UNIRATIONALITY OF CERTAIN COMPLETE INTERSECTIONS IN POSITIVE CHARACTERISTICS

ICHIRO SHIMADA

(Received August 22, 1991, revised December 26, 1991)

Abstract. We prove, under a certain condition on the dimension, the unirationality of general complete intersections of hypersurfaces which are defined over an algebraically closed field of characteristic p > 0 and projectively isomorphic to the Fermat hypersurface of degree q+1 where q is a power of p.

Introduction. The Fermat variety

$$X_0^{q+1} + X_1^{q+1} + \cdots + X_n^{q+1} = 0$$

of degree q+1 ($q=p^v$) defined over a field of characteristic p>0 has a lot of interesting peculiarities of positive characteristic, such as supersingularity (Tate [T], Shioda [Sh], Shioda-Katsura [S-K]), unirationality (Shioda [Sh], Shioda-Katsura [S-K], Schoen [Sch]), and constancy of moduli of hyperplane sections (Beauville [B]). On the other hand, in characteristics p>0, hypersurfaces which are projectively isomorphic to the Fermat variety of degree q+1 constitute an open dense subset of a linear system \mathscr{F} . (See Beauville [B] and below.) Then it is very likely that the complete intersections defined by linear subsystems of \mathscr{F} also possess those interesting peculiarities. In this paper, we shall study the unirationality of such complete intersections.

Let k be a field of characteristic p>0, \overline{k} its algebraic closure, and q a power of p. First we state our results over \overline{k} . Let \mathscr{F} denote the linear subsystem of $|\mathscr{O}_{\mathbf{P}_k^n}(q+1)|$ which consists of hypersurfaces whose defining equations are of the form

(0.1)
$$\sum_{\mu,\nu=0}^{n} a_{\mu\nu} X_{\mu} X_{\nu}^{q} = 0.$$

As is shown in Beauville [B], a hypersurface of degree q+1 in P_k^n is projectively isomorphic to the Fermat variety if and only if it is a nonsingular member of \mathcal{F} .

THEOREM 1. Suppose $n \ge r^2 + 2r$. Let V_1, \ldots, V_r be members of \mathscr{F} . We put $W = V_1 \cap \cdots \cap V_r$. If V_1, \ldots, V_r are chosen generally, then there is a purely inseparable dominant rational map $P_k^{n-r} \cdots \to W$ of degree $q^{r(r+1)/2}$. In particular, W is unirational.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14M10.

Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

Because there is a surjective morphism from the Fermat variety of degree q+1 to the Fermat variety of degree m if m|(q+1), our result implies the following:

COROLLARY. Suppose $n \ge 3$. Then the Fermat variety

$$X_0^m + X_1^m + \cdots + X_n^m = 0$$

of degree m defined over an algebraically closed field of characteristic p > 0 is unirational, provided that $p^v \equiv -1 \pmod{m}$ for some integer v.

Schoen [Sch] has also proved this Corollary. In case n is odd, this result had already been shown in Shioda [Sh] and Shioda-Katsura [S-K], by means of the inductive structure of Fermat varieties.

The same argument can be applied to the complete intersection of hypersurfaces of diagonal type. We shall prove the following:

THEOREM 2. Suppose $n \ge r^2 + 3r$. Suppose also that $p^v \equiv -1 \pmod{m}$ for some integer v. Let V_i (i = 1, ..., r) be hypersurfaces of diagonal type

$$b_{i0}X_0^m+\cdots+b_{in}X_n^m=0$$

defined over \overline{k} . If the coefficients b_{iv} are general enough, then the complete intersection $W = V_1 \cap \cdots \cap V_r$ is unirational.

Note that, since Theorem 1 states the unirationality only for general V_1, \ldots, V_r , Theorem 2 does not follow directly from Theorem 1 if $r \ge 2$. We have to strengthen the condition on n from $\ge r^2 + 2r$ to $\ge r^2 + 3r$, as far as we adopt the method of the proof in this article.

In fact, we shall prove a stronger result. From now on, we work over k, which is not necessarily algebraically closed. We fix an r-dimensional linear subspace $L \subset P_k^n$ defined over k. We denote by \mathscr{F}_L the variety of all hypersurfaces which are defined by equations of the form (0.1) and contain L. Then \mathscr{F}_L is defined over k and isomorphic to the projective space of dimension $(n+1)^2-(r+1)^2-1$.

THEOREM 3. Suppose $n \ge r^2 + r + 1$. Then there is an open dense subvariety U of $\mathscr{F}_L \times \cdots \times \mathscr{F}_L$ (r-times) which has the following property. Let K/k be an arbitrary field extension and let U(K) denote the set of K-valued points of U. Then, for every $(V_1, \ldots, V_r) \in U(K)$, there is a purely inseparable dominant rational map of degree $q^{r(r+1)/2}$ defined over K^{1/q^r} from the (n-r)-dimensional projective space to $W = V_1 \cap \cdots \cap V_r$. In particular, W is K^{1/q^r} -unirational.

The idea of the proof of Theorem 3 is as follows. We proceed by induction on r. Suppose that $V_1, \ldots, V_r \in \mathscr{F}_L(K)$ are "general", by which we mean that they satisfy certain open conditions. Let $T_{\eta(L), W} \subset P^n_{K(L)}$ be the tangent space to W at the generic point of L. Then there is a purely inseparable dominant rational map $T_{\eta(L), W} \cap (W \times_K K(L)) \cdots \to W$ defined over K. We shall show that $T_{\eta(L), W} \cap (W \times_K K(L))$ is bira-

tional over $K(L)^{1/q}$ to a complete intersection of r-1 hypersurfaces $V_1^{(1)},\ldots,V_{r-1}^{(1)}\subset P_{K^{(1)}}^{n-2r}$ defined over a field $K^{(1)}$ which is a purely transcendental extension of dimension r-1 over $K(L)^{1/q}$, and each $V_i^{(1)}$ is projectively isomorphic over $\overline{K^{(1)}}$ to the Fermat variety of degree q+1, and contains a $K^{(1)}$ -rational (r-1)-dimensional linear subspace $L^{(1)}\subset P_{K^{(1)}}^{n-2r}$. Moreover, if V_1,\ldots,V_r are "general", then $V_1^{(1)},\ldots,V_{r-1}^{(1)}$ are also "general". Since $(K^{(1)})^{1/q^{r-1}}$ is a purely transcendental extension of dimension 2r-1 over K^{1/q^r} , the $(K^{(1)})^{1/q^{r-1}}$ -unirationality of $V_1^{(1)}\cap\cdots\cap V_{r-1}^{(1)}$ implies the K^{1/q^r} -unirationality of $W=V_1\cap\cdots\cap V_r$.

