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Abstract. We consider three types of Schottky spaces which consist of non-
Fuchsian classical Schottky groups of real type of genus two. This paper has the fol-
lowing two aims: (1) to represent the shape of the spaces by using multipliers and
cross ratios of the fixed points of two generators of marked Schottky groups; (2) to
determine fundamental regions for the Schottky modular group of genus two acting on
the spaces.

Introduction. In spite of works by Akaza, Bers, Brooks, Chuckrow, Marden,
Maskit, Rodriguez, Sato, Zarrow, and others, much less are known on Schottky spaces
and Schottky groups in comparison with Teichmuller spaces. For example, the shape
of Schottky spaces is hardly known even in simple cases (cf. Keen [11], [12], Sato
[28]). It is important to consider Schottky groups and Schottky spaces in the following
simple cases: (1) classical Schottky groups and classical Schottky spaces (cf. Brooks
[4], Jθrgensen, Marden and Maskit [10], Marden [14], Phillips and Sarnak [20], Sato
[28] and Zarrow [31]); (2) Schottky groups and Schottky spaces of genus two related
to discrete two-generator groups (cf. Matelski [17], Maskit [16], Purzitsky [21],
Rosenberger [24] and Sato [30]).

In this paper we will consider classical Schottky groups and classical Schottky
spaces of real type of genus two as a sequel to our previous paper [28], in which we
classified the groups and spaces into eight types, and considered the groups and spaces
of the first and fourth types. Schottky groups of the first and fourth types are called
Fuchsian Schottky groups. Conversely, a Fuchsian Schottky group of genus two is
either a group of the first type or of the fourth type (Marden [14], Sato [30]). Schottky
groups of these two types were studied by Rosenberger [24], Purzitski [21], Matelski
[17] and others in connection with discrete two-generator groups.

As far as we know, Schottky groups and Schottky spaces of the other types are
hardly studied. In this paper we will consider the groups and spaces of the second, fifth
and seventh types, which are related to each other. This paper has the following two
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aims: (1) to represent the shape of the spaces of the second, fifth and seventh types by

using the coordinates introduced in Sato [26] (Theorem 3); (2) to determine fundamental

regions for the Schottky modular group of genus two acting on the above spaces

(Theorem 4). Here the Schottky modular group is the group of all equivalence classes

of orientation preserving automorphisms of the Schottky space (see §§ 1 and 7), which

corresponds to the Teichmϋller modular group. That is, the Schottky space modulo

the Schottky modular group is the same space as the Teichmϋller space modulo the

Teichmϋller modular group, and is called the Riemann space.

As applications of the previous paper [28] and this paper, we mention the follow-

ing two results: (1) the non-classical Schottky group constructed by Zarrow [31] is a

group of the second type. Namely, the group is a classical Schottky group but not a

non-classical Schottky group (cf. Sato [29]); (2) On Jorgensen's inequality for purely

hyperbolic groups (cf. Jorgensen [9], Martin [15]). We can show the following: Let

G=(A, B} be a purely hyperbolic group generated by A and B. Then

(*) I tr2A-4\ +1 tr(ABA -1B~1)-2\>4.

To be more precise, a purely hyperbolic two-generator group is either a group of the

first or fourth type. If we denote by / the left hand side of (*), then /> 16 or ί>4

according as G is of the first type or of the fourth type. Furthermore, both of the lower

bounds are the best possible. This gives a complete answer to the problem on Jθrgensen's

inequality for purely hyperbolic two-generator groups studied by Gilman [6], [7]. The

second result will appear elsewhere.

The second result will appear elsewhere. (Notes added on August 27, 1991: The

same result with a different proof appeared recently in J. Gilman: A geometrie approach

to Jorgensen's inequality, Adv. in Math. 85 (1991), 193-197.)

In § 1 we will consider automorphisms of a free group on two generators and list

properties of the automorphisms in a series of lemmas. In §2 we will consider the

relationship among the spaces of the second, fifth and seventh types. In §3 we will

introduce some surfaces and consider the relationship among them in §3 through §5.

In §6 we will represent the shape of the classical Schottky spaces of the second, fifth

and seventh types. In §7 we will determine fundamental regions for the Schottky modular

group acting on the spaces of the above types. The references listed in the previous

paper [28] are repeated here for the convenience of the reader.

Finally, we note the following: Schottky groups of real type are also studied in

Bobenko [2] and Bobenko and Bordag [3]; our results in §3 are related with Gilman [8].

Thanks are due to the referees for their careful reading and valuable suggestions.

1. Automorphisms of a free group on two generators.

1.1. In this section we will state some definitions and list properties of auto-

morphisms of a free group on two generators. See the previous paper [28] for the

definitions of Schottky groups, classical Schottky groups, Schottky spaces 6^ and
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classical Schottky spaces (Ξ>°.

Let Mob be the group of all Mόbius transformations. We say two marked subgroups

G = (Al9 A2) and G = (Άl9 A2) of Mob to be equivalent if there exists a Mόbius

transformation T such that Aj= TAjT'1 for j= 1, 2. We denote by 9W2 the set of all

equivalence classes [_(Al9 A2y] of marked groups (Al9A2y generated by loxodromic

transformations A1 and A2 whose fixed points are all distinct.

Let [<^i, ,4 2 >]eϊR 2 . F o r 7 = 1, 2, let λ 3 (\λj\> 1), Pj and p2+j be the multipliers,

the repelling and the attracting fixed points of Aj9 respectively. We define tj by setting

tj=\/λj. Thus /J e£)* = { z | θ < | z | < 1}. We determine a Mόbius transformation T by

T{Pl) = 0, T(p3)=oD and T(p2)=\, and define p by p=T(p4). Thus peC-{0, 1}. We
can define a mapping α of the space $R2 into (D*)2 x(C—{0, 1}) by setting

α([<v4l5 A2yj) = (tί9 t2, p). Then we say [<Λχ, Λ2>] represents (/l5 /2, p), and (/l5 t29 p)

corresponds to [<Λ l9v42>] or (Aί9A2y. Conversely, λl9 λ2 and p4 are uniquely

determined from a given point τ = (^, t29 p)e{D*)2 x(C— {0, 1}) under the normalization

conditionp 1=0 9p 3 = 00 and/?2 = 1; we define Λy (7= 1, 2) and/?4 by setting A7 = \/tj and

p4 = p^ respectively. We determine A^z), y42(z)eMόb from τ as follows: The multiplier,

the repelling and the attracting fixed points of Aj(z) are λj9 pj and p2+j, respectively.

Thus we obtain a mapping β of (Z)*)2 x (C-{0, 1}) into Sϊί2 by setting j8(τ) =

K/ίiίz), Λ2(z)>]. Then we note that β(χ = ocβ = id. Therefore we identify W2 with α(2R2).

Similarly we can define the mapping α* of S 2 or S 2 into (Z)*)2 x (C— {0, 1}) by re-

stricting α to this space (cf. Sato [26]), and identify S 2 (resp. S 2 ) with α*(62) (resp.

α*(S2)). From now on we denote α(ΪR2), α*(8 2) and α*(6 2) by 90^, S 2 and 8 2

respectively.

DEFINITION 1.1 (cf. [28]). Let (tl9t29p) be the point in 9M2 corresponding to

(1) G is of the second type (Type II) if tx > 0 , t2<0 and p > 0 .

(2) G is of the fifth type (Type V) if tx < 0, t2 > 0 and p > 0.

(3) G is of the seventh type (Type VII) if tγ < 0, t2 < 0 and p < 0.

For each A; = 11, V, VII, we call the set of all equivalence classes of marked groups

(resp. marked Schottky groups and marked classical Schottky groups) of Type k the

real space (resp. the real Schottky space and the real classical Schottky space) of Type

k, and denote them by Rkffll2 (resp. Rk

(£2 and Rk&2)

1.2. Let G = (Al9 A2} be a marked free group on two generators.

THEOREM A (Neumann [18]). The group Φ2 of automorphisms of G has the

following presentation'.

