GORENSTEIN TORIC SINGULARITIES AND CONVEX POLYTOPES

Atsushi Noma

(Received July 9, 1990, revised January 4, 1991)

Introduction. Let X be a normal projective variety over a field k and D an ample \boldsymbol{Q}-divisor, i.e., a rational coefficient Weil divisor such that $b D$ is an ample Cartier divisor for some positive integer b. We consider a normal graded ring $R(X, D)$ defined by $R(X, D)=\oplus_{n \geq 0} H^{0}\left(X, \mathcal{O}_{X}(n D)\right) t^{n}$. Here t is an indeterminate and $\mathcal{O}_{X}(n D)$ are the sheaves defined by $\Gamma\left(U, \mathcal{O}_{X}(n D)\right)=\left\{f \in K(X) ; \operatorname{div}_{U}(f)+\left.n D\right|_{U} \geq 0\right\}$ for each open set U of X. We are interested in finding a criterion for a normal projective variety X to have an ample Q-divisor D with $R(X, D)$ Gorenstein. Concerning this problem, see also [1, Chapter 5], [10]. Here we discuss this problem when X is a projective torus embedding defined over k.

Our main results are the following:
Corollary 2.5. Let X be a projective torus embedding and D an ample Cartier divisor. Then $R(X, D)$ is Gorenstein if and only if the canonical sheaf ω_{X} on X is isomorphic to an invertible sheaf $\mathcal{O}_{X}(-\delta D)$ for a positive integer δ.

Theorem 2.6. Every projective torus embedding X has an ample \boldsymbol{Q}-divisor D stable under the torus action such that $R(X, D)$ is Gorenstein.

To obtain these results, we proceed as follows: First, given a rational convex r-polytope P in \boldsymbol{R}^{r} (i.e., an r-dimensional convex polytope whose vertices have rational coordinates in \boldsymbol{R}^{r}), we construct a pair of projective torus embedding $X(P)$ over k and an ample Q-divisor $D(P)$ (Proposition 1.3) following [7, Chapter 2], so that $R(X(P), D(P))$ is isomorphic to the normal semigroup k-algebra

$$
R(P)=\oplus_{n \geq 0}\left\{\sum_{m \in n P \cap \mathbf{Z}^{r}} k e(m)\right\} t^{n} .
$$

Here t is an indeterminate and \boldsymbol{e} is the isomorphism from $\boldsymbol{Z}^{r}\left(\subset \boldsymbol{R}^{r}\right)$ into the Laurent polynomial ring $k\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right]$ sending $\left(m_{1}, \ldots, m_{r}\right)$ to $X_{1}^{m_{1}} \cdots X_{r}^{m_{r}}$. Thus $X(P)$ is isomorphic to $\operatorname{Proj}(R(P))$ (Proposition 1.5). Conversely, it turns out that every pair of projective torus embedding X and a T-stable ample \boldsymbol{Q}-divisor D on X is obtained from a rational convex r-polytope in \boldsymbol{R}^{r} in this way (Proposition 1.3). On the other hand, since $R(X(P), D(P))(\simeq R(P))$ is Cohen-Macaulay (cf. [4]), we can apply the criterion [10, Corollary 2.9] for the Gorenstein property to $R(X(P), D(P))$. Therefore we have Proposition 2.2, which is a criterion for $R(X(P), D(P)) \simeq R(P)$ to be Gorenstein in terms
of $D(P)$ on $X(P)$ as well as the maximal faces of P. This yields another proof for a theorem of Hibi [3]. As immediate consequences of Proposition 2.2, we get our main results.

I should like to thank Professor Takayuki Hibi for his lecture at Tsuda College in October, 1989, from which this material stemmed. Also, I should like to thank Professor Kei-ichi Watanabe for valuable suggestions and kind advice.

Preliminaries.

