UNIRATIONALITY OF CERTAIN COMPLETE INTERSECTIONS IN POSITIVE CHARACTERISTICS

Ichiro Shimada
(Received August 22, 1991, revised December 26, 1991)

Abstract

We prove, under a certain condition on the dimension, the unirationality of general complete intersections of hypersurfaces which are defined over an algebraically closed field of characteristic $p>0$ and projectively isomorphic to the Fermat hypersurface of degree $q+1$ where q is a power of p.

Introduction. The Fermat variety

$$
X_{0}^{q+1}+X_{1}^{q+1}+\cdots+X_{n}^{q+1}=0
$$

of degree $q+1\left(q=p^{v}\right)$ defined over a field of characteristic $p>0$ has a lot of interesting peculiarities of positive characteristic, such as supersingularity (Tate [T], Shioda [Sh], Shioda-Katsura [S-K]), unirationality (Shioda [Sh], Shioda-Katsura [S-K], Schoen [Sch]), and constancy of moduli of hyperplane sections (Beauville [B]). On the other hand, in characteristics $p>0$, hypersurfaces which are projectively isomorphic to the Fermat variety of degree $q+1$ constitute an open dense subset of a linear system \mathscr{F}. (See Beauville [B] and below.) Then it is very likely that the complete intersections defined by linear subsystems of \mathscr{F} also possess those interesting peculiarities. In this paper, we shall study the unirationality of such complete intersections.

Let k be a field of characteristic $p>0, \bar{k}$ its algebraic closure, and q a power of p.
First we state our results over k. Let \mathscr{F} denote the linear subsystem of $\left|\mathcal{O}_{\mathbf{P}_{k}^{n}}(q+1)\right|$ which consists of hypersurfaces whose defining equations are of the form

$$
\begin{equation*}
\sum_{\mu, v=0}^{n} a_{\mu v} X_{\mu} X_{v}^{q}=0 . \tag{0.1}
\end{equation*}
$$

As is shown in Beauville [B], a hypersurface of degree $q+1$ in \boldsymbol{P}_{k}^{n} is projectively isomorphic to the Fermat variety if and only if it is a nonsingular member of \mathscr{F}.

Theorem 1. Suppose $n \geq r^{2}+2 r$. Let V_{1}, \ldots, V_{r} be members of \mathscr{F}. We put $W=V_{1} \cap \cdots \cap V_{r}$. If V_{1}, \ldots, V_{r} are chosen generally, then there is a purely inseparable dominant rational map $\boldsymbol{P}_{k}^{n-r} \cdots \rightarrow W$ of degree $q^{r(r+1) / 2}$. In particular, W is unirational.

[^0]Because there is a surjective morphism from the Fermat variety of degree $q+1$ to the Fermat variety of degree m if $m \mid(q+1)$, our result implies the following:

Corollary. Suppose $n \geq 3$. Then the Fermat variety

$$
X_{0}^{m}+X_{1}^{m}+\cdots+X_{n}^{m}=0
$$

of degree m defined over an algebraically closed field of characteristic $p>0$ is unirational, provided that $p^{v} \equiv-1(\bmod m)$ for some integer v.

Schoen [Sch] has also proved this Corollary. In case n is odd, this result had already been shown in Shioda [Sh] and Shioda-Katsura [S-K], by means of the inductive structure of Fermat varieties.

The same argument can be applied to the complete intersection of hypersurfaces of diagonal type. We shall prove the following:

Theorem 2. Suppose $n \geq r^{2}+3 r$. Suppose also that $p^{\nu} \equiv-1(\bmod m)$ for some integer v. Let $V_{i}(i=1, \ldots, r)$ be hypersurfaces of diagonal type

$$
b_{i 0} X_{0}^{m}+\cdots+b_{i n} X_{n}^{m}=0
$$

defined over \bar{k}. If the coefficients $b_{i v}$ are general enough, then the complete intersection $W=V_{1} \cap \cdots \cap V_{r}$ is unirational.

Note that, since Theorem 1 states the unirationality only for general V_{1}, \ldots, V_{r}, Theorem 2 does not follow directly from Theorem 1 if $r \geq 2$. We have to strengthen the condition on n from $\geq r^{2}+2 r$ to $\geq r^{2}+3 r$, as far as we adopt the method of the proof in this article.

In fact, we shall prove a stronger result. From now on, we work over k, which is not necessarily algebraically closed. We fix an r-dimensional linear subspace $L \subset \boldsymbol{P}_{k}^{n}$ defined over k. We denote by \mathscr{F}_{L} the variety of all hypersurfaces which are defined by equations of the form (0.1) and contain L. Then \mathscr{F}_{L} is defined over k and isomorphic to the projective space of dimension $(n+1)^{2}-(r+1)^{2}-1$.

Theorem 3. Suppose $n \geq r^{2}+r+1$. Then there is an open dense subvariety U of $\mathscr{F}_{L} \times \cdots \times \mathscr{F}_{L}$ (r-times) which has the following property. Let K / k be an arbitrary field extension and let $U(K)$ denote the set of K-valued points of U. Then, for every $\left(V_{1}, \ldots, V_{r}\right) \in U(K)$, there is a purely inseparable dominant rational map of degree $q^{r(r+1) / 2}$ defined over $K^{1 / q^{r}}$ from the $(n-r)$-dimensional projective space to $W=V_{1} \cap \cdots \cap V_{r}$. In particular, W is $K^{1 / q^{r}}$-unirational.

The idea of the proof of Theorem 3 is as follows. We proceed by induction on r. Suppose that $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(K)$ are "general", by which we mean that they satisfy certain open conditions. Let $T_{\eta(L), W} \subset \boldsymbol{P}_{K(L)}^{n}$ be the tangent space to W at the generic point of L. Then there is a purely inseparable dominant rational map $T_{\eta(L), W} \cap$ $\left(W \times_{K} K(L)\right) \cdots \rightarrow W$ defined over K. We shall show that $T_{\eta(L), W} \cap\left(W \times_{K} K(L)\right)$ is bira-
tional over $K(L)^{1 / q}$ to a complete intersection of $r-1$ hypersurfaces $V_{1}^{(1)}, \ldots, V_{r-1}^{(1)} \subset$ $\boldsymbol{P}_{K^{(1)}}^{n-2 r}$ defined over a field $K^{(1)}$ which is a purely transcendental extension of dimension $r-1$ over $K(L)^{1 / q}$, and each $V_{i}^{(1)}$ is projectively isomorphic over $\overline{K^{(1)}}$ to the Fermat variety of degree $q+1$, and contains a $K^{(1)}$-rational ($r-1$)-dimensional linear subspace $L^{(1)} \subset \boldsymbol{P}_{K}^{n-2 r}$. Moreover, if V_{1}, \ldots, V_{r} are "general", then $V_{1}^{(1)}, \ldots, V_{r-1}^{(1)}$ are also "general". Since $\left(K^{(1)}\right)^{1 / q^{r-1}}$ is a purely transcendental extension of dimension $2 r-1$ over $K^{1 / q^{r}}$, the $\left(K^{(1)}\right)^{1 / q^{r-1}}$-unirationality of $V_{1}^{(1)} \cap \cdots \cap V_{r-1}^{(1)}$ implies the $K^{1 / q^{r}}$ unirationality of $W=V_{1} \cap \cdots \cap V_{r}$.

This paper is organized as follows. In $\S 1$, we give a finite set of open conditions on $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(K)$ which is sufficient for the $K^{1 / q^{r}}$-unirationality of $W=V_{1} \cap \cdots \cap V_{r}$. In §2, we show the existence of an example of $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(\bar{k})$ which satisfies those conditions and thus complete the proof of Theorem 3. In §3, we prove lemmas about linear subspaces contained in W and derive Theorem 1 from Theorem 3. In §4, we shall prove Theorem 2 by showing that there is such an element $\left(V_{1}, \ldots, V_{r}\right)$ in $U(\bar{k})$ that each V_{i} is a hypersurface of diagonal type.

