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Introduction. Let X be a normal projective variety over a field kK and D an ample
QO-divisor, i.e., a rational coefficient Weil divisor such that 5D is an ample Cartier divisor
for some positive integer b. We consider a normal graded ring R(X, D) defined by
R(X,D)= @D, H %X, Ox(nD))t". Here t is an indeterminate and O yx(nD) are the sheaves
defined by I'(U, Ox(nD))={ fe K(X); divy(f)+nD|, >0} for each open set U of X. We
are interested in finding a criterion for a normal projective variety X to have an ample
Q-divisor D with R(X, D) Gorenstein. Concerning this problem, see also [1, Chapter
5], [10]. Here we discuss this problem when X is a projective torus embedding defined
over k.

Our main results are the following:

COROLLARY 2.5. Let X be a projective torus embedding and D an ample Cartier
divisor. Then R(X, D) is Gorenstein if and only if the canonical sheaf wy on X is isomorphic
to an invertible sheaf Oy(—0D) for a positive integer o.

THEOREM 2.6. Every projective torus embedding X has an ample Q-divisor D stable
under the torus action such that R(X, D) is Gorenstein.

To obtain these results, we proceed as follows: First, given a rational convex
r-polytope P in R" (i.e., an r-dimensional convex polytope whose vertices have rational
coordinates in R"), we construct a pair of projective torus embedding X(P) over k and
an ample Q-divisor D(P) (Proposition 1.3) following [7, Chapter 2], so that
R(X(P), D(P)) is isomorphic to the normal semigroup k-algebra

n>0 menPnZ"r

R(P)=@{ Y ke(m)}t".

Here ¢ is an indeterminate and e is the isomorphism from Z" (= R") into the Laurent
polynomial ring k[X!, ..., X,*!] sending (m,, ..., m,) to X7 - -X™ Thus X(P) is
isomorphic to Proj(R(P)) (Proposition 1.5). Conversely, it turns out that every pair of
projective torus embedding X and a T-stable ample Q-divisor D on X is obtained from
a rational convex r-polytope in R" in this way (Proposition 1.3). On the other hand,
since R(X(P), D(P)) (~ R(P)) is Cohen-Macaulay (cf. [4]), we can apply the criterion
[10, Corollary 2.9] for the Gorenstein property to R(X(P), D(P)). Therefore we have
Proposition 2.2, which is a criterion for R(X(P), D(P)) ~ R(P) to be Gorenstein in terms
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of D(P) on X(P) as well as the maximal faces of P. This yields another proof for a
theorem of Hibi [3]. As immediate consequences of Proposition 2.2, we get our main
results.

I should like to thank Professor Takayuki Hibi for his lecture at Tsuda College in
October, 1989, from which this material stemmed. Also, I should like to thank
Professor Kei-ichi Watanabe for valuable suggestions and kind advice.

Preliminaries.

(0.1) [a] denotes the greatest integer not greater than ae R. [a] denotes —[ —a]
for aeR.