This paper is organized as follows. In §1, we give a finite set of open conditions on $V_1, \ldots, V_r \in \mathscr{F}_L(K)$ which is sufficient for the K^{1/q^r} -unirationality of $W = V_1 \cap \cdots \cap V_r$. In §2, we show the existence of an example of $V_1, \ldots, V_r \in \mathscr{F}_L(\overline{k})$ which satisfies those conditions and thus complete the proof of Theorem 3. In §3, we prove lemmas about linear subspaces contained in W and derive Theorem 1 from Theorem 3. In §4, we shall prove Theorem 2 by showing that there is such an element (V_1, \ldots, V_r) in $U(\overline{k})$ that each V_i is a hypersurface of diagonal type.

Conventions and Notation. Let V be a variety over a field E and let F/E be a field extension. Then V(F) denotes the set of E-valued points of E, E denotes the fiber product E spec E, and E and E denotes the function field of E. Let E be the algebraic closure of E. Then $E^{1/q}$ is the field E and E and E is the field E and E are binary relation E means that varieties are birational, while E means that they are isomorphic.

- 1. Open conditions sufficient for the unirationality. We start to prove Theorem 3. Let V_1, \ldots, V_r be members of $\mathscr{F}_L(K)$. Suppose that
- (C1) $W := V_1 \cap \cdots \cap V_r$ is a complete intersection of dimension n-r which is geometrically reduced irreducible and nonsingular along L.

Let (X_0, \ldots, X_n) be homogeneous coordinates of P_K^n such that $L_K = \{X_{r+1} = \cdots = X_n = 0\}$, and let

$$\sum_{\mu,\nu=0}^{n} a_{i\mu\nu} X_{\mu} X_{\nu}^{q} = 0 \quad \text{where} \quad a_{i\mu\nu} = 0 \quad \text{if} \quad 0 \le \mu, \nu \le r$$

be the defining equation of V_i . The tangent space to V_i at $(Y_0, \ldots, Y_n) \in V_i$ is given by

$$(1.1)_{i} \qquad \sum_{\mu=0}^{n} \left(\sum_{\nu=0}^{n} a_{i\mu\nu} Y_{\nu}^{q} \right) X_{\mu} = 0.$$

Let $T_{L,W}$ be the variety $\{(Q, R) \in L_K \times P_K^n | T_{Q,W} \ni R$, where $T_{Q,W} \subset P_K^n$ is the tangent space to W at $Q\}$, which is defined by $(1.1)_1$ – $(1.1)_r$ with $Y_{r+1} = \cdots = Y_n = 0$. Let

be the natural projections. The second projection ϕ is a surjection which is generically finite and purely inseparable of degree q^r . Indeed, as is seen from $(1.1)_i$, the polar divisor $\{Q \in V_i | T_{Q,V_i} \ni R\}$ of V_i with respect to $R \in P_K^n$ is a q-th multiple of a hyperplane section $P_{R,V_i} \cap V_i$, where P_{R,V_i} is the hyperplane. Then $\phi^{-1}(R)$ is set-theoretically equal to $\{(Q,R) | Q \in P_{R,V_1} \cap \cdots \cap P_{R,V_r} \cap L\}$, which is always nonempty. Hence ϕ is surjective, and comparing the dimensions of $T_{L,W}$ and P_K^n , we see that ϕ is generically finite; that is, the intersection $P_{R,V_1} \cap \cdots \cap P_{R,V_r} \cap L$ consists of one point for a general point $R \in P_K^n$. Since each of r polar divisors has multiplicity q, the degree of ϕ is q^r . Let Γ_W denote the closed subset of P_K^n such that $P_K^n \setminus \Gamma_W$ is the maximal open subset over which ϕ is finite. We suppose that

(C2) W is not contained in Γ_W , and the closure of $\phi^{-1}(W \setminus \Gamma_W)$ is mapped surjectively onto L_K by the first projection.

We denote by \tilde{Z} the inverse image $\phi^{-1}(W)$. Then (C2) implies that

(1.2) a geometrically irreducible component of the generic fiber of $\tilde{Z} \to L_K$ (that is, the component which is obtained as the closure of $\phi^{-1}(W \setminus \Gamma_W)$) is mapped dominantly onto W by a purely inseparable rational map of degree q'.

(It will turn out that, for general V_1, \ldots, V_r , the generic fiber of $\tilde{Z} \to L_K$ is again geometrically reduced irreducible unless n=3 and r=1. If n=3 and r=1, the generic fiber is a union of a line $\phi^{-1}(L_K) \times_{L_K} K(L)$ and a geometrically reduced irreducible curve in $P_{K(L)}^2$.)

Let E be an arbitrary extension field of K, and let ρ : Spec $E \to L_K$ be an E-valued point of L_K . (Later on in this section, ρ will be the q-th root of the generic point Spec $K(L)^{1/q} \to L_K$, and in the next section, ρ will be a geometric point with respect to \overline{K} .) Then there are homogeneous coordinates, which we shall denote by (X_0, \ldots, X_n) again, of P_E^n such that

$$\rho = (1, 0, \dots, 0),$$

$$L_E = \{X_{r+1} = \dots = X_n = 0\} \text{ and}$$

$$T_{\rho, W} = \{X_{n-r+1} = \dots = X_n = 0\},$$

where $T_{\rho, W}$ is the tangent space to W at ρ . Suppose that E contains $K^{1/q}$ and ρ factors as Spec $E \to \operatorname{Spec} E^q \to L_K$, which is satisfied in the two cases mentioned in the parenthesis above. Then the defining equation of $(V_i)_E$ can be put into a form

$$\sum_{\nu=0}^{n} X_{\nu} l_{i\nu}(X_{0}, \ldots, X_{n})^{q} = 0$$

where l_{iv} are linear forms over E. We put $x_i = X_i/X_0$ (i = 1, ..., n-r) and consider $(x_1, ..., x_{n-r})$ as affine coordinates of $T_{\rho, W}$ with the origin ρ . Because $T_{\rho, W} \cap (V_i)_E$ is singular at ρ , its defining equation in $T_{\rho, W}$ is of a form

$$f_i^q + \sum_{\nu=1}^{n-r} x_{\nu} g_{i\nu}^q = 0$$
,

where f_i and g_{iv} are linear forms in (x_1, \ldots, x_{n-r}) over E. For simplicity, we put

(1.3)
$$h_i := \sum_{v=1}^{n-r} x_v g_{iv}^q.$$

We also put

$$\begin{split} Z_{\rho} &:= \widetilde{Z} \times_{L_K} \operatorname{Spec} E = T_{\rho, W} \cap W_E = \bigcap_{i=1}^r T_{\rho, W} \cap (V_i)_E \;, \\ L_{\rho} &:= \phi^{-1}(L_K) \times_{L_K} \operatorname{Spec} E \subset T_{\rho, W} \;. \end{split}$$

Then L_{ρ} is contained in $T_{\rho, W} \cap (V_i)_E$ and hence in Z_{ρ} . We assume that the following condition is satisfied:

(C3. ρ) Z_{ρ} is a complete intersection of codimension r in $T_{\rho,W}$. Moreover, unless n=3 and r=1, Z_{ρ} is geometrically reduced irreducible. If n=3 and r=1, Z_{ρ} is a union of the line L_{ρ} and a geometrically reduced irreducible curve.