Conventions and Notation. Let V be a variety over a field E and let F / E be a field extension. Then $V(F)$ denotes the set of F-valued points of V, V_{F} denotes the fiber product $V \times_{\text {Spec } E} \operatorname{Spec} F$, and $F(V)$ denotes the function field of V_{F}. Let \bar{E} be the algebraic closure of E. Then $E^{1 / q}$ is the field $\left\{x \in \bar{E} \mid x^{q} \in E\right\}$, and E^{q} is the field $\left\{x^{q} \mid x \in E\right\}$. The binary relation \simeq means that varieties are birational, while \cong means that they are isomorphic.

1. Open conditions sufficient for the unirationality. We start to prove Theorem 3. Let V_{1}, \ldots, V_{r} be members of $\mathscr{F}_{L}(K)$. Suppose that
(C1) $W:=V_{1} \cap \cdots \cap V_{r}$ is a complete intersection of dimension $n-r$ which is geometrically reduced irreducible and nonsingular along L.

Let $\left(X_{0}, \ldots, X_{n}\right)$ be homogeneous coordinates of \boldsymbol{P}_{K}^{n} such that $L_{K}=\left\{X_{r+1}=\cdots=X_{n}=0\right\}$, and let

$$
\sum_{\mu, v=0}^{n} a_{i \mu v} X_{\mu} X_{v}^{q}=0 \quad \text { where } \quad a_{i \mu v}=0 \quad \text { if } \quad 0 \leq \mu, v \leq r
$$

be the defining equation of V_{i}. The tangent space to V_{i} at $\left(Y_{0}, \ldots, Y_{n}\right) \in V_{i}$ is given by

$$
\begin{equation*}
\sum_{\mu=0}^{n}\left(\sum_{v=0}^{n} a_{i \mu v} Y_{v}^{q}\right) X_{\mu}=0 . \tag{1.1}
\end{equation*}
$$

Let $T_{L, W}$ be the variety $\left\{(Q, R) \in L_{K} \times P_{K}^{n} \mid T_{Q, W} \ni R\right.$, where $T_{Q, W} \subset P_{K}^{n}$ is the tangent space to W at $Q\}$, which is defined by $(1.1)_{1}-(1.1)_{r}$ with $Y_{r+1}=\cdots=Y_{n}=0$. Let

be the natural projections. The second projection ϕ is a surjection which is generically finite and purely inseparable of degree q^{r}. Indeed, as is seen from (1.1) , the polar divisor $\left\{Q \in V_{i} \mid T_{Q, V_{i}} \ni R\right\}$ of V_{i} with respect to $R \in \boldsymbol{P}_{K}^{n}$ is a q-th multiple of a hyperplane section $P_{R, V_{i}} \cap V_{i}$, where $P_{R, V_{i}}$ is the hyperplane. Then $\phi^{-1}(R)$ is set-theoretically equal to $\left\{(Q, R) \mid Q \in P_{R, V_{1}} \cap \cdots \cap P_{R, V_{r}} \cap L\right\}$, which is always nonempty. Hence ϕ is surjective, and comparing the dimensions of $T_{L, W}$ and $\boldsymbol{P}_{\boldsymbol{K}}^{\boldsymbol{n}}$, we see that ϕ is generically finite; that is, the intersection $P_{R, V_{1}} \cap \cdots \cap P_{R, V_{r}} \cap L$ consists of one point for a general point $R \in P_{K}^{n}$. Since each of r polar divisors has multiplicity q, the degree of ϕ is q^{r}. Let Γ_{W} denote the closed subset of $\boldsymbol{P}_{\boldsymbol{K}}^{n}$ such that $\boldsymbol{P}_{\boldsymbol{K}}^{\boldsymbol{n}} \backslash \Gamma_{\boldsymbol{W}}$ is the maximal open subset over which ϕ is finite. We suppose that
(C2) W is not contained in Γ_{W}, and the closure of $\phi^{-1}\left(W \backslash \Gamma_{W}\right)$ is mapped surjectively onto L_{K} by the first projection.

We denote by \tilde{Z} the inverse image $\phi^{-1}(W)$. Then (C2) implies that
(1.2) a geometrically irreducible component of the generic fiber of $\tilde{Z} \rightarrow L_{K}$ (that is, the component which is obtained as the closure of $\phi^{-1}\left(W \backslash \Gamma_{W}\right)$) is mapped dominantly onto W by a purely inseparable rational map of degree q^{r}.
(It will turn out that, for general V_{1}, \ldots, V_{r}, the generic fiber of $\tilde{Z} \rightarrow L_{K}$ is again geometrically reduced irreducible unless $n=3$ and $r=1$. If $n=3$ and $r=1$, the generic fiber is a union of a line $\phi^{-1}\left(L_{K}\right) \times_{L_{K}} K(L)$ and a geometrically reduced irreducible curve in $\boldsymbol{P}_{K(L)}^{2}$.)

Let E be an arbitrary extension field of K, and let $\rho: \operatorname{Spec} E \rightarrow L_{K}$ be an E-valued point of L_{K}. (Later on in this section, ρ will be the q-th root of the generic point Spec $K(L)^{1 / q} \rightarrow L_{K}$, and in the next section, ρ will be a geometric point with respect to \bar{K}.) Then there are homogeneous coordinates, which we shall denote by (X_{0}, \ldots, X_{n}) again, of \boldsymbol{P}_{E}^{n} such that

$$
\begin{aligned}
\rho & =(1,0, \ldots, 0), \\
L_{E} & =\left\{X_{r+1}=\cdots=X_{n}=0\right\} \quad \text { and } \\
T_{\rho, W} & =\left\{X_{n-r+1}=\cdots=X_{n}=0\right\},
\end{aligned}
$$

where $T_{\rho, W}$ is the tangent space to W at ρ. Suppose that E contains $K^{1 / q}$ and ρ factors as $\operatorname{Spec} E \rightarrow \operatorname{Spec} E^{q} \rightarrow L_{K}$, which is satisfied in the two cases mentioned in the parenthesis above. Then the defining equation of $\left(V_{i}\right)_{E}$ can be put into a form

$$
\sum_{v=0}^{n} X_{v} l_{i v}\left(X_{0}, \ldots, X_{n}\right)^{q}=0
$$

where $l_{i v}$ are linear forms over E. We put $x_{i}=X_{i} / X_{0}(i=1, \ldots, n-r)$ and consider $\left(x_{1}, \ldots, x_{n-r}\right)$ as affine coordinates of $T_{\rho, W}$ with the origin ρ. Because $T_{\rho, W} \cap\left(V_{i}\right)_{E}$ is singular at ρ, its defining equation in $T_{\rho, W}$ is of a form

$$
f_{i}^{q}+\sum_{v=1}^{n-r} x_{v} g_{i v}^{q}=0
$$

where f_{i} and $g_{i v}$ are linear forms in $\left(x_{1}, \ldots, x_{n-r}\right)$ over E. For simplicity, we put

$$
\begin{equation*}
h_{i}:=\sum_{v=1}^{n-r} x_{v} g_{i v}^{q} \tag{1.3}
\end{equation*}
$$

We also put

$$
\begin{aligned}
& Z_{\rho}:=\tilde{Z} \times_{L_{K}} \operatorname{Spec} E=T_{\rho, W} \cap W_{E}=\bigcap_{i=1}^{r} T_{\rho, W} \cap\left(V_{i}\right)_{E}, \\
& L_{\rho}:=\phi^{-1}\left(L_{K}\right) \times_{L_{K}} \operatorname{Spec} E \subset T_{\rho, W} .
\end{aligned}
$$

Then L_{ρ} is contained in $T_{\rho, W} \cap\left(V_{i}\right)_{E}$ and hence in Z_{ρ}. We assume that the following condition is satisfied:
(C3. ρ) $\quad Z_{\rho}$ is a complete intersection of codimension r in $T_{\rho, W}$. Moreover, unless $n=3$ and $r=1, Z_{\rho}$ is geometrically reduced irreducible. If $n=3$ and $r=1, Z_{\rho}$ is a union of the line L_{ρ} and a geometrically reduced irreducible curve.

