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Abstract. A Weyl criterion using Walsh functions is established and the relation
between uniform distribution mod 1 and dyadic addition on the real line is investigated.
Further, we develop the relationship between the modified integrals of the Walsh func-
tions and uniform distribution mod 1: a "Walsh integrals" Weyl criterion is developed
and analogues of the LeVeque inequality and the Erdόs-Turan inequality are obtained.
These bounds are easier to compute than the classical bounds.

1. Introduction. A major tool for the study of the uniform distribution mod 1
of sequences has been the classical Weyl criterion (see for example [1]). Uniform
distribution mod 1 is defined as follows. For a real number x let \_x] denote the integer
part of x and /=[0, 1). Let ω={xi] be a sequence of real numbers, NeN and Ed I.
Then, let the counting function A(E\ N, ω) be the number of terms

The sequence of real numbers ω = {;*;,•}, i= 0,1,2,. . . is said to be uniformly
distributed modulo 1 (abbreviated u.d. mod 1) if for every pair of real numbers with
Q<a<b<\ we have

N->oo N

A consequence of this definition is that [xt } is u.d. mod 1 if and only if, for any / eC°,

(1) ^T/Σ1 /(*;) = Γ
ΛΓ^oo N i = 0 Jo

We use Walsh functions to derive a further necessary and sufficient condition (a Walsh
function Weyl criterion) for a sequence to be u.d. mod 1.

Dyadic addition on the real line, + , was first used by Fine [2] and has proven to
be of fundamental importance when used in conjunction with Walsh function analysis.
However there has been no investigation of how sequences of real numbers are uniformly
distributed mod 1 when combined with this operation. One of the aims of this paper
is to initiate such a study.

A comprehensive treatment of uniform distribution of sequences is given in [1].
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The representation theory of compact Abelian groups could be used following [1] to
provide a proof of our Theorem 1. However the Walsh functions are not precisely the
characters of the dyadic group (see [3] for a discussion of the method required to form
these characters). So a proof of Theorem 1 following the classical Weyl method is more
natural than the alternative (using group representation theory) mentioned above. Our
theorems and Corollary all appear to be new results.

Section 2 of this paper briefly introduces the properties of the Walsh functions and
dyadic addition and we introduce the use of Walsh functions in the study of uniformly
distributed mod 1 sequences. In Section 3, we define the modified integrals of the Walsh
functions and obtain another Weyl criterion using these Walsh integrals. Further,
analogues of both LeVeque's inequality and the Erdόs-Turan inequality are derived.

These inequalities are of considerable interest in view of their ease of computation.

2. Walsh functions and a Weyl criterion. Since their introduction in [4], the
Walsh functions have been studied extensively. Following Paley [5], [6] we define the
Walsh functions in terms of the Rademacher functions {rn}™=0. The Rademacher
functions were published in [7] and they form an incomplete (with respect to L2) set
of orthogonal functions. The Rademacher functions are defined as follows:

\ = ra(x), for

r ω f ! for *e[0,l/2)
ff)\X) Λ

[-1 for jce[l/2, 1)

rn(x) = r0(2nx), for «>1.

The Walsh functions are complete with respect to L2 and are defined as follows:

Γ

W (\\ — 1 PF f vϊ — Π r frϊ"oW — * 5 ^«V^ — 11 rιιΛ^ '

where

r

/ ι = Π 2 " ' , ni+1>nt

is the unique decomposition of « into the sum of strictly increasing powers of 2.
The Walsh functions can be considered essentially as the characters of the dyadic

group, G. Let xeG so that x = {xly x2,...}, xne{Q, 1} with group operation addition
termwise modulo 2. Fine [2] defined the function λ: G->[0, 1] where

00

n = l

Clearly λ does not have a single-valued inverse because for each finite expansion
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Σ2-"*,,, XBe{0, 1},
n=l

there is a corresponding infinite expansion. In such cases the finite expansion is taken,
and so for all real xe [0, 1), writing the inverse as μ,

λ(μ(x)} = x — [x] and μ(λ(x)) = x ,

provided λ(x) is a dyadic irrational.

Letting 4- be the operation in G, that is, termwise addition modulo 2, we abbreviate

as x+y

for any real x and y.
It is straightforward (following the classical Weyl method) to establish the following

(which we state without proof):

THEOREM 1 (a Walsh function Weyl criterion). {x{} is u.d. mod 1 if and only if

1 Λ Γ - 1

lim — Σ H^(*i) = 0, for any h>\ .
ΛΓ^oo TV i = θ

This Walsh function Weyl criterion can easily be used to provide proofs (omitted
here) for the following two direct analogues of well known classical results [1].