(0.2) For notion of torus embeddings, we refer the reader to [7]. All torus
embeddings will be defined over a fixed field k. Let T be an r-dimensional algebraic
torus Spec(k[ X!, ..., X ']) over k. Let M, N be the group of characters and
one-parameter subgroups, respectively. By e(m), we denote the Laurent monomial
corresponding to a character m. Namely e(m)=X7"--- X for m=(m,, ..., m,). Set
Mr=M®@zR and Ng=N® R. Let { , ): Mg x Ng—R represent the natural non-
degenerate pairing. For a complete fan 4 of N, 4(i) denotes the i-dimensional cones
of 4. A one-dimensional cone p € A(1) is generated by a unique primitive integral vector
n(p) ([7, p.- 24]). We denote by SF(N, 4) the additive group consisting of A-linear
support functions ([7, p. 66]). Set SF(N, 4, Q)=SF(N, 4) ® Q. Its elements are also
called A-linear support functions. Then we have two injections M —SF(N, 4) sending
m to {m, », and SF(N, 4)—»Z*" sending h to (h(n(p))),csa) Let X be a complete
torus embedding Tyemb(4). By TDiv(X), TCDiv(X) and PDiv(X), we denote the
groups of T-stable Weil divisors, T-stable Cartier divisors and principal divisors on X,
respectively. Also, by TDiv(X, Q) (resp. TCDiv(X, Q)), we denote the group of T-stable
Q-divisors (resp. T-stable Q-Cartier divisors). Namely TDiv(X, Q)= TDiv(X) ® Q@ and
TCDiv(X, Q)= TCDiv(X) ® z Q. The one-dimensional cones p of 4(1) are in one-to-one
correspondence with the irreducible 7T-stable closed subvarieties V(p) of codimension
one in X. Therefore the map Z*"— TDiv(X) sending g to D,=—3 _,,,9," V(p)is a
bijection, and induces two isomorphisms of groups, SF(N, 4)— TCDiv(X) and M—
PDiv(X)n TCDiv(X). As a result, we have two commutative diagrams (cf. [7, §2.1]):

M —— SFWN,4) ——  Z40
R M) R
PDiv(X)n TCDiv(X) — TCDiv(X) —— TDiv(X)

SF(N, 4,0) — QY
» N
TCDiv(X, Q) — TDiv(X, Q).
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1. Rational polytopes and projective torus embeddings.

LEMMA 1.1. Let X=Tyemb(4) be an r-dimensional complete torus embedding. For
ge Q*Y, the set [1,={meMpg; {m,n(p))=>y, for all pe A1)} is a (possibly empty)
convex polytope in Mg. The set H(X, Ox(D,)) of global sections of the divisorial
Ox-module Ox(D,) is the finite dimensional k-vector space with {e(m); me Mn[],} as
a basis. Let div(e(m))+Dg=ZpEA(l)ap' V(p) for an element me M. Then m is in int([],)
if and only if the coefficient a, for each pe A(1) is a positive rational number. Here
int(C],) denotes the interior of the convex polytope [],.

ProoF. The first part is the same as that in the case of ge Z4Y (cf. [7, Lemma
2.3]). Since n(p) is a primitive vector and the pairing { , ) is non-degenerate, we have
O,nM=[];,n M, where [g] denotes the integral vector ([g,]),c41) On the other
hand, we have Ox(D,)=0x(D,,;) by definition. Hence we may assume that ge Z4®".
In this case, the assertion follows from [5, p. 42, Theorem] (cf. [7, Lemma 2.3]).
The rest is obvious.

Recall that a A-linear support function #e SF(N, 4, Q) is said to be strictly upper
convex with respect to 4 if & is upper convex, namely h(n)+h(n')<h(n+n') for all
n, n' € Ng, and 4 is the coarsest among the fans 4’ in N for which 4 is A'-linear (cf. [7,
p- 82]).

LEMMA 1.2. Let X=Tyemb(A) be an r-dimensional complete torus embedding and
heSF(N, 4, Q). Then D, is an ample Q-divisor if and only if h is strictly upper convex
with respect to A.

PrROOF. This easily follows from [7, Corollary 2.14]. q.e.d.

PROPOSITION 1.3.  Let P be a rational convex r-polytope in Mg =R" and hp: Ng—R
the support function for P defined by hp(n) =inf{{m, n); me P}. Then there exists a unique
finite complete fan Ap in N such that hp is strictly upper convex Ap-linear with
respect to Ap. We denote the corresponding r-dimensional projective torus embedding
Tyemb(4p) and the ample T-stable Q-divisor D,, by X(P) and D(P). Conversely, every
pair of a projective torus embedding and a T-stable ample Q-divisor on it is obtained from
a rational convex r-polytope in Mg in this way.