Let $D_{\rho} \cong \boldsymbol{P}_{E}^{n-r-1}$ be the variety of all lines on $T_{\rho, \boldsymbol{W}}$ which pass through ρ, and let $\pi: T_{\rho, W} \cdots \rightarrow D_{\rho}$ be the natural projection. We may regard $\left(x_{1}, \ldots, x_{n-r}\right)$ as homogeneous coordinates on D_{ρ}, and f_{i} and h_{i} as defining equations of hyperplanes and hypersurfaces in D_{ρ}. Then $L_{K} \subset V_{i}$ implies

$$
\begin{equation*}
\pi\left(L_{\rho}\right) \subset\left\{f_{i}=0\right\}, \quad \pi\left(L_{\rho}\right) \subset\left\{h_{i}=0\right\}, \tag{1.4}
\end{equation*}
$$

where $\pi\left(L_{\rho}\right) \cong \boldsymbol{P}_{E}^{r-1}$ is the linear subspace of D_{ρ} defined by $\left\{x_{r+1}=\cdots=x_{n-r}=0\right\}$. Here again we assume that the following are satisfied:
(C4. ρ) f_{1}, \ldots, f_{r} are linearly independent, and
(C5. ρ) unless $n=3$ and $r=1$, at least one of h_{i} 's is not constantly zero on $\left\{f_{1}=\cdots=\right.$ $\left.f_{r}=0\right\} \subset D_{\rho}$; if $n=3$ and $r=1$, then $f_{1}^{2} \npreceq h_{1}$. (Note that if $n=3$ and $r=1$; then (1.4) implies $f_{1} \mid h_{1}$.)

Note that, unless $f_{i}\left(a_{1}, \ldots, a_{n-r}\right)=h_{i}\left(a_{1}, \ldots, a_{n-r}\right)=0$, a line

$$
\left\{\left(\left(x_{1}, \ldots, x_{n-r}\right)=\left(\lambda a_{1}, \ldots, \lambda a_{n-r}\right) \mid \lambda \text { is an affine parameter }\right\} \subset T_{\rho, W}\right.
$$

intersects $T_{\rho, W} \cap\left(V_{i}\right)_{E}$ at $\lambda=0$ with multiplicity q and at

$$
\lambda=-\frac{f_{i}\left(a_{1}, \ldots, a_{n-r}\right)^{q}}{h_{i}\left(a_{1}, \ldots, a_{n-r}\right)}
$$

with multiplicity 1 . Thus, if f_{i} does not divide h_{i}, π gives a birational map over E between $T_{\rho, W} \cap\left(V_{i}\right)_{E}$ and D_{ρ}. In particular, if $r=1$ and $n>3$, then Z_{ρ} is birational to $D_{\rho} \cong \boldsymbol{P}_{\boldsymbol{E}}^{n-2}$ over E. When $r=1$ and $n=3$, then $Z_{\rho} \backslash L_{\rho}$ is birational to $D_{\rho} \cong \boldsymbol{P}_{\boldsymbol{E}}^{1}$. Hence in case $r=1$, (C4. ρ) and (C5. ρ) imply (C3. ρ) automatically. Now suppose $r \geq 2$. Let $Y_{\rho} \subset D_{\rho}$ be the variety defined by

$$
\frac{f_{1}^{q}}{h_{1}}=\cdots=\frac{f_{r}^{q}}{h_{r}}
$$

Then we see that
(1.5) Z_{ρ} is mapped birationally by π to Y_{ρ}.

Indeed, the lines contained in Z_{ρ} and passing through ρ are parametrized by $\left\{f_{1}=\cdots=f_{r}=h_{1}=\cdots=h_{r}=0\right\} \subset D_{\rho}$. By dimension counting, (C4. ρ) and (C5. ρ) imply that Z_{ρ} is not a cone with the vertex ρ. Hence (1.5) holds. We denote by $U_{i, \rho}$ $(i=1, \ldots, r-1)$ the hypersurface defined in D_{ρ} by

$$
f_{i}^{q} h_{r}-f_{r}^{q} h_{i}=0
$$

Then $Y_{\rho}=\bigcap_{i=1}^{r-1} U_{i, \rho}$ is a geometrically reduced irreducible complete intersection of codimension $r-1$ by (C3. ρ) and (1.5).

By (C4. ρ), $\left\{f_{1}=\cdots=f_{r}=0\right\}$ defines an $(n-2 r-1)$-dimensional linear subspace $M_{\rho} \subset D_{\rho}$, which contains $\pi\left(L_{\rho}\right)$ by (1.4). Let $G_{\rho} \cong \boldsymbol{P}_{E}^{r-1}$ be the variety of all ($n-2 r$)-dimensional linear subspaces containing M_{ρ}, and let

be the universal family. The morphism b is a blow-up along the center M_{ρ}. From the defining equation of $U_{i, \rho}$, we see that the total transform $b^{-1}\left(U_{i, \rho}\right)$ contains the exceptional divisor $b^{-1}\left(M_{\rho}\right)$ with multiplicity at least q. We denote by $\tilde{V}_{i, \rho}^{(1)}$ the effective divisor $b^{-1}\left(U_{i, \rho}\right)-q \cdot b^{-1}\left(M_{\rho}\right)$. The last condition we assume is
(C6. ρ) $\tilde{V}_{i, \rho}^{(1)}$ does not contain the exceptional divisor $b^{-1}\left(M_{\rho}\right)$ any more, and the projection $\tilde{V}_{i, \rho}^{(1)} \rightarrow G_{\rho}$ is surjective.
Then $\tilde{V}_{i, \rho}^{(1)}$ coincides with the strict transform of $U_{i, \rho}$, and the intersection $\tilde{W}_{\rho}^{(1)}:=\tilde{V}_{1, \rho}^{(1)} \cap \cdots \cap \tilde{V}_{r-1, \rho}^{(1)}$ is the strict transform of Y_{ρ}; hence $\tilde{W}_{\rho}^{(1)} \rightarrow Y_{\rho}$ is birational.

Moreover, the projection $\tilde{W}_{\rho}^{(1)} \rightarrow G_{\rho}$ is surjective. This implies that
(1.6) the generic fiber of $\tilde{W}_{\rho}^{(1)} \rightarrow G_{\rho}$ is mapped birationally onto Y_{ρ}.

Let F / E be an arbitrary field extension and let $\sigma: \operatorname{Spec} F \rightarrow G_{\rho}$ be an F-valued point, (which will be the generic point later in this section, and a geometric point with respect to \bar{K} in the next section). Noting that the restriction of an equation of the form (0.1) to a linear subspace still has the form (0.1), we see from (1.3) that the defining equation of $V_{i, \rho, \sigma}^{(1)}:=\tilde{V}_{i, \rho}^{(1)} \times_{G_{\rho}} \operatorname{Spec} F$ in $H_{\rho, \sigma}:=H_{\rho} \times{ }_{G_{\rho}} \operatorname{Spec} F \cong \boldsymbol{P}_{F}^{n-2 r}$ is of the form (0.1). Moreover we see from (1.4) that $V_{i, \rho, \sigma}^{(1)}$ contains an ($r-1$)-dimensional linear subspace $L_{\rho, \sigma}^{(1)}:=b^{-1}\left(\pi\left(L_{\rho}\right)\right) \times{ }_{G_{\rho}} \operatorname{Spec} F$.

