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Abstract. We prove a finiteness result on the torsion subgroup in the Chow group

of zero cycles on the elliptic modular surface of level four. The main ingredient is Shioda's

interpretation of this surface as the Kummer surface associated to the self-product of

a certain elliptic curve. On the way we extend the main finiteness theorem on torsion

zero cycles on the self-product of a modular elliptic curve to the case where the elliptic

curve has complex multiplication and its conductor is a power of a prime.

Introduction. In this paper we will provide a new example for the finiteness of

torsion zero cycles on an algebraic surface defined over a number field. Let B' be the

subvariety in P2 x (P1 \Σ)9 Γ=(0, oo, ± 1 , ±z), defined by the equation

where (x, y) and σ are the inhomogeneous coordinates of P2 and of P1. Then B' is a

smooth algebraic surface defined over Q. Let B be its minimal model. Then B is an

elliptic surface over P1. It is evident from the work of Shioda [Shi, Theorem 1] that

after base change to the field K= Q{i), B becomes isomorphic to the elliptic modular

surface C, which is defined as a suitable compactification of the universal elliptic curve

over the modular curve X(4) defined over K, i.e. we have B®QK^ C. The main results

in the paper are the following:

For a variety X let CH0(X) be the Chow group of zero cycles modulo rational

equivalence and CH0(X){p} its /?-primary torsion subgroup for a prime p.

THEOREM A. Let B be as above andp a prime such that p>3. Then CH0(B){p] is

a finite group.

For the elliptic modular surface C we have a weaker result which shows that we

have at least enough elements in the A^-Theory of C to kill cycles in the closed fibers

at good reduction primes. Let ^ be a proper smooth model of C over Oκ[l/2] and

Cp the closed fiber of # at the prime p , p\2. Let CH 2 (^) be the Chow group of

codimension 2 of # . Then we have:
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THEOREM B. The cokernel of the boundary map

H\C9JΓ2)-^ 0 Pic(Cp)

is a finite group. Equίvalently the kernel of the map

CH 2 (^) — CH2(C) - CH0(C)

is a finite group.

Here Hι(C, Jf2) denotes the Zariski cohomology of C and Pic(Cp) the Picard group

of the fiber Cp. The main ingredients in the proof of Theorems A and B are:

— Shioda's interpretation of B (resp. C) as Kummer surfaces associated to a certain

abelian surface A/Q (resp. ExκE, where E is an elliptic curve defined over Q with

complex multiplication by Z [ i ] (compare [Shi]).

— The finiteness of the /7-primary Selmer group of the symmetric square of the elliptic

curve considered over Q. This follows from Wiles' paper on Fermat's last theorem

[W, Theorems (3.1), (3.3)].

In the course of the proofs we will also reprove—under some slightly different

assumptions—a result obtained in joint work with Raskind [L-R]. Our proof there

used the Iwasawa-Theory of elliptic curves with complex multiplication performed by

Rubin. Here we rely instead on Wiles' result on Selmer groups associated to deformation

theories.

THEOREM C. Let E be an elliptic curve over Q with conductor N=qs a power of a

prime q. Assume that E has complex multiplication by the ring of integers in an imaginary

quadratic field L. Then CH0(ExQE){p} is finite for all primes p\6N.

In [L-S] we proved an analogous result for elliptic curves without complex

multiplication. The proof of Theorem C will be very similar to the methods used in the

non-CM-case.

The author would like to thank Klaus Kϋnnemann, Shuji Saito and Andrew Wiles

for helpful comments.

1. We first recall Shioda's interpretation of the surfaces B and C as certain singular

.O-surfaces (with Neron-Severi-rank 20) ([Shi]). Let Eo be the elliptic curve over Q

obtained as the normalization of the curve y2 = xAr—\. It has complex multiplication

by the ring of integers in Q(i), a Weierstraβ-form given by y2 = x3 + 4x, and its conductor

is 2 1 2 . Consider the translation Tv on Eo defined by the point v = (— 1, 0) of order 2

and let A be the quotient A :=(E0 x E0)/T{vv) by the translation of order 2. Then A is

an abelian surface over Q. It follows from [Shi, Theorem 1] and its proof that B/Q is

isomorphic to Km(^4), the Kummer surface associated to A. (Let i: A->A, ι(u)= —u

be the inversion. Then A/i has 16 singular points corresponding to the points of order
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2 on A. Km(A) is the blowing-up of A/i with respect to these 16 singular points.)