Φ2 = < # ! , N2, N31 (NtNMNJ2 = 1,

where Nt: (Au A2)-*(AU A~2

ι\ N2 : (Au A2)-*(A2, A,) and N3: (Au A2)^(AU AXA2\
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We call the mappings Nί9 N2, and N3 the Nielsen transformations.

DEFINITION 1.2. Let φ1, φ2eΦ2. We say φx and φ2 are equivalent if Φι{G) is

equivalent to φ2(G) (cf. §1.1), and denote by Φι~φ2.

REMARKS. (1) We can regard Nj 0 = 1 , 2, 3) and so φeΦ2 as automorphisms of

the space of all equivalence classes of marked free groups on two generators (cf. [28]).

(2) From the above (1) and Definition 1.2, we have the following: If

(AUA2>~(A1,A2} and (/>1~</>2 W>i,</>2eΦ2), then φλ{(Au A2})~φ2((Au A2}).

DEFINITION 1.3. Let φeΦ2 and let m^ 0 = 1 , 2) be the numbers of Nj contained

in φ. If mx +m2 is even, we say that φ is an orientation preserving automorphism. The

Schottky modular group of genus two, which is denoted by Mod(®2), is the set of all

equivalence classes of orientation preserving automrophisms of ® 2 . We denote by

[Φ2(®2)] the set of all equivalence classes of automorphisms of ® 2 .

1.3. Let (tl9 t2, p) be the point in ® 2 corresponding to a marked Schottky group

G = (Al9 A2y. Let (tί(j),t2(j), p(j)) be the images of (tut2,p) under the Nielsen

transformations Nj (j= 1, 2, 3). We set X=p —12— ρtίt2 + t1 and Y=p — t2 + ptίt2 — t1.

Then by straightforward calculations, we have the following.

LEMMA 1.1 (Sato [28, Lemma 2.1]).

(1) t1(\) = t1,t2(\) = t

(2) t1(2) = t2,t2(2) = t

(3) ^(3) = ^ , φ) + (\/t2(3))=Y2/t1t2(p-\)2-2 and

h)2-2.

LEMMA 1.2. Let Ns 0=1,2,3) be the Nielsen transformations. Then (1)

N3NίN3N1 - 1, (2) N\ = 1 and N2

2 = 1, (3) NXN2 - N 2 N ί 9 (4)

(5) 7V3 = iV27V1^V2^3-
1A^2jV17V2, (6) N2N3N2~N3N1N2N3.

λN2

2. Relationship among real Schottky spaces.

2.1. In this spection we will consider relationship among Λπ® 2, Rγ&2 and Ryu&2.

Throughout this section, let Nj 0 = 1 , 2, 3) be the Nielsen transformations defined in § 1.

PROPOSITION 2.1. Lέtf τ = (/l5 t2, p)eRuWl2. Then (1) ^1(τ)eΛ I I9K2, (2) iV2(τ)e

(3) Nδ

3(τ)eRum2, where δ= + 1 or - 1.

PROOF. (1) and (2) are easily seen from Lemma 1.1 and the definitions of

and /?V9JΪ2. We only prove (3). Set

t\ o
a n d

Then < ^ 1 ? ^ 2 > represents (t1,t2,p)- We set

solutions of the equation

) = (ίf, if, /?*). Let /? and ^ be two
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(*) t1{\-t2)z2-{p-t2-pt1t2 + t1)z

Then p and q are the fixed points of AγA2. We assume that p and q are the repelling

and the attracting fixed points of AXA2, respectively. Since pq = p/t1>0 and p* = q/p

we have p*>0. Furthermore, since

t* + l/t* + 2 = (p-t2 + ί1t2p-t1)
2/t1t2(p-\)2<0,

we have t*<0. Noting that tf = tu we have N3(τ)eRu^Jl2. B y t n e same method as above,
we easily see that N3

1(τ)eRιι

<iΰl2. q.e.d.

Similarly, we have the following:

PROPOSITION 2.2. Let τ = (tu t2, p)eRγWl2. Then (1) N^eRyWl^ (2) N2(τ)e

Rn<m2 and (3) Nδ

3(τ) e RyιιWl2, where δ= + 1 or - 1.

PROPOSITION 2.3. Let τ = (tut2, p)€RynWl2. Then (1) N1{τ)eRYU

(ίai2 (2) N2(τ)e

#VIIWΪ2 fl/irf (3) Nδ

3(τ)eRym2, where δ= + 1 or - 1.

2.2. The following can be seen easily:

LEMMA 2.1. Le/ G ^ ^ ! , A2y be a marked two-generator group. Then the image

φ(G) of G under a mapping φeΦ2 is the same group as G except for marking, where Φ2

is the group of automorphisms of G defined in §\.

COROLLARY. If τ = (t1, t2, p ) e S 2 (resp. 6 2 ) , then φ(τ)e&2 (resp. <52) for any

φeΦ2.

Noting that N\ = 1 and N2 = 1, we have the following from Propositions 2.1 through

2.3 and the above corollary.

THEOREM 1. Let Nj 0 = 1 , 2, 3) be the Nielsen transformations defined in §1. Then

(1) N1(RnQ2) = RuS2, N2(RU&2) = RY&2 and N3(RU<S2) = RU(Z2.

(2) N1(Rγ(S2) = Ry(329 N2(Ry<S2) = Rn<52 and N3(Rv&2) = Rγιι&2.

(3) NάRyn&J = Rγu&2, N2(RYU&2) = ̂ V I I 6 2 and N3(Rγιι&2) = RY&2.

REMARK. For i?nS 2 , ^ v ^ 2 a n d ^VII®2J t n e same results as above hold.

3. Shapes of Λ Π S5 0 , Rγ&°2° and Rγn<5°2

0.

3.1. We recall that the sapce S^° consists of all equivalence classes of the following

marked classical Schottky groups G = {A1, , Ag} of genus g: G has defining curves

Cu Cg+ί; - •; Cg, C2g such that all Ci (j=\,2, - ,2g) are circles and Aj{Cj) = Cg+p

that is, ̂ 4l5 , Ag is a set of classical generators (see [28]). In this section we will

determine the shapes of the spaces Ru&20 : = ̂ ° n Λπ®2> ^ v ^ 2 ° : = ̂ 2 ° n Rγ(B^ and
Ό f̂  OO . _ p OO n n ^ rθ
^ V Π ^ 2 — ^ 2 n ^ V I I t o 2

Let τ = (tu t2, p)e(D*)2 x (C-{0 , 1}). Throughout this section we let
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and

Then we note that <^i(z), A2(z)} represents τ = (tu12, p).

PROPOSITION 3.1. Fix tx with 0 < tί < 1.

(1) Let ίKpKl/t^ If t2 = {t\l2pll2-\)l{pll2-t\l2\ then A^A\ is a parabolic

transformation whose fixed point is p1/2t\/2. Furthermore G=(Al9 A2y is a discontinuous

group.

(2) Let tγ<p<\. If t2 = (t\'2-p1/2W-t\/2p1/2), then AXA\ is a parabolic

transformation whose fixed point is p1/2t f1/2. Furthermore G = (Aί9 A2y is a discontinuous

group.

• PROOF. By straightforward calculations, we see that AlγA\ in (1) and AXA\ in

(2) are parabolic transformations whose fixed points are pιl2t\12 and p 1 / 2 / ^ 1 / 2 ,

respectively.

For case (1), the region bounded by the following four circles C l 5 C 2, C 3 and C 4

is a fundamental region for G:

For case (2), the following four circles Cj (j= 1, 2, 3, 4) bound a fundamental region

forG:

Hence G is a discontinuous group. q.e.d.

3.2. Similarly, we have the following.

PROPOSITION 3.2. Fix tx with —\<t1<0.