Let $D_{\rho} \cong P_E^{n-r-1}$ be the variety of all lines on $T_{\rho,W}$ which pass through ρ , and let $\pi: T_{\rho,W} \hookrightarrow D_{\rho}$ be the natural projection. We may regard (x_1, \ldots, x_{n-r}) as homogeneous coordinates on D_{ρ} , and f_i and h_i as defining equations of hyperplanes and hypersurfaces in D_{ρ} . Then $L_K \subset V_i$ implies

(1.4)
$$\pi(L_{\varrho}) \subset \{f_i = 0\}, \qquad \pi(L_{\varrho}) \subset \{h_i = 0\},$$

where $\pi(L_{\rho}) \cong P_E^{r-1}$ is the linear subspace of D_{ρ} defined by $\{x_{r+1} = \cdots = x_{n-r} = 0\}$. Here again we assume that the following are satisfied:

(C4. ρ) f_1, \ldots, f_r are linearly independent, and

(C5. ρ) unless n=3 and r=1, at least one of h_i 's is not constantly zero on $\{f_1 = \cdots = f_r = 0\} \subset D_\rho$; if n=3 and r=1, then $f_1^2 \not\mid h_1$. (Note that if n=3 and r=1, then (1.4) implies $f_1 \mid h_1$.)

Note that, unless $f_i(a_1, \ldots, a_{n-r}) = h_i(a_1, \ldots, a_{n-r}) = 0$, a line $\{((x_1, \ldots, x_{n-r}) = (\lambda a_1, \ldots, \lambda a_{n-r}) | \lambda \text{ is an affine parameter}\} \subset T_{a,W}$

intersects $T_{\rho, W} \cap (V_i)_E$ at $\lambda = 0$ with multiplicity q and at

$$\lambda = -\frac{f_i(a_1, \ldots, a_{n-r})^q}{h_i(a_1, \ldots, a_{n-r})}$$

with multiplicity 1. Thus, if f_i does not divide h_i , π gives a birational map over E between $T_{\rho,W} \cap (V_i)_E$ and D_{ρ} . In particular, if r=1 and n>3, then Z_{ρ} is birational to $D_{\rho} \cong P_E^{n-2}$ over E. When r=1 and n=3, then $Z_{\rho} \setminus L_{\rho}$ is birational to $D_{\rho} \cong P_E^1$. Hence in case r=1, $(C4.\rho)$ and $(C5.\rho)$ imply $(C3.\rho)$ automatically. Now suppose $r \ge 2$. Let $Y_{\rho} \subset D_{\rho}$ be the variety defined by

$$\frac{f_1^q}{h_1} = \cdots = \frac{f_r^q}{h_r}.$$

Then we see that

(1.5) Z_{ρ} is mapped birationally by π to Y_{ρ} .

Indeed, the lines contained in Z_{ρ} and passing through ρ are parametrized by $\{f_1 = \cdots = f_r = h_1 = \cdots = h_r = 0\} \subset D_{\rho}$. By dimension counting, (C4. ρ) and (C5. ρ) imply that Z_{ρ} is not a cone with the vertex ρ . Hence (1.5) holds. We denote by $U_{i,\rho}$ $(i=1,\ldots,r-1)$ the hypersurface defined in D_{ρ} by

$$f_i^q h_r - f_r^q h_i = 0$$
.

Then $Y_{\rho} = \bigcap_{i=1}^{r-1} U_{i,\rho}$ is a geometrically reduced irreducible complete intersection of codimension r-1 by (C3. ρ) and (1.5).

By $(C4.\rho)$, $\{f_1 = \cdots = f_r = 0\}$ defines an (n-2r-1)-dimensional linear subspace $M_{\rho} \subset D_{\rho}$, which contains $\pi(L_{\rho})$ by (1.4). Let $G_{\rho} \cong P_E^{r-1}$ be the variety of all (n-2r)-dimensional linear subspaces containing M_{ρ} , and let

$$\begin{array}{ccc}
H_{\rho} & \xrightarrow{b} & D_{\rho} \\
\downarrow & & \\
G_{\rho} & & & \\
\end{array}$$

be the universal family. The morphism b is a blow-up along the center M_{ρ} . From the defining equation of $U_{i,\rho}$, we see that the total transform $b^{-1}(U_{i,\rho})$ contains the exceptional divisor $b^{-1}(M_{\rho})$ with multiplicity at least q. We denote by $\widetilde{V}_{i,\rho}^{(1)}$ the effective divisor $b^{-1}(U_{i,\rho}) - q \cdot b^{-1}(M_{\rho})$. The last condition we assume is

 $(C6.\rho)$ $\tilde{V}_{i,\rho}^{(1)}$ does not contain the exceptional divisor $b^{-1}(M_{\rho})$ any more, and the projection $\tilde{V}_{i,\rho}^{(1)} \to G_{\rho}$ is surjective.

Then $\widetilde{V}_{i,\rho}^{(1)}$ coincides with the strict transform of $U_{i,\rho}$, and the intersection $\widetilde{W}_{\rho}^{(1)} := \widetilde{V}_{1,\rho}^{(1)} \cap \cdots \cap \widetilde{V}_{r-1,\rho}^{(1)}$ is the strict transform of Y_{ρ} ; hence $\widetilde{W}_{\rho}^{(1)} \to Y_{\rho}$ is birational.

Moreover, the projection $\tilde{W}_{\varrho}^{(1)} \to G_{\varrho}$ is surjective. This implies that

(1.6) the generic fiber of $\widetilde{W}_{\rho}^{(1)} \to G_{\rho}$ is mapped birationally onto Y_{ρ} .

Let F/E be an arbitrary field extension and let σ : Spec $F \to G_{\rho}$ be an F-valued point, (which will be the generic point later in this section, and a geometric point with respect to \overline{K} in the next section). Noting that the restriction of an equation of the form (0.1) to a linear subspace still has the form (0.1), we see from (1.3) that the defining equation of $V_{i,\rho,\sigma}^{(1)} := \widetilde{V}_{i,\rho}^{(1)} \times_{G_{\rho}} \operatorname{Spec} F$ in $H_{\rho,\sigma} := H_{\rho} \times_{G_{\rho}} \operatorname{Spec} F \cong P_F^{n-2r}$ is of the form (0.1). Moreover we see from (1.4) that $V_{i,\rho,\sigma}^{(1)}$ contains an (r-1)-dimensional linear subspace $L_{\rho,\sigma}^{(1)} := b^{-1}(\pi(L_{\rho})) \times_{G_{\rho}} \operatorname{Spec} F$.