ProofF. The first part follows from [7, Theorem A.18 and Corollary A.19].
Then, by (1.2), D(P) is a T-stable ample Q-divisor on X(P). Conversely, given a
projective torus embedding X with a T-stable ample Q-divisor D, there exist a
complete fan 4 and a strictly upper convex 4-linear support function he SF(N, 4, Q)
with X = Tyemb(4) and D=D,, by (1.2). Set [1,={ue Mg; {u, n(p)> >h(n(p)) for all
peA(1)}. By construction and [7, Theorem A.18 and Corollary A.19], we have
X=X(d,) and D=D(1,)- g.e.d.

REMARK 1.4. In (1.3), D(P) is a Cartier divisor if and only if P is an integral
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convex r-polytope, namely, a convex polytope whose vertices have integral coordinates.
D(P)isa Weil divisor if and only if P is facet-reticular, that is, each supporting hyperplane
carried by a facet (maximal face) of P contains an element of M.

PROPOSITION 1.5. Let P be a rational convex r-polytope in Mg. Then the graded
semigroup ring

R(P)= @{ Y ke(m)}t"
n>0 (menPnM

is isomorphic as a graded k-algebra to the graded ring R(X(P), D(P)) associated with the
projective torus embedding X(P) and the T-stable ample Q-divisor D(P). Consequently,
Proj(R(P)) is isomorphic to X(P) and the sheaf Oxp((n):=R(P)(n)~ on Proj(R(P))
corresponds via this isomorphism to Oxp(nD(P)) for all ne Z.

Proor. Since [J,,,=nP and D(nP)=D,,, for all ne N, we have

HO(X(P), Ox@(nD(P)= ), ke(m)

menPnM
by (1.1). This implies that R(P)~ R(X(P), D(P)). The rest follows from a standard
argument in the theory of Demazure’s construction (cf. [10, Lemma 2.17). q.e.d.

COROLLARY 1.6. For an r-dimensional projective torus embedding X = Tyemb(4)
and a strictly upper convex A-linear support function he SF(N, 4, Q), we have:

(a) dim, H°(X, (OX(nDh)):{#(”D'-“M) if n=0

0 if n<0;
(b) dim, H'(X, Ox(nD;))=0  for O0<i<r and allneZ;
0 if n=0

() dimy H'CX, (QX(nDh))_{#(int((—n)D,,)nM) if n<0.

PrROOE. (a) follows from (1.1). Since R(X, D,) is a normal numerical semigroup
ring by (1.3) and (1.5), R(X, D,) is normal and Cohen-Macaulay by a theorem of
Hochster [4]. Therefore, (b) follows from [10, Corollary 2.4]. By the Serre duality,
we have Hom(H'(X, Ox(nD,)), k)~H°(X, Oy(—[nD,]+ Ky)), where K, denotes a
canonical divisor on X. Since Ky=-—Y peay V(p) (cf. [5, p. 29]), () follows from
(1.1). g.e.d.

REMARK 1.7. Let P be a rational convex r-polytope in R” and m=min{ie N; i>0
and iP is integral}. By (1.3), (1.5) and (1.6), we have #(nPn Z") = y(X(P), Oxp(nD(P)))
for n>0 and #(int((—n)P)n Z") = (—1)"x(X(P), Oxp(nD(P))) for n<0, where y(X(P),
Oxp(nD(P))):=)"_, (= 1)/dimy HI(X(P), Oxp(nD(P))). By a result due to Snapper
and Kleiman, for every de Z, there exists a polynomial P (1) with coefficients in Q such
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that (X(P), Oxp)((d+mAi)D(P)))=P,(4). Thus we recover the reciprocity theorem for
Ehrhart quasi-polynomials. (See, for example, [7, Proposition 2.24], [9, (4.6)]).

2. Criteria for Gorenstein property.

LEmMMA 2.1. Let A be a complete fan in N and heSF(N, A, Q) a strictly upper
convex A-linear support function. Set [, = {ue Mg; <u, n(p)» = h(n(p)) for each p € A(1)}.
Suppose that h has negative values except at the origin, or equivalently, [, contains the
origin in its interior. Then the set of vertices of the polar convex polyhedral set

(Ow°:={ve Ng; <u, v)>—1 for all ue 0} for Oy is {—(1/h(n(p)))n(p); p€ A()}.