(1) Let \<p<\/tl If t1

2

/2 = (\ + t1p
1/2)/(p1/2 + til then A;2A2 is a parabolic

transformation whose fixed point is —p1/2ti. Furthermore G = (At, A2y corresponding to

(tu t2, p) is a discontinuous group.
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(2) Let t\<p<\. If t1

2

/2 = {ρ1/2 + t1W+t1ρ
1/2\ then A\A2 is a parabolic

transformation whose fixed point is — pll2\tλ. Furthermore G = (Aί9 A2} corresponding
to (tu t2, p) is a discontinuous group.

PROOF. (1) The region bounded by the following four circles (j= 1, 2, 3, 4) is a
fundamental region for G:

C3

where α= ̂ - ( p ^ +p1/2)/(tι+pll2)\ β=T(-(p + tιp
1'2)/(\+t1p

1/2)) and T(z) = p(z-
l)/(z-p).

(2) The region bounded by the following four circles Cj (7= 1,2, 3,4) is a
fundamental region for G: C\ and C3 are the same circles as in (1);

C2: {z-ia-ip'i

C4: Iz-iβ-t.p

where α=Γ(-(p + ί l />
1 / 2)/(l+ί l P

1 / 2)), β=T(-{ptί+p1'2)l(t1+p1i2)) and T(z) = p(z-
l)/(z-p). q.e.d.

PROPOSITION 3.3. Fix ίt wί/A — ^ / ^ O .

(1) Let l/tl<p£-l. If ( - ί 2 ) 1 / 2 = {1 -(-rχ)1 / 2(-p)1 / 2}/{(-p)1 / 2 + (-ίx)1/2},
/Λe« Aϊ1A2 is a parabolic transformation whose fixed point is ( —p)1/2( —ίχ)1/2. Further-
more G = (At, A2} corresponding to (t1, t2, p) is a discontinuous group.

(2) Let -\ύP<ti- / / ( - / 2 ) 1 / 2 = {(-p) 1 / 2 -(-ίi) 1 / 2 }/{l+(-p) 1 / 2 (-ίi) 1 / 2 }, /*«»
A1A2 is a parabolic transformation whose fixed point is ( — p)1/2/( — ̂ i)1 / 2 Firthermore
G = <v41? v42> corresponding to (ί l 5 /2> p) w α discontinuous group.

PROOF. Assume that τ = (/l5 /25 p) satisfies the condition of (1). Let <Λl5 ^42) ^ e

the marked group corresponding to τ. Set <^ί, 4̂2

<> = <yl1, A1A2}. Let τ* = (ίf, /f, p*)
be the point corresponding to (Af, A%>. Then τ*Gi?viW2 by Proposition 2.3. By
straightforward calculations, we see that (/*, t*, p*) satisfies the equation in Proposition
3.2, (1). Letp* and q* be the repelling and the attracting fixed points of A%, respectively.
Set S(z*): = z*/p*, Aί: = SAΐS'1 and A2: = SA^S~1. Then we note that < i 1 ? i 2 >

represents the same point (if, if, p*) as (Af, 4̂f> does, and that the repelling and the
attracting fixed points of A2 are 1 and p*, respectively. Let C4, ά and β be the circle
and the points for {A1, A2} corresponding to C4, α and β for <^4l5 4̂2> in Proposition
3.2, (1). We set C% = S~ί(C4\ α * ^ ^ - 1 ^ ) and β* = S~ί(β). We choose four circles Cf
0=1,2,3,4) as follows: C2 = CJ = ̂ Γ ' ( C J ) ; C4 = ̂ i " 1 (Ci) ; C 3 : | z-{(a* +

C l = ̂ f- 1(C 3) = ̂ Γ1(C3). Then
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(7=1,2,3,4) bound a fundamental region for (Al9A2y and so (AuA2y is a

discontinuous group.

(2) follows similarly from Proposition 3.2, (2). q.e.d.

3.3. We set

0<p<l/tl9

t\<ρ<\, — 1 <ί 1 <0}

and

^vπ(0) = { (/ i ,/2 > P)eΛ 3 | ( l - (- ί i ) 1 / 2 (-p) 1 / 2 )/((-^

<(-t2)1/2<((-p)1/2-(-t1)
1/2WH-p)1/2(-h)ίl2\

\ltx<p<tl9 -l<tx<0} .

From Propositions 3.1, 3.2 and 3.3, we have the following:

THEOREM 2.

(1) ^ S 5 0 =

(2) Ry&
0

2° =

(3) Λ v π SS° = AfVII(0).

PROOF. We will only prove this theorem for Type V, since the proof is similarly

for the other types.

(i) First we will show that My(l)aRy(Z0

2

0. Let τ = (tu t2, p)eΛfv(l). Let Cj

(7=1,2,3,4) be circles perpendicular to the real axis such that A1(Cί) = C3 and

A2(C2) = C 4. F o r 7 = 1, 2, 3, 4, we denote by aj and bj (aj<bj) the intersection points of

the circles C, with the real axis. It is easily seen that if aj and bj satisfy the inequality

(*) a3 < ax < 0 < bx < a2 < 1 < b2 < α 4 < p < £ 4 < b3 ,

then τeRyS2P. It suffices to show that aj and bj (7=1, 2, 3, 4) are chosen in such a

way that the above condition (*) are satisfied.

We take aj and bj (7=1,2,3,4) as follows: ax= - p 1 / 2 + ε, bί = - / x ( p 1 / 2 - ε / 2 ) ;

a2=-pll2tu b2 = (l+p)/2; a3= -

Λ2(-Pll2h)9 where



CLASSICAL SCHOTTKY GROUPS 457

2

Then we easily see that Aί(aί) = b3, A1(b1) = a3, A2(a2) = bAr, A2(b2) = a4r and that the

inequality

a3 < ai < 0 < b1 < a2 < 1 < b2 < α4 < p < 64

holds. Thus it suffices to show that 6 4 <6 3 , that is A2(-ρί/2t1)<( — ρll2 + ε)/t1. We note
that ε is positive by the condition 0<t\/2<(\ + t1p

1/2)/(p1/2 + t1). The inequality
(-ρ1/2+ε)/t1-A2(-ρ1/2t1)>0 is equivalent to

By straightforward calculations we see that the right hand side of the above inequality
is equal to 2ε.

Similarly, M v ( - l)cΛ vS2°, hence we have M v ( l ) u M v ( - l ) c i ? v S f .
(ii) Next we will show that M v ( l ) u M v ( - l)^Rγ(Z°2

0. Let τ = (Ί,1 2 , p)eRym2. It
is easily seen that if τeRy&l0, then 1 <:p<l//f and \<p<\/t2 for p > l , and ^ < p < l
and t2<p<\ for 0 < p < l . We will show that if τ^M v ( l)uM v (-1), then τ ^ v S 2 °
We only consider the case p> 1, since the case 0 < p < 1 is similar.

Since τ^M v(l) and l < p < l / ί 2 , we have ίi / 2^(l+ί 1 /9
1 / 2)/(p 1 / 2 + /1). If (1 4-ZiP172)/

(p1/2 + /1) = /| / 2, then /1Γ2^2 i s parabolic by Proposition 3.1, (1), and so τξRy<Z2°. If
( l+/ 1 p 1 / 2 )/(p 1 / 2 -h/ 1 )<^ / 2 <(l-ί 1 p 1 / 2 )/(p 1 / 2 -ί 1 ), then A~X

2A2 is elliptic and so τξ
^VS^°. Furthermore if l /p 1 / 2 <^ / 2 , then τ^Ry(B^° by the above remark 1 <p<\/t2.
Since l/p 1 / 2 <(l-/iP 1 / 2 )/(p 1 / 2 -ίi), we see that if τ^M v (l) and p > l , then τ$Ry<Z0

2

0.
q.e.d.