Now we take ρ to be the q-th root of the generic point η : Spec $K(L)^{1/q} \to L_K$, and σ the generic point η' : Spec $K(L)^{1/q}(G_{\eta}) \to G_{\eta}$. In this case, we omit the η in the conditions and simply write (C3), etc. instead of (C3. η), etc. We also write $V_i^{(1)}$ and $L^{(1)}$ instead of $V_{i,\eta,\eta'}^{(1)}$ and $L_{\eta,\eta'}^{(1)}$. The field $F = K(L_{\eta})^{1/q}(G_{\eta})$ is a purely transcendental extension of dimension 2r-1 over the constant field $K^{1/q}$, which we shall denote by $K^{(1)}$.

We summarize the construction above:

When r=1 and n>3 (resp. n=3), we get a dominant rational map $D_{\eta} \simeq Z_{\eta}$ (resp. $Z_{\eta} \setminus L_{\eta} \cap W$ defined over $K^{1/q}$ and purely inseparable of degree q, assuming (C1), (C2) and (C3). (Note that when n=3, $Z_{\eta} \setminus L_{\eta} \cap W$ is still dominant.) Since $K(L)^{1/q}$ is a purely transcendental extension of dimension 1 over $K^{1/q}$, $D_{\eta} \cong P_{K(L)^{1/q}}^{n-2}$ is birational to $P_{K^{1/q}}^{n-1}$. Hence W is $K^{1/q}$ -unirational.

When $r \ge 2$, starting from hypersurfaces $V_1, \ldots, V_r \in \mathscr{F}_L(K)$ in P_K^n and assuming (C1)–(C6), we get $V_1^{(1)}, \ldots, V_{r-1}^{(1)} \in \mathscr{F}_{L^{(1)}}(K^{(1)})$ in $P_{K^{(1)}}^{n-2r}$, where $\mathscr{F}_{L^{(1)}}$ is the variety defined in the same way as \mathscr{F}_L with k replaced by $K^{(1)}$, L replaced by $L^{(1)}$, and n replaced by n-2r. Moreover, putting $W^{(1)} := V_1^{(1)} \cap \cdots \cap V_{r-1}^{(1)}$, we get a dominant rational map $W^{(1)} \cdots \to W$ defined over $K^{1/q}$ and purely inseparable of degree q^r by composing

$$W^{(1)} \simeq Y_{\eta} \simeq Z_{\eta} \cdots \to W.$$
(1.6) (1.5) (1.2)

Let $(C1)^{(1)}, \ldots, (C6)^{(1)}$ be the conditions obtained from $(C1), \ldots, (C6)$ by replacing K by $K^{(1)}$, n by $n^{(1)} := n - 2r$, r by $r^{(1)} := r - 1$, L by $L^{(1)}$ and V_i $(i = 1, \ldots, r)$ by $V_i^{(1)}$ $(i = 1, \ldots, r^{(1)})$. Inductively, assuming $(C1)^{(v-1)} - (C6)^{(v-1)}$ $((C1)^{(v-1)} - (C3)^{(v-1)}$ when v = r, we get $r^{(v)} = r^{(v-1)} - 1$ hypersurfaces $V_i^{(v)}$ $(i = 1, \ldots, r^{(v)})$ in a projective space of dimension $n^{(v)} = n^{(v-1)} - 2r^{(v-1)}$ such that each $V_i^{(v)}$ is

- (i) defined over the field $K^{(\nu)}$, which is a purely transcendental extension of dimension $2r^{(\nu-1)}-1$ over the constant field $(K^{(\nu-1)})^{1/q}$,
- (ii) defined by an equation of the form (0.1), and
- (iii) containing an $r^{(\nu)}$ -dimensional linear subspace $L^{(\nu)}$ defined over $K^{(\nu)}$; and moreover

(iv) there is a dominant rational map $W^{(v)} := V_1^{(v)} \cap \cdots \cap V_{r^{(v)}}^{(v)} \cdots \to W^{(v-1)}$ defined over $(K^{(v-1)})^{1/q}$ and purely inseparable of degree q^{r+1-v} .

Then we define the conditions $(C1)^{(v)}$ — $(C6)^{(v)}$ in the obvious way. Note that if $n \ge r^2 + r + 1$, then $n^{(v)} \ge r^{(v)^2} + r^{(v)} + 1$ for v = 1, ..., r. Thus if (C1)—(C6), $(C1)^{(1)}$ — $(C6)^{(1)}$,..., $(C1)^{(r-2)}$ — $(C6)^{(r-2)}$ and $(C1)^{(r-1)}$ — $(C3)^{(r-1)}$ are satisfied, we get a dominant rational map

$$P_{K(r)}^{n(r)} \cdots \rightarrow W$$

defined over K^{1/q^r} and purely inseparable of degree $q^{r(r+1)/2}$. Noting that $K^{(r)}$ is a purely transcendental extension over K^{1/q^r} of dimension r^2 and that $n^{(r)} = n - r^2 - r$, we see that $P_{K^{(r)}}^{n(r)}$ is birational to $P_{K^{1/q^r}}^{n-r}$ over K^{1/q^r} . Hence W is K^{1/q^r} -unirational.

It is obvious that (C1)–(C6), (C1)⁽¹⁾–(C6)⁽¹⁾, ..., (C1)^(r-2)–(C6)^(r-2) and (C1)^(r-1)–(C3)^(r-1) impose open conditions on the initial choice of $V_1, \ldots, V_r \in \mathcal{F}_L(K)$. Moreover, these conditions are independent of the field K. Thus there is such an open subvariety $U \subset \mathcal{F}_L \times \cdots \times \mathcal{F}_L$ that for arbitrary K/k and $(V_1, \ldots, V_r) \in U(K)$, $W = V_1 \cap \cdots \cap V_r$ is K^{1/q^r} -unirational. Our next task is to show that U is dense, or equivalently, $U(\overline{k})$ is nonempty.

2. Non-emptiness of $U(\overline{k})$. In showing $U(\overline{k}) \neq \emptyset$, we may assume that k itself is algebraically closed. Therefore we will assume $k = \overline{k} = K$ in this section.

Let $\bar{\rho}$: Spec $k \to L$ be a closed point of L. It is easy to see from the openness of the conditions that

(2.1) if $(C3.\bar{\rho})$ – $(C6.\bar{\rho})$ hold, then (C3)–(C6) also hold.

