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Abstract. We completely classify the compact orientable Lagrangian surfaces in
the complex Euclidean plane with conformal Maslov form, obtaining a new family of
embedded Lagrangian tori.

1. Introduction. The Lagrangian surfaces of the complex Euclidean plane C2

have been extensively studied from topological and analytical points of view ([G],
[We]). The topology of them can be described in the following result of Gromov [G]:
"A surface admits a Lagrangian immersion in C2 if and only if its complexified tangent
bundle is trivial". But only few results are known about these surfaces, from a Riemannian
point of view. In this paper we study a family of Lagrangian surfaces of C2 defined in
terms of a regular behaviour of its Gauss map. Lagrangian surfaces with parallel mean
curvature vector (i.e. Lagrangian surfaces with harmonic Gauss map [R-V]) appear as
a particular case of our family.

Let φ: M-*C2 be a Lagrangian immersion of an orientable surface M into C2.
Let « , >, /) be the Kahler structure of C2 with respect to which φ is Lagrangian.
Then / defines an isomorphism between the tangent and the normal bundles of M. If
v is the Gauss map of φ, it is known that v lies in the product S2 x Sl of a two-dimensional
sphere S2 and a circle S1. If v1: M-*S2 denotes the first component of the Gauss map
v, then our family is defined as those Lagrangian immersions such that v t is a harmonic
map. (Lagrangian surfaces such that v 2 : M-+S1 is a harmonic map will be studied in
a forthcoming paper.)

In §2, we obtain some characterizations of the harmonicity of v^ Corollary 2 says

that vl is a harmonic map if and only if the Maslov form of φ is conformal, i.e. the
associated vector field JH is conformal, H being the mean curvature vector of φ. In
Corollary 1, it is proved that the harmonicity of v1 is also equivalent to the fact that

a differential cubic form <9, or a complex vector field 9£ which appear in a natural way,
will be holomorphic. This allows us to reduce the case in which M is compact only to
the cases in which M is a torus or a sphere (Proposition 1).

In §3, we make a local study of this kind of surfaces. In a isothermal coordinate
system, we obtain the Frenet equations of such surfaces, and we prove that if the
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induced metric is given by e2u\dz\2, and H has no zeroes, then u satisfies an O.D.E.
(the equation (3.6)). Conversely, for each solution of that equation, and integrating the
Frenet equations of the immersion, we obtain a Lagrangian immersion with conformal
Maslov form (Theorem 1).

In §4, using the above local theorem, we completely classify the Lagrangian
immersions with holomorphic cubic form Θ identically zero (Theorem 2). In this case,
the first component of the Gauss map v^ is a conformal map. This result is parallel to
the classification of the umbilical surfaces in R3 and allows us to characterize the
Whitney sphere in C2 ([Wn]) as the only Lagrangian sphere in C2 with conformal
Maslov form (Corollary 4). It can be considered as a version of Hopf's theorem for
this family of surfaces.

Finally, in §5, we also completely classify the Lagrangian immersions of a torus
in C2 with conformal Maslov form. We observe that, in this case, the equation (3.6)
is the sinh-Gordon equation w" + sinh4w = 0, whose solutions can be expressed in terms
of elliptic functions. This shows the parallelism between this family of surfaces and the
constant mean curvature surfaces in R3 described by Delaunay [De]. In Theorem 3,
we study the immersions φ: /?2->C2 associated to the solutions of the equation
w" + sinh4w = 0. We prove that for any xeR the curves yi—>ψ(x, y) are circles in C2

centred at the same point, and that the immersions φ are doubly-periodic except in an
exceptional case. Also, we prove that the immersion induced by ψ in the corresponding
torus is always an embedding. In Proposition 2, we compute the area and estimate the
Willmore functional of these tori. Finally, we classify the Lagrangian immersions of
flat surfaces with conformal Maslov form (Proposition 3). Besides the flat tori, there
appears a new example which does not have parallel mean curvature vector and which
is described as the product of two Cornu's spirals.

The authors wish to express their thanks to Sebastian Montiel and Antonio Ros
for many valuable comments and suggestions.

2. Lagrangian surfaces and the Gauss map. Let C2 be the two-dimensional
complex Euclidean plane endowed with a canonical structure of Kahler manifold. We
denote by < , > the Euclidean metric in C2 = R4 and by J a canonical complex structure.
The Kahler form Ω is defined by Ω(X, Y) = < JT, JY> for any tangent vector fields X and Y.

Let M be an orientable surface and φ: M->C2 a Lagrangian immersion, i.e. an
immersion with φ*Ω = Q. We also denote by < , > the induced metric. Then, the most
elementary properties of φ are:

(a) The tangent and normal bundles of φ are isomorphisms from Riemannian
point of view; this means that if V and V1 denote the Levi-Civita connection of < , >
and the normal connection, respectively, then

(2.1) JoV = Vλoj.