4. Surfaces.
4.1. In this section we will introduce some surfaces in R3. We set

for 0 < / i < l , p>0 and n= ± 1 , ±2, . Let n^2 be an integer. For fixed t1 with
0</! < 1, we denote by Pn(t1 :II) = (/ l912 n{t1 :II), p ^ ^ :II)) the intersection point of the
following two curves K£(ή) and K{λ{ή) in — 1 < t 2 <0:

We set P1(ίi:Π) = (/1, ^ i ^ i 'Π), p ^ i Π ) ) , where /2,1(/1:II)= - 1 and p 1 (ί 1 :II)=l.
Let n^2 be an integer. For fixed tγ with 0 < / 1 < l , we denote by

P_n(t1:Π) = (tί9 t2,-n(ti :II), P-M( î H)) the intersection point of the following two curves
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K^(-ri) and Λ:,7(-«) in — 1 < / 2 < 0 :

We set P_ 1 (/ 1 : II) = Λ(ί i :II) . We note that ί 2 j Π(ί 1:II) = ?2,_Λ(ί1:II) and p ^

I I ) = 1 .

We define the following sets in R3. For the sake of simplicity, we write τ for a

point (/ l 5t2, p)eR3 in the following definitions. We set

Hιι(n)={τ\t2 = 0, ίΓ < 2 "-

=Tn{tι, P:\l), pn(tί:\l)<p<\lt\n-\Q<t1<\}

:II), 0 < ίx

4.2. Similarly, we define the following sets for Types V and VII. For an integer

n, we set

for — 1 < tx < 0 and p > 0, and

for —1 <t1<0 and p < 0 .

For fixed ί t with -l<t1<0, we denote by />

2 n_1(ί1:V) = (/1, / 2 j 2 π . j ί^ :V),

P2.-i(Ί:V)) (resp. P2 l l(/1:VΠ) = (/1,/2 l//1:VII),p2 l l(/1:VII)) the intersection points of

the following two curves Ky(2n — 1) and AΓv(2n—1) in 0 < ί 2 < l for an integer n^.2

(resp. Kyn(2ή) and AΓvΠ(2n) in — 1 < ? 2 < 0 for an integer MΞ; 1):
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Kyλλ{2ri) : ( - ί 2 ) 1 / 2 = - T^^t,, p:VΠ) .

We set Λ(«1:V) = (/1,/2,1(ί1:V),/9(ί1:V)) and P0(tt :VII) = (/1, / 2 , 0 (? i : VII),
VII)), where r 2, 1(/ 1:V)= 1, p 1 (/ 1 :V)=l , ί 2 , 0 (ί 1 :VΠ)= _ { ( i - ( - ί l ) i / 2 ) / ( 1 + ( _ ί i ) i / 2 } 2 ?

For fixed / t with — ! < ? ! < ( ) , we denote by P . ( 2 π - D ^ : V ) = (tu ί 2,_ ( 2 H_ υ(ίi:V),

p_(2π_!,(?!:V)) (resp. / > _ 2 π (ί 1 :VΠ)=(ί 1 , ? 2 >_ 2 n(ί i :VII), p_ 2 n (ί i : VΠ)) the intersection

points of the following two curves K^{ — (2n — 1)) and A^γ(—(2n— 1)) in 0 < ί2 < 1 for an

integer n ̂  2 (resp. AΓvΠ( — 2«) and ίΓvπ( — 2n) in — 1 < 12 < 0 for an integer n ̂  1):

^vn(-2n) :(-t2)
ll2=-T2in-1)(t1, l/p:VΠ).

We note that ?2 > 2 π-1(ί1:V) = ί2 >_ ( 2 π_1j(ί1:V), ί2,2 π(ί 1:VΠ) = / 2,_ 2 π(ί 1 :VII),

2 n_1 )(/1:V)=l and p^! :VΠ)p_ 2 n ( t l :VΠ)=1.

We set

// v(2n-l)={τ|/ 2 = 0, l/ί2("-

// v (-(2n- l ) )={τ | ί 2 =0, ί f "<p</ 2 ( "- 1 ) , - K ί

where p_ 1(ί 1:V)=l.

Fv(2n-l)={τ|/ 2/ 2=-Γ 2 π_ 3(ί 1,p:V),l/ί 2<«- 1»<p<p 2 n_ 1(/ 1:V),

—1</1<0} («^2)

Fv(-(2n-l))={τ | ί |/ 2 =-Γ 2 n _ 3 (ί 1 ,p:V),p 2 n _ 1 (ί 1 :V)<p<ί 2 <' I - 1 ) ,

—1</1<0}

Furthermore for Type VII, we set

+π(2n)= {τ | ( - ?2)
1/2 = T2n(tl, p: VII),

l/ ί 2 " + 1 <p<p 2 π ( ί i : VΠ), - K ί , < 0 }
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where Po(tl: VII) = p_0(r1: VII) = - 1;

Fv,,(2n)= {τ I ( - ί,)1'2 = - Γ 2 0 l _ ^ p: VII),

Fvu(-2n)={τ | (-/ 2 ) 1 / 2 = - Γ j , , . ^ ! , l/p:VII),

We call the surfaces defined in §§4.1 and 4.2 surfaces of length one.

4.3. There are some relationship among the surfaces of length one. We have the

following proposition by straightforward calculations.

PROPOSITION 4.1. Let N3 be the Nielsen transformation. Then

(1) (i) NάFZ(n)) =

^3" 1(ίΊΐ(-«)
(ii) 7V3(FI7(«)) =

(2) (i)

(ii)

(3) (i)

(ii)

Combining Proposition 4.1, (2) with Proposition 4.1, (3), we have the following.

COROLLARY.

(1) (i) Nl(FΪ(2n-l)) =

(ii)
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(2) (i) iV|(^π(2n)) = F+I(2(n+l))
N2

3(FU-0)) = F;n(2)
N3 2(^vn( - 2«)) = FU - 2(n +1))

(ii) Nl(Fyn(2n)) = F^n(2

( - 2 ( n + 1)) («2; 1).

For simplicity, we introduce the notation ε = + or —. By straightforward cal-

culations, we have the following two propositions.

PROPOSITION 4.2. Let N^ be the Nielsen transformation. Then for an integer n,

(1) iV1(FfI(«)) = Ff,(-«) ( » = ± 1 , ± 2 , •••)•

(2) 7V1(Fε

v(2n-l)) = F U - ( 2 « - l ) ) («= ± 1 , ± 2 , • •)•

(3) iV1(Fε

VII(2π)) = F W - 2 n ) (n = ± 0 , + 1 , + 2 , •)•

PROPOSITION 4.3. Let N2 be the Nielsen transformation. Then

(1) JV2(F,7(1)) = F+(1), JV2(F,7(-l)) = F + ( - l ) .

(2) iV2(F^(l)) = F I ί ( l ) , JV2(F+(-l)) = F,7(-l) .

(3) ^ 2 (n..(0)) = ̂ u ( 0 ) , ΛΓ2(F+1(-0)) = F + 1 ( - 0 ) .

4.4. We will construct many surfaces out of Ff,( + ri), F\( ± (2n — 1)) and Fyn( + 2ri),

where ε = + or —. Let N2 be the Nielsen transformation defined in § 1. For n0 =

1, 2, 3, and w o = 2, 3, 4, , we set

Fγ(l , m o ) : = ΛΓ2(F,7(wo)), F γ ( - 1 , w o ) : = Λ^2(F,7(-wo))

F , t ( l ) 2 n 0 - l ) : = iV 2(F+(2« 0-l)), F , t ( - 1 , - ( 2 « 0 - l ) ) : = iV 2 (F+(-(2n 0 -1))),

F,7(l, 2m0- l ) : = iV2(Fv(2m0-1)), F,7(-1, -(2m0- l)): = N2(F+(-(2m0-1)))

F^,,(l, 2(n 0 -1)): = N 2(F+,(2(n 0-1))), F + , ( - 1 , - 2 ( n 0 - 1 ) ) : = ΛΓ2(F+Π(-(2n0-1))),

FyΠ(l, 2(m 0-1)): = 7V2(F^(2(m0-1))), FyU(-1, -2(m0 -1) ) : = ΛΓ2(Fyn(-(2m0-1))).

