and Trebels [5, Theorem 3.2 and

p. 139] that

(4.1) II Jt"Λ(Gθ

2(f)) \\P<C\\ A | | b q c || Gθ

2(f) \\p

i fα>0and l</?<oo, or if — 1 < α < 0 and (1 +α/2)" 1 </?< — 2/α, where C is a constant

depending only on α and p. We have to estimate || A | | b q c .

LEMMA 3. If α> —1, then \\A | | b q c <C(l + | 0|), where C is a constant depending

only on α.

PROOF. Let φc) = {(x + α)(x + α+l) } 1 / 2 , a = oι+l + iθ, where the branch is so

chosen that η(x) is positive for 0 = 0. Let p(x) = (η(x) + x + b)~1 with b = (2α+l)/2. We

have p"(χ) = η(χ)-2>. Thus, | zl 2pj<2max{|//'(*)|; n < x < n + 2}<2(n + α-h I ) " 3 . Since

limπ^ODρn = α + 3/2 4- ΐ#, we complete the proof. q.e.d.
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To get the desired inequality for Uθ(f), it is enough to evaluate the ZΛnorm of

Gθ

2(f) for α> — 1. Applying Minkowski's inequality to the integral representation (3.10)

of Gθ

ε(f) with ε = 2, and changing variables, we have

1 Γ 1

+ ι0)|Jo

dυ

Ίί/P

\f(t)etiv-1)/2t\pdt} dυ.ί
Since et{v-l)l2t<2e-\\ -υ)'1 for ί>0 and 0 < ϋ < l , it follows that \\G\(J) W^

I Γ(2 + iθ) Γ 1 | | / | | P ί ^ α / 2 + 1 / p " 1 ^ . We remark that the integral on the right side is finite

if α > 0 and 1 </?, or if — 1 < α < 0 and /? < — 2/α. Combining this inequality with Lemma

3 and (4.1), we get

(4.2) \\Uθ(f)\\p<C(l + \θ\)e«W2\\f\\p,

for — oo<0<oo and feC™ if α>0 and 1</?<OO, or if — l < α < 0 and

(1 +α/2)~1 <p< —2/α. Here, C is a constant depending only on α and p.

We now estimate the ZΛnorm of Vθ(f). Define

for α> — 1, ε>0, — oo < 0 < O O , / G C C ° ° and x>0, where ω£ + 2 is as given in (3.2). Since

lim ε^+ 0 Vθ

ε(f)(χ)= Vθ(f)(x) for every x>0, it is enough to show that

(4.3) || Vθ

ε(f) \\p<M(θ){\\f(x)x£'2 \\p+ \\f(x)χ-ε/2 U ,

for — oo<^<oo and / e C " if α>0 and 1 < ^ < O O , or if — \<p<0 and

(1 +α/2)~1 <p< —2/α, where M(θ) is independent of/and ε, and satisfies the condition

(#) in Proposition 1. We note that Vθ

ε(f) is Gf(/) with nωa

n

 + 2/σn and ε + 2 in place of

φnωl and ε, respectively. Thus, Vθ

ε(f) has the form on the right side of (3.4) with r=\

and with substitutions as above. We apply the formula (2.2) with μ = α + 2, v = ε-\-iθ

and m = n to L£ + 2 + ε + iθ(y) in the representation. Thus, we have

x/2x Λoo Λoo f l oo

ιθ) Jo Jo Jo π =
y/2y(a+2+ε + iθ)/2Ja(2(tx)1/2)e-tta/2dvdydt

for α> — 1. The formula (3.5) leads to

oo

Σ

Using this identity and changing variables, we have
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Tί'
Jo Jo

o Jo
)-uzJa + 3{suz)}gθ

ε(z)Ja{(2x)1/2s)dudzds,

where g\(z) is as given in (3.6). Let

2ex/2 2 Γ00 Γ00 Γ1

/θ)Jo Jo Jo

Γ(ε + ιθ)J0 Jo Jo

for α > - l , ε>0, -oo <θ<oo,feC? and x>0. We see that Vθ

ε(f)=Wθ

ε{f)-Fθ

ε(f\
since the iterated integrals in W%f) and i^(/) are finite. Indeed, we can change the
order of the integrals in z and u. Furthermore, if β>0 and he Cc°°, then