(0.1) $[a]$ denotes the greatest integer not greater than $a \in \boldsymbol{R}$. $[a]$ denotes $-[-a]$ for $a \in \boldsymbol{R}$.
(0.2) For notion of torus embeddings, we refer the reader to [7]. All torus embeddings will be defined over a fixed field k. Let T be an r-dimensional algebraic torus $\operatorname{Spec}\left(k\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right]\right)$ over k. Let M, N be the group of characters and one-parameter subgroups, respectively. By $\boldsymbol{e}(m)$, we denote the Laurent monomial corresponding to a character m. Namely $\boldsymbol{e}(m)=X_{1}^{m_{1}} \cdots X_{r}^{m_{r}}$ for $m=\left(m_{1}, \ldots, m_{r}\right)$. Set $M_{\boldsymbol{R}}=M \otimes_{\mathbf{Z}} \boldsymbol{R}$ and $N_{\boldsymbol{R}}=N \otimes_{\mathbf{Z}} \boldsymbol{R}$. Let $\langle\rangle:, M_{\boldsymbol{R}} \times N_{\boldsymbol{R}} \rightarrow \boldsymbol{R}$ represent the natural nondegenerate pairing. For a complete fan Δ of $N, \Delta(i)$ denotes the i-dimensional cones of Δ. A one-dimensional cone $\rho \in \Delta(1)$ is generated by a unique primitive integral vector $n(\rho)([7, \mathrm{p} .24])$. We denote by $\operatorname{SF}(N, \Delta)$ the additive group consisting of Δ-linear support functions ([7, p. 66]). $\operatorname{Set} \operatorname{SF}(N, \Delta, \boldsymbol{Q})=\operatorname{SF}(N, \Delta) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$. Its elements are also called Δ-linear support functions. Then we have two injections $M \rightarrow \mathrm{SF}(N, \Delta)$ sending m to $\langle m$,$\rangle , and \mathrm{SF}(N, \Delta) \rightarrow \boldsymbol{Z}^{\Delta(1)}$ sending h to $(h(n(\rho)))_{\rho \in \Delta(1)}$. Let X be a complete torus embedding $T_{N} \mathrm{emb}(\Delta)$. By $T \operatorname{Div}(X), T \operatorname{CDiv}(X)$ and $\operatorname{PDiv}(X)$, we denote the groups of T-stable Weil divisors, T-stable Cartier divisors and principal divisors on X, respectively. Also, by $T \operatorname{Div}(X, Q)($ resp. $T \operatorname{CDiv}(X, Q)$), we denote the group of T-stable \boldsymbol{Q}-divisors (resp. T-stable \boldsymbol{Q}-Cartier divisors). Namely $T \operatorname{Div}(X, \boldsymbol{Q})=T \operatorname{Div}(X) \otimes_{\mathbf{Z}} \boldsymbol{Q}$ and $T \operatorname{CDiv}(X, \boldsymbol{Q})=T \operatorname{CDiv}(X) \otimes_{\mathbf{Z}} \boldsymbol{Q}$. The one-dimensional cones ρ of $\Delta(1)$ are in one-to-one correspondence with the irreducible T-stable closed subvarieties $V(\rho)$ of codimension one in X. Therefore the map $Z^{\Delta(1)} \rightarrow T \operatorname{Div}(X)$ sending g to $D_{g}=-\sum_{\rho \in \Delta(1)} g_{\rho} \cdot V(\rho)$ is a bijection, and induces two isomorphisms of groups, $\operatorname{SF}(N, \Delta) \rightarrow T \operatorname{CDiv}(X)$ and $M \rightarrow$ $\operatorname{PDiv}(X) \cap T \operatorname{CDiv}(X)$. As a result, we have two commutative diagrams (cf. [7, §2.1]):

