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Abstract. We explicitly construct compact conformally flat hypersurfaces in a

simply connected, (« + l)-dimensional space form, where n is greater than 3. We may

assume that the ambient space is the standard (n + 1 )-sphere by a conformal diffeo-

morphism of a simply connected space form into the sphere. From this viewpoint we

give a global parameterization of compact conformally flat hypersurfaces, and we

establish relation between two types of hypersurfaces; one has umbilic points and the

other has not. It is known that each compact conformally flat hypersurface in a space

form is conformally equivalent to a classical Schottky manifold. In order to determine

the conformal types of our hypersurfaces, we explicitly represent conformal diffeo-

morphism of these hypersurfaces to corresponding Schottky manifolds. In particular,

we clarify the relation between our results and PinkalΓs results.

1. Introduction. In this paper we explicitly construct compact conformally flat

hypersurfaces in a simply connected, (n+ l)-dimensional space form with n>4. Fur-

thermore, we give explicit conformal correspondences between these hypersurfaces

and Schottky manifolds. We study mainly a special but basic class of such hypersurfaces,

namely, conformally flat hypersurfaces diffeomorphic to the torus S"" 1 x S1, where Sm

is the m-dimensional standard sphere in Euclidean space Rm+ί.

Compact conformally flat hypersurfaces in a simply connected space form can be

assumed to be the ones in Rn+ί by appropriate conformal transformations. Diffeo-

morphism types of such hypersurfaces was studied by do Carmo, Dajczer and Mercuri

(cf. [2]). Let S"" 1 x,^ 1 denote the ^-dimensional Klein bottle, where n stands for an

orientation reversing isometry of Sn~ι. Their result may be stated as follows:

THEOREM A. Let (Mn, g) be a compact conformally flat manifold with n>4. Then

M can be immersed as a conformally flat hypersurface Φ\ M-+Rn + 1 if and only if M is

diffeomorphic to one of the following manifolds:

(1) The standard sphere Sn.

For some k > 1

(2) the connected sum ofk copies of Sn~ι x S 1 if M is orientable,

(3) the connected sum of (k-1) copies of S"'1 xS1 and S"'1 xβ1 if M is non-

orientable.
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On the other hand, the intrinsic conformal geometry of compact conformally flat

hypersurfaces was studied by Pinkall (cf. [6]):

THEOREM B. Every compact conformally flat hyper surface in Rn + 1 with n>4 is

conformally equivalent to the standard sphere or a classical Schottky manifold.

Which classical Schottky manifolds really admit a conformal immersion as a

hypersurface in Rn+1Ί In the same paper, Pinkall also gave an implicit representation

of a class of conformally flat tori without umbilic points in Rn + 1, and conformal

correspondences of them to Schottky manifolds. His method is very interesting, but

the hypersurfaces which he constructed have singularities in general.

In this paper, we take up the viewpoint that hypersurfaces are conformally im-

mersed in Sn+ί rather than in Rn+1. In this situation we can simply represent a class

of conformally flat tori without umbilic points in Sn + 1 by parameters on S"'1 xS1.

Furthermore, we can give more clearly the correspondences between the hypersurfaces

and Schottky manifolds.

We denote by Sn±1 and Sn the unit spheres with the origin as center. We denote

by [0, / ] / ~ the circle obtained by the identification with 0 and /. Let qx{t\ te [0, / ] / ~ ,

be a smooth loop in Sn + 1 with the arc-length parameter t. Let q2(t) and (V#2)(0 be the

velocity vector field and the acceleration vector field on Sn + 1 of q^t), respectively. Set

||V<?2|| =max{||V?2 | |(t)| ί e [0, /]/-} . Note that the function ||V?2||(ί) on [0,7]/- is the

curvature of loop q1in Sn+ί. We regard q2(t) and Vg2 as vectors issuing from the origin

in Rn + 2. For the loop qί9 we have an orthonormal basis {qι(t), q2(t), #3(0> •••» #n + 2(0}

of Rn + 2 for each ίe[0, / ] , and functions λ^t) (3<i<n + 2) on [0, /] such that

(1.1) d^(t)=-λi(t)q2(t) (3<i<n + 2) and {Vq2){t)=Σ WMt),
at i = 3

(cf. §3, Lemma 1). We take smooth functions a(t\ b(ή and c(ή on [0, / ] / ~ satisfying

