GORENSTEIN TORIC SINGULARITIES AND CONVEX POLYTOPES

Atsushi Noma

(Received July 9, 1990, revised January 4, 1991)

Introduction. Let X be a normal projective variety over a field k and D an *ample Q-divisor*, i.e., a rational coefficient Weil divisor such that bD is an ample Cartier divisor for some positive integer b. We consider a normal graded ring R(X, D) defined by $R(X, D) = \bigoplus_{n \geq 0} H^0(X, \mathcal{O}_X(nD)) t^n$. Here t is an indeterminate and $\mathcal{O}_X(nD)$ are the sheaves defined by $\Gamma(U, \mathcal{O}_X(nD)) = \{ f \in K(X); \operatorname{div}_U(f) + nD|_U \geq 0 \}$ for each open set U of X. We are interested in finding a criterion for a normal projective variety X to have an ample Q-divisor D with R(X, D) Gorenstein. Concerning this problem, see also [1, Chapter 5], [10]. Here we discuss this problem when X is a projective torus embedding defined over k.

Our main results are the following:

COROLLARY 2.5. Let X be a projective torus embedding and D an ample Cartier divisor. Then R(X, D) is Gorenstein if and only if the canonical sheaf ω_X on X is isomorphic to an invertible sheaf $\mathcal{O}_X(-\delta D)$ for a positive integer δ .

THEOREM 2.6. Every projective torus embedding X has an ample Q-divisor D stable under the torus action such that R(X, D) is Gorenstein.

To obtain these results, we proceed as follows: First, given a *rational convex* r-polytope P in \mathbb{R}^r (i.e., an r-dimensional convex polytope whose vertices have rational coordinates in \mathbb{R}^r), we construct a pair of projective torus embedding X(P) over k and an ample \mathbb{Q} -divisor D(P) (Proposition 1.3) following [7, Chapter 2], so that R(X(P), D(P)) is isomorphic to the normal semigroup k-algebra

$$R(P) = \bigoplus_{n \geq 0} \left\{ \sum_{m \in nP \cap \mathbf{Z}^r} ke(m) \right\} t^n.$$

Here t is an indeterminate and e is the isomorphism from \mathbb{Z}^r ($\subset \mathbb{R}^r$) into the Laurent polynomial ring $k[X_1^{\pm 1}, \ldots, X_r^{\pm 1}]$ sending (m_1, \ldots, m_r) to $X_1^{m_1} \cdots X_r^{m_r}$. Thus X(P) is isomorphic to $\operatorname{Proj}(R(P))$ (Proposition 1.5). Conversely, it turns out that every pair of projective torus embedding X and a T-stable ample \mathbb{Q} -divisor D on X is obtained from a rational convex r-polytope in \mathbb{R}^r in this way (Proposition 1.3). On the other hand, since R(X(P), D(P)) ($\simeq R(P)$) is Cohen-Macaulay (cf. [4]), we can apply the criterion [10, Corollary 2.9] for the Gorenstein property to R(X(P), D(P)). Therefore we have Proposition 2.2, which is a criterion for $R(X(P), D(P)) \simeq R(P)$ to be Gorenstein in terms

530 A. NOMA

of D(P) on X(P) as well as the maximal faces of P. This yields another proof for a theorem of Hibi [3]. As immediate consequences of Proposition 2.2, we get our main results.

I should like to thank Professor Takayuki Hibi for his lecture at Tsuda College in October, 1989, from which this material stemmed. Also, I should like to thank Professor Kei-ichi Watanabe for valuable suggestions and kind advice.

Preliminaries.