1. Rational polytopes and projective torus embeddings.

Lemma 1.1. Let $X=T_{N} \mathrm{emb}(\Delta)$ be an r-dimensional complete torus embedding. For $g \in \boldsymbol{Q}^{\Delta(1)}$, the set $\square_{g}=\left\{m \in M_{\boldsymbol{R}} ;\langle m, n(\rho)\rangle \geq g_{\rho}\right.$ for all $\left.\rho \in \Delta(1)\right\}$ is a (possibly empty) convex polytope in $M_{\mathbf{R}}$. The set $H^{0}\left(X, \mathcal{O}_{X}\left(D_{g}\right)\right)$ of global sections of the divisorial \mathcal{O}_{X}-module $\mathcal{O}_{X}\left(D_{g}\right)$ is the finite dimensional k-vector space with $\left\{\boldsymbol{e}(m) ; m \in M \cap \square \square_{g}\right\}$ as a basis. Let $\operatorname{div}(e(m))+D_{g}=\sum_{\rho \in \Delta(1)} a_{\rho} \cdot V(\rho)$ for an element $m \in M$. Then m is in $\operatorname{int}\left(\square_{g}\right)$ if and only if the coefficient a_{ρ} for each $\rho \in \Delta(1)$ is a positive rational number. Here $\operatorname{int}\left(\square_{g}\right)$ denotes the interior of the convex polytope \square_{g}.

Proof. The first part is the same as that in the case of $g \in \boldsymbol{Z}^{\Delta(1)}$ (cf. [7, Lemma 2.3]). Since $n(\rho)$ is a primitive vector and the pairing \langle,$\rangle is non-degenerate, we have$ $\square_{g} \cap M=\square_{\lceil g\rceil} \cap M$, where $\lceil g\rceil$ denotes the integral vector $\left(\left\lceil g_{\rho}\right\rceil\right)_{\rho \in \Delta(1)}$. On the other hand, we have $\mathcal{O}_{X}\left(D_{g}\right)=\mathcal{O}_{X}\left(D_{[g]}\right)$ by definition. Hence we may assume that $g \in \boldsymbol{Z}^{\Delta(1)}$. In this case, the assertion follows from [5, p. 42, Theorem] (cf. [7, Lemma 2.3]). The rest is obvious.

Recall that a Δ-linear support function $h \in \operatorname{SF}(N, \Delta, Q)$ is said to be strictly upper convex with respect to Δ if h is upper convex, namely $h(n)+h\left(n^{\prime}\right) \leq h\left(n+n^{\prime}\right)$ for all $n, n^{\prime} \in N_{\boldsymbol{R}}$, and Δ is the coarsest among the fans Δ^{\prime} in N for which h is Δ^{\prime}-linear (cf. [7, p. 82]).

Lemma 1.2. Let $X=T_{N} \mathrm{emb}(\Delta)$ be an r-dimensional complete torus embedding and $h \in \operatorname{SF}(N, \Delta, Q)$. Then D_{h} is an ample \boldsymbol{Q}-divisor if and only if h is strictly upper convex with respect to Δ.

Proof. This easily follows from [7, Corollary 2.14]. q.e.d.

Proposition 1.3. Let P be a rational convex r-polytope in $M_{\boldsymbol{R}}=\boldsymbol{R}^{r}$ and $h_{P}: N_{\boldsymbol{R}} \rightarrow \boldsymbol{R}$ the support function for P defined by $h_{P}(n)=\inf \{\langle m, n\rangle ; m \in P\}$. Then there exists a unique finite complete fan Δ_{P} in N such that h_{P} is strictly upper convex Δ_{P}-linear with respect to Δ_{P}. We denote the corresponding r-dimensional projective torus embedding $T_{N} \mathrm{emb}\left(\Delta_{P}\right)$ and the ample T-stable \boldsymbol{Q}-divisor $D_{h_{P}}$ by $X(P)$ and $D(P)$. Conversely, every pair of a projective torus embedding and a T-stable ample \boldsymbol{Q}-divisor on it is obtained from a rational convex r-polytope in $M_{\mathbf{R}}$ in this way.