Moreover, let $\bar{\sigma}$: Spec $k \to G_{\bar{\rho}}$ be a closed point of $G_{\bar{\rho}}$, and let $\overline{(C1)}^{(1)} - \overline{(C6)}^{(1)}$ be the conditions obtained from $(C1)^{(1)} - (C6)^{(1)}$ replacing $K^{(1)}$ by k, $L^{(1)}$ by $L_{\bar{\rho},\bar{\sigma}}^{(1)}$, and $V_1^{(1)}, \ldots, V_{r-1}^{(1)}$ by $V_{1,\bar{\rho},\bar{\sigma}}^{(1)}, \ldots, V_{r-1,\bar{\rho},\bar{\sigma}}^{(1)}$. It is also easy to see that

(2.2) if $\overline{(C1)}^{(1)} - \overline{(C6)}^{(1)}$ hold, then $(C1)^{(1)} - (C6)^{(1)}$ also hold.

Now we replace $(C1)^{(1)}$ – $(C6)^{(1)}$ by $\overline{(C1)}^{(1)}$ – $\overline{(C6)}^{(1)}$, fix closed points of $L_{\bar{\rho},\bar{\sigma}}^{(1)}$ and $G_{\bar{\rho},\bar{\sigma}}^{(1)}$, and repeat the whole process above again to check $(C1)^{(2)}$ – $(C6)^{(2)}$.

Thus, making repeated use of the stability (2.1) and (2.2) of the conditions under generizations, we can prove the non-emptiness of U(k) by induction on r, provided that we prove the following two statements:

- (a) For general $V_1, \ldots, V_r \in \mathcal{F}_L(k)$, (C1), (C2) and (C3, $\bar{\rho}$)-(C6, $\bar{\rho}$) hold.
- (b) If $V_1, \ldots, V_r \in \mathscr{F}_L(k)$ are general, then $V_{1,\bar{\rho},\bar{\sigma}}^{(1)}, \ldots, V_{r-1,\bar{\rho},\bar{\sigma}}^{(1)}$ are also general.

Let us state (b) more precisely. We fix the following data:

(i) homogeneous coordinates (X_0, \ldots, X_n) of P_k^n such that $\bar{\rho} = (1, 0, \ldots, 0)$ and

$$L = \{X_{r+1} = \cdots = X_n = 0\},\$$

- (ii) an (n-r)-dimensional linear subspace $T = \{X_{n-r+1} = \cdots = X_n = 0\}$ of P_k^n , which contains L,
- (iii) the variety $D \cong P_k^{n-r-1}$ of lines on T passing through $\bar{\rho}$, equipped with homogeneous coordinates $x_v = X_v/X_0$ (v = 1, ..., n-r),
- (iv) an (n-2r-1)-dimensional linear subspace $M = \{x_{n-2r+1} = \cdots = x_{n-r} = 0\}$ of D containing $\pi(L) = \{x_{r+1} = \cdots = x_{n-r} = 0\}$, where $\pi: T \cdots \to D$ is the natural projection,
- (v) the variety $G \cong P_k^{r-1}$ of all (n-2r)-dimensional linear subspaces of D containing M, and
- (vi) the closed point $\bar{\sigma}$ of G corresponding to $H = \{x_{n-2r+2} = \cdots = x_{n-r} = 0\}$.

Let $\mathscr{G} \subset \mathscr{F}_L \times \cdots \times \mathscr{F}_L$ (r-times) be the subvariety consisting of all (V_1, \ldots, V_r) such that

- (a) $W = V_1 \cap \cdots \cap V_r$ is nonsingular at $\bar{\rho}$ and $T_{\bar{\rho}, W}$ coincides with T, and
- (β) (V_1, \ldots, V_r) satisfies $(C4.\bar{\rho})$ and $M_{\bar{\rho}}$ coincides with M.

Let $\mathscr{F}_L^{(1)}$ be the variety of hypersurfaces in $H \cong P_k^{n-2r}$ containing $\pi(L) \cong P_k^{r-1}$ and defined by the equations of the form (0.1). We have a rational map

$$\Psi \colon \mathscr{G} \to \overbrace{\mathscr{F}_L^{(1)} \times \cdots \times \mathscr{F}_L^{(1)}}^{(r-1)\text{-times}}$$

$$(V_1, \dots, V_r) \mapsto (V_{1, \bar{\varrho}, \bar{\varrho}}^{(1)}, \dots, V_{r-1, \bar{\varrho}, \bar{\varrho}}^{(1)}).$$

The precise meaning of (b) is that

(b') Ψ is dominant.

Now we start to prove (a). Invoking the openness of the conditions again, it is enough to show that

- (a') for each of the conditions (C1), (C2), (C3. $\bar{\rho}$)-(C6. $\bar{\rho}$), there exists (V_1, \ldots, V_r) which satisfies it.
- (C1): Note that we have $n \ge 3r$. Consider the complete intersection of hypersurfaces $V_i \in \mathcal{F}_L(k)$ (i = 1, ..., r) given by

$$X_{r+i} \cdot X_0^q + X_{r+i+1} \cdot X_1^q + \cdots + X_{2r+i} \cdot X_r^q = 0$$

which contain $L = \{X_{r+1} = \dots = X_n = 0\}$. The singular locus of $W = V_1 \cap \dots \cap V_r$ is Sing $W = \{X_0 = \dots = X_r = 0\}$, hence W is nonsingular along L. Moreover W is a reduced complete intersection of codimension r at least locally around L. Let \widetilde{W} be the strict transform of W by the blow-up of P_k^n along Sing W. Then \widetilde{W} has the structure of a smooth fiber space over the variety of all (n-r)-dimensional linear subspaces con-

taining Sing W with every fiber isomorphic to an (n-2r)-dimensional linear space. Hence W is irreducible.

(C2): Recall that for a closed point $R \in P_k^n$ and a member V of \mathscr{F} , the reduced part of the polar divisor of V with respect to R is a hyperplane section $P_{R,V} \cap V$. Hence we see that

$$\Gamma_{\mathbf{W}} = \{ R \in \mathbf{P}_{k}^{n} | \dim(P_{R,V_{1}} \cap \cdots \cap P_{R,V_{n}} \cap L) \geq 1 \}.$$

Suppose that $R \in W \setminus \Gamma_W$, and let Q be the intersection point $P_{R,V_1} \cap \cdots \cap P_{R,V_r} \cap L$. If $W \cap T_{Q,W}$ is a complete intersection of codimension r in $T_{Q,W}$ locally at R, then, by dimension counting, we can conclude that the closure of $\phi^{-1}(W \setminus \Gamma_W)$ is mapped surjectively onto L. It is not difficult to construct such an example of R and W.