Proor. By [7, Corollary A.19], there exists a bijection from A(1) to the set
F'~ N[O, of (r—1)-dimensional faces of [, sending ped(l) to Q,:={uey
{u, n(p)) =h(n(p))}. Also, by [7, Proposition A.17], there exists a bijection from
F (™, to the set of vertices of ([1,)° sending an (r—1)-dimensional face Q to
Q*:={ve(dy° <u,vy=-—1 for all veQ}. Then we observe that (Q,)* is
—(1/h(n(p)))n(p). q.ed.

For a Noetherian graded ring R with the canonical module K of R, we consider
the integer a(R) defined by a(R)= —min{me Z; (Ky),,#0}. For details concerning this
integer, see [1, p. 194].

ProrosiTioN 2.2 (cf. [2], [3]). For a rational convex r-polytope P in Mg=R" with
M =Z" and a positive integer 0, the following are equivalent:
(@) The semigroup ring R(P) over k is a Gorenstein ring with a(R(P))= —/.
(b) The projective torus embedding X(P)= Tyemb(4p) over k, and the ample
Q-divisor D(P)= ZpeAp(l)(pp/qp) V(p) (q,>0, p, and q, are coprime) satisfy the following:
(bl) There exist a positive integer r, for each peAp(1) and a character
me M such that

SD(P)+div(e(m))= . (1/r,)-V(p);
pedp(1)
(b2) 6 and g, are coprime for each pe Ap(1).
(c) (Hibi’s condition) P satisfies the following:
~ (cl) There exists a character me M such that the polar polyhedral set

(6P—m)°:={ve Ng; {u,v)>—1 for all ue 6P—m} for SP—m :={0p—me Mg; pe P}
is an integral convex r-polytope;

(c2) The convex hull P of the set {(u,0)e Mg x R; ue Pyu{(0,...,0,1/0)} in
Mg x R is facet-reticular (cf. (1.4)).

PrOOF. (a)<>(b): By (1.5), R(P) is isomorphic to R(X(P), D(P)) and, therefore,
R(X(P), D(P)) is Cohen-Macaulay (cf. [4]). Since a canonical divisor Ky, on X(P) is
—Zpedp(l)V(p) (cf. [S, p. 29, Theorem 9, 111.d]), it follows from [10, Corollary 2.9]
that R(P) is a Gorenstein ring with a(R(P))= — ¢ if and only if there exists a character
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me M such that dD(P)+div(e(m))=),_, ,(1/q,)-V(p). Note that a semi-invariant
rational function fe K(X(P))* is a scalar multiple of a character me M.

Suppose (a) holds. By the preceding remark, we have the relation above and,
therefore, (b1) holds. Rewriting this relation, we have div(e(m))=z pedp(l) {(1=9p,)q,}"
V(p). Hence (1—4p,)/q, is an integer and, therefore, 6 and g, are coprime for each
pedp(l).

Conversely, suppose (b) holds. By the preceding remark, we claim that r,=g, for
each pe 4p(1). Since r, is a factor of g, b,:=(q,/r,) is a positive integer. Then, by (bl),
(b,—dp,)/(r,b,) is an integer and, therefore, b, is a factor of Jp,. Hence we have b,=1
for each p € 4,(1) as required, because neither 6 nor p, has any common factor with g,.

(bl)=>(cl): Set g=0hp—meSF(N,4p, Q). Since D,=JdD(P)+div(e(m)) and D, is
ample, g is strictly upper convex and g(n(p)) = —(1/r,) for each p e 4,(1). Therefore, by
(2.1), the set of vertices of the polar convex polyhedral set ([3,)° is {r,n(p); pe 4p(1)}
(={—1/g(n(p)))n(p); pe 45(1)}). On the other hand, we have O,=J0P—m by defini-
tion. Therefore (P —m)° is an integral convex polytope.