Proof. The first part follows from [7, Theorem A. 18 and Corollary A.19]. Then, by (1.2), $D(P)$ is a T-stable ample Q-divisor on $X(P)$. Conversely, given a projective torus embedding X with a T-stable ample Q-divisor D, there exist a complete fan Δ and a strictly upper convex Δ-linear support function $h \in \operatorname{SF}(N, \Delta, \boldsymbol{Q})$ with $X=T_{N} \operatorname{emb}(\Delta)$ and $D=D_{h}$, by (1.2). Set $\square_{h}=\left\{u \in M_{R} ;\langle u, n(\rho)\rangle \geq h(n(\rho))\right.$ for all $\rho \in \Delta(1)\}$. By construction and [7, Theorem A. 18 and Corollary A.19], we have $X=X\left(\square_{h}\right)$ and $D=D\left(\square_{h}\right)$.
q.e.d.

Remark 1.4. In (1.3), $D(P)$ is a Cartier divisor if and only if P is an integral
convex r-polytope, namely, a convex polytope whose vertices have integral coordinates. $D(P)$ is a Weil divisor if and only if P is facet-reticular, that is, each supporting hyperplane carried by a facet (maximal face) of P contains an element of M.

Proposition 1.5. Let P be a rational convex r-polytope in $M_{\mathbf{R}}$. Then the graded semigroup ring

$$
R(P)=\underset{n \geq 0}{\oplus}\left\{\sum_{m \in n P \cap M} k e(m)\right\} t^{n}
$$

is isomorphic as a graded k-algebra to the graded ring $R(X(P), D(P))$ associated with the projective torus embedding $X(P)$ and the T-stable ample Q-divisor $D(P)$. Consequently, $\operatorname{Proj}(R(P))$ is isomorphic to $X(P)$ and the sheaf $\mathcal{O}_{X(P)}(n):=R(P)(n)^{\sim}$ on $\operatorname{Proj}(R(P))$ corresponds via this isomorphism to $\mathcal{O}_{X_{(P)}}(n D(P))$ for all $n \in \boldsymbol{Z}$.

Proof. Since $\square_{n h_{P}}=n P$ and $D(n P)=D_{n h_{P}}$ for all $n \in N$, we have

$$
H^{0}\left(X(P), \mathcal{O}_{X(P)}(n D(P))\right)=\sum_{m \in n P \cap M} k e(m)
$$

by (1.1). This implies that $R(P) \simeq R(X(P), D(P))$. The rest follows from a standard argument in the theory of Demazure's construction (cf. [10, Lemma 2.1]). q.e.d.

Corollary 1.6. For an r-dimensional projective torus embedding $X=T_{N} \mathrm{emb}(\Delta)$ and a strictly upper convex Δ-linear support function $h \in \operatorname{SF}(N, \Delta, Q)$, we have:
(a) $\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}\left(n D_{h}\right)\right)=\left\{\begin{array}{cl}\#\left(n \square_{h} \cap M\right) & \text { if } n \geq 0 \\ 0 & \text { if } n<0 ;\end{array}\right.$
(b) $\operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}\left(n D_{h}\right)\right)=0$ for $0<i<r$ and all $n \in \boldsymbol{Z}$;
(c) $\operatorname{dim}_{k} H^{r}\left(X, \mathcal{O}_{X}\left(n D_{h}\right)\right)=\left\{\begin{array}{cl}0 & \text { if } n \geq 0 \\ \#\left(\operatorname{int}\left((-n) \square_{h}\right) \cap M\right) & \text { if } n<0 .\end{array}\right.$

Proof. (a) follows from (1.1). Since $R\left(X, D_{h}\right)$ is a normal numerical semigroup ring by (1.3) and (1.5), $R\left(X, D_{h}\right)$ is normal and Cohen-Macaulay by a theorem of Hochster [4]. Therefore, (b) follows from [10, Corollary 2.4]. By the Serre duality, we have $\operatorname{Hom}_{k}\left(H^{r}\left(X, \mathcal{O}_{X}\left(n D_{h}\right)\right), k\right) \simeq H^{0}\left(X, \mathcal{O}_{X}\left(-\left[n D_{h}\right]+K_{X}\right)\right)$, where K_{X} denotes a canonical divisor on X. Since $K_{X}=-\sum_{\rho \in \Delta(1)} V(\rho)$ (cf. [5, p. 29]), (c) follows from (1.1). q.e.d.