 $(C3. \bar{\rho})$ - $(C6. \bar{\rho})$: We use the data (i)-(vi) above. Suppose that $V_i \in \mathcal{F}_L(k)$ is defined by

$$\sum_{\mu,\nu=0}^{n} a_{i\mu\nu} X_{\mu} X_{\nu}^{q} = 0 \quad \text{with} \quad (*) \begin{cases} a_{i\mu\nu} = 0 & \text{if} \quad 0 \le \mu, \nu \le r \\ a_{i\mu0} = \delta_{i,\mu-n+r} \end{cases}.$$

Then $T_{\bar{\rho}, W}$ coincides with T, and f_i , h_i are given by

$$f_i = \sum_{\nu=1}^{n-r} a_{i0\nu}^{1/q} x_{\nu}, \quad h_i = \sum_{\mu,\nu=1}^{n-r} a_{i\mu\nu} x_{\mu} x_{\nu}^{q}.$$

We can choose the coefficients $(a_{i\mu\nu})$ arbitrarily except for the condition (*) above. Hence $(C4.\bar{\rho})$ and $(C5.\bar{\rho})$ hold obviously. Thus $(C3.\bar{\rho})$ also holds when r=1. Suppose $r \ge 2$. To construct an example for which $(C3.\bar{\rho})$ holds, we choose the coefficients such that

$$f_i = 0$$
 for $i = 1, ..., r$ and
 $h_i = x_i \cdot x_{r+1}^q + x_{i+1} \cdot x_{r+2}^q + \cdots + x_{i+n-2r-1} \cdot x_{n-r}^q$.

Then $Z_{\bar{\rho}}$ is a cone with the vertex $\bar{\rho}$ over the variety $\{h_1 = \cdots = h_r = 0\} \subset D_{\bar{\rho}}$, which can be seen to be a reduced irreducible complete intersection of codimension r by blowing it up along $\{x_{r+1} = \cdots = x_{n-r} = 0\}$. Hence $(C3, \bar{\rho})$ holds. Now we check $(C6, \bar{\rho})$. Again by the openness of the condition, if $V_{i,\bar{\rho},\bar{\sigma}}^{(1)}$ is a hypersurface in H and does not contain the hyperplane $M \subset H$, then $(C6, \bar{\rho})$ holds. We choose $(a_{i\mu\nu})$ so that $f_i = x_{n-r+1-i}$ for $i = 1, \ldots, r$. Then M_{ρ} coincides with M. We consider $(x_1, \ldots, x_{n-2r+1})$ as homogeneous coordinates of H. Then the defining equations of M and $V_{i,\bar{\rho},\bar{\sigma}}^{(1)}$ in H is given by

$$M = \{x_{n-2r+1} = 0\},$$

$$V_{i,\bar{\rho},\bar{\sigma}}^{(1)} = \left\{h_i(x_1, \dots, x_{n-2r+1}, 0, \dots, 0) = \sum_{\mu,\nu=1}^{n-2r+1} a_{i\mu\nu} x_\mu x_\nu^q = 0\right\},$$

because $f_i = 0$ on H except for i = r, and $f_r = 0$ is the equation of M.

We can choose the coefficients $(a_{i\mu\nu})_{1 \leq \mu, \nu \leq n-2r+1}$ of the equation of $V_{i,\bar{\rho},\bar{\sigma}}^{(1)} \subset H$ still arbitrarily except for the condition $a_{i\mu\nu} = 0$ for $1 \leq \mu, \nu \leq r$, which is equivalent to $\pi(L) = L_{\bar{\rho},\bar{\sigma}}^{(1)} \subset V_{i,\bar{\rho},\bar{\sigma}}^{(1)}$. Hence $(C6,\bar{\rho})$ holds.

The paragraph just above says nothing but the surjectivity of Ψ . Hence (b') is true, and the proof of Theorem 3 is completed.

- 3. Linear subspaces in the complete intersections. In this section we prove the following two lemmas. We still assume $k = \overline{k}$.
- Lemma 1. Suppose that $n \ge sr + s + r$. Then, for every $V_1, \ldots, V_r \in \mathcal{F}$, the intersection $V_1 \cap \cdots \cap V_r$ contains an s-dimensional linear subspace.
- Lemma 2. Suppose that $n \ge sr + s + 2r$. Then, for every $V_1, \ldots, V_r \in \mathcal{F}$ and every closed point $Q \in V_1 \cap \cdots \cap V_r$, there is an s-dimensional linear subspace contained in $V_1 \cap \cdots \cap V_r$ and passing through Q.

Theorem 1 follows immediately from Lemma 1 and Theorem 3. Lemma 2 will be used in the next section.

PROOF OF LEMMA 1. Let I be the incidence correspondence

(3.1)
$$\left\{ (N, \Lambda) \in \operatorname{Grass}(\mathbf{P}^{s}, \mathbf{P}^{n}) \times \operatorname{Grass}(\mathbf{P}^{r-1}, \mathcal{F}) \middle| \begin{array}{l} \text{the base locus } W_{\Lambda} \text{ of a linear} \\ \text{system } \Lambda \text{ contains } N \end{array} \right\}$$

with the natural projections

$$I \xrightarrow{\beta} \operatorname{Grass}(\mathbf{P}^{r-1}, \mathscr{F})$$

$$\alpha \downarrow \\ \operatorname{Grass}(\mathbf{P}^{s}, \mathbf{P}^{n}).$$

Since dim $\alpha^{-1}(N)$ = dim Grass(\mathbf{P}^{r-1} , \mathscr{F}) - $r(s+1)^2$ for $N \in \text{Grass}(\mathbf{P}^s, \mathbf{P}^n)$, we have dim I - dim Grass(\mathbf{P}^{r-1} , \mathscr{F}) = (s+1)(n-sr-s-r).

Hence it is enough to show that when n = sr + s + r, the second projection β is generically finite. Let (N, Λ) be a general closed point of I. Let $k[\varepsilon]$ be the ring of dual numbers with $\varepsilon^2 = 0$. In order to show that β is generically finite, it is enough to show that any deformation of the first order $N_{\varepsilon} \to \operatorname{Spec} k[\varepsilon]$ of N which keeps N being contained in W_{Λ} is trivial. We fix homogeneous coordinates (X_0, \ldots, X_n) of P_k^n such that $N = \{X_{s+1} = \cdots = X_n = 0\}$. Let $V_1, \ldots, V_r \in \Lambda$ be hypersurfaces which span Λ and let

$$\sum_{\mu,\nu=0}^{n} a_{i\mu\nu} X_{\mu} X_{\nu}^{q} = 0 \quad \text{where} \quad a_{i\mu\nu} = 0 \quad \text{if} \quad 0 \le \mu, \nu \le s$$

be the equation of V_i . A deformation of N given by

$$N_{\varepsilon} = \left\{ X_{s+1} = \left(\sum_{\lambda=0}^{s} X_{\lambda} c_{\lambda s+1} \right) \varepsilon, \dots, X_{n} = \left(\sum_{\lambda=0}^{s} X_{\lambda} c_{\lambda n} \right) \varepsilon \right\}$$

keeps N being contained in W_A if and only if

$$C \cdot A_i = 0$$
,

where C denotes the $(s+1)\times (n-s)$ matrix $(c_{\lambda\mu})_{0\leq \lambda\leq s,\,s+1\leq \mu\leq n}$ and A_i denotes the $(n-s)\times (s+1)$ matrix $(a_{i\mu\nu})_{s+1\leq \mu\leq n,\,0\leq \nu\leq s}$. When n=sr+s+r, the matrix $A:=(A_1,\ldots,A_r)$ is a square matrix of size n-s, and by the generality of the point $(N,\Lambda)\in I$, we can choose coefficients $(a_{i\mu\nu})_{s+1\leq \mu\leq n,\,0\leq \nu\leq s}$ so that $\det A\neq 0$. Hence if N_{ε} is contained in W_A , we get C=0.