(b) If σ is the second fundamental form of φ and Aη is the Weingarten endo-
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morphism associated to a normal vector field η, then, for any tangent vector fields
X and F,

(2.2) σ(X, Y) = JAJXY.

From this we deduce that if C is the trilinear map on TM given by C(X, F, Z) =
Ω(σ(X, F), Z), then C is symmetric. Moreover, if VC denotes the covariant derivative
of C, then VC is also symmetric.

(c) Finally, let H be the mean curvature vector of φ. As JH is a tangent vector

field on M, if w is the 1-form on M given by tπ(F) = (l/π)Ω(F, //), with F tangent to
M, then w is closed, tσ is called the Maslov form on M.

DEFINITION 1. Let φ: M-+C2 a Lagrangian immersion. The Maslov form w is
said to be conformal if the tangent vector field JH is conformal.

REMARK 1. If w is conformal, i.e. JH is a conformal vector field, then we have
VvJH=π(δm/2)Vfor any tangent vector V, where £07 is the codifferential of w. Taking
derivative in this expression, it is easy to get Δm = — 2Kw, where /Πs the Gauss curvature
of the surface and Δ is the Laplacian. As w is a closed form, we observe that the Maslov
form is harmonic if and only if <5tσ = 0.

If φ : M^C2 is a Lagrangian immersion, we can associate to φ a cubic differential
form Θ, a complex vector field 3C and a differential form Γon M defined by

Θ(z) = f(z)(dz)\ with /(z) = 4C(δ,,δ,,3,),

(z)3,, with

= h(z)dz, with

where z = x + jy is a local isothermal coordinate on M, < , y = e2uds2 with ds2 the
Euclidean metric, and C and Ω are extended C-linearly to the complexified tangent
bundle. We observe that h(z) = e2ug(z).

LEMMA 1. Ifφ : M-+C2 is a Lagrangian immersion, then in the above notation we
have:

( i )
(ii)
(iii)
(iv)

(v)
(vi)

/fere f̂ w /Λe Lie derivative, \σ\ (resp. \H\) is the length of σ (resp. H) with respect to
the induced metric and Δ0 is the Laplacian of the Euclidean metric ds2.

PROOF. Let z = x + iy be a local isothermal coordinate on M. Then we have
/z = 4(VC)(dz, SZ9 dz9 d;). Taking derivative with respect to z in the equality 2σ(δz, d^) =
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e2uH we obtain 2(Vσ)(<3z, dx9 d^) = e2uV^H and so

(2.3) f-z = 2e

It is not difficult to see that gz = 2e~2uΩ(VzH, dz), which proves (i).
In the same way, we get

(2.4) h-z = 2Ω(V^H,dz)

and it is immediate to check (ii) taking into account the closedness of w.
On the other hand, using the properties of φ mentioned before, we have

(2.5) 3>JH< , >(*, Y} = -2fl(Vi#, Y),

(2.6) (δw)(p) = -- Σ Ω(V^H, et),
π i=ι

where X and 7 are tangent vector fields, and {e^ e2} is an orthonormal basis of
TpM,peM.

So, by (2.3) to (2.6), we obtain (iii) and (iv). Next, a straightforward computation
leads to the expressions given in (v) for | /12, | g \2 and | h \2.

Finally, using (v) and the Gauss equation K=2\H\2 — \σ\2/2 in the equality
Δ0w = — e2uK, we see that u satisfies the differential equation given in (vi). Π

As a consequence of this lemma, we can characterize the holomorphy of Θ, % and
Γ by means of the Maslov form of the immersion φ.

COROLLARY 1. f f φ ' M-+C2 is a Lagrangίan immersion of an orient able surface,
then the following properties are equivalent:

(a) The Maslov form w on M is conformal.
(b) Θ is a holomorphic cubic form.
(c) $C is a holomorphic vector field.

Also, the Maslov form w on M is harmonic if and only if Yis a holomorphic differential
form.

REMARK 2. Chern and Wolfson [Ch-W] observed that Θ is a holomorphic cubic
form when M is a Lagrangian minimal surface of the complex projective plane.

PROOF. From Lemma l-(i), we get that (b) and (c) are equivalent. Using Lemma

l-(iii), Θ is holomorphic, i.e. Λ = 0> if and only if

&JH< , >@,, ^X) = ̂ H< , >(3,, dy) and J*?JH< , >(δ,, δ,) = 0 .

These expressions mean that ///is a conformal vector field. Finally, from Lemma l-(iv),
we conclude the proof. Π

Suppose now that φ: M—»C2 is a Lagrangian immersion of a compact orientable
surface into C2. If the Maslov form w is conformal (resp. harmonic), from Corollary 1,
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Θ and 3C (resp. Γ) are holomorphic and the Riemann-Roch Theorem imposes strong
restrictions. In fact, when w is conformal, if the genus of M is at least two, then the
above theorem says that & = Q. When w is harmonic, if the genus of M is zero, the

same theorem says that Γ=0. In both cases this means that φ is a minimal immersion,
which is impossible because the surface Mis compact. So, we obtain the following result.