- (0.1) [a] denotes the greatest integer not greater than $a \in \mathbb{R}$. [a] denotes -[-a] for $a \in \mathbb{R}$.
- For notion of torus embeddings, we refer the reader to [7]. All torus embeddings will be defined over a fixed field k. Let T be an r-dimensional algebraic torus $\operatorname{Spec}(k[X_1^{\pm 1},\ldots,X_r^{\pm 1}])$ over k. Let M, N be the group of characters and one-parameter subgroups, respectively. By e(m), we denote the Laurent monomial corresponding to a character m. Namely $e(m) = X_1^{m_1} \cdots X_r^{m_r}$ for $m = (m_1, \dots, m_r)$. Set $M_R = M \otimes_{\mathbf{Z}} \mathbf{R}$ and $N_R = N \otimes_{\mathbf{Z}} \mathbf{R}$. Let $\langle , \rangle : M_R \times N_R \to \mathbf{R}$ represent the natural nondegenerate pairing. For a complete fan Δ of N, $\Delta(i)$ denotes the *i*-dimensional cones of Δ . A one-dimensional cone $\rho \in \Delta(1)$ is generated by a unique primitive integral vector $n(\rho)$ ([7, p. 24]). We denote by SF(N, Δ) the additive group consisting of Δ -linear support functions ([7, p. 66]). Set $SF(N, \Delta, Q) = SF(N, \Delta) \otimes_{\mathbb{Z}} Q$. Its elements are also called Δ -linear support functions. Then we have two injections $M \to SF(N, \Delta)$ sending m to $\langle m, \rangle$, and $SF(N, \Delta) \to \mathbf{Z}^{\Delta(1)}$ sending h to $(h(n(\rho)))_{\rho \in \Delta(1)}$. Let X be a complete torus embedding $T_N \text{emb}(\Delta)$. By T Div(X), T CDiv(X) and P Div(X), we denote the groups of T-stable Weil divisors, T-stable Cartier divisors and principal divisors on X, respectively. Also, by $TDiv(X, \mathbf{Q})$ (resp. $TCDiv(X, \mathbf{Q})$), we denote the group of T-stable **Q**-divisors (resp. T-stable **Q**-Cartier divisors). Namely $TDiv(X, \mathbf{Q}) = TDiv(X) \otimes_{\mathbf{Z}} \mathbf{Q}$ and $TCDiv(X, \mathbf{Q}) = TCDiv(X) \otimes_{\mathbf{Z}} \mathbf{Q}$. The one-dimensional cones ρ of $\Delta(1)$ are in one-to-one correspondence with the irreducible T-stable closed subvarieties $V(\rho)$ of codimension one in X. Therefore the map $Z^{A(1)} \to T \text{Div}(X)$ sending g to $D_g = -\sum_{\rho \in A(1)} g_\rho \cdot V(\rho)$ is a bijection, and induces two isomorphisms of groups, $SF(N, \Delta) \rightarrow TCDiv(X)$ and $M \rightarrow$ $PDiv(X) \cap TCDiv(X)$. As a result, we have two commutative diagrams (cf. [7, §2.1]):

$$\begin{array}{cccc}
M & \longrightarrow & SF(N, \Delta) & \longrightarrow & \mathbf{Z}^{\Delta(1)} \\
\downarrow \downarrow & & \downarrow \downarrow \\
PDiv(X) \cap TCDiv(X) & \longrightarrow & TDiv(X) \\
& & & \downarrow \chi \\
SF(N, \Delta, \mathbf{Q}) & \longrightarrow & \mathbf{Q}^{\Delta(1)} \\
\downarrow \downarrow & & \downarrow \chi \\
TCDiv(X, \mathbf{Q}) & \longrightarrow & TDiv(X, \mathbf{Q}) .
\end{array}$$

1. Rational polytopes and projective torus embeddings.

LEMMA 1.1. Let $X = T_N \operatorname{emb}(\Delta)$ be an r-dimensional complete torus embedding. For $g \in \mathbf{Q}^{A(1)}$, the set $\square_g = \{m \in M_{\mathbf{R}}; \langle m, n(\rho) \rangle \geq g_\rho$ for all $\rho \in \Delta(1)\}$ is a (possibly empty) convex polytope in $M_{\mathbf{R}}$. The set $H^0(X, \mathcal{O}_X(D_g))$ of global sections of the divisorial \mathcal{O}_X -module $\mathcal{O}_X(D_g)$ is the finite dimensional k-vector space with $\{e(m); m \in M \cap \square_g\}$ as a basis. Let $\operatorname{div}(e(m)) + D_g = \sum_{\rho \in \Delta(1)} a_\rho \cdot V(\rho)$ for an element $m \in M$. Then m is in $\operatorname{int}(\square_g)$ if and only if the coefficient a_ρ for each $\rho \in \Delta(1)$ is a positive rational number. Here $\operatorname{int}(\square_g)$ denotes the interior of the convex polytope \square_g .