(a2 + b2 + c2)(t) = l and c(ί)>0. We define a hypersurface Φ in Sn + 1 as an Sn~^bundle

over the loop (aqί + bq2)(t). Namely, a mapping Φ\Sn~1x[0,l]^>Sn+1 is defined by

(1.2) Φ(y, t) = a(t)qi(t) + b(t)q2(t) + c(t)nt /qM ,

wherey = {y3,..., yn + 2)eSn~1. The mapping Φ is determined by loop qi and functions

α, b, c, namely, Φ = Φ(qu a, b, c). Our first problem is to find the condition on the loop

qγ(t) and functions a{t\ b(ή and c(t) in order that the mappings Φ define conformally

flat hypersurfaces (cf. §3).

THEOREM 1. We give a smooth loop q1:[0, l1+l2]/~^>Sn+1 satisfies the following

conditions:

(1) lγ > 0 and the restricted curve qx | [ 0 h] is a geodesic in Sn + 1.

(2) In the case \\Vq2\\ > 1, let (x and β be positive real numbers such that (χ2 + β2 =
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1 and β/oi= | | V # 2 | | . Then the length l2 of the curve <7i |[Zl ί l + ί 2 ] satisfies / 2 < α [ π +
2sin-1(l/HV<72||)].

Then there exist smooth functions a(t\ b(t) and c(t) on [0, / i + / 2 ] / ^ such that the

mapping Φ gives a compact conformally flat hypersurface without umbilic points.

If q^t) is a geodesic in Sn+ί, then (Vq2)(ή = 0 holds. Therefore we may take loops

qγ satisfying the assumption in Theorem 1 by slight deformation of geodesic loops in

Sn+ί. When (Vg2)(ί)/0 for some t in hypersurfaces Φ, we obtain various types of

conformally flat tori in Sn+1. From the viewpoint of our construction of hypersurfaces,

Pinkall in [6] discussed only the case that the functions a(t), b(t) and c(t) satisfy a'(t) = b(t)

at any t. In this case we have to find these functions on [0, / ] / ~ under strongly restricted

conditions for a mapping to become an immersion (cf. §3, Lemma 3). However these

conditions are necessary only for the part with (Vg2)(ί)/0 of the hypersurfaces. We

can take these functions more freely in the part with (V#2)(ί) = 0.

In the construction of conformal correspondences between the conformally flat

hypersurfaces Φ and Schottky manifolds, it is crucial to construct a conformal dif-

feomorphism of an open submanifold with (Vq2)(ήφ0 of Φ into Sn. For this con-

struction we use PinkalΓs method in a local form (cf. §4).

For each conformally flat hypersurface Φ given by (1.1), (1.2) and Theorem 1,

there exists an orthonormal basis {p2(ή,... ,pn + 2(ή} in Rn+ * for each t e [/1? Zt + /2] such

that

dpi dp2 " i 2

(1.3) (t)= —λiiήp^t) (3<i<n-\-2) and (t)= 2_, Λ(0/Ί (0 •
dt dt i = 3

Let ψt, lγ^t^^+1^ be a one-parameter family of Mόbius transformations without

rotations acting on Sn given by

# W a W W O - <p2(t), Ψϋχ)>Mχ)}, Ψh{χ)=x
dt j b

We define a mapping Ψ\Sn~ιx [/1? lί+l2']-+Sn by

Ψ(y, t) = Φr' Ub(t)p2(t) + c{t)

THEOREM 2. We have the following:

(1) The mapping Ψ\Sn~ιx [/1? lγ + Z2] ->Sn is a dijfeomorphism into Sn.

(2) The mapping of Ψ(y,t) to Φ(y,t) for (y, ήeS"'1 x [/1? /i + /2] is a local

conformal diffeomorphism between ΨiS"'1 x [/1? lγ + /2]) α̂ rf Φ ^ " " 1 x [/1? /x +/2]).

Theorem 2 gives a conformal correspondence between closed domains of hyper-

surface Φ and Sn. Schottky manifolds are defined from closed domains of Sn (cf. §2).