PROPOSITION 1 . Let φ : M-*C2 be a Lagrangian immersion of a compact orientable
surface. If the Maslov form is conformal, then genus(M)<l. If the Maslov form is

harmonic, then genus(M ) > 1 .

Now, we are going to study the Gauss map of a Lagrangian surface in the complex
Euclidean plane. Firstly, let G(2, 4) be the Grassmannian of oriented two-planes in
C2 = R4. We will identify G(2, 4) with the set of unit decomposable 2- vectors in /\2 R4.
We describe briefly this identification (see [C-M] for details).

If {ely e2, £3, e4} is an orthonormal basis of R4, then we consider the subspaces &

and Jf of y\2 R4 given by

—(elΛe2 + e3Λe4)9 — (e1Λe3-e2Λe4)9 — (e1Λe4 + e

JV = span j — (el Λe2-e3Λ e4)9 — (e1 Λ e3 + e2 Λ e4), — (e± Λ e4-
t 2 2 2

If S \ and S2- are the two-dimentional spheres of 0> and Jf of radius l/^/ 2 , then
G(2, 4) can be identified with S2

+ x Si by the map

PeG(2, 4)ι-^( — (vl Λ v2 + v3 Λ t;4), — (vί Av2 — v3Av

where {1^1,^2} is an orthonormal basis of the plane P and {rl5 v2, v3, v4] is an ortho-
normal basis of R4 defining the same orientation as {eί9 e2, e$9 e4}.

In this way, if v : M-»G(2, 4) is the Gauss map of φ and if we take the basis
£3=/e l9 e4 = Je2, then v lies in the product of S2

+ and a great circle Sl, of 51. Hence
the Gauss map v : M-+S2

+ x S1, is given by

V(P) — ( - (ϋ Λ W + Jf Λ Jw), - (V Λ W — Jv Λ Jw) 1 ,

where {ι;, w} is an orthonormal basis of TpM such that {v , w, Jv9 Jw} defines the same
orientation as (el5 e2, Jeί9 Je2}.

If z = x + iy is a local isothermal coordinate on M, we can write the components
of the Gauss map v = (v l5 v2) of φ as

where Λ is extended C-linearly to the complexified tangent bundle.
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Secondly, by standard arguments, the Frenet equations of a Lagrangian immersion
φ : M-»C2 are given by

h e~2u

φzz = 2uzφz + —Jφz + -

(2.7) Φz-z = 2

= K_ h_
2 z 2

A well-known result of Ruh and Vilms [R-V] says that "0 has parallel mean curvature
vector if and only ifv is a harmonic map". In this case, using (2.1), we have that JH is

a parallel vector field on M. So, either JH=0 and φ is a minimal immersion, or JH is
non-null. In the latter case, M is flat and the second fundamental form is parallel.

These surfaces are well-known to be cylinders and tori.
We are going to generalize the above property studying separately the harmonicity

of the components of the Gauss map.

LEMMA 2. Let φ: M->C2 be a Lagrangian immersion of an orientable surface
andv = (vl9 v2): M-+S2+ x SL its Gauss map. Ifτ(Vi) denote the tension fields ofv^ i= 1,
2, then

τ(v2) = ie~2uhz(φz Λ Jφz-φzA Jφz),

where z = x + iy is a local isothermal coordinate on M.

PROOF. Using the expressions for vf, /= 1, 2 given above together with (2.7),
obtain

(2.8) V l 2 ~ * _
V2 = IQ^φ'z Λ Jφ — φ Λ Jφ~) .

we

Hence, taking into account that τf is the tangential component of vίz-, /= 1, 2, and using
again (2.7), we easily get the result. Π

The two families of Lagrangian surfaces described in Corollary 1 by means of its
Maslov form can also be determined by a regular behaviour of its Gauss map.

COROLLARY 2. Let φ : M — *C2 be a Lagrangian immersion of an orientable surface
and v = (v l9 v2) : M^>S2+ x Si its Gauss map. Then:

(a) The Maslov form on M is conformal if and only i f v 1 is a harmonic map.
(b) The Maslov form on M is harmonic if and only ifv2 is a harmonic map.
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3. Local study. Let φ: M-+C2 be a Lagrangian immersion of an orientable
surface M and z = x 4- iy an isothermal coordinate in a connected neighbourhood U of
M. In U, the induced metric < , > is given by < , y = e2uds2, where ds2 is the Euclidean
metric. If we consider the matrices

0 O/ ' \0 2uJ ' 2 \K

the Frenet equations (2.7) can be rewritten as

(3.1) XZ = AX+BJX, X-z

where B* denotes the conjugate transpose of B. In this way, the integrability conditions
for (3.1) are given by the differential equations

(3.2) Aϊ-A, + lB*9B] = 0, ^-£* + [Λ£*] + [*,Λ]=0.

