
Tόhoku Math. J.
50 (1998), 243-260
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Abstract. We consider Whittaker model for generalized principal series rep-

resentations of the real sympletic group of degree 2. We obtain an integral formula

for the radial part of the vector of with an extreme K-typQ in the Whittaker model.

Introduction. In our previous papers [O], [M-O], we investigated Whittaker

functions of the large discrete series representations, and of the principal series rep-

resentations of the real symplectic group Sp(2; R) of rank 2, respectively.

In this paper we shall obtain explicit integral formulae for the radial part of the

Whittaker functions on G = Sp(2; R), belonging to the principal series representations

associated with the Jacobi parabolic subgroup Pt of G.

Let (π, Hπ) be an irreducible admissible representation. Denote by N a maximal

unipotent subgroup of G. For a continuous character η: N^>C* of N, let C™(N\G)

be the space of complex-valued C00-functions f on G satisfying

f{ng) = η(n) f(g) for any neN, geG .

Consider C™(N\G) as a (g, Λ^)-module via the right regular action of G. Then the

intertwining space

Hom ( 9,X )(i/π, C?(N\G))

is the space of algebraic Whittaker vectors. When π is a principal series representation

with a generic parameter μ of α£, the dimension of the above space is known and equals

the order of the (little) Weyl group, i.e. 8 in our case (cf. Kostant [Kos, §5]). Here α£

is the dual of the complexification of the Lie algebra a of A.

Choose a K-type (τ, Vτ\ τeK, which occurs with multiplicity one in 7/π, and let

/: Vτ CL_> Hn be an injective ΛMiomomorphism which is unique up to nonzero scalar

multiple. Then we call the elements of the image of the restriction map

Whittaker functions with K-type τ* belonging to the representation π.

Now consider the standard maximal parabolic subgroup Pί of G associated to

the long simple root. In this paper we call this parabolic subgroup the Jacobi
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parabolic subgroup. Let π be a generalized principal series representation induced from

with σγ a discrete series representation of M 1 ? vx a complex-valued linear form on

the Lie algebra a1 of Al9 where Pί=MίAίNί is the Langlands decomposition. Let

τ be the "corner" A -̂type in π. Then the radial part of the Whittaker functions

with A -̂type τ* belonging to π is a solution of a holonomic system of rank 4 on A.

This is a situation completely similar to the case of the large discrete series rep-

resentations and their minimal AT-types, discussed in [O]. Therefore, applying the

method of [O], we can obtain an integral expression for these Whittaker functions. It

is the main result of this paper.

Now let us explain the contents of this paper. In §1, we recall some notation which

were used in [O]. In §2, we recall the definition of the principal series represen-

tations of G which are induced from a maximal parabolic subgroup and their de-

composition into AΓ-types. We recall some structure of the unipotent radical TV of

a minimal parabolic subgroup and the definition of generic characters η of it in §3.

Definitions of the Whittaker functions and Schmid operators are given in §4. We

obtain a fundamental formula which is used for the computation of the radial part

of the Schmid operators in §5. In §6, we give an expression of the Casimir element

acting on C™{N\G)(g)κ V* and also determine the eigenvalue of the element on the

space of the principal series representation under consideration. In §7, the action of

the shift operator on the minimal X-type vector is explicitly computed and we obtain

explicit formulae of the differential equations for Whittaker functions in Propositions

7.1 and 7.3. Finally in §8, we obtain integral representations of the radial parts of the

Whittaker functions with minimal A^-type, Theorems 8.1 and 8.2.

The observation to start this paper, namely, that the "shape" of the AΓ-types of

lndp1(σ®eVl® lNl) is the same as that of the large discrete series, is due to the first

named author.

We thank Kyo Nishiyama and Takahiro Hayata for various comments on the

previous papers.

1. Notation. We use the same notation as in the previous paper [O]. The

symplectic group of degree 2 is given by

G = Sp(2;R) = \geSL4(R)\tgJg = J = ( ° M ]

Here *g denotes the transpose of g and 12 the unit matrix of size 2. A maximal compact
subgroup K of G is given by

κ=U A_B
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which is isomorphic to the unitary group U{2) of size 2.