We define the following surfaces by using the Nielsen transformation Λf3. For

« = 0 , 1 , 2, ••-, no = l,2, 3, , mo = 2, ,3, 4, •••, we set

F,7(εn, ε(2n 0 - l)): = JVf " ^ ( F ί ί ε l , ε(2n 0 -1)),

F,7(εn, ε(2m0 -1) ) : = N?~ W ( β l , ε(2m0 -1)))

F+(ε(2n+1), £ n 0 ) : = iVf"(F;(£l, ε«0)), Fγ(ε(2n +1), εm0): = N?n(F;(ε\, εm0)),

F+(εO, ε2(«0 - 1 ) ) : = Nςεi(F^U ε2{n0 -1))),

Fv(εO, ε2(m 0 - l)): = ΛΓ3-i(FvΠ(εl, ε2(m0-1)))

FVII(ε(2n+1), ε2(n 0-1)): = iVε

3

2"(F+π(εl, ε2(« 0-1))),

FvΠ(ε(2n+1), ε2(m 0 - 1)): = ̂ ε

3

2"(FvΠ(εl, ε2(w 0-1))),

FvπfεO, ε«0): = Λ ^ H ^ v ( e l . en0)), F ^ O , εw 0): = ΛΓ3-
£l(Fv(εl, εm0)),
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where ε = + or —, and — ε denotes + or — according as ε is — or + .

Furthermore, for n=l, 2, 3, , no = 1, 2, 3, and mo = 2, 3, 4, , we set

n, ε2(n0 -1)): = Nγ(F+n(e(2n - 1 ) , ε2(n0 - 1 ) ) ) ,

Fy (ε2n, ε2(m0 -1)) : = Nγ(F^ε(2n -1), ε2(m0 -1)))

FyU(ε2n, εn0) \=N%1(Fy(ε{2n-\\ εn0)), FyU(ε2n, εmo): = Nε

3

1(Fy(ε(2n-l), εm0)).

We call these surfaces surfaces of length two.

4.5. Inductively we now define the following surfaces. Let ε = + or —. We assume

that the surfaces F\(εnk, , εnl9 εn0) (I=11, V, VII) have been defined. We let

Fε

u(l, n k 9 , n l 9 n 0 ) : = N2(FE

Ύ(nk, - 9 n ί 9 n 0 ) ) ,

Fε

u(n, n f c , , n l 9 Πf^ . ^ N ^ ^ F ^ h n k 9 ' - , n ί 9 n0))

^ , ( - 1 , - n k 9 •••, - n u - n 0 ) : = N 2 ( F ε

v ( - n k , •••, - n ί 9 - n 0 ) ) ,

F ε

u ( - n , - n k , ••-, - n l 9 - n o ) : = N^n-1\Fε

u(-\, - n k 9 -, - n l 9 - n 0 ) ) .

Furthermore, for Types V and VII we let

F v ( l , nh9 - ,nl9 n o ) : = N2(Fε

u(nk, '-9nί9 n0)),

F V I I ( 1 , nk9-"9 nl9 n0): = N2(Fε

yn(nk, --9nί9 n0)),

Fy(-h -nk9 -", -nί9 - n o ) \ = N2(Fε

n(-nk, •• , -nl9 - n o ) ) 9

^ v n ( - l , -nk9 - , -nu - n o ) \ = N2{Fyλl-nk, , -nl9 - n 0 ) ) ;

for n= 1, 2, 3, ,

F ε

γ ( n + l 9 n k 9 - ' 9 n l 9 n 0 ) : = N 3 ( F Ύ U { n 9 n k , , n l 9 n 0 ) ) ,

F y n ( n + 1 , n k 9 " ' 9 n ί 9 n 0 ) : = N 3 ( F ε

y ( n , n k 9 ' - , n ί 9 n 0 ) ) ,

), -nk9 -", -nί9 - w o ) : = iV3 ^ i ^ ϋ ί - π , -nk9 ••, - « 1 ? -no))9

, nί9 n0) : =

(-0, -nk, , -nl9 -A2O): = 7V 3 (F V I I (-1, -« f c , , -nl9 -no))9

l ? -Λ k , , -nl9 -n0)).

5. Relationship among surfaces.

5.1. In this section we will consider relationship among the surfaces defined in

the previous section. Let ε = + or —. From now on, we use the notation F%nk, , nu n0)

and Fε( — nk, , —nu —n0) (/=II, V, VII) only when they are defined. We have the

following two properties by definition.

PROPOSITION 5.1. Let N1 be the Nielsen transformation. For / = I I , V, VII, and for
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integers n^O (y = 0, 1, 2, , k),

(1) N^Fϊirik, , nί9 no)) = F\{-nk, • , -nί9 -n0).

(2) ^ ( F K - Π f c , , - n l 9 - n o ) ) = F ε { n k , - - 9 n l 9 n 0 ) .

PROPOSITION 5.2. Let N3 be the Nielsen transformation. For /=V, VII, and for

integers n^O 0 = 0, 1,2, , k),

(1) N2

3(Fε(nk,nk_u ••-,no)) = /ϊKιιJk + 2,π k _ 1 , --9n0).

(2) N3

2(Fε(-nk, -nk.l9 •, - n0) = Ff( - (nk + 2), -nk_u , - « 0 ) .

5.2. PROPOSITION 5.3. Le/ 7V3 be the Nielsen transformation. Then the following

hold:

(1) 7V3(FIt(-l)) = {(/ 1 ,- l ,

(2) 7V 3 (Ff I (-l,-(2n o -l)) =

(3) N3(F&-19-19 -nk_2, - , -no)) = N3(FU-nk-29 • • , -n0)) K _ 2 = 0).

(4) N3(Fε

u(-h - 2 , - Λ j k _ 2 , •••, -A20)) = FfI(l,n fc_2 + l,« k_3, •• ,«0) K _ 2 = l).

(5) ^ ( ^ , ( - 1 , - 2 , - 0 , - n k _ 3 , , -no) = Flι(nk_3,nk_4, ,Λ 0 ) (/i k- 3^0).

(6) N3(Fε

u(-l, - n k _ ! , -« f e-2 ? ••*, -« 0 )) = ̂ π ( 1

) 2 , n f c _ 1 - l , « f c _ 2 , •• ,/20)

PROOF. (1) is a consequence of straightforward calculations.

(2) By Lemma 1.2, (4),

= N2N3N2Nϊ ^ 2 ( F M 1 , 2n0 - 1)) = 7V27V37V2̂ 3- \F%(2n0 -1))

= N2N3N2(FUΪn0 - 2)) = ΛΓ27V3(F
ε

VII(l, 2n0 - 2))

= N2{F%{X 2n0 - 2)) = FJ(1, 2, 2n0 - 2).

(3) follows from the equality Λf2(Ffj(— 1, — 1, —/ifc_2, , — «0)) = ^ii(~nk-2?

(4), (5) and (6) can be proved similarly. q.e.d.

PROPOSITION 5.4. Let N3 be the Nielsen transformation. Then the following hold:

(1) N3(F*u(-0, - ( 2 n o - l ) ) ) = Ff I(2,2,2no-2) ( « 0 £ l ) .

(2) N3(FU-0, - 1 , - n k _ 2 , - B j k _ 3 , , - n 0 ) )
= ΛΓ3(Ff,(-(n fc_2- 1), -« ,_ 3 , ,

(3) ΛΓ3(Ff,(-0, - 1 , - 0 , - π f c _ 3 , • , -wo))

= Nl(F<n(-0, - π t _ 3 , , -« o ))

(4) N3(FU-0, -2, - n t _ 2 , - n t _ 3 , , - n 0 ) )

(5) ^ ( ^ , ( - 0 , - 2 , - 0 , - n t _ 3 , - « t _ 4 , , -

(6) JV 3(ίϊ(-0, -!!»_!, -nk_2, • • , - n o ) )

= Fε

n(2,2,nk-ι-l,nk_2, •• ,n0)

PROOF. (1) By Proposition 5.3, (2), we have
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= N3(F\,(i, 2, 2n0 - 2)) = Fc

n(2, 2,2n0 - 2).