Since hypersurface Φ: Sn~ι x [0, /1]^*S" + : conformally corresponds to a closed domain



182 Y. SUYAMA

of Sn between two parallel hyperplanes in Rn+i in a natural way, the correspondence

given in Theorem 2 is essential to determine a Schottky manifold equivalent to the

hyper surf ace (cf. §4).

Finally, in §5 we construct conformally flat hypersurfaces in a general case.

Conformally flat hypersurfaces with umblic points are obtained by replacing a part

Φ β " " 1 x[ε, / i -ε]) (ε>0) of the hypersurface given in Theorem 1 by Sn — \J*=ιDi9

where Dt (/= 1, 2) are disjoint open round disks. From two conformally flat hypersurfaces

with umbilic points, we have other conformally flat hypersurface by a connected sum.

Furthermore, we construct conformally flat hypersurfaces which have umbilic points

and are diffeomorphic to the Klein bottle.
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2. Schottky manifolds and conformally flat hypersurfaces. In this section we recall

some basic facts on classical Schottky manifolds from [3], [6], and the extrinsic geometry

of compact conformally flat hypersurfaces from [1], [2].

The classical Schottky manifolds are constructed as follows: We start with the

standard sphere (Sn

9 gcan) and consider (i) closed round 2fc balls Bί9...9Bk9 and

Bί9..., Bk (k> 1) in Sn which are pairwise disjoint, and (ii) k Mόbius transformations

τ 1 ? . . . ,τfc: 5"-^5Msuch that τi(Bi) = Sn-Bi. Then the quotient space Mn obtained from

Sn — U *= x (Bt u B) by indentifying dBt with dBt via τf carries in a canonical way the

structure of a compact conformally flat manifold.

Assume, for simplicity, that the τ/s are orientation preserving. Then M is dif-

feomorphic to a connected sum of k copies of Sn~ι x S1. In particular, we shall call an

orientable Schottky manifold with k= 1 a conformally flat torus. We see the conformal

equivalence classes of the tori more closely by using parameters reR, 0 < r < l , and

τeSO(n) as follows: Let S"~1 = {xeSn\xί =r) be an (n— l)-dimensional sphere in Sn.

Then conformally flat tori are described, by a change of the domain by Mόbius

transformation without rotation, as

(2.1) M^τ) = {xeSn\ -r<xι<r}/τ

where the quotient means the identification of SnSr

ι with S"" 1 by τ, since all

transformations τt in (ii) are hyperbolic elements (cf. [4]). Which conformally flat tori

admit conformal immersions into Sn + 1Ί Roughly speaking, our result says that a

conformally flat torus with τ in a "neighborhood" of the identity in SO(ή) can be immersed

conformally into Sn+1.
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Let (Mn, g) be a compact conformally flat manifold with n>4.

(1) M i s a conformally flat hypersurface in Sn + 1 if and only if there exists a

principal curvature λ of multiplicity n or n — 1 for each p e M (cf. [5]).

Let Φ:M-+Sn+1 be a conformal immersion. Let £/c=M be the set of non-umbilic

points, i.e., the set where λ has multiplicity n— 1. For pe U let DpczTpM denote the

eigenspace of the second fundamental form which corresponds to λ. The following facts

are known:

(2) The distribution p i—> Dp on C/ is integrable, and therefore defines a foliation

of ί/by the so-called curvature leaves (cf. [1], [5]).

(3) All curvature leaves are mapped by Φ diffeomorphically onto round (n— 1)-

spheresinS" ί + 1 (cf. [7]).

3. Conformal immersions of conformally flat tori. In this section we construct

conformal immersions of conformally flat tori into Sn + 1 without umbilic points. Let

eί9 . . . , en + 2 be a canonical orthonormal basis of Rn + 2. We denote by < e f , . . . , en + 2}

the linear subspace in Rn + 2 spanned by vectors ei9 ...,en + 2. Let Sn+ίcRn + 2

9 Sna

Rn+1 = <£?2? ...9en + 2) and Sn~1^Rn = < e 3 , . . . , en + 2) be the unit spheres. We start with

a basic example.

EXAMPLE 1. Conformally flat tori in Sn+1 with τ = identity.