The Lie algebra of G is given by

g = sp(2; R) = {Xe M4(«) | JX+ fXJ= 0} ,

and that of K

A B

-B A
A,BeM2(R);tA=-A,tB = ,

We have the associated Cartan decomposition g = ϊ φ p .

An /?-basis of u(2) is given by

'-1Γ1 °V . m l 1 ° V Y=ί0 l

,0 \r v Λ o - 1 / V-1 o

Let u(2)c = u(2)®RC Then a basis of u(2)c is given by

1 0

0 1

1 0

z=
1 0

0 1 0 - 1

0 1

0 θ)'

0 0

1 0

Via the isomorphism fc >̂ u(2)c, the preimage of the above basis of u(2)c is given by

= (-J-\) - 1

- 1

- 1

Y' =

A compact Cartan subalgebra ί) of g is given by ί) = R(J — J

Put J Ϊ ; = 1/2(Z + //'), H'2 = l/2(Z-Hf). We consider a root space decomposition

of g with respect to I). For a linear form jS: ί) -» C, we write j5f = jδ^— li/'f) G C. For each

jSGI)* = Hom(ί), C), set ĝ  = {Xe gc = g® Λ C| [H, X] = β(H)X, yHe ί)}. Then the roots of

(g, t)) are given by

= N /- l {±(2,0) , ±(0,2), ±(1,1), ±(1, - 1 ) } .

We write root vectors Xβ in ĝ  which are given in Table 1 of [O, p. 265]. Then

i c =ι ) c +C3r ( l f _ 1 ) +cjr ( _ M ) . set.
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P+ ==<-^(2,0) + C ^ ( l , l ) + C^ί(0,2) j P- = <

then g c = f c θ p + Θ p - For each root β = (βί9 β2), we put ||)8|| =y/\βi \2 + \β2 I
2 The set

{c ||jS||(J^ + l r_^), c Λ/=T||/?||(A^3 — ^f_^), βεΣ*} forms an orthonormal basis of p = pR

with respect to the Killing form for some constant c. Here Σ"π

+ = {(2, 0), (1, 1), (0, 2)} is

the set of non-compact positive roots. Also we denote Σc

+ = {(1, — 1)} the set of compact

positive roots.

(Restricted roots and the Iwasawa decomposition. > We choose a maximal abelian

subalgebra α of p. Set

1 0

- 1
and H7 =

0 - 1 '

then these form a basis of α.

Let {eί=(l9 0), e2 = (0, 1)} be a standard basis of the 2-dimensional Euclidean plane

R2. Then the root system Ψ of (g, α) is Ψ={±2eί9 ±2e2, ±ex ±e2} with a positive root

system Ψ+ = {2eί9 2e2, eι-he2, eί —e2}. Then n = Σaeψ+ gα is a nilradical of a minimal

parabolic subalgebra. We choose generators Eu of gα (αe Ψ+) as in [O, p. 266]. In gc,

the Iwasawa decomposition of the root vectors {Xβ; βeΣ} are given as follows, which

is obtained by direct computation.

LEMMA 1.1 ([O, Lemma 1.1]).

Λ. ( Λ 1 \ X

— —H' A- H ? —

<The Jacobi parabolic subgroup.)

DEFINITION 1.2. We call the standard maximal parabolic subgroup Pί corre-

sponding to the long simple root of Ψ, the Jacobi parabolic subgroup of G.

The Langlands decomposition P1=MίA1N1 of Pί is given by

ε
0

0

0

0
a

0

c

0

0

ε

0

0

b

0

β b

c d.
eSL(2;R),εe{±l}

= {diag(r,l,rM)|re/?>0},

and the unipotent radical
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1

0

0

0

*
1

0

0

*
*

1

*

*
0

0

1

Here diag(fl1? a2, a3, α4) denotes the diagonal matrix whose (i, ι)-components are given

by flj. The unipotent radical Nί is the 3-dimensional Heisenberg group.