PROOF. The first part is the same as that in the case of $g \in \mathbb{Z}^{d(1)}$ (cf. [7, Lemma 2.3]). Since $n(\rho)$ is a primitive vector and the pairing \langle , \rangle is non-degenerate, we have $\Box_g \cap M = \Box_{[g]} \cap M$, where [g] denotes the integral vector $([g_\rho])_{\rho \in A(1)}$. On the other hand, we have $\mathcal{O}_X(D_g) = \mathcal{O}_X(D_{[g]})$ by definition. Hence we may assume that $g \in \mathbb{Z}^{d(1)}$. In this case, the assertion follows from [5, p. 42, Theorem] (cf. [7, Lemma 2.3]). The rest is obvious.

Recall that a Δ -linear support function $h \in SF(N, \Delta, Q)$ is said to be *strictly upper convex* with respect to Δ if h is upper convex, namely $h(n) + h(n') \le h(n+n')$ for all $n, n' \in N_R$, and Δ is the coarsest among the fans Δ' in N for which h is Δ' -linear (cf. [7, p. 82]).

LEMMA 1.2. Let $X = T_N \operatorname{emb}(\Delta)$ be an r-dimensional complete torus embedding and $h \in \operatorname{SF}(N, \Delta, \mathbf{Q})$. Then D_h is an ample \mathbf{Q} -divisor if and only if h is strictly upper convex with respect to Δ .

PROOF. This easily follows from [7, Corollary 2.14]. q.e.d.

PROPOSITION 1.3. Let P be a rational convex r-polytope in $M_R = R^r$ and $h_P \colon N_R \to R$ the support function for P defined by $h_P(n) = \inf\{\langle m, n \rangle; m \in P\}$. Then there exists a unique finite complete fan Δ_P in N such that h_P is strictly upper convex Δ_P -linear with respect to Δ_P . We denote the corresponding r-dimensional projective torus embedding $T_N \operatorname{emb}(\Delta_P)$ and the ample T-stable Q-divisor D_{h_P} by X(P) and D(P). Conversely, every pair of a projective torus embedding and a T-stable ample Q-divisor on it is obtained from a rational convex r-polytope in M_R in this way.

PROOF. The first part follows from [7, Theorem A.18 and Corollary A.19]. Then, by (1.2), D(P) is a T-stable ample Q-divisor on X(P). Conversely, given a projective torus embedding X with a T-stable ample Q-divisor D, there exist a complete fan Δ and a strictly upper convex Δ -linear support function $h \in SF(N, \Delta, Q)$ with $X = T_N \text{emb}(\Delta)$ and $D = D_h$, by (1.2). Set $\Box_h = \{u \in M_R; \langle u, n(\rho) \rangle \geq h(n(\rho)) \text{ for all } \rho \in \Delta(1)\}$. By construction and [7, Theorem A.18 and Corollary A.19], we have $X = X(\Box_h)$ and $D = D(\Box_h)$.

REMARK 1.4. In (1.3), D(P) is a Cartier divisor if and only if P is an integral

532 A. NOMA

convex r-polytope, namely, a convex polytope whose vertices have integral coordinates. D(P) is a Weil divisor if and only if P is facet-reticular, that is, each supporting hyperplane carried by a facet (maximal face) of P contains an element of M.

PROPOSITION 1.5. Let P be a rational convex r-polytope in $M_{\mathbf{R}}$. Then the graded semigroup ring

$$R(P) = \bigoplus_{n \ge 0} \left\{ \sum_{m \in nP \cap M} ke(m) \right\} t^n$$

is isomorphic as a graded k-algebra to the graded ring R(X(P), D(P)) associated with the projective torus embedding X(P) and the T-stable ample Q-divisor D(P). Consequently, Proj(R(P)) is isomorphic to X(P) and the sheaf $\mathcal{O}_{X(P)}(n) := R(P)(n)^{\sim}$ on Proj(R(P)) corresponds via this isomorphism to $\mathcal{O}_{X(P)}(nD(P))$ for all $n \in \mathbb{Z}$.