Let ί e [ 0 , / ] / ~ , l=2πm (m: integer) and y = (y3

9 ...9y
n + 2)eSn'ί. For a>0 and

o O with a2 + c2 = l, we define Φ.S"'1 x [0, / ] / - - ^ 5 " + 1 by Φ(y, ί) = fl(cos^! +

s in^ 2 ) + c Σ " = 3 ^^i) Mapping Φ(Sn~ι x [0, /]/^) becomes a compact conformally flat

hypersurface. The curvature leaves corresponding to the principal curvature with

multiplicity n-\ are the (n-l)-spheres Φ(Sn~ι x {*}) for all t.

We define a mapping Ψ oϊSn~ιx [0, /] into the ^-sphere Sn by ^(j;, t) = sin w(ί>2 +

cosw(ί)(^"^3 jμ^j ), where w(ί) is defined by du/dt = (a/c) cos u(t). The Schottky manifold

^OS"" 1 x [0, / ] ) / - obtained from ^ ( S " " 1 x [0, /]) by identifying Ψ(y, 0) with Ψ(y, I)

for yeS""1 is conformally equivalent to the hypersurface Φ ( 5 " - 1 x [0, /]/~). Indeed,

the mapping ^ ( S " " 1 x [0, / ] ) / - 3ψ(y, t)-+Φ(y, ήeΦ(S"-1 x [0, / ]/-) is a conformal

immersion in Sn + i. q.e.d.

We construct conformal immersions of conformal flat tori for general [τ] aSO(n),

where [τ] is a conjugacy class of τ. We consider the following situation:

(1) Let qλ{t\ ί e [0 , / ] / ~ , be a smooth loop in Sn + 1 with the arc-length parame-

ter t.

(2) Let q2(t) be the velocity vector field of qί9 i.e., q2{t) = {dqjdt){t).

(3) We take smooth vector fields qt(t) (i = 3,..., « + 2) along ^ i.e., ^( ί)e

Tqi(t)(Sn+1l satisfying (qh ^>(ί) = 5 y (2<i,7<π + 2) and dqJdt^O modq2(t).

LEMMA 1. There exist vector fields qt (t) (i = 3,.. ., n + 2) /or ί e [0, /] satisfying the

condition (3).
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PROOF. We regard the loop q^t), te[0, / ] / ~ , as a one-dimensional submanifold

in Sn+1. The normal bundle v(qx) oϊq^ is generated by vectors in Tqι(t)(Sn+1) orthogonal

to q2(ή for each t. We take normal vector fields q^t) (ί = 3,..., n + 2) parallel along qγ(t)

with respect to the normal connection under the initial conditions (qh #,•>(()) = 0^. Then

these vector fields q/s satisfy the condition (3). q.e.d.

By (1), (2) and (3) there exist smooth functions λ^t) (i = 3,..., n + 2) for ίe[0, /],

and η e SO(n) such that

for te[0,/]
at

\_qβ\ ..., ^

We use the following notation:

μ| |=max{μ | | ( ί ) | ίe[O,/]} .

From now on we regard q^t) (i = 2,..., π + 2) as vectors issuing from the origin in

Γ + 2.We take smooth functions a(t\ b(t) and c(t) on [0, / ] / - such that (a2 + b2 + c2)(t) =

1 and c(ί)>0. Let ( 5 " " 1 x [0, /])/ιy be the torus obtained by identification with (y,0)

and fa" V' 0 f o r each j e Sn~ K Then we define a mapping Φ: ( S w " 1 x [0, l~])/η^Sn+1 by

(3.2) Φ(y, t) =

where j = (y3, . . . , >;ll + 2 ) e S l l ~ 1 . Then Φ ^ " " 1 x [0, /])/*/) is a compact hypersurface.

REMARK. In general, the conjugacy class [τ] is not equal to [*/] (or \jη~x]) in (3.1)

(cf. §4, Ex. 3).

LEMMA 2. Assume that the mapping Φ is an immersion. Then every (n — \)-sphere

Φ{Sn~ι x {t})for te [0, /] is a curvature leaf in ΦHS""1 x [0, lj)/η) corresponding to the

principal curvature with multiplicity (n—1) if and only if the mapping Φ locally satisfies

at least one of the conditions vL(ί) = O and a\t) = b(t).