Now we take ρ to be the q-th root of the generic point $\eta: \operatorname{Spec} K(L)^{1 / q} \rightarrow L_{K}$, and σ the generic point $\eta^{\prime}: \operatorname{Spec} K(L)^{1 / q}\left(G_{\eta}\right) \rightarrow G_{\eta}$. In this case, we omit the η in the conditions and simply write (C3), etc. instead of (C3. η), etc. We also write $V_{i}^{(1)}$ and $L^{(1)}$ instead of $V_{i, \eta, \eta^{\prime}}^{(1)}$ and $L_{\eta, \eta^{\prime}}^{(1)}$. The field $F=K\left(L_{\eta}\right)^{1 / q}\left(G_{\eta}\right)$ is a purely transcendental extension of dimension $2 r-1$ over the constant field $K^{1 / q}$, which we shall denote by $K^{(1)}$.

We summarize the construction above:
When $r=1$ and $n>3$ (resp. $n=3$), we get a dominant rational map $D_{\eta} \simeq Z_{\eta}$ (resp. $\left.Z_{\eta} \backslash L_{\eta}\right) \cdots \rightarrow W$ defined over $K^{1 / q}$ and purely inseparable of degree q, assuming (C1), (C2) and (C3). (Note that when $n=3, Z_{\eta} \backslash L_{\eta} \cdots \rightarrow W$ is still dominant.) Since $K(L)^{1 / q}$ is a purely transcendental extension of dimension 1 over $K^{1 / q}, D_{\eta} \cong \boldsymbol{P}_{K(L)^{1 / q}}^{n-2}$ is birational to $\boldsymbol{P}_{K^{1 / q}}^{n-1}$. Hence W is $K^{1 / q}$-unirational.

When $r \geq 2$, starting from hypersurfaces $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(K)$ in P_{K}^{n} and assuming (C1)-(C6), we get $V_{1}^{(1)}, \ldots, V_{r-1}^{(1)} \in \mathscr{F}_{L^{(1)}}\left(K^{(1)}\right)$ in $\boldsymbol{P}_{K^{(1)}}^{n-2 r}$, where $\mathscr{F}_{L^{(1)}}$ is the variety defined in the same way as \mathscr{F}_{L} with k replaced by $K^{(1)}, L$ replaced by $L^{(1)}$, and n replaced by $n-2 r$. Moreover, putting $W^{(1)}:=V_{1}^{(1)} \cap \cdots \cap V_{r-1}^{(1)}$, we get a dominant rational map $W^{(1)} \cdots \rightarrow W$ defined over $K^{1 / q}$ and purely inseparable of degree q^{r} by composing

$$
W^{(1)} \simeq Y_{\eta} \simeq Z_{\eta} \cdots \rightarrow W
$$

Let $(\mathrm{C} 1)^{(1)}, \ldots,(\mathrm{C} 6)^{(1)}$ be the conditions obtained from (C1), $\ldots,(\mathrm{C} 6)$ by replacing K by $K^{(1)}, n$ by $n^{(1)}:=n-2 r, r$ by $r^{(1)}:=r-1, L$ by $L^{(1)}$ and $V_{i}(i=1, \ldots, r)$ by $V_{i}^{(1)}$ $\left(i=1, \ldots, r^{(1)}\right)$. Inductively, assuming (C1) ${ }^{(v-1)}-(\mathrm{C} 6)^{(v-1)}\left((\mathrm{C} 1)^{(v-1)}-(\mathrm{C} 3)^{(v-1)}\right.$ when $\nu=r)$, we get $r^{(v)}=r^{(v-1)}-1$ hypersurfaces $V_{i}^{(v)}\left(i=1, \ldots, r^{(v)}\right)$ in a projective space of dimension $n^{(v)}=n^{(v-1)}-2 r^{(v-1)}$ such that each $V_{i}^{(v)}$ is
(i) defined over the field $K^{(\nu)}$, which is a purely transcendental extension of dimension $2 r^{(v-1)}-1$ over the constant field $\left(K^{(v-1)}\right)^{1 / q}$,
(ii) defined by an equation of the form (0.1), and
(iii) containing an $r^{(v)}$-dimensional linear subspace $L^{(v)}$ defined over $K^{(v)}$;
and moreover
(iv) there is a dominant rational map $W^{(v)}:=V_{1}^{(v)} \cap \cdots \cap V_{r}^{(v)} \cdots \rightarrow W^{(v-1)}$ defined over $\left(K^{(v-1)}\right)^{1 / q}$ and purely inseparable of degree q^{r+1-v}.
Then we define the conditions (C 1$)^{(v)}-(\mathrm{C} 6)^{(v)}$ in the obvious way. Note that if $n \geq r^{2}+r+1$, then $n^{(v)} \geq r^{(v)^{2}}+r^{(v)}+1$ for $v=1, \ldots, r$. Thus if (C1)-(C6), (C1) ${ }^{(1)}$ $(\mathrm{C} 6)^{(1)}, \ldots,(\mathrm{C} 1)^{(r-2)}-(\mathrm{C} 6)^{(r-2)}$ and $(\mathrm{C} 1)^{(r-1)}-(\mathrm{C} 3)^{(r-1)}$ are satisfied, we get a dominant rational map

$$
\boldsymbol{P}_{\mathbf{K}^{(r)}}^{n^{(r)}} \cdots \rightarrow W
$$

defined over $K^{1 / q^{r}}$ and purely inseparable of degree $q^{r(r+1) / 2}$. Noting that $K^{(r)}$ is a purely transcendental extension over $K^{1 / q^{r}}$ of dimension r^{2} and that $n^{(r)}=n-r^{2}-r$, we see that $\boldsymbol{P}_{K^{(r)}}^{(r)}$ is birational to $\boldsymbol{P}_{K^{1 / q}}^{n-q^{r}}$ over $K^{1 / q^{r}}$. Hence W is $K^{1 / q^{r}}$-unirational.

It is obvious that $(\mathrm{C} 1)-(\mathrm{C} 6),(\mathrm{C} 1)^{(1)}-(\mathrm{C} 6)^{(1)}, \ldots,(\mathrm{C} 1)^{(r-2)}-(\mathrm{C} 6)^{(r-2)}$ and $(\mathrm{C} 1)^{(r-1)}$ $(\mathrm{C} 3)^{(r-1)}$ impose open conditions on the initial choice of $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(K)$. Moreover, these conditions are independent of the field K. Thus there is such an open subvariety $U \subset \mathscr{F}_{L} \times \cdots \times \mathscr{F}_{L}$ that for arbitrary K / k and $\left(V_{1}, \ldots, V_{r}\right) \in U(K), W=V_{1} \cap \cdots \cap V_{r}$ is $K^{1 / q^{r}}$-unirational. Our next task is to show that U is dense, or equivalently, $U(\bar{k})$ is nonempty.
2. Non-emptiness of $U(\bar{k})$. In showing $U(\bar{k}) \neq \varnothing$, we may assume that k itself is algebraically closed. Therefore we will asume $k=\bar{k}=K$ in this section.

Let $\bar{\rho}: \operatorname{Spec} k \rightarrow L$ be a closed point of L. It is easy to see from the openness of the conditions that
(2.1) if (C3. $\bar{\rho})-(\mathrm{C} 6 . \bar{\rho})$ hold, then (C3)-(C6) also hold.