Remark 1.7. Let P be a rational convex r-polytope in $\boldsymbol{R}^{\boldsymbol{r}}$ and $m=\min \{i \in \boldsymbol{N} ; i>0$ and $i P$ is integral $\}$. By (1.3), (1.5) and (1.6), we have $\#\left(n P \cap \boldsymbol{Z}^{r}\right)=\chi\left(X(P), \mathcal{O}_{X(P)}(n D(P))\right)$ for $n \geq 0$ and $\#\left(\operatorname{int}((-n) P) \cap \boldsymbol{Z}^{r}\right)=(-1)^{r} \chi\left(X(P), \mathcal{O}_{X(P)}(n D(P))\right)$ for $n<0$, where $\chi(X(P)$, $\left.\mathcal{O}_{X(P)}(n D(P))\right):=\sum_{j=0}^{r}(-1)^{j} \operatorname{dim}_{k} H^{j}\left(X(P), \mathcal{O}_{X(P)}(n D(P))\right)$. By a result due to Snapper and Kleiman, for every $d \in \boldsymbol{Z}$, there exists a polynomial $P_{d}(\lambda)$ with coefficients in \boldsymbol{Q} such
that $\chi\left(X(P), \mathcal{O}_{X(P)}((d+m \lambda) D(P))\right)=P_{d}(\lambda)$. Thus we recover the reciprocity theorem for Ehrhart quasi-polynomials. (See, for example, [7, Proposition 2.24], [9, (4.6)]).

2. Criteria for Gorenstein property.

Lemma 2.1. Let Δ be a complete fan in N and $h \in \operatorname{SF}(N, \Delta, Q)$ a strictly upper convex Δ-linear support function. Set $\square_{h}=\left\{u \in M_{R} ;\langle u, n(\rho)\rangle \geq h(n(\rho))\right.$ for each $\left.\rho \in \Delta(1)\right\}$. Suppose that h has negative values except at the origin, or equivalently, \square_{h} contains the origin in its interior. Then the set of vertices of the polar convex polyhedral set $\left(\square_{h}\right)^{\circ}:=\left\{v \in N_{R} ;\langle u, v\rangle \geq-1\right.$ for all $\left.u \in \square_{h}\right\}$ for \square_{h} is $\{-(1 / h(n(\rho))) n(\rho) ; \rho \in \Delta(1)\}$.

Proof. By [7, Corollary A.19], there exists a bijection from $\Delta(1)$ to the set $\mathscr{F}^{r-1}\left(\square_{h}\right)$ of $(r-1)$-dimensional faces of \square_{h} sending $\rho \in \Delta(1)$ to $Q_{\rho}:=\left\{u \in \square_{h}\right.$; $\langle u, n(\rho)\rangle=h(n(\rho))\}$. Also, by [7, Proposition A.17], there exists a bijection from $\mathscr{F}^{r-1}\left(\square_{h}\right)$ to the set of vertices of $\left(\square_{h}\right)^{\circ}$ sending an $(r-1)$-dimensional face Q to $Q^{*}:=\left\{v \in\left(\square_{h}\right)^{\circ} ;\langle u, v\rangle=-1\right.$ for all $\left.v \in Q\right\}$. Then we observe that $\left(Q_{\rho}\right)^{*}$ is $-(1 / h(n(\rho))) n(\rho)$.
q.e.d.

For a Noetherian graded ring R with the canonical module K_{R} of R, we consider the integer $a(R)$ defined by $a(R)=-\min \left\{m \in \boldsymbol{Z} ;\left(K_{R}\right)_{m} \neq 0\right\}$. For details concerning this integer, see [1, p. 194].