(2) By Proposition 5.3, (3), we have

3(Fε

H(-0, - 1 , - n t - 2 , - i t - 3 , , -«o))
yi-l, - 1 , - n k - 2 , - n t _ 3 , , -n 0 )))

k_2, -/i t -3, , -no)) = N3(Fε

n(-{nk_2-l), -nk.3, • • , -no))

(3) A r 3 ( f - n ( - 0 , - 1 , - 0 , - n t _ 3 > ,

= N3(N3(Fyί-l, - 1 , - 0 , - « t _ 3 , , -n 0)))

= #!(/*„(-0, - « t _ 3 , •• ,-«o))
(4), (5) and (6) can be proved similarly. q.e.d.

5.3. By Lemma 1.2, (1) and Proposition 5.3, we easily see the following:

PROPOSITION 5.5. Let N3 be the Nielsen transformation. Then the following hold.

(1) ΛΓ3-
1(Fί(l)) = {(ί1> - l , l ) | 0 < r 1 < l } .

(2) N3 ψάl 2n0 -1)) = F\i - 1 , - 2, - (2n0 - 2)) («0 ̂  1).

(3) Nϊ^FUhUnt-* •••,no)) = N \
(4) ΛΓ3-H^f,(l,2,nfc_2, •• ,n0))

(5) N3

ι(Fe

n(ί, 2,0, n t _ 3 , • ,no)) = .FW-»*-3. -«»-4, ' , -»o) (»*- 3 ^0).

(6) 7V 3 -HnU, n t_ t , n , _ 2 , •• ,« 0 ) )
= - f f i ( - l , - 2 , - ( « t - i - l ) , - « t - 2 » •••» - « o ) ( « t - i ^ 3 ) .

By Lemma 1.2, (1) and Proposition 5.4, we easily see the following:

PROPOSITION 5.6. Let N3 be the Nielsen transformation. Then the following hold:

(1) ΛΓ3-
1(FfI(0,2n0-l)) = F f 1 ( - 2 , - 2 , - ( 2 n o - 2 ) )

(2) ^3- 1(/ !*D(O,l,n t_2,n t_3, ••,«„))

= N3(Fe

ι(nk-2-l,nk_3, •• , « 0 )

(3) N^iFUO, l , 0 , n t _ 3 , , no)) = N2

3(F°n(0, nk_3, • • ,n 0 ))

(4) Nςι(FU0,2,nk-2,nk.3, ,n0))

= Ff,(-2, -( f i t _ 2 + l), - n t _ 3 , •••, - « 0 )

(5) JV3- \FU0, 2,0, nfc _ 3, nk _ 4, , no»

(6) N3-
1(FM0,nk-ι,nk-2, •• ,n o ))

= ^ ( - 2 , - 2 , - ( n t - ! - ! ) , - n f c _ 2 , , - n 0 ) («ί:_

5.4. The proofs of the following Propositions 5.7 through 5.10 are similar to

those of Propositions 5.3 through 5.6. Let δ denote the number + 1 or — 1, and let — δ

denote — 1 or + 1 according as δ is + 1 or — 1. For simplicity, we write
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\nk, , « 0 ) if <5 = + 1
δ ( n k 9 •• ' , n o ) =

l\ — nk,' ,—n0) if δ= — 1 .

PROPOSITION 5.7.

(2) Nl(F\(-δ(l9l,nk-2,'''9n0))) = i

(3) Λ ^ S ( n ( - δ ( l , 2, nfe_2, nfc_3, , n0)))

(4) Nδ

3(Fy( — (5(1, 2, 0, n f c _ 3 , n k _ 4 , , «0)))

= ^VllίΦfc - 3>"k - 4, * * ', Wθ)) (« k _ 3 ^ 0) .
(5) # 3 X P V ( - ( 5 ( 1 , nk-ί9nk-2,- 9n0)))

— * VIIV^v-*• 5 ^ 9 ̂ fc — 1 — ^5 ̂ /c — 2 ' > " 0 / / V^k — 1 = "̂ /

PROPOSITION 5.8.

X2) Λr3(Fε

v( - δ(0, 2n0))) = ̂ vn(<5(2, 2, 2n 0 - 1)) (n0 ^ 1).

(3) 7 V 3 ( n ( - ^ ( O , 1, nk.29 n f c _ 3 , • -9n0)))

= Nδ

3

2(Fε

γu(-m nk_3, , π0))) (ik-3^0),

(52 denotes +2 or —2 according as δ is + 1 or — 1.

(5) #5(n(-$(0, 2, nfc_2, nfc_3, , n0)))

(6) iV3(n(-<5(0, 2,0, nk_3, nk_4, , «0)))

= Fε

vu(δ{nk_3 + l,nk_4, • • ,n0)) (« t _ 3 ^0).

(7) Nδ

3(Fe

v(~δ(0, nk.u nk_2, • • -, no)))

= n,,(<5(2, 2, nk _ x - 1 , nk _ 2, , n0)) ( « t _ , ^ 3).

PROPOSITION 5.9.

(1) N3(Fϊn(-δ(h0)))={{tu 1,1)| — l < ί 1 < 0 } .

(2) NKFU-δ(l, 2no))) = F ε

vWl, 2, 2n0 -1)) (n0 ̂  1).

(3) Na

3(FU-W, 1, n t _ 2 , , no))) = Λ Γ 3 ( n , , ( - φ k - 2 ,

(4) iV3(n.,(-«5(l,2,n t_2, •• ,fi0)))

(5) ^V 3 (ni . (-«5(1,2,0, nk_3, nk_4, • • , n0)))

= . F v ( < 5 ( « f c _ 3 + l , / j ) t _ 4 , •••,«„)) (nfc

(6) ^ 3 ( F V I I ( - < 5 ( 1 , «*-!, » t - 2 , , »o)))
= F U < 5 ( l , 2 , n t _ 1 - l , n k _ 2 , •• , n 0 ) ) (n/i

R E M A R K S .

(1) (i) n , , ( - l , - 0 ) = F ί π ( - 0 ) and F ^ l , 0) = F+,,(0).

(ii) F\(δ{nk, ••-,«!, l)) = F ε ( φ t , ••,«!» for / = I I , V, VII.
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(2) The cases «k_ j = 0 in Propositions 5.3, 5.4, 5.6, 5.8 and 5.10 will be treated in §6.

PROPOSITION 5.10.

(1) Ni(FU-δ(0,ί)))={(tu 1, l) | - K ί ^ O } .

(2) Ni(F%n(-δ(0,n0))) = F°v(δ(2,2,n0-l))

(3) Nδ

3(F%n( - δ(0, 1, nk_2, nk_ 3 , , n0)))

= Nό

3{F^(-δ(nk.2-l,nk^, • ,»o)))

(4) Nδ

3(F°vn(-δ(O,l,O,nk-3, •• ,« 0 )))

= N?(F\(-δty nt_3, , «o)))
where δ2 denotes -\-2 or — 2 according as δ is + 1 or — 1.

(5) JVS(nn(-*0,2,»t_2, ••

(6) Nό

3(FU-δ(0, 2,0, « t_3, »t_4, , «o»)

= F £

V ( ^ _ 3 + I , n t _ 4 , •• ,«o))

(7) ^V3(nii(-«5(O, »*_!, » t_2, • , «o)))

6. The domains of existence.

6.1. In this section we will determine the shapes of the real classical Schottky

spaces /£H©2> ^ V © 2 a n d ̂ vπ®2 ^n ̂ 3 Let ε and δ be the same symbols as in §5.

PROPOSITION 6.1. Let N3 be the Nielsen transformation. Then the following hold:

(1) Ni(Fyt-%09nk-l9 •• ,«o))) = ̂ πWl ί 2,0,0,n k _ 1 , •• ,/i0)) ( « k _ ^ 0 ) .