(4.4) h(z)Jβ(suz)dz <C(su)~2 (su>l) and <C (su<l),

which is easily proved by integration by parts and the formula (d/dt)(tβ + 1Jβ+1(aή) =

βt) (cf. [7, 7.2(50)]).
We express Wθ

ε(f) as a sum of two integrals. Define

oo foo f l

o Jo Jo

Γ Γ
0 J o

•Ja+2((2x)ll2s)dudzds,

for α> —1, ε>0, — oo<0<oo, feCf and x>0. Then, it follows from the identity
Jx((2x)1i2s) = 2(a+l)(2x)-^2s-1Jx+1((2x)1'2 s)-Ja+2((2xγi2s) (cf. [7, 7.2 (56)]) that
W%f) = D%f)-E%f). We note also that the integrals in /)£(/) and £•(/) are finite.
Therefore, we have V%f) = D%f)-E%f)-Fl{f).

We first evaluate the ZΛnorm of E%f). We see by (3.6) that E%f) is equal to
Ge

E(f) with a + 2 in place of α. Since α + 2 > 1 > 0 when α > — 1, we can use the inequality
(3.3), and so we have

(4.5) || Eθ

ε(f) ||p<M(0){||/(x)xε/2 | | p + ||/Wx"ε/2 ||p}

for α> — 1, 1</7<OO, 0 < ε < l , -oo<0<oo and/eCc°°, where M(θ) is independent of
/and ε, and satisfies the condition (jf) in Proposition 1.

We next express Fθ

ε(f) as an integral. By the inequality (4.4) and the asymptotic
formula (3.7), we see that
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2ex'2 Γ 0 0 Γ 0 0 Γ 1

Fθ

E{f){x)= lim — — - u" + \l-u2γ-i+iθzJa + 3(suz)gθ

ε(z)
λ^+oΓ(ε + ιθ)Jo J o J o

J(X((2x)1/2s)s-λdudzds.

The factor s~Λ, \>λ>0, enables us to invert the order of integration in the above

iterated integral. This fact is obtained by an argument analogous to that for integral

(3.6). It follows that

2βχ/2 ri poo

Fθ

ε(f)(x) = lim - u* + *(l-u2y-1+iθgθ

ε(z)zRλ(u,z;x)dzdu,
λ^ + oΓ(ε + ιθ)Jo Jo

where

Rλ(u9z; x) =
10

By the Weber-Schafheitlin integral [16, 13.4 (2)], we have

(4.6) Rλ{u,z;x) = -2\uzf + x ~ λΓ(oc + 1 )Γ(2 + λ/2)

-λ/2, - 1 -λ/2; α + l ; - 2 ^ - ) for (2x)ί/2<uz,
(uz)2

Λ(x + 2-λ/2,2-λ/2ι α + 4 ; - ^ — ) for (2x)ί/2>uz,
\ 2x )

when (α + 3) + α 4-1 > λ > — 1. To invert the order of the limit limA^ + 0 and the integral

ίoίo° dudz in Fθ

ε(f), it is enough to show that, for fixed x and 0<a<b< oo,

(4.8) |/?Λ(w,z;x)|<C (0<w<l, a<z<b, (2x)1/2>uz),

(4.8') |tfA(W,z;x)|<cjlogΛ--^) ^ l j (0<u<ha<z<b,(2x)1/2 <uz),

for 0<A<2(α+ 1), where C is a constant depending only on α. In the case (2x)1/2>wz,

we have by the formula [7, 2.12 (1)] that

+ 2-Λ/2, 2-/1/2; α + 4; ( W Z )

2x

Γ(α + 4)

2x
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Γ(2-λ/2)Γ((x + 2 + λβ)

when α + 4>2-/l/2>0. This inequality and (4.7) give (4.8). In the case (2x)1/2<wz, we
use the formula [7, 2.12 (2)]. It follows that

! F / α + 2-Λ/2,-,- i/2;«- - ^ *W '-" aΠ«+ l>Γ<2-;/2)