Proposition 2.2 (cf. [2], [3]). For a rational convex r-polytope P in $M_{\boldsymbol{R}}=\boldsymbol{R}^{r}$ with $M=\boldsymbol{Z}^{r}$ and a positive integer δ, the following are equivalent:
(a) The semigroup ring $R(P)$ over k is a Gorenstein ring with $a(R(P))=-\delta$.
(b) The projective torus embedding $X(P)=T_{N} \mathrm{emb}\left(\Delta_{P}\right)$ over k, and the ample Q-divisor $D(P)=\sum_{\rho \in \Delta_{P}(1)}\left(p_{\rho} / q_{\rho}\right) \cdot V(\rho)\left(q_{\rho}>0, p_{\rho}\right.$ and q_{ρ} are coprime) satisfy the following:
(b1) There exist a positive integer r_{ρ} for each $\rho \in \Delta_{P}(1)$ and a character $m \in M$ such that

$$
\delta D(P)+\operatorname{div}(e(m))=\sum_{\rho \in \Delta_{P}(1)}\left(1 / r_{\rho}\right) \cdot V(\rho) ;
$$

(b2) δ and q_{ρ} are coprime for each $\rho \in \Delta_{P}(1)$.
(c) (Hibi's condition) P satisfies the following:
(c1) There exists a character $m \in M$ such that the polar polyhedral set $(\delta P-m)^{\circ}:=\left\{v \in N_{\mathbf{R}} ;\langle u, v\rangle \geq-1\right.$ for all $\left.u \in \delta P-m\right\}$ for $\delta P-m:=\left\{\delta p-m \in M_{\mathbf{R}} ; p \in P\right\}$ is an integral convex r-polytope;
(c2) The convex hull \tilde{P} of the set $\left\{(u, 0) \in M_{\boldsymbol{R}} \times \boldsymbol{R} ; u \in P\right\} \cup\{(0, \ldots, 0,1 / \delta)\}$ in $M_{\mathbf{R}} \times \boldsymbol{R}$ is facet-reticular (cf. (1.4)).

Proof. (a) $\Leftrightarrow(\mathrm{b})$: By (1.5), $R(P)$ is isomorphic to $R(X(P), D(P))$ and, therefore, $R(X(P), D(P))$ is Cohen-Macaulay (cf. [4]). Since a canonical divisor $K_{X(P)}$ on $X(P)$ is $-\sum_{\rho \in \Delta_{P}(1)} V(\rho)$ (cf. [5, p. 29, Theorem 9, III.d]), it follows from [10, Corollary 2.9] that $R(P)$ is a Gorenstein ring with $a(R(P))=-\delta$ if and only if there exists a character
$m \in M$ such that $\delta D(P)+\operatorname{div}(e(m))=\sum_{\rho \in \Delta_{P}(1)}\left(1 / q_{\rho}\right) \cdot V(\rho)$. Note that a semi-invariant rational function $f \in K(X(P))^{*}$ is a scalar multiple of a character $m \in M$.

Suppose (a) holds. By the preceding remark, we have the relation above and, therefore, (b1) holds. Rewriting this relation, we have $\operatorname{div}(e(m))=\sum_{\rho \in A_{P}(1)}\left\{\left(1-\delta p_{\rho}\right) / q_{\rho}\right\}$. $V(\rho)$. Hence $\left(1-\delta p_{\rho}\right) / q_{\rho}$ is an integer and, therefore, δ and q_{ρ} are coprime for each $\rho \in \Delta_{P}(1)$.