2. Generalized principal series associated with the Jacobi parabolic subgroup.

In this section we review some results on the Λ -̂types of the principal series representa-

tions associated with the maximal parabolic subgroup Pίm Let us start with the defini-

tion of these representations.

A discrete series representation σ of the semisimple part M x = {± 1} x SL(2; R) of

Pί is given as a pair (ε, ξ)9 where ε: { ± 1} -> C* is a character, and ξ is a discrete series

representation of SL(2; R). For an element Vi €αf c , let exp(vx): Aγ -> C* be a character

of Au and we can define a representation σ®vx of Pί by

σ®v1(p1) = σ(m1)al1, for />x =mίaιnίeP1=M1A1N1 .

Then the representation π ^ ; σ; v j of the principal series associated with the Jacobi

group P1 is defined as the induced representation Indp 1 (σ®(v 1 +p P l )). Here pPl =

In order to formulate some results on the X-types of the above representations,

we have to recall the parameterization of the discrete series of SL(2; R). The weight

lattice of SL(2; R) is identified with Z. Then the Harish-Chandra parameters of the

discrete series representations of SL(2; R) consist of Z \ { 0 } .

For a given Harish-Chandra parameter m e Z \ { 0 } , its Blattner parameter k is

given by k = m + l, if m > 0 , k = m — 1, if ra<0. We denote by Z)fc

+ the discrete series

representation with Blattner parameter k, if k>0 (k>2, in fact). Similarly we set Z>fc~

to be contragradient discrete series representation for Dfc

+, k>2. Hence the Blattner

parameter of Z>/~ is equal to —k.

<A -̂types of the principal series representation.) We describe the AΓ-types of the

principal series representation π(P x; σ; vλ) associated with Pι,σ = (ε, D^). The irreducible

finite-dimensional representations of the Lie algebra ϊ c ^ gl(2, C) are parameterized by

the set {λ = (λί9 λ2)eZ®2\λ1>λ2, i.e. λ is dominant}. We denote (τA, Vλ) the rep-

resentation associated with λ in the above set. Let d=λ1—λ2, then the dimension of

Vλ is d+l. Let y 2 β l = d i a g ( - l , 1, - 1 , 1) in Mv

PROPOSITION 2.1. Let π(P x; σ; v j be the principal series representation of G

associated with Pί,σ = (ε, D^andv^^eafc. Then for a dominant integral weight λ = (λu λ2)

the irreducible representation τλ of K occurs in π(Pγ\ σ; vt) with multiplicity
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iΞ=A;(mod2),m sgn(I>k

±)-fc>0 :

Here we set sgn(D^)= + 1 and sgn(/\~)= — I. In particular,

( i ) *yΦ2βl) = (- l)* andσ = (ε, D^\ then each ofτiU) (leZ, l=k (mod2), /< -k)

or τ(/>_k) (/eZ, /=fc (mod2), /> — A:) occurs in π(Px\ σ; v j with multiplicity one;

(ii) ifε{y2ei)=-{-\)kandσ = {ε,Dϊ\theneachofτ(Ul-1)(leZ,l<-

(leZ, l=k (mod2), /> — k) occurs in n(Pγ\ σ; vx) with multiplicity one.

PROOF. Consider the restriction of σ = (ε, D^) to K n Mγ:

^ Σ [ σ : ω ] ω .

Here [σ:ω] is the multiplicity of ω in σ | X n M l . Since KnMί^{±\}xS0(2), any

ωe(A^nM1)
A is specified by its value ω(y2eι) at y 2 e i=diag(—1, 1, —1,1) and the

restriction ω | S 0 ( 2 ) . We define a character χm (meZ) of SO(2) by

where rθ G 50(2) is the rotation with angle θ. Then the ^Γ-type theorem for D^ implies

that the multiplicity of ω = (ω(y2ei)? Xm) ^s given by

if m = k(mod2\ m sgn(Df)-k>0, ω(y2eι) = ε(y2ei);

^ 0 , otherwise .