PROOF. Since $\square_{nh_P} = nP$ and $D(nP) = D_{nh_P}$ for all $n \in \mathbb{N}$, we have

$$H^0(X(P), \mathcal{O}_{X(P)}(nD(P))) = \sum_{m \in nP \cap M} ke(m)$$

by (1.1). This implies that $R(P) \simeq R(X(P), D(P))$. The rest follows from a standard argument in the theory of Demazure's construction (cf. [10, Lemma 2.1]).

COROLLARY 1.6. For an r-dimensional projective torus embedding $X = T_N \operatorname{emb}(\Delta)$ and a strictly upper convex Δ -linear support function $h \in \operatorname{SF}(N, \Delta, \mathbf{Q})$, we have:

(a)
$$\dim_k H^0(X, \mathcal{O}_X(nD_h)) = \begin{cases} \sharp(n \square_h \cap M) & \text{if } n \ge 0 \\ 0 & \text{if } n < 0 \end{cases}$$

(b) $\dim_k H^i(X, \mathcal{O}_X(nD_h)) = 0$ for 0 < i < r and all $n \in \mathbb{Z}$;

(c)
$$\dim_k H^r(X, \mathcal{O}_X(nD_h)) = \begin{cases} 0 & \text{if } n \ge 0 \\ \#(\operatorname{int}((-n)\square_h) \cap M) & \text{if } n < 0 \end{cases}$$

PROOF. (a) follows from (1.1). Since $R(X, D_h)$ is a normal numerical semigroup ring by (1.3) and (1.5), $R(X, D_h)$ is normal and Cohen-Macaulay by a theorem of Hochster [4]. Therefore, (b) follows from [10, Corollary 2.4]. By the Serre duality, we have $\operatorname{Hom}_k(H^r(X, \mathcal{O}_X(nD_h)), k) \simeq H^0(X, \mathcal{O}_X(-[nD_h] + K_X))$, where K_X denotes a canonical divisor on X. Since $K_X = -\sum_{\rho \in \Delta(1)} V(\rho)$ (cf. [5, p. 29]), (c) follows from (1.1).

REMARK 1.7. Let P be a rational convex r-polytope in \mathbb{R}^r and $m = \min\{i \in \mathbb{N}; i > 0 \text{ and } iP \text{ is integral}\}$. By (1.3), (1.5) and (1.6), we have $\#(nP \cap \mathbb{Z}^r) = \chi(X(P), \mathcal{O}_{X(P)}(nD(P)))$ for $n \geq 0$ and $\#(\inf((-n)P) \cap \mathbb{Z}^r) = (-1)^r \chi(X(P), \mathcal{O}_{X(P)}(nD(P)))$ for n < 0, where $\chi(X(P), \mathcal{O}_{X(P)}(nD(P))) := \sum_{j=0}^r (-1)^j \dim_k H^j(X(P), \mathcal{O}_{X(P)}(nD(P)))$. By a result due to Snapper and Kleiman, for every $d \in \mathbb{Z}$, there exists a polynomial $P_d(\lambda)$ with coefficients in \mathbb{Q} such

that $\chi(X(P), \mathcal{O}_{X(P)}((d+m\lambda)D(P))) = P_d(\lambda)$. Thus we recover the reciprocity theorem for Ehrhart quasi-polynomials. (See, for example, [7, Proposition 2.24], [9, (4.6)]).