Furthermore we have:

LEMMA 1.1 (Shioda). (a) AxQK is isomorphic to EoxEoxQK.

(b) C/K is isomorphic to Km(E0 xκE0).

The proof follows from [Shi, Theorem 1].

Note that by definition we have an isogeny of abelian surfaces over Q of degree 2.

σ:EoxQEo—>A .

PROPOSITION 1.2. Let $ be a proper smooth model of B over Z[l/2] and Bp its

closed fiber at p. Then the cokernel of the map

is a torsion group.

In the course of the proof of Proposition 1.2 we will also derive Theorem B.

PROOF. Consider the Galois extension πB: Bκ -+ BQ. Then we have a commutative

diagram

H\B,X2) - ^ ΘPi

H\BK,
peSpecOκ[l/2]

KB* = NKIQ [

H\B, JT2) i 0 Pi
pJf2

The composite π ^ π f is the multiplication by [K: Q~]=2. Therefore it suffices to show

that the map dκ has finite cokernel. Since Bκ is isomorphic to C this will also imply

Theorem B.

CLAIM. The map

peSpec0χ[l/2]

has finite cokernel.

Consider the following commutative diagram of surfaces over K= Q{i):
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/
EoxEo < C

( t ) I J.
Eo x E0/ι < Km(E0 x Eo) = C.

Here Eo is considered as an elliptic curve over K and C is the blowing-up of Eo x Eo

at the 16 points of order 2. π is outside the exceptional fibers a Galois covering of

degree 2. Now look at the following commutative diagram:

0 Pic(Cp)

π^ is well-defined for Λ^-cohomology, because π is proper; / * is well-defined because

^-theory is contravariant for arbitrary morphisms. The diagram commutes on the

right-hand side because the Brown-Gersten spectral sequence is covariant for proper

morphisms. To see the commutativity on the left-hand side we interpret / * on the level

of Brown-Gersten resolutions. An element z in Hι(E0 x Eo, X2) is given by a formal

sum Σ y g y where Y is an irreducible curve on Eo x Eo and gγ is a rational function on

Y, i.e. gγek(Y)*. By the moving lemma we may assume that the curves Ydo not pass

through the points of order 2 on Eo xE0. Then f~\Y) is isomorphic to Y and we

define f*(z) = ̂ _ 1 ( y ) gf-ιiY) which evidently defines an element in H\C, Jf2) (the moving

lemma is not really necessary here but it makes the argument easier). We also define a map

Θ zx—> e zx
x codim 2 xcodim2
in £o x ^o in C

as follows: If x is not of order 2, we take the identity map Zx = Zf-ί{x). If x is of order

2, let x' be the base point in f~1(x) = P1 and take the identity map ZX = ZX>. Using the in-

clusion k(E0 x E0)ak(C) of function fields we also get a map Jf2(k(E0 x Eo)) -• X°2(k(C)).

These maps altogether define a map / * from the Gersten-Quillen resolution of

X'JEQ x Eo to the Gersten-Quillen resolution of Jf2/C. Compatibility with the tame

symbol maps and the divisor maps is clear. In particular the map / * constructed for

H1( , JΓ2) as above coincides with the one defined by the contra variance property of

ΛΓ-theory. Now a similar interpretation of the map / * on the level of the Picard groups

of the closed fibers yields—by looking at the Gersten-Quillen resolutions of JΓ2 for

Eo x Eθ9 C and their models over Oκ\\β\ the resolutions of Jfi for Ep x Ep and Cp and

the explicit definition of the map d by using these resolutions—the compatibility of/*

with d. We do not work out the full details here because the large diagram one has in

mind is evident. Thus the diagram * is commutative as claimed.

Now π^ is surjective on the level of Pic's as is easily seen. So it remains to show that
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^ 0 Pic

has finite cokernel.

Now Pic(Cp) = Zl6@Pic(EpxEp) by standard properties of the blowing-up, the

inclusion of Fic(Ep xEp) in Pic(Cp) being given by / * . The image of P i c ( C ) ® ^ * - *

Hι(C, JΓ2)-> 0 p^2Ϋic(Cp) certainly covers all cycles arising from exceptional fibers.