•ί
Jo

(uz)2 J 2πΓ(α +2-/1/2)
I 1 + A/2

dt
(uz)2

when α + 2 — 2/2 >0 and — 1+λ/2^1, 2, 3, . Here, the integral is taken along a
contour which starts from the origin, encircles the point 1 once counter-clockwise and
returns to the origin. All singularities of the integrand except 1 are outside the contour.
This formula and (4.6) lead us to (4.80. Since 2^i(α> β\ y\ z) is a continuous function
in (α, β) for fixed z and y, we have

(α+l)(2x)1!/2f α + 2 2x

(uz)a+1 { α+1 {uz)2

for (2x)1/2<uz, and limλ^ + 0Rλ(u, z) = 0 for (2x)1/2>uz. Therefore, we have

2 1 + α / 2 (α+lK / 2 x α / 2

•i:
g x / 2 Λ l Λoo

W) Jo J,/,

α+1 («z) J

α+1 yv

Changing the order of integration, we get

(4.9) j \ e +i+, f l )J

Λ Y ί β ί α + 2 x 6 + 10 /. x
1

S (x,y) = [l
y J I α+1 y ε + l + i θ \ y

and thus,

\α/2

(4.10) | i ; t ( / X χ ) l ^ | r ( e + 1 + I l/(y)ly ε / 2 (-
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for α> —1, l > ε > 0 , — oo<0<oo, x>0 and/eCc°°, where C is a constant depending
only on α. We define a convolution operator K by K(h)(x) = \c^aoh(y)k(x — y)dy for h on
(-00, oo), where k(u) = e~lul/2χ(_ao 0](u). We reduce the estimate for Fθ

E(f) to that for
K(h).

By (4.10) we have

+ ϊ0)|

K(\f(y)\\y\^)(x)

K(\f(y)\

(α>0)

2 ( - l<α<0)

ι for x<0. When α>0,for x>0. Here,/is extended to the whole real line so that/(x)
we have by Minkowski's inequality that

r roo ^ i/p

(4.12) | J \K{\f(y)\\y\*l2){x)\*dx\ <C \\f(x)x*'2 \\p,

for 1 <p< oo, where C is a constant depending only on p. For — 1 <α<0, we use a
weighted norm inequality for a regular convolution transform. Since \x
weight for — 1 <η<p— 1, we have

η is an Ap-

(4.13) I K(\f(y) I I y |^
o

<c
J -

for — 1 <α/?/2<p — 1 and 1 <p< oo, where C is a constant depending only on α and p
(cf. [9, IV.3 Theorem 3.1]). Note that we may also obtain (4.13) by dividing the
integral on the right side of (4.10) to a sum of the integrals over (2kx, 2k + 1x),
k = 09l,2,'— and estimating them pointwise. It follows from (4.11), (4.12) and (4.13)
that

( 4 1 4 )

for l > ε > 0 , — oo<0<oo and feC™ if α>0 and \<p<cc, or if — l < α < 0 and
1 < p < — 2/α, where C is a constant independent of ε, θ and /.

We obtain the integral representation

ms f
ε+i + ιθ)Jxfor Dθ

ε(f) and thus, we have
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\y) y

for α> — 1, l > ε > 0 , -oo<0<oo, x>0 and /eCc°°. The proof is similar to that of (4.9)
and is omitted. By Hardy's inequality, we have

J IJ l/(y)l//2(^yj ~\dx = ) {J

and thus,

C
II Dε(f) II < II f(χ)χ II

for 1 <p< oo, ocp/2> — 1 and/eC^ 1 0, where C is a constant depending only on α and

/?. Therefore, by (4.5), (4.14) and the last inequality, we have (4.3). The inequalities

(4.2) and (4.3) lead us to the desired estimate || T^φ

2 + ίθ(f) \\p<M(Θ) \\f\\p for

— oo<0<oo and/GCC°° if α > 0 and 1 </?<oo, or if —1 < α < 0 and (1 H-α/2)"1 <p<

— 2/α, where M(θ) is independent of/, and satisfies the condition (#) in Proposition 1.
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