PROOF OF LEMMA 2. Let (X_0, \ldots, X_n) be homogeneous coordinates of P_k^n such that $Q = (1, 0, \ldots, 0)$, and let $x_i = X_i/X_0$ $(i = 1, \ldots, n)$ be affine coordinates of P_k^n with the origin Q. Then the equation of V_i is of the form

$$l_i + \tilde{f}_i^q + \sum_{\nu=1}^n x_{\nu} \tilde{g}_{i\nu}^q = 0$$
,

where l_i , \tilde{f}_i and \tilde{g}_{iv} are linear forms in (x_1, \ldots, x_n) . Regarding (x_1, \ldots, x_n) as homogeneous coordinates of the variety E_Q of lines in P_k^n passing through Q, we see that the reduced part of the variety $W_Q \subset E_Q$ of lines in W passing through Q is given by

$$l_1 = \cdots = l_r = \tilde{f}_1 = \cdots = \tilde{f}_r = \sum_{\nu=1}^n x_{\nu} \tilde{g}_{1\nu}^q = \cdots = \sum_{\nu=1}^n x_{\nu} \tilde{g}_{r\nu}^q = 0$$

which is an intersection of r hypersurfaces of the form (0.1) in $P_k^m = \{l_1 = \cdots = l_r = \tilde{f}_1 = \cdots = \tilde{f}_r = 0\} \subset E_Q \cong P_k^{n-1}$, where $m \ge n - 2r - 1$. By Lemma 1, W_Q' contains an (s-1)-dimensional linear subspace. Hence W contains an s-dimensional linear subspace passing through Q.

4. Complete intersections of diagonal type. In this section, we shall prove Theorem 2. It is enough to show it when m=q+1. We still work over $k=\overline{k}$.

We fix homogeneous coordinates (X_0, \ldots, X_n) of P_k^n once for all and denote by \mathcal{D} the linear system of hypersurfaces of diagonal type

(4.1)
$$b_0 X_0^{q+1} + \cdots + b_n X_n^{q+1} = 0.$$

Let $I_{\mathscr{D}} \subset \operatorname{Grass}(P^r, P^n) \times \operatorname{Grass}(P^{r-1}, \mathscr{D})$ be the incidence correspondence defined in the same way as in (3.1). We shall prove the following five statements:

- (1) For general $V_1, \ldots, V_r \in \mathcal{D}$, (C1) holds. Moreover, there is an r-dimensional linear subspace L contained in $W = V_1 \cap \cdots \cap V_r$ such that (C2) holds with respect to L.
- (2) For general $V_1, \ldots, V_r \in \mathcal{D}$, there is a closed point $Q \in W = V_1 \cap \cdots \cap V_r$ such that (C3. Q) holds.
 - (3) We fix a closed point

$$R = (\underbrace{1, \ldots, 1}_{(2r+1)-\text{times}}, 0, \ldots, 0).$$

Let $\mathcal{D}_R \subset \mathcal{D}$ be the linear subsystem of \mathcal{D} consisting of hypersurfaces passing through R. Then there are members $V_1, \ldots, V_r \in \mathcal{D}_R$ which satisfy (C4. R)–(C6. R).

Note that by Lemma 2 and the assumption $n \ge r^2 + 3r$, for any closed point $Q \in W$ of an intersection of any members $V_1, \ldots, V_r \in \mathcal{D}$, there is always an r-dimensional linear subspace contained in W and passing through Q. Note also that $I_{\mathcal{D}}$ is irreducible, and that the conditions (C1)–(C6) are open not only on (V_1, \ldots, V_r) but also on L. Then, combining (1), (2) and (3), and invoking the openness of the conditions, we see that if $(L, \Lambda) \in I_{\mathcal{D}}$ is general, W_{Λ} satisfies (C1)–(C6) with respect to L. Now the following two statements allow us to show by induction on r that if $(L, \Lambda) \in I_{\mathcal{D}}$ is general, then W_{Λ} is a member of U(k) with respect to L. Hence Theorem 2 will be proved.

- (4) Let R be as in (3) and let $V_1, \ldots, V_r \in \mathcal{D}_R$ be general members. By (3), we can construct the variety D_R and G_R as in Section 1 taking ρ to be R. Let $S \in G_R$ be the closed point corresponding to the (n-2r)-dimensional linear subspace $H_{R,S} \subset D_R$ defined by $f_1 = \cdots = f_{r-1} = 0$. We shall show that there is a canonical identification between $H_{R,S}$ and an (n-2r)-dimensional projective space P_k^{n-2r} , equipped with canonical homogeneous coordinates (x_{2r}, \ldots, x_n) which are independent of V_1, \ldots, V_r , such that the equations of $V_{1,R,S}^{(1)}, \ldots, V_{r-1,R,S}^{(1)} \subset H_{R,S}$ with respect to these coordinates are of diagonal type (4.1).
- (5) Let $\mathcal{D}^{(1)}$ be the variety of hypersurfaces in P_k^{n-2r} of diagonal type with respect to the homogeneous coordinates in (4). We get a rational map

$$\overbrace{\mathscr{D}_{R} \times \cdots \times \mathscr{D}_{R}}^{r-\text{times}} \rightarrow \overbrace{\mathscr{D}^{(1)} \times \cdots \times \mathscr{D}^{(1)}}^{(r-1)-\text{times}},
(V_{1}, \dots, V_{r}) \mapsto (V_{1, R}^{(1)}, \dots, V_{r-1, R, S}^{(1)}).$$

This map is dominant.

PROOF OF (1) AND (2). It is easy to see that if $V_1, \ldots, V_r \in \mathcal{D}$ are general members, then $W = V_1 \cap \cdots \cap V_r$ is nonsingular of codimension r, hence (C1) holds. Let $Q_j = 0, \ldots, r$) be a point of the intersection of W and the r-dimensional linear subspace defined by

$$X_v = 0$$
 unless $j(r+1) \le v \le j(r+1) + r$.