2. Criteria for Gorenstein property.

Lemma 2.1. Let Δ be a complete fan in N and $h \in SF(N, \Delta, \mathbf{Q})$ a strictly upper convex Δ -linear support function. Set $\square_h = \{u \in M_{\mathbf{R}}; \langle u, n(\rho) \rangle \geq h(n(\rho)) \text{ for each } \rho \in \Delta(1)\}$. Suppose that h has negative values except at the origin, or equivalently, \square_h contains the origin in its interior. Then the set of vertices of the polar convex polyhedral set $(\square_h)^\circ := \{v \in N_{\mathbf{R}}; \langle u, v \rangle \geq -1 \text{ for all } u \in \square_h\} \text{ for } \square_h \text{ is } \{-(1/h(n(\rho)))n(\rho); \rho \in \Delta(1)\}.$

PROOF. By [7, Corollary A.19], there exists a bijection from $\Delta(1)$ to the set $\mathscr{F}^{r-1}(\square_h)$ of (r-1)-dimensional faces of \square_h sending $\rho \in \Delta(1)$ to $Q_\rho := \{u \in \square_h; \langle u, n(\rho) \rangle = h(n(\rho)) \}$. Also, by [7, Proposition A.17], there exists a bijection from $\mathscr{F}^{r-1}(\square_h)$ to the set of vertices of $(\square_h)^\circ$ sending an (r-1)-dimensional face Q to $Q^* := \{v \in (\square_h)^\circ; \langle u, v \rangle = -1 \text{ for all } v \in Q\}$. Then we observe that $(Q_\rho)^*$ is $-(1/h(n(\rho)))n(\rho)$.

For a Noetherian graded ring R with the canonical module K_R of R, we consider the integer a(R) defined by $a(R) = -\min\{m \in \mathbb{Z}; (K_R)_m \neq 0\}$. For details concerning this integer, see [1, p. 194].

PROPOSITION 2.2 (cf. [2], [3]). For a rational convex r-polytope P in $M_R = R^r$ with $M = Z^r$ and a positive integer δ , the following are equivalent:

- (a) The semigroup ring R(P) over k is a Gorenstein ring with $a(R(P)) = -\delta$.
- (b) The projective torus embedding $X(P) = T_N \operatorname{emb}(\Delta_P)$ over k, and the ample Q-divisor $D(P) = \sum_{\rho \in \Delta_P(1)} (p_\rho/q_\rho) \cdot V(\rho) \ (q_\rho > 0, p_\rho \text{ and } q_\rho \text{ are coprime})$ satisfy the following:
- (b1) There exist a positive integer r_{ρ} for each $\rho \in \Delta_{P}(1)$ and a character $m \in M$ such that

$$\delta D(P) + \operatorname{div}(\boldsymbol{e}(m)) = \sum_{\rho \in \Delta_P(1)} (1/r_{\rho}) \cdot V(\rho) ;$$

- (b2) δ and q_{ρ} are coprime for each $\rho \in \Delta_{P}(1)$.
- (c) (Hibi's condition) P satisfies the following:
- (c1) There exists a character $m \in M$ such that the polar polyhedral set $(\delta P m)^{\circ} := \{v \in N_{\mathbf{R}}; \langle u, v \rangle \geq -1 \text{ for all } u \in \delta P m\} \text{ for } \delta P m := \{\delta p m \in M_{\mathbf{R}}; p \in P\}$ is an integral convex r-polytope;
- (c2) The convex hull \tilde{P} of the set $\{(u,0) \in M_R \times R; u \in P\} \cup \{(0,\ldots,0,1/\delta)\}$ in $M_R \times R$ is facet-reticular (cf. (1.4)).

PROOF. (a) \Leftrightarrow (b): By (1.5), R(P) is isomorphic to R(X(P), D(P)) and, therefore, R(X(P), D(P)) is Cohen-Macaulay (cf. [4]). Since a canonical divisor $K_{X(P)}$ on X(P) is $-\sum_{\rho \in d_P(1)} V(\rho)$ (cf. [5, p. 29, Theorem 9, III.d]), it follows from [10, Corollary 2.9] that R(P) is a Gorenstein ring with $a(R(P)) = -\delta$ if and only if there exists a character

 $m \in M$ such that $\delta D(P) + \operatorname{div}(e(m)) = \sum_{\rho \in \Delta_P(1)} (1/q_\rho) \cdot V(\rho)$. Note that a semi-invariant rational function $f \in K(X(P))^*$ is a scalar multiple of a character $m \in M$.