Conversely, suppose (b) holds. By the preceding remark, we claim that $r_{\rho}=q_{\rho}$ for each $\rho \in \Delta_{P}(1)$. Since r_{ρ} is a factor of $q_{\rho}, b_{\rho}:=\left(q_{\rho} / r_{\rho}\right)$ is a positive integer. Then, by (b1), $\left(b_{\rho}-\delta p_{\rho}\right) /\left(r_{\rho} b_{\rho}\right)$ is an integer and, therefore, b_{ρ} is a factor of δp_{ρ}. Hence we have $b_{\rho}=1$ for each $\rho \in \Delta_{P}(1)$ as required, because neither δ nor p_{ρ} has any common factor with q_{ρ}.
$(\mathrm{b} 1) \Rightarrow(\mathrm{c} 1)$: Set $g=\delta h_{P}-m \in \operatorname{SF}\left(N, A_{P}, \boldsymbol{Q}\right)$. Since $D_{g}=\delta D(P)+\operatorname{div}(\boldsymbol{e}(m))$ and D_{g} is ample, g is strictly upper convex and $g(n(\rho))=-\left(1 / r_{\rho}\right)$ for each $\rho \in \Delta_{P}(1)$. Therefore, by (2.1), the set of vertices of the polar convex polyhedral set $\left(\square_{g}\right)^{\circ}$ is $\left\{r_{\rho} n(\rho)\right.$; $\left.\rho \in \Delta_{P}(1)\right\}$ $\left(=\left\{-(1 / g(n(\rho))) n(\rho) ; \rho \in \Delta_{P}(1)\right\}\right)$. On the other hand, we have $\square_{g}=\delta P-m$ by definition. Therefore $(\delta P-m)^{\circ}$ is an integral convex polytope.
$(\mathrm{c} 1) \Rightarrow(\mathrm{bl})$: Set $g=\delta h_{P}-m \in \operatorname{SF}\left(N, \Delta_{P}, \boldsymbol{Q}\right)$. Since g is strictly upper convex with respect to Δ_{P} and $O \in \operatorname{int}(\delta P-m)$, it follows from (2.1) that the vertex set of ($\left.\delta P-m\right)^{\circ}$ is $\left\{-(1 / g(n(\rho))) n(\rho) ; \rho \in \Delta_{P}(1)\right\}$. Hence, by assumption, $-(1 / g(n(\rho))) n(\rho)$ is an integral vector. Since $n(\rho)$ is a primitive integral vector and $g \in \operatorname{SF}\left(N, \Delta_{P}, Q\right)$ is negative-valued, $r_{\rho}:=-1 /(g(n(\rho)))$ is a positive integer for each $\rho \in \Delta_{P}(1)$ and $\delta D(P)+\operatorname{div}(e(m))=D_{g}=$ $\sum_{\rho}\left(1 / r_{\rho}\right) \cdot V(\rho)$.
(b2) $\Leftrightarrow(\mathrm{c} 2)$: Since the supporting hyperplane carried by the facet of P corresponding to $\rho \in \Delta_{P}(1)$ is $H_{\rho}=\left\{u \in M_{\mathbf{R}} ;\langle u, n(\rho)\rangle=h_{P}(n(\rho))\right\}$, the supporting hyperplane carried by a facet of \tilde{P} is of the form $\tilde{H}_{\rho}:=\left\{(u, x) \in M_{\boldsymbol{R}} \times \boldsymbol{R} ; \delta x+\left(1 / h_{P}(n(\rho))\right)\langle u, n(\rho)\rangle=1\right\}$ or $\left\{(u, 0) \in M_{\boldsymbol{R}} \times \boldsymbol{R}\right\}$. Since $h_{P}(n(\rho))=-\left(p_{\rho} / q_{\rho}\right)$ and $n(\rho)$ is a primitive vector, δ and q_{ρ} are coprime if and only if $\tilde{H}_{\rho} \cap(M \times \boldsymbol{Z})$ is non-empty.
q.e.d.

Remark 2.3. The equivalence between the conditions (a) and (c) in (2.2) is originally due to Hibi [3]. Combining the equivalence between (a) and (c) in (2.2) and a theorem of Stanley [8, Theorem 4.4], we get another proof for theorems of Hibi [2], [3]. Our proof makes clear why the condition (c2) in (2.2) is needed, in terms of Demazure's construction. Indeed, let $R(X, D)$ be a Cohen-Macaulay graded ring obtained from a normal projective variety X and an ample \boldsymbol{Q}-divisor $D=\sum_{V}\left(p_{V} / q_{V}\right) \cdot V$, with V running through irreducible subvarieties of codimension 1 , where $q_{V}>0$ and p_{V}, q_{V} are coprime for each V. Then it follows from [10, Corollary 2.9] that $R(X, D)$ is Gorenstein if the Veronese subring $R(X, D)^{(d)}$ of order d is Gorenstein for an integer d such that $a(R(X, D)) \equiv 0(\bmod d)$ and that d and q_{V} are coprime for each V.