PROOF. First assume (a2 + b2)(ή^0. (A) We define vector fields Vί and V2

along ΦίOS"-1 x [0, /])/*/) on S" + 1 by

A vector field N normal to Φ{{Sn~ι x [0, l~\)/η) on S" + 1 is given by



COMPACT CONFORMALLY FLAT HYPERSURFACES 185

i W . ) - < ^ i . dΦ(d/dφφ{yt)(V2)φ(ya).

We have

(3.3) dΦ(d/dt) = (a' — b)q1 + a + b' — ci Σ yιλi I u/2 + £ Σ '

(3.4)

(B) Each submanifold Φ(S" ι x {?}) is a curvature leaf corresponding to the

curvature with multiplicity (n — 1) if and only if we have

(3.5) (Vdφ(r)Λ0φ(,.,, = Λ ( I r . y, iW>o,,,, + ̂ 2(y, f)^Φ(n for

where Px and P 2

 a r e suitable functions. Therefore, we have to obtain the condition on

functions α, b and c so that the equality (3.5) holds. We have by (3.4)

where r = Σ 7 = 3

2 Tdjdy,. Therefore, by (3.4) and (3.5) we get λ(t) = Q or

c' + bi

(3.6)

- (a 2 + b 2) + a 'b - ab' + ac

The equality (3.6) is equal to a'(t) = b{t) by aa' + bb' + cc'= 0 and

(C) Now, let us assume that (a2 + b2)(t) = 0 holds on some interval (α, β). Then

/n + 2 \

dΦ(d/dt)= - ( Σ ^u i ( ί )J 9 2 ( ί )= -<y,A(o>^2w

using β(ί) = β'(ί) = fc(ί) = b/(ί) = c'(ί) = O, c(t)=l and (3.3). This implies that there exist

points yeSn~ι such that ||̂ /Φ(5/θ/) || Φ(y,f) = 0, which is a contradiction, because

ί""1 x [0, IJ)/Y\) has no singularities. q.e.d.

We are interested in the case λ(ή^0. So we assume λφO on some interval (α, β).

Then we have a'(t) = b(t) on (α, β) by Lemma 2.

LEMMA 3. We assume λ(t)φθ on some interval (α, β). Then the mapping Φ: S"'1 x
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(α, β)-+Sn+1 is an immersion if and only if\c'/b\(t)>\\λ\\(t) on (α, β).

REMARK. In the statement of Lemma 3, if we have b(to) = 0 for some tθ9 then

\c'/b\(to)>\\λ\\(to) means limt^to\ c'/b\(ή> \\λ\\(t0).

PROOF. We denote by [dΦ(d/dt)~]φ{yt) the normal component of dΦ(d/dt) to the

(«-l)-sphere Φ0S"1"1 x {ή). Since

by (3.3) and a'(a-\-b') = aa'-\-bb' = —c'c, we have

and

dl

n + 2

τ+,?/*
Therefore the inequality \\[_dΦ{βldt)Y\\ > 0 is equal to | c'/b |(ί)> U\\(t). q.e.d.

If the loop q^t) is not a geodesic on some interval (α, β), then the functions a(t\

b(t) and c(t) on (α, β) have to satisfy the following conditions:

(3.7)
(i)

(iii) (vi)

On the other hand, if the loop qγ(t) is a geodesic on some interval (α, /?), then the

functions a(t), b(t) and c(t) on (α, β) only have to satisfy the following conditions:

(3.8)
(i)

(in)

(ii) c(ί)>0,

satisfyingTHEOREM 1. Suppose that we have a smooth loop qγ: [0, lγ + / 2 ] / ~ ->

the following conditions:

(1) /x > 0 α«ί/ the restricted curve qγ | [ 0 h] is a geodesic in Sn + 1.

(2) In the case \\λ\\ > 1, feί α and β be positive real numbers such that a2

andβ/<x=\\λ\\. Then the length l2 of the curve q1\[h / i + / 2 ] l s
i β ^ ^ / 2 < α [ π + 2sin~1

Then there exist smooth functions a(t\ b(t) and c(t) on [0, / i + / 2 ] / ~ such that

Φ((Sn+1 x [0, lx + l2j)/η) becomes a compact conformally flat hyper surface without umbίlic

points.