Since h = e2ug (see §2), it is straightforward to see that (3.2) is equivalent to the differ-
ential equations

From now on we consider the case where the Maslov form of φ is conformal and assume
that H has no zeroes on U. In this case, / and g are holomorphic functions (Corollary
1). Since g has no zeroes (Lemma l-(v)), we can normalize it as g= 1. Indeed, l/#(z) is
well-defined and never vanishes, and if w(z) is a solution of dw/dz—\/g(z) then, at least
locally, w is a good coordinate on U. In this coordinate 2£(w) = dw. Rename w as z and

let g=l. Then h = e2u and Lemma l-(ii) says that wy = 0, and so w(x, y) = w(x), where,
by Lemma l-(vi), u satisfies the O.D.E.

4tt_ι f\2e~*u

(3.4) ii" + ~ - ̂ -L! - = 0.

If £/0 is the set of zeroes of /, log|/| is a harmonic map on [/— C/0 and from (3.4),

|/ |y = 0. So, \ f \ = μeλx on ί/— C/0, where λ,μeR with μ>0. Since |/| is a continuous
function on (7, either U0=U or U0 = 0. Hence, we see that on U

\ f \ 2 = μ2e2λx, A,μe*, μ>0.

Now, using this fact jointly with the holomorphy of /, it is easy to see that / has the
following form:

f(z) = μeίΛeλz, αe/T
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In this case (when w is conformal and H has no zeroes) the matrices that appear
in the Frenet equations (3.1) of the immersion φ are reduced to

(3.5) A = Γ -\, A = " °
0 O; \0 wy 2 \1 1

and the integrability conditions (3.3) of the Frenet equations are equivalent to the
condition that the function u(x) satisfies the O.D.E.

e4u_ 2 2λX -4u

(3.6) u" + - " = 0 .

We can summarize this in the following result.

THEOREM 1. Let φ: M->C2 be a Lagrangίan immersion of an orient able surface
with conformal Maslov form such that H has no zeroes on M. Then, around each point,
there is a conformal parametrization of M, (U,z = x + iy), and real numbers λ, μ with
μ>0, such that the induced metric < , > is given by < , > = e2u(x)ds2, where u is a solution

of (3.6).
Conversely, let α, λ and μ be real numbers with μ>0. If u: /?->/? is a solution of

(3.6) and if the initial conditions φ(z0), φz(z0)9 Φ^ZQ) are compatible with the conditions
φ = φ, φz = (βz, then by integrating the equations (3.1) and (3.5) we obtain a unique
Lagrangian immersion with conformal Maslov form

φ:(C,e2uds2)-*C2,

where ds2 is the Euclidean metric such that Θ(z) = μelΛeλz(dz)3 and 2£(z) = dz are the
corresponding holomorphic cubic form and the holomorphic vector field associated to φ,
respectively.

REMARK 3. We note that, if μ>0, then varying α for each solution u of (3.6), we
can obtain a one-parameter family of Lagrangian immersions. We also notice that in
this case it is sufficient to consider α e [0, π] because if one takes the immersion
corresponding to — α and write its Frenet equations in the coordinate z = x — iy, one
obtains exactly the same Frenet equations.

Using the definition of #", JH can be written as JH=dx. By Remark 1, we have
VVJH= u'V for any tangent vector V at (x, y) e C.

REMARK 4. The immersion φ of Theorem 1 has parallel mean curvature vector
if and only if u is constant (and then, necessarily μ>0 and 1 = 0).

4. Lagrangian surfaces with cubic form Θ identically zero. First, we are going to
study the immersions given in Theorem 1 with Θ ==0, i.e. μ = 0. In this case, the equation
(3.6) is reduced to



LAGRANGIAN SURFACES IN THE COMPLEX EUCLIDEAN PLANE 573

(4.1)
e4u

,

and we can write the Frenet equations (3.1) and (3.5) in the following easy form:

3e2u

(4.2)

e2u

The general solution of the equation (4.1) is given by
where

(4.3) M W = l l o g - -

and a, b are real numbers, with b > 0. So, it is easy to see that, up to dilatations, Theorem
1 only gives one immersion when (9 = 0.

We are going to determine the Lagrangian immersion ψ associated to the solution
given in (4.3). From (4.2) and (4.3) it is easy to see that ψyy + ψ is constant. Up to
translations we can take it zero and finally conclude that ψ satisfies \l/yy + ψ = Q and so
ψ(x, y) = cosyψ(x, 0) + sin yψy(x9 0). Hence:

(4.4) ψ(χ, y) = cosy{u'(x)ψx(x, Q)-(e2»M/2)Jψx(x, 0)} + sin yψy(χ, 0) .