On the other hand the map d on the level Eo x Eo has finite cokernel by a result of

Mildenhall [Mi, Theorem 0.1]. So the boundary map d considered over C also has

this property. This finishes the proof of the claim and implies Proposition 1.2 and

Theorem B.

REMARK. Another way of explaining the "surjectivity property of 5" on the elliptic

modular surface Cis as follows: For/? = 3 (4), i.e. for primes where Eo has supersingular

reduction the Neron-Severi rank of Cp is 22 [Shi, Corollary 1]. Note that such primes

p remain prime in K and therefore the notation Cp makes sense here. There are two

elements uί9 u2 in NS(Cp) arising from sections of Cp -• X(4)p (X(4)p denotes the reduction

of the modular curve at p) of infinite order, i.e. of ^(X(4)p)-rational points of infinite

order of the elliptic curve Cp x K(X(4)p) over the function field K(X(4)p) of the modular

curve at p. Let yί9y2eH1(E0 xκE0, jf2) be the elements Mildenhall constructed to

kill multiples of ¥rp and (FrpoCMp) where Fr p is the graph of the Frobenius on the

reduction Ep and Fr p oCM p is the composition of the Frobenius with complex

multiplication on Ep. The above functorial proof shows that π ί | {/*(^ 1) and π^f*(y2)

are the "non-trivial" elements in Hι(C, $f2) that we need: 3p(πί|:/*(>y1)) and dp(π^f*(y2))

kill multiples of uί and u2.

2. Let Xdenote either the selfproduct ExQE for a CM-elliptic curve E satisfying

the assumptions of Theorem C or the Kummer-surface B = Km(A) as constructed in

§ 1. By Bloch [B] and Merkurjev-Suslin [M-S] we have the exact sequence

0 —> H\X9 JΓ2) ® (Qp/Zp) — KNH3(X, (Qp/Zp)(2))

—> ker(CH0(Z){/7} — . CH0( X){p}) — 0

where

KNH3(X, (Qp/Zp)(2)) -ker(7Vi/3(X, Qp/Zp(2)) — H\X, (Qp/Zp)(2)))

and

NH3(X, (Qp/Zp)(2)) : = ker(H\X, QJZp(2)) —> H\Q{X\ (Qp/Zp)(2)))

is the first step in the coniveau filtration on H3(X, (Qp/Zp)(2)).

LEMMA 2.1. i / 2 (Gal(β/0, Hl(X9 (Qp/Zp)(2))) = 0.

By Jannsen's cohomological Hasse principle [J] we have

), H\X9 (Qp/Zp)(2m ® H\G^\(QιlQ^ H\X, (Qp/Zp)(2))).
i
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Since the elliptic curve Eo (§1) has potentially good reduction everywhere, A and also

B (except possibly at 1=2) have potentially good reduction everywhere. By local

Tate-duality we have

Hom(//2(Gal(&/&), H\Z, (Qp/Zp)(2)\ (Qp/Zp)))

and in both cases of X, i.e. X=ExQE and all / or 1 = 5 and Iφ2, H3(X, Zp{\)) is

torsion-free and its local Galois invariants are zero by Deligne's proof of the Weil

Conjectures. In the case X=B and 1 = 2 we argue as follows: Recall that C^BxQK

and consider again the commutative diagram ( t ) in §1. Let ί/be the complement in C

of all exceptional fibers and 0 the complement in C of all exceptional fibers. Then

i: U-> U is a Galois extension with Galois group isomorphic to Z/2 and we have

(for/? ^2) an isomorphism H3(U, Zp(2))^H°(Z/2, H3(U, Zp(2))). By standard prop-

erties of the cohomology of blow-ups and the fact that Hι(Pι, Zp) = 0 for odd / we

have an injection: H3(B, Zp(2)) c_> H3(U, Zp(2)). On the other hand we have an iso-

morphism H3(U, Zp(2))^H3(E0 x ί 0 , Zp(2)) and therefore a Galois equivariant injec-

tion H3(B, Zp(2)) CL^ H3(E0 x Eo, Zp(2)). Since Eo x Eo has potentially good reduction

at 1=2, we finally have

H3(B, Z p ( 2 ) ) G a * δ 2 ) = / / 3 ( E o x £ o , Zp(2))Gali^Q2) = 0

by Deligne's proof of the Weil Conjectures.