THEOREM 2. If{x'i} w'u.d. mod 1, {αjcz/ is such that at->0 as z->oo and Xi + at is
a dyadic irrational for each i then {xj-ί-αj is u.d. mod 1.

We note that this theorem provides a new way to generate u.d. mod 1 sequences
from a known u.d. mod 1 sequence {xj. There are two special cases of interest, namely,
when the ̂  are either all dyadic rationals or all dyadic irrationals. Similarly, Theorem
3 (following) can also be used to generate new u.d. mod 1 sequences.

•
THEOREM 3. If {X^^LQ is u.d. mod 1, 0,-eJΪ Q<j<N and Iκ={xi+^=0aj} is

a set of dyadic irrationals for each 0<K<N, then Iκ is u.d. mod 1 where £ is defined
inductively as

3. The Walsh integrals and u.d. mod 1. The integrals of the Walsh functions,
defined by
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were investigated by Fine [2]. Here, the set of "Walsh integrals", {Jk}, with a slight
modification (see the Corollary below), is used to investigated u.d. mod 1.

We now establish a partial extension of the Weyl criterion for functions, possibly
discontinuous, which have a Walsh series expansion subject to a moderate regularity
condition. This result is used to prove our Corollary on the integrals of the Walsh
functions. This Corollary is used later as part of the "Walsh integrals" Weyl criterion.

THEOREM 4. If {xt} is u.d. mod 1, then

l i m— Σ Fκ(*i) = 0
N^ao N i = 0

with

«>
) = Σ akWk(x) + bkWk(x), \bt\iC

where Ce/?+ and does not depend on i while g: N-+N is arbitrary.

PROOF.

1 JV-l oo

'(*)+_ y y b w(xϊ
Ni=o i

1 ΛT-1

— Σ
N & N i

g(K)

k=\

f )
\<*k\

) k = l

τ%>

Ivίo

M J_V
~N i=o

+
1 N-l

— ΣJ V , t Ό

>M

But M was arbitrary, so

as

lim
1 N-l

— Σ
N i = o

= 0.

π
COROLLARY. L^{xJ^u.d.mod 1 andh = 2n + l,Q<l<2n. Then a partial analogue

of the Weyl criterion holds, namely.

lim — £ j'h(x.) =
N-*oo TV" i = 0

for any heN,

where the modified Walsh integrals are
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PROOF. From Fine [2], we have

Hence the result follows from Theorem 4. Q

We note that this result may also be obtained, via equation (1), from the symmetry
(about x= 1/2) properties of the Walsh functions and the continuity properties of the Jh.

In the following, integrals of the Walsh functions are used to devise an analogue
of the LeVeque inequality. From this the modified integrals of the Walsh functions are
used to obtain another Weyl criterion: the "Walsh integrals" Weyl criterion whose first
part is stated as our Corollary above.

For use in the proof of the following lemma, we establish a preliminary result.
From Fine [2], we note that

2 4 „=o '

Also, the series

is uniformly convergent, so

ΓxWh(x)dx=~ Σ 2-" Γ W
Jo 4 π = 0 Jo

Now, suppose that x0,..., xN-ι are N points in /. For 0<x<l, led RN(x) =
A([Q,x);N)-Nx. Then

LEMMA.

f 1 /N-l / 1 \ \ 2 αo / N-l \ 2

R*(X)dX=( Σ Um~τ + Σ (N2-^δ2n,H- Σ Λω -
Jθ \m = 0 \ 2 / / Λ = l \ m = 0 /

PROOF. The proof is a modification of the proof of Lemma 2.8 in [1]. Since the
Walsh functions are complete in L2[0, 1), the Walsh Fourier series of RN(x) converges
in L2 to RN(x). Also, for 0<m<N— 1 we let Cm(x) be the characteristic function of
the interval (xm, 1]. Then

A([p,x);N)= Σ Cm(x)
m = 0

and so, letting
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Σ ak
k = 0

be the Walsh Fourier series of RN(x), a0 is obtained as in the classical proof, and for

h > 1 we obtain

h =
 NΣ Γ Cm(x)Wh(x)dx-N Γ xWh(x)dx
m = 0 Jo JO

m = θ J X m m = 0

m = 0 m=0

m = 0 m = 0

m = 0

The result follows by ParsevaΓs identity. Π

The discrepancy DN is a measure of the deviation of a sequence from being uniformly
distributed mod 1 and is defined as