If we fix the initial conditions ψx(Q, 0) = (0, 0, JΎ, 0) and ψy(Q9 0) = (0, J~2, 0, 0) with
respect to any orthonormal basis of C2 = /?4, B={eί9 e2, Jel9 Je2}, by integrating the
first two equations of (4.2) and after a long computation, we see from (4.4) that ψ is
given by

ψ(xyy)=V-—__(cosχi +e2x), sinχi +e2*), cosXe2*—1), sinXe2*—1)).

Hence, we deduce that the immersion ψ is singly-periodic of period 2π. So, ^ induces
an immersion from C* into C2 via the exponential map ez: C->C*. This new immersion
can be extended regularly to 0 and oo. By the stereographic projection, it is easy to see
that the above immersion defines an immersion η from the whole sphere. It can be
written as

2
(4.5) η(x9 y9 z) = -̂ —- (x, y, xz9 yz) .

\+z2
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This immersion is well-known and there is a deformation by Lagrangian immersions
of η to the Whitney immersion ([Wn]) given by

(x,y9(2-ί)xz9(2-t)yz), 0</<1 .
tz

The immersion η: S2^>C2 given in (4.5) will be also called the Whitney immersion. As
its cubic form (9 = 0, the Maslov form w is conformal and the vector field 9C is
holomorphic. 3C has its zeroes at the poles of S2 and the immersion η is an embedding
except at the poles. Also, from (2.8), it is easy to see that the harmonic map v^ is a
conformal map.

We can summarize the above reasoning in the following result.

THEOREM 2. Let φ: Λ/->C2 be a Lagrangian immersion of an orίentable surface.
If the cubic form Θ is identically zero, then φ(M) is an open set of a plane or of the

Whitney sphere.

PROOF. 0 = 0 is holomorphic and, from Corollary 1, 9C is a holomorphic vector
field on M. If #" = (), then from Lemma l-(v) φ is a totally geodesic immersion and
hence φ(M) is an open set of a plane in C2 which is Lagrangian for certain symplectic
structure of C2. Otherwise, 3C has only isolated zeroes and M' = {/?eM; #*(/?) 7^0} is
also connected. So, by Theorem 1 and the above reasoning, φ(M') is open in η(S2) — {0}.
Hence, φ(M) is open in η(S2). Π

From Lemma l-(v), the Gauss equation and Theorem 2, we obtain the following

result.

COROLLARY 3. Let φ : M-»C2 be a Lagrangian immersion of an orientable surface.
Then 2K<\H\2 and the equality holds if and only if φ(M) is an open set of a plane or
of the Whitney sphere.

Now, using a consequence of the Riemann-Roch theorem which says that a
holomorphic cubic form on a sphere is identically zero, we obtain a result similar to
Hopf's theorem.

COROLLARY 4. The only Lagrangian immersion of a sphere in C2 with conformal
Maslov form is the Whitney immersion.

The Whitney immersion has a very nice behaviour with respect to the Willmore
functional W(φ) = \M \ H\2dM. We can prove easily that the immersion η is a Willmore
immersion, i.e. it is a critical point for the above functional. In fact, we can prove a
stronger property using Corollaries 3 and 4 and the Gauss-Bonnet theorem.

COROLLARY 5. Let φ: M—> C2 be a Lagrangian immersion of a sphere in C2. Then
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W(φ) = \ \H\2dM>8π
JM

and the equality holds if and only if φ is the Whitney immersion.

Finally, following the ideas of Ejiri [E], if F is an inversion of a sphere in C2

centred at the origin and ή = Foη: S2 — η'l(0)^C2, then ή is a complete minimal
immersion of total curvature — 4π. This example was described by Hoffman and
Osserman [H-Os]. The inequality given in Corollary 5 was obtained by Wintgen [Wi].
Also, the Whitney immersion is one of the examples described in [W].

5. All Lagrangian tori with conformal Maslow form. Let φ: M-»C2 be a

Lagrangian immersion with conformal Maslov form of a torus Minto C2. Let φ: C->C2

be the lift of φ to the universal covering of M. Then, φ is also a Lagrangian immersion
and, if w denotes its Maslov form, then w is also conformal. Let Θ and & be the
holomorphic cubic form and the holomorphic vector field associated to φ. If z = x + iy
is the standard coordinate in C, by expressing Θ and 9C in this coordinate system, the
functions associated to Θ and % are bounded holomorphic functions defined on the
whole plane C and hence they are constant. So, we can suppose that Θ(z) = ρeiβ(dzγ
and 2£(z) = Qel^dz. If ρ = 0, φ is a minimal immersion and then φ is also a minimal
immersion. If p = 0, using Lemma l-(v) jointly with the Gauss equation of φ, we get
K= I H\2/2, where K and H are the Gauss curvature and the mean curvature of φ. So,
if K and H denote the Gauss curvature and the mean curvature of the torus, K= \ H \2/2
too. The Gauss-Bonnet theorem says that φ is a minimal immersion. In both cases we
get a contradiction by the compactness of the torus. Hence p, ρ>0. Changing the
coordinate in C in a suitable way, we can rewrite Θ and & as

Θ(z) = μeίΛ(dz)\ μ>0, and 3Γ(z) = 3,.