The Frobenius reciprocity implies that the multiplicity of τλ e Kin π(Pγ\ σ; v j is given by

[σ: ω] =

x; σ; v t ) : τ ( λ l i λ 2 ) ] = Σ
ωe(KnMi)Λ

lτ
κnMi

(cf. Knapp [Kn, Chap. 8, Prop. 8.4, p. 207] or Vogan [V, Chap. 4, formula (4.1.15),

p. 145]).

Since the irreducible decomposition of τ U l A 2 ) | X n M l is given by

KnMl= θ
λ2<m<λ\

r _ nλi + A2-r 7 )
j Am/ i

together with the above formula of [σ: ω], we have the former part of the proposition.

To show the statement on the multiplicity one of the latter part, note that (— l)w = (— l)k

and that ( - l)A l + λ 2 ~ m = ε(y2ei) are equivalent to ( - l)Λ l = ( - \)λl ( - \f ε(y2ei). Then the

rest of the proof is elementary. q.e.d.

3. Characters of the unipotent radical. Put 7V=exp(n). Then N is written as

0 1N= no,nl9n29n3eR
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The commutator group \_N, iV] of N is given by

nltn2eR>.

Hence a unitary character η of N is written as

1

1 0

— n 1

for some real numbers c0, c3eR.

We denote by the same letter η, the derivative of η

η: n —• C.

Since n/[n, xί] = REeί_e2®RE2e2, η is determined by the purely imaginary numbers

ηeί _ e2 = η(Eei _ e2) and

Here ηeχ_ei = 2πJ— \c0 and η2e2 = 2πJ—\c3.

ASSUMPTION 3.1. Throughout this paper, we assume that the character η of N is

non-degenerate, i.e. both ηeι-e2 and η2e2 are non-zero.

4. Whittaker functions and Schmid operators. Let η : N=exp(n) -• C* be a unitary

character. Then we denote by C™{N\G) the space

C?(N\G) = {φ: G^Q C™-funcύon\φ(ng) = η(n)φ(g\(n,g)cNxG} .

By the right regular action of G, C™(N\G) is a smooth G-module, and a (gc, ΛΓ)-module.

For any finite-dimensional Λ^-module (τ, V), we put

C™τ(N\G/K) = {F:G-+V, C00-function|F(ngk-') = η{n)τ(k)F{g\ (n,g,k)eNxGxK} .

Let (π, //π) be an irreducible admissible representation of G, and denote its associated

(9, ^)-module by the same symbol. Consider a homomorphism φπ of (g, ΛΓ)-modules

Let (τ*, Fτ*) be a A -̂type of //π and z: Fτ* cz_̂  /fπ an injection of ^-modules. Then

the restriction of φπ to Fτ* via i defines an element φπ,τj in C™τ(N\G/K) =

C™(N\G)(g)κVτ^Homκ(Vτ*, C™(N\G)). Here (τ, Fτ) is the contragradient representa-

tion of τ*.
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DEFINITION 4.1. We call ^ π τ ί a Whίttaker function of Λ -̂type τ belonging to the

representation π. The function φπ τ , is determined by its restriction to A. We denote

this by the same symbol ιAπ,t,i

Now let us recall the definition of Schmid operators. Let g = f Θ p be a Cartan

decomposition of g, and Ad = Ad P c the adjoint representation of A^on p c . Then we have a

canonical covariant differential operator V ^ from C™τ{N\G/K) to C£τ(S)Ad(N\G/K):

where {Ar,}1 is any fixed orthonormal basis of p with respect to the Killing form of g,

and Rx.F(g) = (d/dt)F(§ e x p ( ^ ) ) \t=0, gεG.

Let Pτ': Vτ (x) p c —• Vτ> be the projection to an irreducible component of the

representation K τ ® p c of K. Then for a Whittaker function ψπtτtieC£τ(N\G/K), the

Fτ,-valued function φ'= Pτ,oVητ(χjjπτi)eC™τ{N\GIK) is also a Whittaker function

belonging to π, because the coefficients of φ' are linear combination of the derivations

of the coefficients of i//nttti with respect to elements in p c .

5. Radial part of Schmid operators. Put A =exp(α), i.e.

α1 ? a2eR, a1>υ,a2>0

Then we have the Iwasawa decomposition G = NAK of Sp(2; R). The value of

Fe C£τ(N\G/K) is determined by its restriction φ = F\A to A.