(cl)=(bl): Set g=056hp,—meSF(N, 4p, Q). Since ¢ is strictly upper convex with
respect to 4p and O €int(6P—m), it follows from (2.1) that the vertex set of (6 P—m)°
is { —(1/g(n(p))n(p); pe 4p(1)}. Hence, by assumption, —(1/g(n(p)))n(p) is an integral
vector. Since n(p) is a primitive integral vector and ge SF(N, 4,, Q) is negative-valued,
r,:=—1/(g(n(p))) is a positive integer for each pe 4,(1) and 0D(P)+div(e(m))=D,=
S, (1/r,) V(p).

(b2)<>(c2): Since the supporting hyperplane carried by the facet of P corresponding
to pedp(l) is H,={ue Mg; {u,n(p))=hp(n(p))}, the supporting hyperplane carried
by a facet of P is of the form H,:={(u, x)€ Mg x R; 5x +(1/hp(n(p)))<u, n(p)»=1} or
{(u,0)e Mg x R}. Since hp(n(p))=—(p,/q,) and n(p) is a primitive vector, 6 and g,
are coprime if and only if ﬁp n(M x Z) is non-empty. q.e.d.

REMARK 2.3. The equivalence between the conditions (a) and (c) in (2.2) is
originally due to Hibi [3]. Combining the equivalence between (a) and (c) in (2.2) and
a theorem of Stanley [8, Theorem 4.4], we get another proof for theorems of Hibi [2],
[3]. Our proof makes clear why the condition (c2) in (2.2) is needed, in terms of
Demazure’s construction. - Indeed, let R(X, D) be a Cohen-Macaulay graded ring
obtained from a normal projective variety X and an ample Q-divisor D=3, (py/qy)"V,
with 7 running through irreducible subvarieties of codimension 1, where ¢,, >0 and p,,
qy are coprime for each V. Then it follows from [10, Corollary 2.9] that R(X, D) is
Gorenstein if the Veronese subring R(X, D) of order d is Gorenstein for an integer
d such that a(R(X, D))=0 (mod d) and that d and ¢, are coprime for each V.

COROLLARY 2.4 (cf.[7,(2.20)]). For arational convex r-polytope P in Mz= R’ with
M=Z" and a positive integer d, the following are equivalent:

(a) P is integral and there exists a character me M such that the polar polyhedral
set (0P —m)° for 6P—m is an integral convex r-polytope;



GORENSTEIN TORIC SINGULARITIES 535

(b) The Q-divisor D(P) on the projective torus embedding X(P) is an ample Cartier
divisor. The invertible sheaf Oy p\(—0D(P)) is isomorphic to the canonical sheaf wyp).

ProoF. It follows from (1.4) and (2.2) that (a) holds if and only if D(P) is a Cartier
divisor and there exists a character me M such that cSD(P)+div(e(m))=ZpE a1y V(P)-
Since a canonical divisor Ky, on X(P)is —) seany V(P), (2) is equivalent to (b).

q.e.d.

Since every Cartier divisor on a complete torus embedding is linearly equivalent
to a T-stable Cartier divisor (cf. [6, Proposition 6.1]), we have:

COROLLARY 2.5. Let X be a projective torus embedding and D an ample Cartier
divisor. Then R(X, D) is Gorenstein if and only if the canonical sheaf wy on X is isomorphic
to an invertible sheaf Ox(— D) for a positive integer 0.

THEOREM 2.6. Every projective torus embedding X has a T-stable ample Q-divisor
D such that R(X, D) is a Gorenstein ring with a(R(X, D))= —1.

Proor. By assumption, X=Tyemb(4) has a T-stable ample Cartier divisor £ of
the form E:Zped(l)ap- V(p), a,>0. Set c=L.C.M.{a,; peA(1)} and D=(1/c)E. By
(1.3), (X, D) corresponds to a rational polytope P in Mg. Then, by (1.5) and (2.2),
R(X, D) is a Gorenstein ring with a(R(X, D))= —1, as required. g.e.d.
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