(2) ^ ( F U - ^ n , ^ , •• ,Λ0))) = n π ( 5 ( l ί 2,0,0, n,_ 1 ? •• ,/i0)) (/ ι k _^0).

(3) ^ 3 ( n π ( - 5 ( 0 , ! ! » _ ! , •• ,«o))) = n ( % 2,0,0, n fc_1? •• ,A20)) K _ ^ 0 ) .

PROOF. We only prove (1), since the proofs for (2) and (3) are similar. First we

will consider the case δ = + 1. By Lemma 1.2, (4) we have N3 ~ N2N3N2N3

 1N2N1. Hence

0, -nk-u ' , - " o ^ ^ ^ i V ^ ^ r a - O , -/!*_!, , -n0))

= N2N3N2N 3

1N2(Fε

n(0,nk.u • • , no)) = N2N3N2N3

1(Fε

w(U0, nk.u , no))

= N2N3N2(Fε

yu(0,0,nk_u , no)) = N2N3(Fε

yn(l 0,0, n f c_1 ? ,/ι0))

In the case £= — 1, we have the desired result by Lemma 1.2, (1) and

N3~N2N3N2N3

 1N2N1 by the same method as above. q.e.d.

6.2. We set

3\ -l<tt<0, -l<t2<0,p<0} .

We denote by Mt{δ(nk, «fc-i? ''' •> noί) t n e three-dimensional manifolds in Rf bounded
by Ff(δ(nk, nk_u , nQ)) and FΓ(δ(nk, nk_u , n0)) for /=II, V, VII, where
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<l, - 1 </2<0, p=\},

^vπ(0) = ^v,,(-0), FU-O) = FUP) and MV11(O) = M V I I (-O).

REMARK. For each /=II , V, VII,

(1) Fffl • ;nJ+1, 1, 1,«,_2, • )) = F%fi( • ;nJ+1,nj_2, • •)),

( 2 ) M,(δ( - - , n J + 1 , 1 , l , Π j - 2 , •••)) = M,(δ{ , n j + 1 , n j - 2 , •••)).

The following proposition is an easy consequence of Propositions 4.1, 4.2, 4.3, 4.4,

5.1 and 6.1.

PROPOSITION 6.2. Let Nj (7=1,2,3) be the Nielsen transformations. Then the

following hold:

(1) NiWtWnt, • • •,no))) = Mι(-δ(nk, • tn0))for 1=11, V, VII, where MVII(0) =

(2) (i) N2(Mu(δ(nk, , n0))) = MV(<5(1, nk, - •, n0)).

(ii) 7V 2 (M v (φ f c , , n0)) = Afπ(<5(l, nk, , w0)).

(iii) N2(Myu(δ(nk, , w0))) = MVII((5(1, nk, , n0)).

(3) (i) 7V3(MΠ( — δ)) = Mu(δ),

Nδ

3(Mu(δ(n0)) = Mn(δ(n0 +1)) (n0 = ± 1, ± 2 , ).

(ii) Nδ

3(My( — δ)) = MV I I(0),

Nδ

3(Mv(δ(2n0-l))) = Mvn(δ(2n0)) (no= ± 1 , ± 2 , •)•

(iii) Nδ

3(Mγn(δ(2n0)) = MΎ(δ{2n0 + 1)) (n0 = 0, ± 1, ± 2, ) .

(4) (i) A^3(Mπ((5(« fc, n k _ l 5 , n0)))

(nk = 0, ± 1 , ± 2 , ••• ).

1 ,2 ,0 , fifc./ifc.!, •• , « 0 ) ) (/ik = 0, ± 1 , ± 2 , •••)•

(ii) Λ^(M v (<5(« k , Λk_ l 5 , Λ 0 ) ) )

l , w k _ i , •• ,«o)) (wk = 0, ± 1 , ± 2 , •••)•

= M v π ( 5 ( l , 2 , 0 , n k , Λ k _ 1 , • s π o ) ) (nk = 0, ± 1 , ± 2 , •).

h i , Wjk_i, • , « o ) ) («k = 0 , ± 1 , ± 2 , •••).

= A/v(<S(l,2,0,nk,/!k_1, •• ,/i0)) (/it = 0, + 1 , ± 2 , •).

6.3 Noting that Λii®2 = (UφΨ(ΛiiS2°)) n Rfl9 Λ v®2 = (UφΦ( Λ v®2 0 ))n«v a n d

^vii^2 = (U0^(^vii®2°)n^vii ? where (/> runs through the Schottky modular group of
genus two Mod(6 2), we have the following theorem by Theorem 2 and Proposition 6.2.

THEOREM 3.



468 H. SATO

and

^vn®2 = U ^ v π ί ^ nk-n ' ' ', Wo)'

where Mt{nk, nk-ί9 , n0) (/=II, V, VII) are as defined in §6.2.

7. Fundamental regions.

7.1. In this section we will determine fundamental regions for [Φ2] and Mod(S2)
acting on i?n®2, Ry&i a n d ^VH®^ respectively. We denote by M o d ^ S ^ ) (resp.
[^Φ2]) the restriction of Mod(S2) (resp. [Φ2]) to i? zS 2, that is, the set of all equiv-
alence classes of orientation preserving automorphisms (resp. the set of all equivalence
classes of automorphisms) in i?j®2 for /=II, V, VII.

Throughout this section, let Nj 0=1,2,3) be the Nielsen transformations. We
denote by \_φ~] the equivalence class of φeΦ2. We write φ for an element [0] in [Φ2]
or Mod(S2) when there is no fear of confusion. We denote by W{φu φ2, '' , φn) a
w o r d i n φ l 9 φ 2 f ' - 9 φ n . W e d e n o t e b y S W ( φ l 9 φ 2 , - ' , Φn) ( r e s p . S \ W ( φ l 9 φ 2 , ' - , Φ J ] )

the set of all words in φl9 φ2, , φn (resp. the set of all equivalence classes of words
i n Φi, Φn ''"» Φn)

We easily see the following two lemmas.

LEMMA 7.1. IfφeMod(^vS°2){resp. φe IR^2~]\ then N2φN2 eMod(Rn(B°2) {resp.
N2φN2 e [ΛΠΦ2]) and Nς ιφN3 eMod{Ryn&°2) {resp. N3 'φN3 e [RynΦ2l).

LEMMA 7.2. (1) If ψeMod{Ru<Z2) {resp. ^e[ΛπΦ2]), then there exists φe
Mod{Ry(B°2) {resp. φe[iί v Φ 2 ]) with φ = N2φN2.

(2) Ifφe Mod{Ryιι(Z2

)) (resp. φ e [i?VnΦ2]), then there exist φ e Mod{Rγ&l) {resp.
φ e [^v^2]) with φ = N^φN3.

PROPOSITION 7.1. (1) Mod{Ru<Z°2) = N2{Mod{Rw&°2))N2 and [i*ir3>2] =

(2) Mod{Ryu&2

}) = N3

ί{Mod{Rγ<3°2))N3 and lRΛίlιΦ2] = N3

1lRyΦ2\N3.

PROOF. This follows from Lemmas 7.1 and 7.2. q.e.d.

By straightforward calculations, we have:

LEMMA 7.3. (1) N1{Rγ&°2) = Ry(Z0

2.

(2) ( %
(3) {

PROPOSITION 7.2. The set [^^2] consists of all equivalence classes of words in
NuN2WaN2, Ni'WβNi1 with WaeSW{Nl9N3)9 WβeSW(Nl9N2).

PROOF. This follows from Lemma 7.3. q.e.d.
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LEMMA 7.4. The group {[N2WaN2~\ \ WaeSW{Nu N3)} is generated by [JVJ and

IN2N3N21

P R O O F . L e t W(Nί,N3) = φίφ2 — φ n 9 w h e r e φs ( 7 = 1 , 2 , •••,«) a r e A \ o r N3.