We compute the radial part of the Schmid operators Vlί>A = V^τA. As an orthogonal

basis of p, we take C\\β\\(Xβ + X.β\ C\\β\\^\(Xβ-X_β\ βeΣ^ with some C>0
depending on the Killing form. Then

Vη,λF=2C2 Σ \\β\\2Rx_βF®Xβ + 2C2 Σ \\β\\2RXβF®X-β

We define

VίλF=±-Σ\\β\\2 • Rx_βF®Xβ V , " ^ ! Σ\\βf • RXβF® X_β .

In order to write R(V*λ), we introduce some symbols. Set dt to be RH. restricted to

functions on A (i = 1, 2), and define linear differential operators $£* and Sf ± on C°°(̂ 4, FA)

by

JSζ*0 = (3, ± 2 V - 1 afη{E2e))φ (i = 1, 2)

, _ β 2 ) ± y M α ^ j f K ^ , + ei)}Φ •
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Then we have

PROPOSITION 5.1 ([O, Proposition 6.1]). The radial part of the shift operators,

tλ)'- c°°(^ FΛ)^C°°μ, Vλ®p±\ are expressed as

+ (H[) - 4)(φ ® JT(2i0

+τλ®Adp+(X))(φ®XilΛ))

(ii)

6. Casimir operator. We shall investigate the action of the Casimir operator on

the Whittaker functions belonging to the principal series representations π(P x; σ; vx)

associated with the Jacobi parabolic subgroup.

To obtain the value of the infinitesimal character of π at the Casimir element

we recall how the discrete series of SL(2; R) are obtained as sub-quotient of the principal

series representation.

<The representations of SL(2; R).} The principal series representations of

S = SL(2; R) are given as follows. Set

Also we write K' = SO(2). Let εQ: MQ -• C* be a character of MQ, λ e α$ c , and pQ e a£

is a half of the positive root. Then ξ = Inds

Q(εQ®(λ + ρQ)) is a principal series rep-

resentations of S. We denote by Vξ the subspace consisting of ^'-finite vectors in the

representation space of ξ. We identify a£c with C via

Here /I' is the complex number corresponding to λ, and pQ is identified with 1. We

denote by s the Lie algebra of SL(2; R).

PROPOSITION 6.1 (cf. Vogan [V, Proposition (1.3.3), p. 59]). Let us work in the

category of (s, K')-modules.
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( i ) If λ is a positive integer with parity —εQ, then ζ contains the discrete series

(s, K')-modulesDχ +1 assubmodules. Then quotient Vξ/(Dχ+ x © Dχ+ γ) isafinίtedίmensional

representation of weight λ—l.

(ii) If λ is a negative integer with parity —εQ. Then ξ contains as its unique

irreducible submodule, the finite-dimensional representation of weight — λ— 1. The quotient

of Vξ by this is isomorphic to Dlλ+ί ®DZλ + ί.

By the above proposition the discrete series representation D^ of S is embedded

in a principal series representation lnds

Q(εQk®(k-1 +pQ)). Here εQkeMQ is given by

εQik(±) = (±)k. By the transitivity of parabolic induction (see Vogan [V, Chap. 4] for

example), π = Indp1((ε, Dk

±)®(v1 +pPlj) is a submodule of

Ind^((ε, Ind|(eQίJk ® (k-1 + ρQ))) ® (v1 + pPJ) ^Ind£(σ M ® (μf + pP)),

where σ M e M i s specified by σ(y2eι) = ε(y2ej and σ(72e2) = ε<2Jt(—12) and μ 'eα^ is given

by μ' = (vl5 fc— 1). Since the principal series representation π' = Indp(σM ®(μ' + pP)) is

quasi-simple, the eigenvalue of C2 on π is equal to that on π'. Similarly, π is obtained

as a quotient (g, A^)-module of π" = Indp(σM ® (μ" + pP)), where σM is the same as above

and μ" = (v1? —k+ 1).