PROOF. (A) First we show the required functions a(t\ b{t) and c(ή defined only

on [/i,/i+/ 2] exist. We define functions A(u), B(u) and C(u) on R by

A(u) = {α sin(w/α) - β}/JΎ, B(u) = cos(u/όί)/JΎ and C(u) = {β sin(w/α) + α}/^T, where

όc2 + β2 = \, α > 0 and β>0. Then we have (A2 + B2 + C2)(u)= 1, Af(u) = B(u) and
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The case ||A|| < 1. Let us fix α and β with 1 >β/όt> \\λ\\. Then we have | C/B\{ύ)> \\λ\\
and C(u) > 0 on R. In this case we put a(t) = A(ή, b(t) = B(t) and c(t) = C(t). In particular,
we can take any interval with length l2 as a domain of the variable t.

The case | |λ | |>l. Let us fix α and β and β/6ί>\\λ\\ and /2<α[π + 2sin~1(α//?)]<
ά[π + 2sin~1(l/PII)] Then we have C(u)>0 for ue{-dύn~1{6ilβ), απ + α s i n " 1 ^ ) ) .
Therefore, there exists uoeR such that I2 = όc(π + 2uo) and C(u)>0 for w e [ - α % α(π +
w0)]. In this case, we define

a(ή = A(t-lx- αw0), W) = B(t - h - αw0), c{t) = C(t -lt- du0)

(B) Now we prolong functions a(t\ b(t) and c(t) on [/i,/i+/2] given in (A)
smoothly to the domain [0, / i + / 2 ] / ~ These functions have to satisfy the condition
(3.8) on [0, l{\. Here we only consider the case ||A|| > 1 and wo>0.

Let us take c(t) satisfying 0<c(ί) = co<c(/1+/2) = c(/1) on [ε, lι—ε] for small ε>0
andc/(ί)#0for/e[0,ε) u (^-ε, /J. If c\t)ΦQ, then \\dΦ(d/dή\\ >0. In the case c'(ί) = 0,
\S a'Φb or b'Φ-a, then ||rfΦ(3/30ll>0. So, we take/?Ol) so that p(/1-2ε)<π and
fe(0) = b(/i +12) < y/l-cξ sin [p(ε - /i/2)]. Then we define b(ί) = ̂ 1 - ^ sin[p(ί - IJ2)~\ for
ίe[ε, /x— ε]. We prolong the function b(t) on [ε, lί— ε] u [/l5 /! + /2] smoothly to the
circle [0,l1+l2']/~ so that b(O)<b(ή<b(ε) for /e(0,ε) and ^-εJ^feίO^fcί/i) for
tefa-ε, lt). We define a(t) by fl2(ί)=l-^2(ί)-^2W and α(ί)<0 on [0, /J. Then we
have α( ί )=-V 1 ~ c o c o s [/ 7 ( ί - ' i /2) ] on [ε, / i-ε]. Therefore, we get a'{t) = pb{t) and
b'(t)= —pa(ή on [ε, /i — ε].

(C) Take ε1 so that l2 4- 2εA < α[π + 2 sin~ 1(α/j?)] and 0 <ε x < ε. When we prolong
the functions to [0, / i + / 2 ] / ~ in (B), we define the functions a(t), b{ή and c(t) on
[0, εj) u (/i — ε1? /J as the direct prolongation of them given in (A). Then, these functions
a(t), b{t) and c(t) on [0, lγ + / 2 ] / - satisfy (3.7) on [0, εx) u (lx - ε 1 ? /x + / 2 ] , and (3.8) on
[0,/J. Therefore, the mapping Φ = Φ(qua,b,c) gives an immersed conformally flat
hypersurface. q.e.d.

4. Correspondence between conformally flat hypersurfaces and Schottky manifolds.

In this section we give the conformal correspondences between the conformally flat
hypersurfaces Φ^S""1 x [0, lx +12~\)M) given in §3 and Schottky manifolds. First we
study a relation between our hypersurfaces Φ{{Sn~ι x [0, /i + /2])Λ/) and PinkalΓs
construction (Lemma 4). Then we see that PinkalΓs hypersurfaces satisfy a\t) = b(t)
everywhere on [0, lγ + / 2 ] / ~ . In order to construct a conformal correspondence between
our hypersurface and Schottky manifold, PinkalΓs method is useful. Therefore, we next
give a local conformal diffeomorphism Φ of Φ(Sn~ί x [/l5 /χ+/2]) into Sn following
PinkalΓs method (Lemma 5). From now on, we write J= [/1? lγ + Z2]. Finally, we represent
the conformal diffeomorphism Φ and the image of Φ in Sn exactly by using parameters
(y, t) on Φ(Sn~x x /) (Theorem 2).