Moreover, let $\bar{\sigma}:$ Spec $k \rightarrow G_{\bar{\rho}}$ be a closed point of $G_{\bar{\rho}}$, and let $\overline{(\mathrm{C} 1)^{(1)}}-\overline{(\mathrm{C} 6)^{(1)}}$ be the conditions obtained from $(\mathrm{C} 1)^{(1)}-(\mathrm{C} 6)^{(1)}$ replacing $K^{(1)}$ by $k, L^{(1)}$ by $L_{\bar{\rho}, \bar{\sigma}}^{(1)}$, and $V_{1}^{(1)}, \ldots, V_{r-1}^{(1)}$ by $V_{1, \bar{\rho}, \tilde{\sigma}}^{(1)}, \ldots, V_{r-1, \bar{\rho}, \bar{\sigma} \cdot}^{(1)}$ It is also easy to see that
(2.2) if $\overline{(\mathrm{C} 1)^{(1)}}-\overline{(\mathrm{C} 6)^{(1)}}$ hold, then $(\mathrm{C} 1)^{(1)}-(\mathrm{C} 6)^{(1)}$ also hold.

Now we replace $(\mathrm{C} 1)^{(1)}-(\mathrm{C} 6)^{(1)}$ by $\overline{\left.(\mathrm{C} 1)^{(1)}-\overline{(\mathrm{C} 6}\right)^{(1)}}$, fix closed points of $L_{\bar{\rho}, \bar{\sigma}}^{(1)}$ and $G_{\bar{\rho}, \bar{\sigma}}^{(1)}$, and repeat the whole process above again to check $(\mathrm{C} 1)^{(2)}-(\mathrm{C} 6)^{(2)}$.

Thus, making repeated use of the stability (2.1) and (2.2) of the conditions under generizations, we can prove the non-emptiness of $U(k)$ by induction on r, provided that we prove the following two statements:
(a) For general $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(k)$, (C1), (C2) and ($\left.\mathrm{C} 3, \bar{\rho}\right)-(\mathrm{C} 6, \bar{\rho})$ hold.
(b) If $V_{1}, \ldots, V_{r} \in \mathscr{F}_{L}(k)$ are general, then $V_{1, \bar{\rho}, \bar{\sigma}}^{(1)}, \ldots, V_{r-1, \bar{\rho}, \bar{\sigma}}^{(1)}$ are also general.

Let us state (b) more precisely. We fix the following data:
(i) homogeneous coordinates $\left(X_{0}, \ldots, X_{n}\right)$ of \boldsymbol{P}_{k}^{n} such that $\bar{\rho}=(1,0, \ldots, 0)$ and
$L=\left\{X_{r+1}=\cdots=X_{n}=0\right\}$,
(ii) an ($n-r$)-dimensional linear subspace $T=\left\{X_{n-r+1}=\cdots=X_{n}=0\right\}$ of \boldsymbol{P}_{k}^{n}, which contains L,
(iii) the variety $D \cong \boldsymbol{P}_{k}^{n-r-1}$ of lines on T passing through $\bar{\rho}$, equipped with homogeneous coordinates $x_{v}=X_{v} / X_{0}(v=1, \ldots, n-r)$,
(iv) an ($n-2 r-1$)-dimensional linear subspace $M=\left\{x_{n-2 r+1}=\cdots=x_{n-r}=0\right\}$ of D containing $\pi(L)=\left\{x_{r+1}=\cdots=x_{n-r}=0\right\}$, where $\pi: T \cdots \rightarrow D$ is the natural projection,
(v) the variety $G \cong \boldsymbol{P}_{k}^{r-1}$ of all $(n-2 r)$-dimensional linear subspaces of D containing M, and
(vi) the closed point $\bar{\sigma}$ of G corresponding to $H=\left\{x_{n-2 r+2}=\cdots=x_{n-r}=0\right\}$.

Let $\mathscr{G} \subset \mathscr{F}_{L} \times \cdots \times \mathscr{F}_{L}$ (r-times) be the subvariety consisting of all $\left(V_{1}, \ldots, V_{r}\right)$ such that
(a) $\quad W=V_{1} \cap \cdots \cap V_{r}$ is nonsingular at $\bar{\rho}$ and $T_{\bar{\rho}, W}$ coincides with T, and
(β) $\quad\left(V_{1}, \ldots, V_{r}\right)$ satisfies ($\mathrm{C} 4 . \bar{\rho}$) and $M_{\bar{\rho}}$ coincides with M.
Let $\mathscr{F}_{L}^{(1)}$ be the variety of hypersurfaces in $H \cong \boldsymbol{P}_{k}^{n-2 r}$ containing $\pi(L) \cong \boldsymbol{P}_{k}^{r-1}$ and defined by the equations of the form (0.1). We have a rational map

$$
\begin{gathered}
\Psi: \mathscr{G} \rightarrow \overbrace{\mathscr{F}_{L}^{(1)} \times \cdots \times \mathscr{F}_{L}^{(1)}}^{(r-1) \text {-times }} \\
\left(V_{1}, \ldots, V_{r}\right) \mapsto\left(V_{1, \bar{\rho}, \bar{\sigma}}^{(1)}, \ldots, V_{r-1, \bar{\rho}, \bar{\sigma}}^{(1)}\right) .
\end{gathered}
$$

The precise meaning of (b) is that
(b') Ψ is dominant.
Now we start to prove (a). Invoking the openness of the conditions again, it is enough to show that
$\left(\mathrm{a}^{\prime}\right)$ for each of the conditions (C1), (C2), (C3. $\left.\bar{\rho}\right)-(\mathrm{C} 6 . \bar{\rho})$, there exists $\left(V_{1}, \ldots, V_{r}\right)$ which satisfies it.
(C1): Note that we have $n \geq 3 r$. Consider the complete intersection of hypersurfaces $V_{i} \in \mathscr{F}_{L}(k)(i=1, \ldots, r)$ given by

$$
X_{r+i} \cdot X_{0}^{q}+X_{r+i+1} \cdot X_{1}^{q}+\cdots+X_{2 r+i} \cdot X_{r}^{q}=0,
$$

which contain $L=\left\{X_{r+1}=\cdots=X_{n}=0\right\}$. The singular locus of $W=V_{1} \cap \cdots \cap V_{r}$ is Sing $W=\left\{X_{0}=\cdots=X_{r}=0\right\}$, hence W is nonsingular along L. Moreover W is a reduced complete intersection of codimension r at least locally around L. Let \tilde{W} be the strict transform of W by the blow-up of \boldsymbol{P}_{k}^{n} along Sing W. Then \tilde{W} has the structure of a smooth fiber space over the variety of all ($n-r$)-dimensional linear subspaces con-
taining Sing W with every fiber isomorphic to an ($n-2 r$)-dimensional linear space. Hence W is irreducible.
(C2): Recall that for a closed point $R \in \boldsymbol{P}_{k}^{n}$ and a member V of \mathscr{F}, the reduced part of the polar divisor of V with respect to R is a hyperplane section $P_{R, V} \cap V$. Hence we see that

$$
\Gamma_{W}=\left\{R \in \boldsymbol{P}_{k}^{n} \mid \operatorname{dim}\left(P_{R, V_{1}} \cap \cdots \cap P_{R, V_{r}} \cap L\right) \geq 1\right\}
$$

Suppose that $R \in W \backslash \Gamma_{W}$, and let Q be the intersection point $P_{R, V_{1}} \cap \cdots \cap P_{R, V_{r}} \cap L$. If $W \cap T_{Q, W}$ is a complete intersection of codimension r in $T_{Q, W}$ locally at R, then, by dimension counting, we can conclude that the closure of $\phi^{-1}\left(W \backslash \Gamma_{W}\right)$ is mapped surjectively onto L. It is not difficult to construct such an example of R and W.
(C3. $\bar{\rho})-(\mathrm{C} 6 . \bar{\rho})$: We use the data (i)-(vi) above. Suppose that $V_{i} \in \mathscr{F}_{L}(k)$ is defined by

$$
\sum_{\mu, v=0}^{n} a_{i \mu v} X_{\mu} X_{v}^{q}=0 \quad \text { with } \quad(*)\left\{\begin{array}{ll}
a_{i \mu v}=0 & \text { if } \quad 0 \leq \mu, v \leq r \\
a_{i \mu 0}=\delta_{i, \mu-n+r}
\end{array}\right\} .
$$