N = DN(x0, ...,xN_1) = sup
0<a<b<1

Ada, b); N)

N
-(b-ά)

THEOREM 5 (analogue of LeVeque's inequality). The discrepancy DN of the finite

sequence x0,..., xN-ί in I satisfies

( oo / 1 J V - 1 \ 2 \ l / 3 / 1 9 oo /JV-1 \ 2 \ l / 3

12 Σ ( 2 - ^ δ 2 ' Σ Λfcj) = ̂  Σ Σ Λω
Λ = l \ N m = 0 / / \N2

 h=l \m = 0

PROOF. The proof uses the above Lemma and follows the one given in [1]. The
details are omitted here.

REMARK. The constant in the classical LeVeque inequality is the best possible.

To establish a corresponding result here, consider {xm}m = o = {Q} f°Γ which

( oo \ l/3 / oo \ l / 3 / oo \ l /3

12 Σ (2-(w + 2)<WΠ =(12 Σ 2-2"-4^,J = 1 2 Σ 2-2"-4 =1 .
Λ = l / \ h=l / \ n = 0 J

So the constant here, 12, is also the best possible.

THEOREM 6 (the "Walsh integrals" Weyl criterion), {xj is uniformly distributed
mod 1 if and only i/rlimN_00(l/7V)Σf=Γ0

1/!.(^) = 0,>r any hεN.
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PROOF. The "only if" part of the theorem is established as the Corollary above.
For the "if" part assume { cj is not uniformly distributed mod 1, then there exists a
sequence {Nk} such that

lim DNk = D>Q.
fc->oo

Now, for any N>1, from the analogue of LeVeque's inequality, letting H=2M + L,
0<L<2M,

oo / I N-l \2 H / I N-ί \2

D3

N<u Σ (± Σ JX*tή <i2 Σ ^ Σ J
Λ=ι \N i=o ) h = ι\N , =o

Now choose M so that

12 1 3

^^2 '
and let ε>0 be given such that Nk>N0 implies

Thus,

H / 1 J V k - 1 \ 2

Σ Σ Λ

So

1 H /Nk-l

l/>3-β<i2Σ ι( |Σ

Now choose N0 so that

l^_ε>l j
2 4

Thus

1 H / 1 Λ

0<— £»3<12 Σ —
4 h = ι\Nk

which implies that

1 H / 1 Nfc

0<-/)3<12Σ lim—
4 Λ = ι k-^oo 7V i

So, for some h>l
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I Nk-ι
l im— Σ Λ(*i)

->oo Nk i = o

α
We conclude with:

THEOREM 7 (an analogue of the Erdόs-Turan inequality). For any finite sequence

x0,..., Xjv-i of real numbers and any positive H, we have for H=2M + L, 0<L<2M

/ H-l

Dfi-(U^

Λί-l 1
-̂Λ 1

Bt-0 jv "(Xn)
2 | 3 ίi ! W/3

2M-ι ^ 2M + 1JJ '

PROOF.

/ oo N-l 1 2\ l/3

A v < ( i 2 Σ Σ^J )
V Λ = l n = 0 N ]

/ /H-l

= ( l2(Σ
\ \ Λ = 1

/ fH~l

* (n Σ
\ \ Λ = 1

<(l2(Y
\ \ Λ = 1

/ H-l

-(12 Σ

N-l 1

y -—j'(x }L-t JLJ h\ n)

V 1 „, x
Σ -TfJl (Xn)

n = 0 N

V 1 „ x\ 7 f γ \

N-l 1 2

y •/'(* )
π = o N

2 oo N-l 1 2 \ \ l / 3

2 » YV i , .Vλλ 1

+ Σ ( Σ ^l^ωi
Λ = H \n = 0 TV / //

2 | 12 (i l W1 2— V 2*")))

i 3 Λ ] ΊY/3

2M-' v 2 M + l /y
since, for any x

oo oo 2i+ 1 — 1

y r/'f*v>2< y y rrr^2</ t \J h\*')) — Zj / . V^hv ̂ // —

^ 1 ^ 3

oo / I \2 oo -5
v °Ί ) Σ

1 S 1 3 1

_ 2 3 1 1 _ 1 / 1 \

2M + 2 4 4M+ι !_1/4 2M + 1 V 2M + 1 A

Π
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