By noting that Nj=\, we have N2W(Nί9 N3)N2 = N2φ1φ2- φnN2 =
N2φ1N2N2φ2N2 'N2φnN2. Since N2N1N2~NU we have the desired result. q.e.d.

LEMMA 7.5. (1) The group {LN3WaN3]\WaeSW(Nu N2)} is generated by
[N^^NJ ( = [7V3-

2]), IN^NΛ ( = [NJ) and LN3N2N3l
(2) The group {[N3

 1 WΛN3~\ \ Wae SW(NU N2)} is generated by [N3 ^ ^ 3 ] and
[N^N2N3-].

PROOF. (1) First we note that W(NU N2) is 1, Nl9 N2 or NXN2 (~iV2^i) S i n c e

N3\N3 = N2

3, N3N1N3 -N ί 9 and N3N1N2N3 = A ^ A ^ A ^ A ^ A ^ , we have the desired
result.

(2) Since N3

1\N3 = \ and N3

1N1N2N3 = N3~
1N1N3N3

1N2N3, we have the
desired result. q.e.d.

7.3. PROPOSITION 7.3. (1) [i?vΦ2] is generated by [AΓJ, [A^], [A^A^AίJ and

(2) Mod(Λ v6^) is generated by [iV|] αwrf [N2N3N2li.

PROOF. (1) First we note that N3N1N3 = NlN3

1N1N3. Since N2N3N2~
N3N1N2N3 = N3NιN3N3

2N3N2N3 by Lemma 1.2, (6) we have N3N2N3~
NKNSN^J-^N^NJ. Hence noting that N3~

1N2N3 = N3

2N3N2N3 and
N3W(Nί9 N2)N3

1 = N2

3(N3

1W(NU N2)N3)N3

2, we have the desired result by Proposi-
tion 7.2, and Lemmas 7.4 and 7.5.

(2) We have the following by Lemma 1.2: (i) N\ = \9 N^N^N^
N^^N.N^N.N.^N2, (N3

1NιN3)
2=l; (ii) A^A^-TV"2, N^JN^N^-l,

NιN2N3N2N1 -(N2N3N2y \ N1N2N3N2N3

 1N1N3^{N2N3N2y
 XÂ 2, N3

 1N1N3N
2Nί

~Nϊ4, N3

1N1N3N
2

3N3

1NίN3^N3-
2, N^N^^^^^^N ^N^^^'1,

N3 'N^N^N.N, ^ # 3 -N3~
2{N2N3N2y

ιN2.
Since an element of Mod(i^vS2) is an orientation preserving automorphism, the

cardinality of totality of Nι and N3

1N1N3 contained in each element of Mod(Ry&2)
is even. Therefore by noting N\ = 1, we have the desired result. q.e.d.

PROPOSITION 7.4. (1) (i) [ΛΠΦ2] is generated by [iVJ, [ A ^ A ^ ] and [A^3].
(ii) Mod(Ru&°2) is generated by [iV3] and [A^2A^2A^2].

(2) (i) [ Λ v n Φ J i j ^ / i e r a ^ ^ C ^ J , ίN^^ and [Nj-] ( = [N1Nς2N1J).
(ii) Mod(7?VII6^) w generated by {N\~\ and [^ΛΓJ.

PROOF. (1) (i) First we note that N2(N3

1NίN3)N2 = N2N3

2N3NιN3N2 =
N2N3-

2N2N2N3N1N3N2~(N2NlN2)-1N1. Since N2N1N2~N1 and N2(N2N3N2)N2 =
AΓ

3, we have the desired result by Propositions 7.1, (1) and 7.3, (1).
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(ii) is seen by Propositions 7.1, (1) and 7.3, (2).

(2) (i) We have N3 ^ Λ ^ - Λ ^ Λ ^ = NxNl; N3 'NlN3 = Nj; N3 \N2N3N2)N3 ~

N3

1(N3N1N2N3)N3 = N1N2Nl; N3

1(N3~
1N1N3)N3 = N3

2N1N
2

3. Therefore noting that

N3φN3 = NlN3

1φN3 for </>e[i?vΦ2]>
 w e n a v e t n e desired result by Propositions 7.1,

(2) and 7.3, (1).

(ii) is a consequence of Propositions 7.1, (2) and 7.3, (2). q.e.d.

7.4. We set

B! = {(tl9129

By Lemma 1.1, (1), we have:

LEMMA 7.6. N1N2(B1) = B2.

LEMMA 7.7. The set FΎlι(&2) = {τ = (t1, t2, p)eMyn(0)\t2<t1} is a fundamental

region in Mvn(0)for the group <̂ V1Λ/r

2> generated by NXN2.

Proof. Since MV I I(O)c{FV I I(S^)}- u{N,N2{Fyιi&°2))}- and ^iV 2(FV I I(S5))n

Fv\\{<&2)) = 0i w e n a v e t n e desired result, where {S}~ denotes the closure of a set S.
q.e.d.

PROPOSITION 7.5. ^11(^2) w a fundamental region in Ryiβ^for ModV I I(S2)

PROOF. This follows from Lemma 7.7, Proposition 7.4 (2), (ii) and Corollary (2)

to Proposition 4.1. q.e.d.

PROPOSITION 7.6. The set Fγu([Φ2]) = {(t1, t2, ρ)eMγιι(0)\t2<tu ρ<-\} is a

fundamental region in Ryn&^for |[i^

PROOF. Set S\ = NίN3

2N1 (~N2

3) and Γ: = ̂ iV 2 . Then ModV I I(S2) (resp.

[^vn φ 2]) i s generated by S and T (resp. 5, T and NJ by Proposition 7.4, (2). Since

^v,,(S2) = ̂ i(^vii([Φ2]))u^V I I([Φ2])u({(ί1, t29p)\p=- 1} nF v u (®§)),

we have the desired result. q.e.d.

We denote by Fy(&0

2) the set in M v ( l) bounded by F^(l) and Fv(l/2), where Fv(l/2)

is the set

{(/19 ί29 p)G/?3 I /2 = ( l - p / 1 ) / ( p - / 1 ) , 1 <p<l/t2

l9 - 1 < /i <0} .

Set F^ = ̂ ({(Vi, ί25 P ) e ̂ 3 I h = h} n ^vn) Let FV([Φ 2]) b e the set in M v ( l) bounded by

F^(l), Fy(\/2) and î f. Similarly we define the sets Fn(S°2) and iΓ

II([Φ2]) as follows:

Fu(&°2) is the set in M,,(l) bounded by F ί ( l ) and -Fπ(l/2), where
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FniLΦil) is the set in Mu(\) bounded by F$(1), Fn(\/2) and F* = N2(F$). Then we have the

following:

THEOREM 4. (1) For each /=II , V, VII, Fz(®5) w a fundamental region in RXS%

(2) i w βαcA / = II, V, VII, Fι{[Φ2~\) is a fundamental region in Rfilfor [# Z Φ 2 ]

PROOF. The case /=VΠ follows from Propositions 7.5 and 7.6. We only prove

this theorem for /= V, since the proof for / = I I is similar.

We denote by ^11(^2) the set in Rγn bounded by FvΠ(0) and {(tl9t2, p)e

R3 \p = — l}nMV I I(0). Then i^vnί®^) is also a fundamental region in i?VII®2 f°Γ

Mod(i?VIIS2), since the image of the set FΎn((Z%)n {(tί912, p)eR3 \ρ^ -1} under

the mapping NιN2 is the set in MV1I(O) bounded by {(t1, t2, p)εR3 \p = — 1},

{( ί 1 ,/ 2 ,P)eΛ 3 | / 2 = r1}, FUP) and //VII(0). Since # 3 ( / ^ ( S 2 ) ) = Fv(S2), FY(<B°2) is a

fundamental region in 7 ^ 6 ° f° r Mod(i? v^2) by Proposition 7.1, (2). We can similarly

prove that ^ ( [ ^ 2 ] ) is a fundamental region in i ? v ^2 f° r C^v^2] q.e.d.
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