COROLLARY 2.2. There is an injection

KNH3(X, (Qp/Zp)(2)) c^ H\G<A{QIQ\ H\X, (Qp/Zp)(2))).

PROOF. This follows from Lemma 2.1 using the Hochschild-Serre spectral se-

quence.

PROPOSITION 2.3. Let p be a prime such that

p>3 if X=B

p\6N if X=ExE.

Then we have

H\X, J Q (8) (Qp/Zp) = KNH3(X, (Qp/Zp)(2))diw

where for an abelian group M, Md i v denotes its maximal divisible subgroup.

Proposition (2.3) implies Theorems A and C. Indeed, let 9C be a smooth proper

model of X over

Z[l/2/>], if X=B

Z[\/6Np\, if X=ExQE.
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The kernel of the map

CH0(ίT)—>CH0(JO

is a torsion group by Proposition 1.2, if X=B and by [Mi], if X=ExQE. Therefore
we have a surjection

CH0(Sn{p}—+CH0(X){p}

on the/>-primary torsion subgroups. But CH0(,f){/?} is a subquotient of 7/e

3

t(^, (Qp/Zp)(2))
and therefore co-ίinitely generated as a Zp-module. So CH0(X){/?} is cofinitely
generated. Proposition 2.3 implies that keτ(CH0(X){p} -+CΆ0(X){p}) is finite. But
(CH0(X){p})GaHm) is known to be finite, too. Hence CH0(X){p] is finite in both cases
for primes p satisfying the assumption in Proposition 2.3. This finishes the proof of
Theorems A and C and it remains to show Proposition 2.3.

Let M=H2(X, (Qp/Zp)(2)) and consider the composite maps

φ : H\X9 Jf2) ® (Qp/Zp) — KNH3(X, (Qp/Zp)(2)) - ^ 0 H\Qh M)/H\{Qh M)
all I

where α' is the restriction (using Corollary 2.2) of the map

α: H\Gz\(QIQ\ M) — 0 H\Qh M)IH\{Qb M)
all!

the kernel of which defines the Selmer group.

PROPOSITION 2.4. £W^r the above assumptions we have

Im φ = 0 tfHft, M)dJH}(Qh M) ® Hι

g(Qp, M)/Hj{Qp9 M)
IΦp

and this image coincides with the image of

KNH\X,(QP/Zp)(2))diy

under the restriction map α'.

LEMMA 2.5. Let oc'p be the p-component of on'. Then

PROOF. By [L-S, Lemma 5.4] we have

3 \9C, τ&2Rj*(Qp/Zp)(2))

where 9£ is a smooth proper model of 9C over Zp. Therefore it remains to show that
H\9£, τ<2Rj^Qp{2)) is contained in H\{Qp, V) where V=H2(X, Qp(2)). This follows from
the proof of Theorems 0.1 in [L]. Note that 9£jZp is smooth and therefore in particular
semistable, because the conditions on the singularities in the closed fiber is trivial (the
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log-structure on SC is j*O£ ()()%, where/: XQp^>3£ is the canonical inclusion).

In the rest of this paragraph we restrict ourselves to the case where X= E x Q E is

the selfproduct of a CM-elliptic curve E with conductor N=qs.

The main finiteness result on Selmer groups associated to deformation theories by

Wiles [W, Theorem (3.1)] implies the following:

THEOREM 2.6. Let E be as above, p a prime, p\ 6q. Then kerα is finite, i.e. the

p-primary Selmer group associated to the symmetric square of E over Q is finite.

Indeed, consider the Galois representation on the /^-torsion points of E

ρp: Gal«2/β) —> GL2(Ep(Q)) = GL2(Fp).

Since complex multiplication is not defined over the field Q (•>/( — l) ( p 1)/2p) the

restriction of ρp to G a l t Q / Q ^ - l) ( p~ 1)l2p)) is absolutely irreducible and we may apply

Theorem (3.1) in [W] to the minimal deformation theory associated to ρp in order to

get Theorem 2.6. Consider now the commutative diagram (for p\6N)

H\X, jf2) ® Qp - A , p i c (X ) ® Qp

— H\(Qp, VW)(Qp, V)

(compare [L-S, Lemma 4.5 and its proof]). The surjectivity of dp implies the surjectivity of

ψp: H\X, JΓ2) ® (Qp/Zp) —> H\(Qp, M)/H}(Qp, M).