Then $T_{\bar{\rho}, W}$ coincides with T, and f_{i}, h_{i} are given by

$$
f_{i}=\sum_{v=1}^{n-r} a_{i 0 v}^{1 / q} x_{v}, \quad h_{i}=\sum_{\mu, v=1}^{n-r} a_{i \mu v} x_{\mu} x_{v}^{q} .
$$

We can choose the coefficients ($a_{i \mu v}$) arbitrarily except for the condition (*) above. Hence (C4. $\bar{\rho}$) and (C5. $\bar{\rho}$) hold obviously. Thus (C3. $\bar{\rho}$) also holds when $r=1$. Suppose $r \geq 2$. To construct an example for which (C3. $\bar{\rho}$) holds, we choose the coefficients such that

$$
\begin{aligned}
& f_{i}=0 \quad \text { for } \quad i=1, \ldots, r \text { and } \\
& h_{i}=x_{i} \cdot x_{r+1}^{q}+x_{i+1} \cdot x_{r+2}^{q}+\cdots+x_{i+n-2 r-1} \cdot x_{n-r}^{q}
\end{aligned}
$$

Then $Z_{\bar{\rho}}$ is a cone with the vertex $\bar{\rho}$ over the variety $\left\{h_{1}=\cdots=h_{r}=0\right\} \subset D_{\bar{\rho}}$, which can be seen to be a reduced irreducible complete intersection of codimension r by blowing it up along $\left\{x_{r+1}=\cdots=x_{n-r}=0\right\}$. Hence (C3. $\bar{\rho}$) holds. Now we check (C6. $\bar{\rho}$). Again by the openness of the condition, if $V_{i, \bar{\rho}, \bar{\sigma}}^{(1)}$ is a hypersurface in H and does not contain the hyperplane $M \subset H$, then (C6. $\bar{\rho}$) holds. We choose ($a_{i \mu v}$) so that $f_{i}=x_{n-r+1-i}$ for $i=1, \ldots, r$. Then M_{ρ} coincides with M. We consider $\left(x_{1}, \ldots, x_{n-2 r+1}\right)$ as homogeneous coordinates of H. Then the defining equations of M and $V_{i, \bar{\rho}, \bar{\sigma}}^{(1)}$ in H is given by

$$
\begin{aligned}
M & =\left\{x_{n-2 r+1}=0\right\}, \\
V_{i, \bar{\rho}, \bar{\sigma}}^{(1)} & =\left\{h_{i}\left(x_{1}, \ldots, x_{n-2 r+1}, 0, \ldots, 0\right)=\sum_{\mu, v=1}^{n-2 r+1} a_{i \mu v} x_{\mu} x_{v}^{q}=0\right\},
\end{aligned}
$$

because $f_{i}=0$ on H except for $i=r$, and $f_{r}=0$ is the equation of M.
We can choose the coefficients $\left(a_{i \mu \nu}\right)_{1 \leq \mu, v \leq n-2 r+1}$ of the equation of $V_{i, \bar{\rho}, \bar{\sigma}}^{(1)} \subset H$ still arbitrarily except for the condition $a_{i \mu \nu}=0$ for $1 \leq \mu, \nu \leq r$, which is equivalent to $\pi(L)=L_{\bar{\rho}, \bar{\sigma}}^{(1)} \subset V_{i, \bar{\rho}, \bar{\sigma}}^{(1)}$. Hence (C6. $\left.\bar{\rho}\right)$ holds.

The paragraph just above says nothing but the surjectivity of Ψ. Hence (b^{\prime}) is true, and the proof of Theorem 3 is completed.
3. Linear subspaces in the complete intersections. In this section we prove the following two lemmas. We still assume $k=k$.

Lemma 1. Suppose that $n \geq s r+s+r$. Then, for every $V_{1}, \ldots, V_{r} \in \mathscr{F}$, the intersection $V_{1} \cap \cdots \cap V_{r}$ contains an s-dimensional linear subspace.

Lemma 2. Suppose that $n \geq s r+s+2 r$. Then, for every $V_{1}, \ldots, V_{r} \in \mathscr{F}$ and every closed point $Q \in V_{1} \cap \cdots \cap V_{r}$, there is an s-dimensional linear subspace contained in $V_{1} \cap \cdots \cap V_{r}$ and passing through Q.

Theorem 1 follows immediately from Lemma 1 and Theorem 3. Lemma 2 will be used in the next section.

Proof of Lemma 1. Let I be the incidence correspondence

$$
\left\{(N, \Lambda) \in \operatorname{Grass}\left(\boldsymbol{P}^{s}, \boldsymbol{P}^{n}\right) \times \operatorname{Grass}\left(\boldsymbol{P}^{r-1}, \mathscr{F}\right) \left\lvert\, \begin{array}{l}
\text { the base locus } W_{\Lambda} \text { of a linear } \tag{3.1}\\
\text { system } \Lambda \text { contains } N
\end{array}\right.\right\}
$$

with the natural projections

Since $\operatorname{dim} \alpha^{-1}(N)=\operatorname{dim} \operatorname{Grass}\left(\boldsymbol{P}^{r-1}, \mathscr{F}\right)-r(s+1)^{2}$ for $N \in \operatorname{Grass}\left(\boldsymbol{P}^{s}, \boldsymbol{P}^{n}\right)$, we have

$$
\operatorname{dim} I-\operatorname{dim} \operatorname{Grass}\left(\boldsymbol{P}^{r-1}, \mathscr{F}\right)=(s+1)(n-s r-s-r)
$$

Hence it is enough to show that when $n=s r+s+r$, the second projection β is generically finite. Let (N, Λ) be a general closed point of I. Let $k[\varepsilon]$ be the ring of dual numbers with $\varepsilon^{2}=0$. In order to show that β is generically finite, it is enough to show that any deformation of the first order $N_{\varepsilon} \rightarrow \operatorname{Spec} k[\varepsilon]$ of N which keeps N being contained in W_{A} is trivial. We fix homogeneous coordinates $\left(X_{0}, \ldots, X_{n}\right)$ of P_{k}^{n} such that $N=\left\{X_{s+1}=\cdots=X_{n}=0\right\}$. Let $V_{1}, \ldots, V_{r} \in \Lambda$ be hypersurfaces which span Λ and let

$$
\sum_{\mu, v=0}^{n} a_{i \mu v} X_{\mu} X_{v}^{q}=0 \quad \text { where } \quad a_{i \mu v}=0 \quad \text { if } \quad 0 \leq \mu, \nu \leq s
$$

be the equation of V_{i}. A deformation of N given by

$$
N_{\varepsilon}=\left\{X_{s+1}=\left(\sum_{\lambda=0}^{s} X_{\lambda} c_{\lambda s+1}\right) \varepsilon, \ldots, X_{n}=\left(\sum_{\lambda=0}^{s} X_{\lambda} c_{\lambda n}\right) \varepsilon\right\}
$$

keeps N being contained in W_{A} if and only if

$$
C \cdot A_{i}=0
$$

where C denotes the $(s+1) \times(n-s)$ matrix $\left(c_{\lambda \mu}\right)_{0 \leq \lambda \leq s, s+1 \leq \mu \leq n}$ and A_{i} denotes the $(n-s) \times(s+1)$ matrix $\left(a_{i \mu v}\right)_{s+1 \leq \mu \leq n, 0 \leq v \leq s}$. When $n=s r+s+r$, the matrix $A:=\left(A_{1}, \ldots\right.$, A_{r}) is a square matrix of size $n-s$, and by the generality of the point $(N, \Lambda) \in I$, we can choose coefficients $\left(a_{i \mu \nu}\right)_{s+1 \leq \mu \leq n, 0 \leq v \leq s}$ so that $\operatorname{det} A \neq 0$. Hence if N_{ε} is contained in W_{A}, we get $C=0$.