So, in order to classify the Lagrangian immersion of a torus in C2 with conformal Maslov
form, we need to know which of the immersions given in Theorem 1 for Λ, = 0 are
doubly-periodic.

By standard arguments, we observe that in this case, i.e. when 1 = 0, it is sufficient,

up to dilatations, to study the Lagrangian immersions associated to the solutions of
the sinh-Gordon equation

(5.1) w" + sinh4w = 0,

and, without loss of generality, to those with w'(0) = 0.

We first see that the only constant solution of (5.1) is w = 0. The solutions of (5.1)
are well-known since they can be expressed in terms of a certain class of elliptic functions
(see [D, Chap. 7] for details) and, consequently, they are periodic. So, there exists a
positive real number B (see [A-S, Chap. 16]; [D, Chap. 6]) such that for any real
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number c,

(5.2) u(x + 2B) = u(x), u(B-x) = u(B + x), u(-x) = u(x).

Moreover, if Fand G are the functions given by F(x) = ̂ e2u(s}ds and
then for any real number x,

(5.3) F(x + 2B) = F(x) + π , G(x + 2B) = G(x) + π .

In this case we can write the Frenet equations (3.1) and (3.5) as follows:

έΓ2 Msinα

(5.4)

e~2"sinα rl e2u — e~2 ucosα

e2u-e-
2ucosoc rlJ\l/y.

The properties of the immersions associated to the solutions of the sinh-Gordon
equation (5.1) are studied in the following result.

THEOREM 3. Let ψUtΛ be the Lagrangian immersion with conformal Maslov form
associated to a solution u o/(5.1) such that u'(0) = 0 and αe[0, π] (see Remark 3).

For (u, α) = (0, 0), the immersion \j/Q 0 defines a right circular cylinder in a hyperplane

*.
For (u, α)τ«HO, 0), the immersions ψUf(X satisfy the following properties:
(a) Forallx,yeR,

where I is the positive constant (depending on u and α) given by l=(\/2)(e4a — 2 cos α 4-

e'4α)1/2, where a = u(0).
(b) The curves {cx : y \— * ψUfΛ(x, y), x e R} are circles in C2 of radius eu(x)fl centred at

the same point P0.
(c) There exists a real number τ (depending on u and α) such that

\l/UtΛ(x + 2B,y + τ) = ̂ M,α(x, y) ,

where 2B is the period of u.
(d) The circles cx and cx 9 with x, xre(0, 2B\ x^x', do not intersect.
(e) Let F: C2 — {P0}^C2 be the inversion centred at P0 given by

12\P-P0\
2 '

Then ψ-Uf1t is congruent to F°ψUίπ.
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REMARK 5. Note that /=0 if and only if α = 0 and w = 0.

PROOF. The singular case (u, α) = (0, 0) is clear.
In the general case, to simplify expressions we introduce the following functions:

/ c c x , ,
(5.5) b = - , c = - , d=

2 2

So, (5.4) can be rewritten as

ψxx = u'ψx + cJ\l/x - dJψy ,

(5.6) ψxy = u'ψy

Using (5.1) and (5.5), it is straightforward to see that the derivative of u'2 + b2 + d2 is
zero, and so

(5.7) u'2 + b2 + d2 = (b2 + </2)(0) = I2 .

From (5.1), (5.5), (5.6) and (5.7), it is easy to see that ψyy + l2ψ is independent of x andy.
Hence, this vectorial function is a constant P0, and up to translations we can take
P0 = Q and, in this way, ψyy + l2ψ = Q. By integration we get

(5.8) ψ(x, y) = cos(/jOlM*, 0) + (!//) ύn(lyWy(x9 0) .

This equation proves (a).
By (5.6) and (5.7), we easily see that \ψ(χ, ty\2 = \ψy(χ9Q)/l\2 = e2u(x)/l2 and

<\l/(x, 0), ψy(x, 0)> = 0. This fact, together with (5.8), proves (b).
Now we are going to study the variation of the planes which contain the circles

{cx, ceJ?}. So we consider the curve

such that y(x) is the plane Π(x) which contains the circle cx. We are going to study this
curve following the description of G(2, 4) given in §2. Let Λ(x) = {e1(x), e2(x), e3(x),
e4(x)}, xeR, be the orthonormal basis of C2 given by

( )J

We denote et = e,(0), 1 </<4. It is not difficult to see that

(v^x) = (l/l^u'e^x) - be3(x)-de4(x), v2(x) = e2(x)}

is an orthonormal basis of the plane Π(x). If we define

»3(x) = (u'2 + b2Γίl2(beι(X) + U'e3(x)) ,
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v4(x) = - - - (u'de^x) - bde3(x) + (u'2 + b2)e4(x)) ,

then for any xe/?, (v^x), v2(x), v3(x), v4(x)} is an orthonornal basis of C2 defining the
same orientation as J*(0).