Suppose (a) holds. By the preceding remark, we have the relation above and, therefore, (b1) holds. Rewriting this relation, we have $\operatorname{div}(e(m)) = \sum_{\rho \in A_P(1)} \{(1 - \delta p_\rho)/q_\rho\}$. $V(\rho)$. Hence $(1 - \delta p_\rho)/q_\rho$ is an integer and, therefore, δ and q_ρ are coprime for each $\rho \in \Delta_P(1)$.

Conversely, suppose (b) holds. By the preceding remark, we claim that $r_{\rho} = q_{\rho}$ for each $\rho \in \Delta_P(1)$. Since r_{ρ} is a factor of q_{ρ} , $b_{\rho} := (q_{\rho}/r_{\rho})$ is a positive integer. Then, by (b1), $(b_{\rho} - \delta p_{\rho})/(r_{\rho}b_{\rho})$ is an integer and, therefore, b_{ρ} is a factor of δp_{ρ} . Hence we have $b_{\rho} = 1$ for each $\rho \in \Delta_P(1)$ as required, because neither δ nor p_{ρ} has any common factor with q_{ρ} .

- (b1) \Rightarrow (c1): Set $g = \delta h_P m \in SF(N, \Delta_P, Q)$. Since $D_g = \delta D(P) + \text{div}(e(m))$ and D_g is ample, g is strictly upper convex and $g(n(\rho)) = -(1/r_\rho)$ for each $\rho \in \Delta_P(1)$. Therefore, by (2.1), the set of vertices of the polar convex polyhedral set $(\Box_g)^\circ$ is $\{r_\rho n(\rho); \ \rho \in \Delta_P(1)\}$ ($=\{-(1/g(n(\rho)))n(\rho); \ \rho \in \Delta_P(1)\}$). On the other hand, we have $\Box_g = \delta P m$ by definition. Therefore $(\delta P m)^\circ$ is an integral convex polytope.
- (c1) \Rightarrow (b1): Set $g = \delta h_P m \in SF(N, \Delta_P, Q)$. Since g is strictly upper convex with respect to Δ_P and $O \in \operatorname{int}(\delta P m)$, it follows from (2.1) that the vertex set of $(\delta P m)^\circ$ is $\{-(1/g(n(\rho)))n(\rho); \rho \in \Delta_P(1)\}$. Hence, by assumption, $-(1/g(n(\rho)))n(\rho)$ is an integral vector. Since $n(\rho)$ is a primitive integral vector and $g \in SF(N, \Delta_P, Q)$ is negative-valued, $r_\rho := -1/(g(n(\rho)))$ is a positive integer for each $\rho \in \Delta_P(1)$ and $\delta D(P) + \operatorname{div}(e(m)) = D_g = \sum_{\rho} (1/r_\rho) \cdot V(\rho)$.
- (b2) \Leftrightarrow (c2): Since the supporting hyperplane carried by the facet of P corresponding to $\rho \in \Delta_P(1)$ is $H_\rho = \{u \in M_R; \langle u, n(\rho) \rangle = h_P(n(\rho))\}$, the supporting hyperplane carried by a facet of \tilde{P} is of the form $\tilde{H}_\rho := \{(u, x) \in M_R \times R; \delta x + (1/h_P(n(\rho)))\langle u, n(\rho) \rangle = 1\}$ or $\{(u, 0) \in M_R \times R\}$. Since $h_P(n(\rho)) = -(p_\rho/q_\rho)$ and $n(\rho)$ is a primitive vector, δ and q_ρ are coprime if and only if $\tilde{H}_\rho \cap (M \times Z)$ is non-empty. q.e.d.
- REMARK 2.3. The equivalence between the conditions (a) and (c) in (2.2) is originally due to Hibi [3]. Combining the equivalence between (a) and (c) in (2.2) and a theorem of Stanley [8, Theorem 4.4], we get another proof for theorems of Hibi [2], [3]. Our proof makes clear why the condition (c2) in (2.2) is needed, in terms of Demazure's construction. Indeed, let R(X, D) be a Cohen-Macaulay graded ring obtained from a normal projective variety X and an ample Q-divisor $D = \sum_{V} (p_V/q_V) \cdot V$, with V running through irreducible subvarieties of codimension 1, where $q_V > 0$ and p_V , q_V are coprime for each V. Then it follows from [10, Corollary 2.9] that R(X, D) is Gorenstein if the Veronese subring $R(X, D)^{(d)}$ of order d is Gorenstein for an integer d such that $a(R(X, D)) \equiv 0 \pmod{d}$ and that d and q_V are coprime for each V.