Proof of Lemma 2. Let $\left(X_{0}, \ldots, X_{n}\right)$ be homogeneous coordinates of \boldsymbol{P}_{k}^{n} such that $Q=(1,0, \ldots, 0)$, and let $x_{i}=X_{i} / X_{0}(i=1, \ldots, n)$ be affine coordinates of \boldsymbol{P}_{k}^{n} with the origin Q. Then the equation of V_{i} is of the form

$$
l_{i}+\tilde{f}_{i}^{q}+\sum_{v=1}^{n} x_{v} \tilde{g}_{i v}^{q}=0
$$

where l_{i}, \tilde{f}_{i} and $\tilde{g}_{i v}$ are linear forms in $\left(x_{1}, \ldots, x_{n}\right)$. Regarding $\left(x_{1}, \ldots, x_{n}\right)$ as homogeneous coordinates of the variety E_{Q} of lines in P_{k}^{n} passing through Q, we see that the reduced part of the variety $W_{Q}^{\prime} \subset E_{Q}$ of lines in W passing through Q is given by

$$
l_{1}=\cdots=l_{r}=\tilde{f}_{1}=\cdots=\tilde{f}_{r}=\sum_{v=1}^{n} x_{v} \tilde{g}_{1 v}^{q}=\cdots=\sum_{v=1}^{n} x_{v} \tilde{g}_{r v}^{q}=0,
$$

which is an intersection of r hypersurfaces of the form (0.1) in $\boldsymbol{P}_{k}^{m}=\left\{l_{1}=\cdots=l_{r}=\right.$ $\left.\tilde{f}_{1}=\cdots=\tilde{f}_{r}=0\right\} \subset E_{Q} \cong P_{k}^{n-1}$, where $m \geq n-2 r-1$. By Lemma 1 , W_{Q}^{\prime} contains an $(s-1)$-dimensional linear subspace. Hence W contains an s-dimensional linear subspace passing through Q.
4. Complete intersections of diagonal type. In this section, we shall prove Theorem 2. It is enough to show it when $m=q+1$. We still work over $k=k$.

We fix homogeneous coordinates $\left(X_{0}, \ldots, X_{n}\right)$ of \boldsymbol{P}_{k}^{n} once for all and denote by \mathscr{D} the linear system of hypersurfaces of diagonal type

$$
\begin{equation*}
b_{0} X_{0}^{q+1}+\cdots+b_{n} X_{n}^{q+1}=0 \tag{4.1}
\end{equation*}
$$

Let $I_{\mathscr{D}} \subset \operatorname{Grass}\left(\boldsymbol{P}^{r}, \boldsymbol{P}^{n}\right) \times \operatorname{Grass}\left(\boldsymbol{P}^{r-1}, \mathscr{D}\right)$ be the incidence correspondence defined in the same way as in (3.1). We shall prove the following five statements:
(1) For general $V_{1}, \ldots, V_{r} \in \mathscr{D}$, (C 1$)$ holds. Moreover, there is an r-dimensional linear subspace L contained in $W=V_{1} \cap \cdots \cap V_{r}$ such that (C2) holds with respect to L.
(2) For general $V_{1}, \ldots, V_{r} \in \mathscr{D}$, there is a closed point $Q \in W=V_{1} \cap \cdots \cap V_{r}$ such that (C3.Q) holds.
(3) We fix a closed point

$$
R=(\underbrace{1, \ldots, 1,0, \ldots, 0) .}_{(2 r+1) \text {-times }}
$$

Let $\mathscr{D}_{R} \subset \mathscr{D}$ be the linear subsystem of \mathscr{D} consisting of hypersurfaces passing through R. Then there are members $V_{1}, \ldots, V_{r} \in \mathscr{D}_{R}$ which satisfy (C4.R)-(C6.R).

Note that by Lemma 2 and the assumption $n \geq r^{2}+3 r$, for any closed point $Q \in W$ of an intersection of any members $V_{1}, \ldots, V_{r} \in \mathscr{D}$, there is always an r-dimensional linear subspace contained in W and passing through Q. Note also that $I_{\mathscr{D}}$ is irreducible, and that the conditions (C1)-(C6) are open not only on $\left(V_{1}, \ldots, V_{r}\right)$ but also on L. Then, combining (1), (2) and (3), and invoking the openness of the conditions, we see that if $(L, \Lambda) \in I_{\mathscr{D}}$ is general, W_{A} satisfies (C1)-(C6) with respect to L. Now the following two statements allow us to show by induction on r that if $(L, \Lambda) \in I_{\mathscr{D}}$ is general, then W_{A} is a member of $U(k)$ with respect to L. Hence Theorem 2 will be proved.
(4) Let R be as in (3) and let $V_{1}, \ldots, V_{r} \in \mathscr{D}_{R}$ be general members. By (3), we can construct the variety D_{R} and G_{R} as in Section 1 taking ρ to be R. Let $S \in G_{R}$ be the closed point corresponding to the ($n-2 r$)-dimensional linear subspace $H_{R, S} \subset D_{R}$ defined by $f_{1}=\cdots=f_{r-1}=0$. We shall show that there is a canonical identification between $H_{R, S}$ and an ($n-2 r$)-dimensional projective space $P_{k}^{n-2 r}$, equipped with canonical homogeneous coordinates $\left(x_{2 r}, \ldots, x_{n}\right)$ which are independent of V_{1}, \ldots, V_{r}, such that the equations of $V_{1, R, S}^{(1)}, \ldots, V_{r-1, R, S}^{(1)} \subset H_{R, S}$ with respect to these coordinates are of diagonal type (4.1).
(5) Let $\mathscr{D}^{(1)}$ be the variety of hypersurfaces in $\boldsymbol{P}_{k}^{n-2 r}$ of diagonal type with respect to the homogeneous coordinates in (4). We get a rational map

$$
\begin{aligned}
\overbrace{\mathscr{D}_{R} \times \cdots \times \mathscr{D}_{R}}^{r \text {-times }} & \rightarrow \overbrace{\mathscr{D}^{(1)} \times \cdots \times \mathscr{D}^{(1)}}^{(r-1) \text {-times }}, \\
\left(V_{1}, \ldots, V_{r}\right) & \mapsto\left(V_{1, R, S}^{(1)}, \ldots, V_{r-1, R, S}^{(1)}\right) .
\end{aligned}
$$