In this way, we can write

(5.9) 7l(*) = (Ul A I?2 + l>3 Λ U4)(χ) , 72(*) = 0>1 A 1>2-I?3 A Ό4)(X) .

In order to study both curves, we introduce the following notation. Let U(x), V(x),
W(x) (resp. U(x), V(x), W(x)) be orthonormal basis of the subspaces 0>(x) (resp. ^Γ(x))
of /\2 R2 given by (see §2):

So, 7i and y2 can be written as

(5.10) yl(x) = —(u'U-dV+bW)(x) , y2(jc) = — (

By (5.6), £/, K and fΓ (resp. t/, F, PΓ) satisfy the following O.D.E. systems:

U'=-2dV+(b-c)W, V' = 2dU, W' = (c-b)U

(resp. U' = (b + c)W, K' = 0, W'=-(b + c)U).

By (5.1), (5.5), (5.6), (5.10) and the above equations, we show that y\ =0 and determine
U, Kand W. Hence, from (5.10):

(5.11)

(5.12) y2(x) = (l//)[(M/cosA: + 6sinA:)(x)^(0) + rf(x)f(0) + (M /sinA:-ft

where fc( c) = J * (ft(j) + c(s))ds.
By (5.5), A:(x) = 2F(x) and by (5.3), k(x + 2 )̂ = k(x) + 2π. Moreover, from (5.2) and

(5.5), w', b and rf are also periodic of period 2B, and so ^(x + ̂ ^TiW Since y x is
a constant function, we see that for any xeR, Π(x) and Π(x + 2B) are the same plane.
We also note that 2B is the smallest possible period for Π(x). So, the circles cx and
cx+2B are in the same plane and have the same radius because u is periodic of period
2B. Then, there exists τ(x) such that cx(y) = cx+2B(y + τ(x)). This can be written as
ψ(x + 2B, y + τ(x)) = ψ(x, y). Taking derivative with respect to x in the last expression
and computing the length of the result, we have τ'(Λ:) = 0 and so τ(x) is constant. This
proves (c).

Suppose now that the circles cx and cx,, x, ;c'e(0, 2B) intersect. Necessarily they
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must have the same radius, hence u(x) = u(x') according to (b). By (5.2), x' = 2B — x
with XE (0, B). Moreover, the planes Π(x) and Π(2B—x) have a non-trivial intersection.
As (ι^ι(jc), v2(x)} is an orthonormal basis of the plane Π(x), we have q(x) = vl(x)/\
v2(x)/\v1(2B-x)/\v2(2B-x) = Q. By (5.9) and (5.11), for any xeR, we have

(5. 1 3) Π(x) = (7l (x), y2(x)) = (7l(0), Vl(x) Λ v2(x) -

From (5.9), (5.11) and (5.12) we get

(5.14) v,(x)Av2(x) = (l/l)l(

+ (u ' sin k - b cos k)(x) W(ϋ) - d(ϋ) K(0) + b(ϋ) W(ϋ)~\ .

Using (5.2), (5.3) and (5.5) we obtain u'(2B-x)= -^u'(x\ b(2B-x) = b(x\ d(2B-x) =
d(x) and k(2B— x) = 2π — k(x). Finally, by (5.7) and (5.14), we can write explicitly

q(x) = (I / I2)(uf cos k -\-bsin k)2(x)e1 Λe2/\e3 /\e4 .

So, q(x) = 0 means, by (5.14), the v^(x) /\v2(x) = vl(2B— x)Av2(2B— x) and so, from
(5.13), Π(x) = Π(2B—x), which is impossible because ;ce(0, B). This reasoning proves
(d>.

In order to prove (e), we may assume that P0 is the origin of C2 as above. As
|^βtJ

2 = β2"//2, let Ψ be the map given by Ψ(x,y) = e-
2u(x)ψu,n(x,y). Then, by (5.1),

(5.4), (5.5) and (5.7), it is easy to prove that Ψ satisfies the Frenet equations of the
immersion ι^_M>π, which proves (e). Π

From Theorem 3, (a) and (c) we deduce that the immersions ψu >α are doubly-periodic,
except for (w, α) = (0, 0). So they provide examples of Lagrangian tori with conformal
Maslov form, all of which are embedded by (d).