Now we can write the action of the Casimir operator on the Whittaker functions.

<The even case.) Assume that ε(y2eι) = (—l)k in this case. The K-typε τ ( _ k > _ k )

occurs with multiplicity one in π. Let /: WZ( _ k _ k) -» Vπ be the injective ^-homomorphism

unique up to constant multiple. Then there is a ^-homomorphism j : W/

t(_k _ k ) ^ F π -

which is a lifting of / with respect to the natural surjection Fπ» -• Fπ, which is also

unique up to constant multiple because of multiplicity one (cf. [M-O, Proposition 3.1]).

Then the space of Whittaker functions of type τk>k belonging to π is contained in the

space of Whittaker functions of type τk f k belonging to π".

PROPOSITION 6.2. (i) Let R(L) be the radial part of the Casimir operator L, and

set r(L) = a-pR(L)ap. Then for Ie C">(A)

r(L)I= {d2 + di + 2ηl _ e2(aja2)
2

(ii) Let φ(a)eCco(A) be the radial part of the Whittaker function of type τκk

belonging to π, and let I(a) = a~pφ(a). Then

<The odd case.) Assume that ε(y2eί)= ~(— l)k By Proposition 2.1, the A -̂type

(τ ( _ k f _ k _ 1 ) 5 V) occurs in π with multiplicity one. We use the realization of (τA, Vλ) with

a basis {Vj}0<j<d in [O, §3]. We call the basis as the standard basis for τλ. We also use

freely the formulae in [O, Lemmas 3.1, 3.2, 3.3]. Let {v0, i J be the standard basis of

V, and F* the dual space of V. Fix an injective ^-homomorphism /: F* -* HπK unique

up to constant multiple. Then we can find again a lifting y: V*->Hπ,,tK of / so that

i=p 'j where p: Hn, κ-+ HπK is the natural surjection. As in the even case, Lemmas
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7.4 and 7.5 of [M-O] implies the following.

PROPOSITION 6.3. (i) Let R(L) be the radial part of the Casimir operator L on

C%4)(g> V. Then the operator r(L) = a~pR(L)ap reads

for I(a) = bo(a)υo + bί(a)vιeCcc(A)®cV, ^ ( f l j e C ^ ) , i = 0, 1. Here

(ii) Let φeC°°(A)® V^C™τ(k+ίk){N\G/K) be a Whittaker function with K-type
τ(k+ί,k) belonging to π. Set I=a~pφ. Then I(a) satisfies

7. Holonomic systems for Whittaker functions. In this section we compute explicit

formula of differential equations for Whittaker functions of the fundamental series

π(Pi; (ε, D^); vx + p P l ) with K-type τ ( k i k ) or τ ( k + l t f c ) .

7.1. The even case. We consider the case ε(y2ei) = (— l)k in the first place. In this

case π has Λ -̂type τ (_k f_ f c ) with multiplicity one (cf. Proposition 2.1). Here is the main

result in this subsection for the even case.

PROPOSITION 7.1. Let 0eCoo(y4)^Q t (kk)(7V\G/A:) be a Whittaker function with

K-type τ(k,fc) belonging to π. Define h(a)eCcc(A) by

Then h(a) satisfies

( i ) ( δ 1 5 2 -

(ii) {(di+δ2

The system (i), (ii) make a holonomic system of rank 4.

PROOF. First we show (i). Let

be the down shift operator defined in [M-O, §8, (8.3)]. Then, since τ(_fc + 2,- fc + 2) does

not occur in π, the Whittaker function φ in C£τ{ktk)(N\G/K) satisfies &iownφ = 0, i.e.

for φ(a)

Define h(a) as in the statement. Then the above equation leads to the first equation in

the proposition.
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Now we rewrite the action of the Casimir element (cf. Proposition 6.2). Then we have

for I=a\~ιa\~ιzκρ{ — ^j—\γ\leia\)h. Rewriting this equation for h, we have

Note that <9*2h = dίd2h by the equation (i). Then the above equation leads to

{(dί+d2)
2 + 2(k-l)(dί+d2) + 2(k-l)2-4^/^η2e2aϊd2}h = {vϊ + (k-\)2}h .