For all Iφq, Iφp, we have by [L-S, Lemma 4.5] an isomorphism y:

H1{Qh V)/Hj (Qb V) fitting into a commutative diagram

i Yxc{Xι)®Qp

φ\ y

H\Qh V)/H}(Qh V).

We have the surjectivity of the map (Mildenhall)

d ^
n \Λ., .Λ 2) Q9 \£p > \τy -ΓlC^A ι) Q9 \ίp

which implies by [L-S, Lemma 4.5] the surjectivity of

(2.7) H\X, X2) ® (Qp/Zp) — 0 H\Qb M)dJH}(Qh M) 0 H\{Qp, M)/H}(Qp, M).
IΦq

l*P

Now consider l=q (recall that the conductor of E is a power of the prime q by

our assumption). There is a totally ramified extension of local fields Nq/Qq such that E

has good reduction over Nq. Since q is ramified in the CM-field L we may assume that
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Nq contains L. Take an algebraic number field N containing L such that its completion

at q is Nq (note that N from now on denotes this number field and not the conductor

of E). Since the residue field of Nq is Fq we have rank NS (Eq x Eq) = 4. On the other

hand we know that Pic(Xjv) also has Neron-Severi rank 4. Therefore the composite map

has finite cokernel, which implies the surjectivity of

^ q) ® Qp .

By [L-S, Lemma 4.5] the map

φq: H\XΉ, JΓ2) ® (Qp/Zp) > H\Nq, M)dJH}(Nq9 M)

is surjective. Now we have a commutative diagram

H\XN9 JT2)®QP - ^ H\Nq, V)IH\(Nq, V)

NN/Q cor'

H\X9 Jf2) ® Qp - ^ H\Qq, V)IH\{Qq, V).

Here V=H2(X, Qp(2)). To get the map cor' on the right-hand side we start with the

corestriction map

H\Nq, V)^H\Qq, V).

This induces a commutative diagram

i / 1 ^ , V) - ^ > Hι(IN}, V)

cor cor

\Qq,) \ Q q , )

Here INq, IQq are the inertia groups and note that /Nq = /Qq n Gal(7Vq/Λfq). Since H\(Nq, V)

(resp. Hj-(Qφ V)) is kerμ^ (resp. ker μQq)—note that qφp. We obviously get the map

cor' by taking quotients. Since cor is surjective, cor' is also surjective. Therefore the map

(2.8) H\X9 JΓ2) ® Qp —+ H\QV V)IH\{Qq, V)

is surjective. Now the restriction of the map ψq°NN/Q to the image of

(Pic(XN)® < ^ z » ® Qp in HX(XΉ, JΓ2)® Qp is still surjective, whereas its image in

θ a i π ^ t f H f i , V)/Hj(Qh V) under the map 0 a l l ^ g Z ^ o i V N / e is zero. This fact together

with (2.7), (2.8) and Lemma 2.5 imply all the statements of Proposition 2.4 in the case

X=ExE. Finally Proposition 2.4 and Theorem 2.6 imply Proposition 2.3 in the case

X=ExQE for a CM-elliptic curve E. This finishes the proof of Theorem C.
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3. In this paragraph we will finish the proof of our main Theorem A; i.e. we
prove Proposition 2.3 in case X=B. Recall B is isomorphic to the Kummer surface
Kim(̂ 4), where A is an abelian surface with an isogeny EoxEo-+A of degree 2 and
Eo is the elliptic curve explicitly constructed in § 1. Eo has complex multiplication by
Z\i\ and conductor 21 2. We will of course use the tools in the proof of Theorem C
to derive Theorem A.

PROPOSITION 3.1. There is for all primes l\2p an isomorphism

Vic(Bι)®Qp^H1(Qh V)/H\{Qh V)

fitting into a commutative diagram

H\B9JΓ2) ~ Yιc{Bι)®Qp

H\Qh V)H}(Q» V).