COROLLARY 6. Let u be a solution of the equation (5.1) with w'(0) = 0 and α e [0, π]
with (u, a)=^(0, 0). Let Λu>a be the lattice in C generated by {(0, 2π//), (2B, τ)}, Γu>a the
torus C/ΛM a and φUΛ : ΓM a-»C2 the immersion induced by ψu Λ. Then φUfΛ is a Lagrangian
embedding with conformal Maslov form of TUΛ into C2.

REMARK 6. By Theorem 3, the embeddings φ0 >a, a φ 0, define a family of constant
mean curvature (#(α)) flat tori embedded in a hypersphere in C2 of radius r(α), where
//(α) = cos(α/2) and r(α) = csc(α/2). We note that φ0 π is the Clifford torus. φQtΛ with
0<α<π is a deformation from the right circular cylinder to the Clifford torus by
Lagrangian surfaces with parallel mean curvature vector.

In this way, we have classified all the Lagrangian immersions with conformal
Maslov form of a compact orientable surface of genus one into C2.

COROLLARY 7. Let φ : M->C2 be a Lagrangian immersion with conformal Maslov
form of a torus M in the complex Euclidean plane. Then φ is congruent to φUtΛfor some
solution u of (5.1) with M;(0) = 0 and some αe[0, π], except when (M, α) = (0, 0).
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We study now some geometric properties of the tori φu α.

PROPOSITION 2. If A(μ, α) and W(μ, α) denote the area and the Willmore functional
of the torus Tu α, then:

(i) Λ(u,α) = 2π2//.

(ii) W(u, α)>2π2 and the equality holds if and only if TUΛ is the Clifford torus.

PROOF, (i) is a direct consequence of (5.3) and the definition of area.
From Lemma l-(v) we have that \H\2 = e2u. So

2π C2B

(5.15) ^(«,α) = e4u(x)dx.
I Jo

Let E=E(p2} be the complete elliptic integral of second class, with p2=l— e~8lal (see
[A-S, Chap. 17]; [D, Chap. 6]). Then, using [A-S, 17.2.10, 17.3.4, 17.4.4], we can
compute that $2

0

Be4udx = 2e2lalE. So, from (5.15), we obtain that W(u, α) = (4πe2|fl

Hence, we estimate that

(5.16)

Now, from [A-S, Figure 17.2]; [D, p. 143], we have that π/4<E/(l + Jl -p2) and the
equality holds if and only if /?2 = 0, i.e. w = 0. Using this inequality in (5.16) we prove

(ϋ). D

The study of the remaining case, μ>0 and A ^ O in Theorem 1, can be simplified
in the following way. If u is a solution of (3.6) with μ>0 and /L^O and φΛ : (C, e2uds2)^>
C2 is the one-parameter family of Lagrangian immersions associated to u, then it is
clear that φa(z) = φ0(z + ((x/λ)i). So, in this case, there is only one immersion as'-
sociated to each solution of the equation (3.6). Also, it is easy to check that, up to
dilatations, it is sufficient to study the Lagrangian immersions associated to the solu-
tions of the equation

e*
u — e*

£x

e-*u

(5.17) u" + - - = 0, ε = sigλ=±l.

We first observe that u is a solution of (5.17) for ε= 1 if and only if v(x) = u( — x)
is a solution of (5.17) for ε= — 1, and that the immersion φ_± associated to v(x) is
given by φ_1(z) = φ1( — z) changing the complex structure J by — /, where φ^ is the
Lagrafigian immersion associated to u.

Secondly, we note that u(x) = x is the unique solution of the equation (5.17) for
ε= 1, which gives a Lagrangian immersion φ of C with aflat metric into C2. We can

easily integrate the corresponding Frenet equations and see that this immersion φ is

given by
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φ(x, y) = (C(excosyl C(exsiny\ S(e*cosy)9 S(exsiny)),

where Cand Sare the Fresnel integrals defined by C(d) = jo cos t2dt and S(a) = J0 sin 12dt.

The cubic form of this immersion is Θ(z) = e4z(dz)3. As φ is singly-periodic of period

2π, it induces an immersion from C* into C2 via the exponential map which can be

extended regularly to 0. Since its induced metric is the Euclidean metric, we get a

Lagrangian immersion with conformal Maslov form Φ: (C, ds2)-+C2 given by

Φ(x9y) = (C(x)9C(y)9S(x)9S(y)).

We remark that Φ is the product of two Cornu's spirals and it is an embedding.

Finally, this last study allows us to classify the Lagrangian immersions of flat

surfaces in C2 with conformal Maslov form. Indeed, from Theorem 1, Corollary 7,

Remark 6 and a reasoning similar to that in Theorem 2, we obtain the following result.

PROPOSITION 3. A Lagrangian immersion of aflat orientable surface with conformal

Maslov form in C2 is locally congruent to Φo>a for some αe[0, π], or to the Cornu

immersion Φ, or to a plane.
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