This is the second equation (ii) in the proposition. q.e.d.

7.2. The odd case. We consider the corresponding result for the odd case, i.e.
ε(y2ei)= — (— l)k By Proposition 2.1, πhas^Γ-type(π(_Λ _ Λ _ υ , V*) with multiplicity one.

Let φ(a) = co(a)uo + c1{a)υ1 e C°°(v4)(χ)c Fbe a Whittaker function with K-type τ{k+ ltk)

belonging to π. Recall the down shift operator

όk ' Cη,τ{k+Uk)(
N\G/K)-+Cη,τ{k,k-1)(

N\Cj/K)

defined in §9 of [M-O], which is the composite of the operator V^t(k+1>k) and the

projector onto τ{kk_ιy Because the A -̂type τ ( _ k + 1?_fc) does not occur in π, we have

(?k

down(φ) = 0. If we write I(a) = a~pφ(a) = bo(a)vo + b1{a)vu then by Remark 9.2, (3) of

[M-O], this condition is equivalent to the two equations:

(7.2.1)

DEFINITION 7.2. We define functions ho(a) and hγ(a) by

i bo(a) = a\ + 1ak

2 exp(-<J^Λr\ le iμl)K(β)

It is easy to check that h^a), z = 0, 1, satisfy

»/ei-β2fli
2Λo(β) + 3iAi(fl) = 0 , α2

232Λ0

which are derived from (7.2.1). In particular, they satisfy

Now recall the differential equations arising from the Casimir operator, i.e.

Proposition 7.2 of [M-O]. By using (7.2.1), this is equivalent to the system of equations:

and
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^\r\2e2a
2-2{dγ-k)}bM

We want to write this in terms of h^a), ί = 0,1. These two equations are transformed to

A + 2d2}h0(a) = dho(a),

Here d=v2 + (k — I) 2 . Direct computations show that these are reduced to

2+k2}h0(a)^

Recall that d1d2hi = <9p2hh i = 0, 1. Together with these, the above equations give the

following:

PROPOSITION 7.3. Let φ be a Whittaker function with K-type τ ( k + 1 > k ) belonging to

π. Write φ = apl and

T ί \ J-% ί \ V 1~\ ( \ r— ί^a

with respect to the standard basis {υ0, vt} of V. Define h^a) as in Definition 7.2. Then

hi(a) satisfy the differential equations:

( i ) ηeι-

(ϋ) ale

accordingly

(ϋi) [d,d2-

Moreover they satisfy

(iv) {(d1 + d2)

(v) {(β1 + d2)

8. Integral formula for the Whittaker function.

8.1. The even case. Now we want to solve the equations in Proposition 7.1:

( i ) ( δ 1 5 2 - ^ 2 ) A = 0,

(ii) {(dι+d2

where &? = ηeι-e2(aι/a2).

We first find the form of the solution by formal computation. Assume that h is

represented as a Laplace transform
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Then we have

h(a
u
 a

2
) = I Φ(u

u
 u

2
)exp(u

i
a

2
 + u

2
a
2

 2
)du

γ
du

2
 .

JR2

*i> ai)~ I (~4M 1 M 2 ) ( —— ) Φ(uu u2)zxp(uιal + u2a2

 2)du1du2 .
,&2

Therefore the equation (i) above implies that

Hence the support of a generalized function Φ is on the hyperbola 4w1w2= —η^-e
(>0, if fy is unitary.) Thus taking a function φ on /?\{0}, we can write Λ as

where c is a constant ± 1. This is a general solution of the equation (i). Now we note that

and

Assume that Qxp{c(u/a2 — η^_e2«ί/4w)} ->0asw->0orw-χx). Then integration by
parts shows that

=V2"
Hence from the equation (ii), we get a differential equation for φ,

(8.1.1)

where du = u(d/du). Assume that φ has support in {ueR | w>0}. Then we should choose
c=—\ to justify the integration by parts. We set φ(u) = v~ίl2~k+ί\l/(v) with v = y/ΰ.
Then 2u(d/du) = v(d/dv), and the above equation (8.1.1) is written for φ(v) as
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(8.1.2) Γ 2 j i ^ + * 2 _ 8 y _ :