Corollary 2.4 (cf. [7, (2.20)]). For a rational convex r-polytope P in $M_{\boldsymbol{R}}=\boldsymbol{R}^{r}$ with $M=Z^{r}$ and a positive integer δ, the following are equivalent:
(a) P is integral and there exists a character $m \in M$ such that the polar polyhedral set $(\delta P-m)^{\circ}$ for $\delta P-m$ is an integral convex r-polytope;
(b) The Q-divisor $D(P)$ on the projective torus embedding $X_{(}(P)$ is an ample Cartier divisor. The invertible sheaf $\mathcal{O}_{X(P)}(-\delta D(P))$ is isomorphic to the canonical sheaf $\omega_{X(P)}$.

Proof. It follows from (1.4) and (2.2) that (a) holds if and only if $D(P)$ is a Cartier divisor and there exists a character $m \in M$ such that $\delta D(P)+\operatorname{div}(\boldsymbol{e}(m))=\sum_{\rho \in \Lambda_{P}(1)} V(\rho)$. Since a canonical divisor $K_{X(P)}$ on $X(P)$ is $-\sum_{\rho \in \Delta_{P(1)}} V(\rho)$, (a) is equivalent to (b).

q.e.d.

Since every Cartier divisor on a complete torus embedding is linearly equivalent to a T-stable Cartier divisor (cf. [6, Proposition 6.1]), we have:

Corollary 2.5. Let X be a projective torus embedding and D an ample Cartier divisor. Then $R(X, D)$ is Gorenstein if and only if the canonical sheaf ω_{X} on X is isomorphic to an invertible sheaf $\mathcal{O}_{X}(-\delta D)$ for a positive integer δ.

Theorem 2.6. Every projective torus embedding X has a T-stable ample \boldsymbol{Q}-divisor D such that $R(X, D)$ is a Gorenstein ring with $a(R(X, D))=-1$.

Proof. By assumption, $X=T_{N} \mathrm{emb}(4)$ has a T-stable ample Cartier divisor E of the form $E=\sum_{\rho \in \Delta(1)} a_{\rho} \cdot V(\rho), a_{\rho}>0$. Set $c=$ L.C.M. $\left\{a_{\rho} ; \rho \in \Delta(1)\right\}$ and $D=(1 / c) E$. By (1.3), (X, D) corresponds to a rational polytope P in $M_{\mathbf{R}}$. Then, by (1.5) and (2.2), $R(X, D)$ is a Gorenstein ring with $a(R(X, D))=-1$, as required.
q.e.d.

References

[1] S. Goto and K.-I. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213.
[2] T. Hibi, Dual polytopes of rational convex polytopes, preprint.
[3] T. Hibi, A combinatorial self-reciprocity theorem for Ehrhart quasi-polynomials of rational convex polytopes, preprint.
[4] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.
[5] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings I, Lecture Notes in Math. 339, Springer-Verlag, Berlin/New York, 1973.
[6] T. Oda, Lectures on Torus Embeddings and Applications, Tata Inst. Fund. Res. Lectures on Math. and Phys. 58, Bombay, 1978.
[7] T. Oda, Convex Bodies and Algebraic Geometry, Erg. der Math. (3) 15, Springer-Verlag, Berlin/New York, 1988.
[8] R. P. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83.
[9] R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth, Monterey, Calif., 1986.
[10] K.-I. Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203-211.

Department of Mathematics
School of Science and Engineering
Waseda University
Ohkubo, Shinjuku, Tokyo 169
Japan