This map is dominant.
Proof of (1) and (2). It is easy to see that if $V_{1}, \ldots, V_{r} \in \mathscr{D}$ are general members, then $W=V_{1} \cap \cdots \cap V_{r}$ is nonsingular of codimension r, hence (C 1) holds. Let Q_{j} $(j=0, \ldots, r)$ be a point of the intersection of W and the r-dimensional linear subspace defined by

$$
X_{v}=0 \quad \text { unless } \quad j(r+1) \leq v \leq j(r+1)+r .
$$

Since each V_{i} is diagonal, W contains the r-dimensional linear subspace L spanned by Q_{0}, \ldots, Q_{r}. Before showing that a general (V_{1}, \ldots, V_{r}) satisfies (C 2) with respect to this L, we make an observation about certain special points on W. We take a point on W such that $n-2 r$ of its homogeneous coordinates are zero; for example $Q_{0}=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{r}, 0, \ldots, 0\right)$. Then it is easy to see that $T_{Q_{0}, W}$ and the intersection $P_{Q_{0}, W}:=P_{Q_{0}, V_{1}} \cap \cdots \cap P_{Q_{0}, V_{r}}$ of polar hyperplanes coincide and they are both given by

$$
X_{0}: X_{1}: \cdots: X_{r}=\xi_{0}: \xi_{1}: \cdots: \xi_{r}
$$

Let Q^{\prime} be a point on W with coordinates

$$
(\zeta_{0}, \underbrace{0, \ldots, 0}_{r \text {-times }}, \dot{\zeta}_{1}, \underbrace{0, \ldots, 0}_{r \text {-times }}, \zeta_{2}, 0, \ldots \ldots, 0, \zeta_{r}, 0, \ldots \ldots, 0) .
$$

Then it can be easily checked that $P_{Q^{\prime}, W} \cap L$ consists of one point $Q^{\prime \prime}$, hence $W \nsubseteq \Gamma_{W}$. By the generality of $\left(V_{1}, \ldots, V_{r}\right)$, we see that $\operatorname{dim}\left(T_{Q^{\prime}, W} \cap T_{Q^{\prime \prime}, W}\right)=n-2 r$, which shows that $T_{Q^{\prime \prime}, W^{\prime}} \cap W$ is codimension r in $T_{Q^{\prime \prime}, W}$ at Q^{\prime}. Hence, by dimension counting, (C2) holds. (By coordinate change of the type $X_{i} \mapsto c_{i} X_{i}\left(c_{i} \neq 0\right)$, which preserves \mathscr{D}, we may assume that nonzero coefficients of Q_{i} and Q^{\prime} are all 1 . Then the point $P_{Q^{\prime}, W} \cap L$ is

This will make the checking considerably less cumbersome.) Now we shall show that (C3. Q_{0}) holds. Let V_{i} be defined by $\sum_{v=0}^{n} b_{i v} X_{v}^{q+1}=0$, and let (Y_{r}, \ldots, Y_{n}) be the homogeneous coordinates of $T_{Q_{0}, W}$ such that $T_{Q_{0}, W} \hookrightarrow P_{k}^{n}$ be given by $\left(Y_{r}, \ldots, Y_{n}\right) \mapsto$ $\left(\xi_{0} Y_{r}, \ldots, \xi_{r} Y_{r}, Y_{r+1}, \ldots, Y_{n}\right)$. Then $T_{Q_{0}, W} \cap W$ is given by $\sum_{v=r+1}^{n} b_{i v} Y_{v}^{q+1}=0(i=$ $1, \ldots, r$). (Note that f_{1}, \ldots, f_{r} are constantly zero at $\rho=Q_{0}$, and hence $T_{Q_{0}, W} \cap W$ is a cone with vertex $Q_{0}=(1,0, \ldots, 0) \in T_{Q_{0}, W}$.) Since we can choose ($b_{i v}$) arbitrarily, $T_{Q_{0}, W} \cap W$ is a reduced irreducible complete intersection of codimension r in $T_{Q_{0}, W}$. Hence (C3. Q_{0}) holds.

Proof of (3), (4) and (5). We consider $V_{i} \in \mathscr{D}_{R}(i=1, \ldots, r)$ which are defined by

$$
-\left(\alpha_{i}+\beta_{i}+\gamma_{i}\right) X_{0}^{q+1}+\alpha_{i} X_{i}^{q+1}+\beta_{i} X_{r+i}^{q+1}+\gamma_{i} X_{2 r}^{q+1}+\sum_{v=2 r+1}^{n} b_{i v} X_{v}^{q+1}=0,
$$

where the coefficients $\alpha_{i}, \beta_{i}(i=1, \ldots, r), \gamma_{i}(i=1, \ldots, r-1)$ and $b_{i v}$ are general enough. (We put $\gamma_{r}=0$). We put

$$
x_{i}= \begin{cases}X_{i} / X_{0}-1 & (i=1, \ldots, 2 r) \\ X_{i} / X_{0} & (i>2 r)\end{cases}
$$

and, as before, regard $\left(x_{1}, \ldots, x_{n}\right)$ as affine coordinates of \boldsymbol{P}_{k}^{n} with the origin R or homogeneous coordinates of the variety E_{R} of lines in \boldsymbol{P}_{k}^{n} passing through R. Then $T_{R, W}$ is given by

$$
l_{1}=\cdots=l_{r}=0 \quad \text { where } \quad l_{i}=\alpha_{i} x_{i}+\beta_{i} x_{r+i}+\gamma_{i} x_{2 r}
$$

and f_{i} and h_{i} are the restrictions to $T_{R, W}$ of

$$
\begin{aligned}
& \tilde{f}_{i}=\alpha_{i}^{1 / q} x_{i}+\beta_{i}^{1 / q} x_{r+i}+\gamma_{i}^{1 / q} x_{2 r}, \\
& \tilde{h}_{i}=\dot{\alpha}_{i} x_{i}^{q+1}+\beta_{i} x_{r+i}^{q+1}+\gamma_{i} x_{2 r}^{q+1}+\sum_{v=2 r+1}^{n} b_{i v} x_{v}^{q+1},
\end{aligned}
$$

respectively. Since $\alpha_{i}, \beta_{i}, \gamma_{i}$ and $b_{i v}$ are general, it is easy to check (C4.R) and (C5.R). The ($n-2 r$)-dimensional linear space $H_{R, S}\left(\subset D_{R} \subset E_{R}\right)$ is given by

$$
l_{1}=\cdots=l_{r}=\tilde{f_{1}}=\cdots=\tilde{f}_{r-1}=0
$$

which is equivalent to

$$
x_{j}=\lambda_{j} x_{2 r} \quad \text { for } \quad j=1, \ldots, 2 r-1
$$

where

$$
\binom{\lambda_{i}}{\lambda_{r+i}}=-\left(\begin{array}{ll}
\alpha_{i} & \beta_{i} \\
\alpha_{i}^{1 / q} & \beta_{i}^{1 / q}
\end{array}\right)^{-1}\binom{\gamma_{i}}{\gamma_{i}^{1 / q}} \quad \text { for } \quad i=1, \ldots, r-1 \text { and } \lambda_{r}=-\beta_{r} / \alpha_{r} .
$$

Hence we can regard $\left(x_{2 r}, \ldots, x_{n}\right)$ as homogeneous coordinates of $H_{R, s}$. These are the canonical coordinates mentioned in (4). The hypersurface $V_{i, R, S}^{(1)} \subset H_{R, S}$ is given by

$$
\begin{equation*}
\left(\alpha_{i} \lambda_{i}^{q+1}+\beta_{i} \lambda_{r+i}^{q+1}+\gamma_{i}\right) x_{2 r}^{q+1}+\sum_{v=2 r+1}^{n} b_{i v} x_{v}^{q+1}=0 . \tag{4.2}
\end{equation*}
$$

Thus (C6.R) holds and hence the proof of (3) is completed. The statements (4) and (5) are obvious by (4.2).

References

[B] A. Beauville, Sur les hypersurfaces dont les sections hyperplanes sont à module constant, The Grothendieck Festschrift (P. Cartier et al., eds.), Volume III, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 121-133.
[Sch] C. Schoen, unpublished.
[Sh] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), 233-236.
[S-K] T. Shioda and T. Katsura, On Fermat varieties, Tôhoku Math. J. 31 (1979), 97-115.
[T] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (O. F. G. Schilling, ed.), Harper and Row, New York, 1965, pp. 93-110.

Department of Mathematics

Faculty of Science
Hokkaido University
Sapporo 060
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 14M10.
 Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