Since each V_i is diagonal, W contains the r-dimensional linear subspace L spanned by Q_0, \ldots, Q_r . Before showing that a general (V_1, \ldots, V_r) satisfies (C2) with respect to this L, we make an observation about certain special points on W. We take a point on W such that n-2r of its homogeneous coordinates are zero; for example $Q_0 = (\xi_0, \xi_1, \ldots, \xi_r, 0, \ldots, 0)$. Then it is easy to see that $T_{Q_0, W}$ and the intersection $P_{Q_0, W} := P_{Q_0, V_1} \cap \cdots \cap P_{Q_0, V_r}$ of polar hyperplanes coincide and they are both given by

$$X_0: X_1: \cdots: X_r = \xi_0: \xi_1: \cdots: \xi_r$$
.

Let Q' be a point on W with coordinates

$$(\zeta_0, \underbrace{0, \ldots, 0}_{r\text{-times}}, \zeta_1^{'}, \underbrace{0, \ldots, 0}_{r\text{-times}}, \zeta_2, 0, \ldots, 0, \zeta_r, 0, \ldots, 0).$$

Then it can be easily checked that $P_{Q',W} \cap L$ consists of one point Q'', hence $W \not\subseteq \Gamma_W$. By the generality of (V_1, \ldots, V_r) , we see that $\dim(T_{Q',W} \cap T_{Q'',W}) = n-2r$, which shows that $T_{Q'',W} \cap W$ is codimension r in $T_{Q'',W}$ at Q'. Hence, by dimension counting, (C2) holds. (By coordinate change of the type $X_i \mapsto c_i X_i$ ($c_i \neq 0$), which preserves \mathscr{D} , we may assume that nonzero coefficients of Q_i and Q' are all 1. Then the point $P_{Q',W} \cap L$ is

$$Q'' = (\underbrace{1, \ldots, 1}_{(r+1)^2\text{-times}}, 0, \ldots, 0).$$

This will make the checking considerably less cumbersome.) Now we shall show that $(C3.Q_0)$ holds. Let V_i be defined by $\sum_{v=0}^n b_{iv} X_v^{q+1} = 0$, and let (Y_r, \ldots, Y_n) be the homogeneous coordinates of $T_{Q_0,W}$ such that $T_{Q_0,W} \subseteq P_k^n$ be given by $(Y_r, \ldots, Y_n) \mapsto (\xi_0 Y_r, \ldots, \xi_r Y_r, Y_{r+1}, \ldots, Y_n)$. Then $T_{Q_0,W} \cap W$ is given by $\sum_{v=r+1}^n b_{iv} Y_v^{q+1} = 0$ ($i=1,\ldots,r$). (Note that f_1,\ldots,f_r are constantly zero at $\rho=Q_0$, and hence $T_{Q_0,W} \cap W$ is a cone with vertex $Q_0=(1,0,\ldots,0) \in T_{Q_0,W}$.) Since we can choose (b_{iv}) arbitrarily, $T_{Q_0,W} \cap W$ is a reduced irreducible complete intersection of codimension r in $T_{Q_0,W}$. Hence $(C3.Q_0)$ holds.

PROOF OF (3), (4) AND (5). We consider $V_i \in \mathcal{D}_R$ $(i=1,\ldots,r)$ which are defined by

$$-(\alpha_i+\beta_i+\gamma_i)X_0^{q+1}+\alpha_iX_i^{q+1}+\beta_iX_{r+i}^{q+1}+\gamma_iX_{2r}^{q+1}+\sum_{v=2r+1}^nb_{iv}X_v^{q+1}=0\;,$$

where the coefficients α_i , β_i $(i=1,\ldots,r)$, γ_i $(i=1,\ldots,r-1)$ and $b_{i\nu}$ are general enough. (We put $\gamma_r=0$). We put

$$x_i = \begin{cases} X_i / X_0 - 1 & (i = 1, ..., 2r), \\ X_i / X_0 & (i > 2r), \end{cases}$$

and, as before, regard (x_1, \ldots, x_n) as affine coordinates of P_k^n with the origin R or homogeneous coordinates of the variety E_R of lines in P_k^n passing through R. Then $T_{R,W}$ is given by

$$l_1 = \cdots = l_r = 0$$
 where $l_i = \alpha_i x_i + \beta_i x_{r+i} + \gamma_i x_{2r}$

and f_i and h_i are the restrictions to $T_{R,W}$ of

$$\tilde{f}_i = \alpha_i^{1/q} x_i + \beta_i^{1/q} x_{r+i} + \gamma_i^{1/q} x_{2r}$$

$$\tilde{h}_i = \alpha_i x_i^{q+1} + \beta_i x_{r+i}^{q+1} + \gamma_i x_{2r}^{q+1} + \sum_{v=2r+1}^n b_{iv} x_v^{q+1} ,$$

respectively. Since α_i , β_i , γ_i and b_{iv} are general, it is easy to check (C4. R) and (C5. R). The (n-2r)-dimensional linear space $H_{R,S}(\subset D_R \subset E_R)$ is given by

$$l_1 = \cdots = l_r = \tilde{f}_1 = \cdots = \tilde{f}_{r-1} = 0$$

which is equivalent to

$$x_j = \lambda_j x_{2r}$$
 for $j = 1, \dots, 2r - 1$,

where

$$\begin{pmatrix} \lambda_i \\ \lambda_{r+i} \end{pmatrix} = -\begin{pmatrix} \alpha_i & \beta_i \\ \alpha_i^{1/q} & \beta_i^{1/q} \end{pmatrix}^{-1} \begin{pmatrix} \gamma_i \\ \gamma_i^{1/q} \end{pmatrix} \quad \text{for} \quad i = 1, \dots, r-1 \text{ and } \lambda_r = -\beta_r/\alpha_r.$$

Hence we can regard (x_{2r}, \ldots, x_n) as homogeneous coordinates of $H_{R,S}$. These are the canonical coordinates mentioned in (4). The hypersurface $V_{i,R,S}^{(1)} \subset H_{R,S}$ is given by

(4.2)
$$(\alpha_i \lambda_i^{q+1} + \beta_i \lambda_{r+i}^{q+1} + \gamma_i) x_{2r}^{q+1} + \sum_{v=2r+1}^n b_{iv} x_v^{q+1} = 0.$$

Thus (C6. R) holds and hence the proof of (3) is completed. The statements (4) and (5) are obvious by (4.2).

REFERENCES

- [B] A. BEAUVILLE, Sur les hypersurfaces dont les sections hyperplanes sont à module constant, The Grothendieck Festschrift (P. Cartier et al., eds.), Volume III, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 121–133.
- [Sch] C. Schoen, unpublished.
- [Sh] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), 233–236.
- [S-K] T. SHIODA AND T. KATSURA, On Fermat varieties, Tôhoku Math. J. 31 (1979), 97-115.
- [T] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (O. F. G. Schilling, ed.), Harper and Row, New York, 1965, pp. 93-110.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO 060 JAPAN