On the other hand, when Re(κ—1/2— m)<0, the function

Wkz) Γ
κ,m\ / rvi /Λ ι \ I

Γ(l/2-κ + m) Jo

defined for zφ(—00, 0) satisfies the Whittaker differential equation

<fc2

and Wκ^m(z) is a unique solution which rapidly decreases if z-> +00. Set κ = 0, and

m = v1 in above ^ κ , m . We finally obtain that

satisfies the differential equation (8.1.2). This gives an integral representation of the

function h(aί, a2).

THEOREM 8.1. Let π = π(P 1; σ; v^), σ = (ε, D^), be a principal series representation

of Sp{2\ R) as before. Assume that the character η: Nm^C is unitary and generic. Then:

( i ) π has a Whittaker model for η if and only if lm(η2e2)<0.

(ii) In this case, the function h(au a2) has integral representation

h(aί,a2) =

const. x f Y - < ^ O v i M e x p (
Jo " V

Then we have an integral representation of the radial part of the Whittaker vector

φ(aί9 a2) as

φ(aί9 #2) = const. x a\+ιa\ * exp( — sj — 1^2e2

α2)

' dt
x

o \ iz. I — \n^ ax t2 ) t

It is determined uniquely up to constant multiple under the condition that it rapidly

decreases when aί/a2 -> oo and a2 -> oo.

PROOF. We replace t by axt in the above integral representation of h(aί, a2). Then
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x l \—-a2 t\ ^ O i V l [ — « 2

'θ \«2 / \ β2

1 / f l ,V , Λ r τ , _ J Λ

If Im(^2 e 2)<0, then — l/32v^
=rIf72e2<c0 and 8λ/

zTf/2

1_e2f72e2<0. Therefore the

integrand above rapidly decreases when ί->0 and when ί-> +00. Hence the above

integral converges, and as a function in al9 a2, it rapidly decreases when aja2 -> + 00

and when a2 -> + 00. q.e.d.

8.2. The odd case. As in the even case, we can obtain a solution of the system

of differential equations in Proposition 7.3.

(ϋ)

(iii)

We can obtain an integral formula for hi(aί, a2), / = 0, 1, in the following manner. The

argument is similar to the even case. From the equations (i) for / = 0, 1, we can write

hi(aua2), ί=0, 1 as

hi(aua2)= I φi(u)exp{c[

where c is a constant ± 1. By the same way as in the even case in §8.1, we can obtain

the differential equations for φi{u), i = 0, 1 from the equations (ii), (iii) by integration

by parts.

(8.2.1) f^

(8.2.2)

We set

with v = yjΰ. Then the above equations (8.2.1) and (8.2.2) for each φ^u) are rewritten

for φiiv) as

t = 0

Here we choose c= — 1 as before.
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THEOREM 8.2. Let π = π(Pι; σ; v j , σ = (ε, Dϊ) be a principal series representation

of Sp(2; R) as before. Assume that the character η: Nm -> C is unitary and generic. Then:

( i ) π has a Whittaker model for η if and only if Im(η2e2)<0.

(ii) In this case, the functions hi(aί,a2) have integral representations with some

constant C as follows:

t

These are determined uniquely up to constant multiple under the same condition as in the

even case.

Finally we obtain the radial parts of Whittaker vector φ = co(a)vo + c1(a)v1 as

follows:

y 2 e 2 β | ^

By direct calculation one can show that these solutions satisfy the system of

differential equations (7.2.1).

REMARK. Here we do not discuss the irreducibility of the generalized principal

series representations π associated with Pv Regardless of whether it is irreducible or

not, the image of the "corner" A -̂type vector in π by the unique element Ψ (if exists)

in Hom ( g K ) (π, s/η(N\G)) satisfies the integral expression given above.

Recently Hayata [Ha] obtained a similar integral expression for Whittaker

functions with corner Λ -̂type belonging to the generalized principal series representations

of SU(2, 2).
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