This is proven in the same way as [L-S, Lemma 4.5]. One needs the Tate conjecture
for the closed fiber Bι of B which is known (compare [Shi]). Similarly the crystalline
Tate conjecture (which is easily derived for Bp since it is known for Ap) yields—by the
same methods as in the proof of [L-S, Lemma 4.5] an isomorphism

®Qp = Hl(Qp, V)jH)(Qp, V)

fitting into a commutative diagram

H\BiJr2) > Pic(Bp)®Qp

(3.2) *\^ ] =
Hl(Qp9 V)H}(Qp, V).

Now consider the case 1=2. To show the surjectivity of the map

H\B, Jf2) ® (Qp/Zp) —> H\Q29 M)dJH}(Q2, M)

it suffices to show—by a norm argument—the surjectivity of this map when working
over the field K. Again we use the fact that B®QK is isomorphic to C. Let q = (l +/)
be the unique prime of Z[i~\ lying above 2. Usint the commutative diagram | and
standard cohomological arguments of blow-ups that are similar to the ones applied in
the proof of Lemma 2.1 we have an isomorphism of Gal(β/ΛT)-modules

M=H2(Q Qp/Zp(2))^H2(EoxEo, Qp/Zp(2))@(Qp/Zp(l))16

where the right summand on the right-hand side corresponds to the exceptional fibers
in the blown-up points. Let Z be the subgroup of Pic(C) generated by the 16 exceptional
fibers. It is then easy to see that the image of the map
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(Z ® K*) <g> β./Z, — H\C, Jf2) ® β,/Zp - A . tf1^, M)dίv///}(*q, M)

is ^ ( ^ ( β p / Z p ί l ^ ^ V ^ ^ ί β p / Z ^ l ) ) 1 6 ) (use the above decomposition of M and

compare the proof of [L-S, Lemma 4.1]). Now the crucial commutative diagram (*)

in §1 implies that the image of Hι(E0 xE o, ^2)®QPI^P under the map φq°n^of* is

H\Kq, H\E0 x E09 Qp/Zp(2)))dJH}(Kq, H\E0 x Eθ9 Qp/Zp(2)))

in view of the Gal(β/A^)-equivariant splitting of M and the surjectivity of the map φq

in the case X=E0 x Eo that was shown in §2. This shows the surjectivity of φq (X= C)

and therefore also of φ2 (X=B) By applying an argument that is almost identical to

the one used at the end of §2 we see that Proposition 1.2, Proposition 3.1, Lemma 2.5,

3.2 and the surjectivity of φ2 imply Proposition 2.4 in the case X=B. Now we show:

THEOREM 3.3. In the notation M=H2(B, Qp/Zp(2)), the kernel of the map

α: H\G<ύ{QIQ\M)-^ Θ H\Qh M)/H}(Qh M)
a l l /

is finite, i.e. the p-prίmary Selmer group Spao{Q, H2(B)(2)) is finite.

End of the proof of Theorem A: Theorem 3.3 and Proposition 2.4 (case X=B) finish

the proof of Proposition 2.3 that implies Theorem A.

PROOF OF THEOREM 3.3. Consider the commutative diagram

A < A

A/1 « B

where A is the blow-up of the abelian surface A at all 16 points of order 2. From the

Hochschild-Serre spectral sequence it is easy to see that

(3.4) H\A, (Qp/Zp)(2)) s H\B, (Qp/Zp)(2))

as Gal(β/β)-modules (note that the inversion i acts trivially on H2(A, Qp/Zp(2)).

Furthermore we have a direct sum decomposition of Gal(β/β)-modules

(3.5) 7/2(I, (βp/Zp)(2)) = H2(A, (Qp/Zp)(2)) φ (βp/Zp)(l)1 6

It is well-known that the Selmer group of (βp/Zp)(l) vanishes. The isogeny σ: EoxEo^>A

of degree 2 implies an isomorphism (multiplication by degσ = 2, note that p\2) of the

composite map

H2{Ά, (βp/Zp)(2)) — H2(E0 x Eo, Qp/Zp(2)) - ^ H\Ά, (Qp/Zp)(2)).
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Hence we get a surjection of Selmer groups

SP4Q, H2(E0 x £0)(2)) - ~ SP~(Q, H2(A)(2)).

By Wiles' theorem 2.6, that we may apply to Eo, SpOO(Q, H2{E0 x Eo){2)) is finite.

Using (3.4) and (3.5) we see that SpO0(Q, H2(B)(2)) is also finite and Theorem 3.3 holds.
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