COROLLARY 2.4 (cf. [7, (2.20)]). For a rational convex r-polytope P in $M_R = R^r$ with $M = Z^r$ and a positive integer δ , the following are equivalent:

(a) P is integral and there exists a character $m \in M$ such that the polar polyhedral set $(\delta P - m)^{\circ}$ for $\delta P - m$ is an integral convex r-polytope;

(b) The **Q**-divisor D(P) on the projective torus embedding X(P) is an ample Cartier divisor. The invertible sheaf $\mathcal{O}_{X(P)}(-\delta D(P))$ is isomorphic to the canonical sheaf $\omega_{X(P)}$.

PROOF. It follows from (1.4) and (2.2) that (a) holds if and only if D(P) is a Cartier divisor and there exists a character $m \in M$ such that $\delta D(P) + \text{div}(e(m)) = \sum_{\rho \in A_P(1)} V(\rho)$. Since a canonical divisor $K_{X(P)}$ on X(P) is $-\sum_{\rho \in A_P(1)} V(\rho)$, (a) is equivalent to (b).

q.e.d.

Since every Cartier divisor on a complete torus embedding is linearly equivalent to a *T*-stable Cartier divisor (cf. [6, Proposition 6.1]), we have:

COROLLARY 2.5. Let X be a projective torus embedding and D an ample Cartier divisor. Then R(X, D) is Gorenstein if and only if the canonical sheaf ω_X on X is isomorphic to an invertible sheaf $\mathcal{O}_X(-\delta D)$ for a positive integer δ .

THEOREM 2.6. Every projective torus embedding X has a T-stable ample Q-divisor D such that R(X, D) is a Gorenstein ring with a(R(X, D)) = -1.

PROOF. By assumption, $X = T_N \text{emb}(\Delta)$ has a T-stable ample Cartier divisor E of the form $E = \sum_{\rho \in A(1)} a_\rho \cdot V(\rho)$, $a_\rho > 0$. Set $c = \text{L.C.M.}\{a_\rho; \ \rho \in \Delta(1)\}$ and D = (1/c)E. By (1.3), (X, D) corresponds to a rational polytope P in M_R . Then, by (1.5) and (2.2), R(X, D) is a Gorenstein ring with a(R(X, D)) = -1, as required. q.e.d.

REFERENCES

- [1] S. GOTO AND K.-I. WATANABE, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213.
- [2] T. Hibi, Dual polytopes of rational convex polytopes, preprint.
- [3] T. Hibi, A combinatorial self-reciprocity theorem for Ehrhart quasi-polynomials of rational convex polytopes, preprint.
- [4] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318–337.
- [5] G. KEMPF, F. KNUDSEN, D. MUMFORD AND B. SAINT-DONAT, Toroidal embeddings I, Lecture Notes in Math. 339, Springer-Verlag, Berlin/New York, 1973.
- [6] T. Oda, Lectures on Torus Embeddings and Applications, Tata Inst. Fund. Res. Lectures on Math. and Phys. 58, Bombay, 1978.
- [7] T. Oda, Convex Bodies and Algebraic Geometry, Erg. der Math. (3) 15, Springer-Verlag, Berlin/New York, 1988.
- [8] R. P. STANLEY, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83.
- [9] R. P. STANLEY, Enumerative Combinatorics, Volume I, Wadsworth, Monterey, Calif., 1986.
- [10] K.-I. WATANABE, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203–211.

DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCE AND ENGINEERING
WASEDA UNIVERSITY
OHKUBO, SHINJUKU, TOKYO 169
JAPAN

	•		