We define a mapping / : Sn x J->Sn+1 by
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/n + 2

f(x,t)=f( Σxiei,t) =
n + 2

x'qt(t)

We define (n- l)-spheres Mt<=SnxJ for each teJ by

r(t)e2+-
n + 2

(ί) Σ y'e

We denote M = ( J ί e J M ί .

LEMMA 4. We /z#v£ the following:
(1) y | M = φ? where we indentified

w i t h

n + 2

i=3~

(2) (#)(,,,,(0,5/30eJ/[Γ(Xi()(S"x{/})] /or (x,ί)eM.

PROOF. (1) follows easily from the definitions / and Φ. As for (2), we have

by (3.1) and (3.7). Take a vector field ξ along f(Sn x {ί}) on Sn+ί defined by

Then ξfiXtt) is a vector field normal to f(Sn x {ί}). We have

-(t)-χ2=-

Therefore, if (x, t)eM, then #(x,r)(0, d/δt)edf[T(XJ)(S" x {ί})]. q.e.d.

The definition of / and Lemma 4 imply that our hypersurfaces Φ(Sn~ι xJ) are
explicit representations of the ones constructed implicitly by Pinkall (cf. [6]).

We define a one-parameter family of Mόbius transformations φt: S
n^Sn for t eJ

as follows:
(1) For each teJ, let Y* be a vector field on f(Sn x {*}) obtained by the ortho-

gonal projection of df(x,t)(09 d/dt) to df[TM(Sn x {/})].
(2) Let T be a time-dependent vector field on Sn defined by df{xt)(Xι

x, 0) = Yfix4y

We note that V (resp. ^ is a conformal vector field on f{Sn x {r}) (resp. Sn) (cf. (4.3)
and (4.4) below).
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(3) We define φt by dφt(x)/dt= —Xι

φάx) under the initial condition φh(x) = x.

Define a diffeomorphism φ:SnxJ^SnxJ by φ(x,t) = (φt(x\t). Denote M: =

φ~\M) and f:=foφ. Then we havef\ύ = φoφ:M-+Sn+i by Lemma 4. Since φt is a

Mόbius transformation, Mt = φ~ 1(M ί) is also an (n — l)-sphere for each t. The following

lemma is a local form of [6, Lemmas 5 and 6]. Here we give a proof using the parameters

(y,t) on S"" 1 xJ.

LEMMA 5. (1) Let π:Snx J-+Sn be α canonical projection defined by π(x, t) = x.

Then the mapping π |χj-: M^π(M) is a diffeomorphism. Therefore the mapping f \β defines

a mapping Φ: π(M)^>Sn+1.

(2) The mapping Φ:π(M)-+Φ(Sn~ί xJ)czSn + 1 is a local conformal diffeomor-

phism.

PROOF. We prove directly the statement (2). Since Φ(Sn~ι xJ) is an immersed

hypersurface and π(M) is the union of (n— l)-spheres π(Mt) in Sn, the mapping

π: M^π(M) is a diffeomorphism. We fix a point (x0, t0) e M, and then (φ~ 1(x0), t0) e M.

(A) We first study the images by of of tangent vectors to Mto at (φ^ixo), t0)-

Let us take a curve x(s) = (x(s), ί0), M < ε , in MtQ with x(0) = φ^o

1(x0). Then, we have

df(x(s\ t0)
(4.1)

ds

df[_φt0{x{s)\ ί 0]

ds

=#,«,.,
to)

dx

By the definition of Φ, we have dΦ -HxJdx/ds\s = 0) = df{ -HxoUo)[dx/ds\s = 0, 0].
0 ^ °

(B) We now study the images by df of transversal vectors of MtQ at (φf~ H^o)?
Let us take a curve (x(ί), ί)? | t — to\ <ε, in M given by

where x(0) = x0 = {ά(ίo)ί2 + c(ίo
+ c2(t0). Denote y(t) = φ"»[x(t)]. Then

(y(f), ί ) e M . Since /(y(t), t ) = M * 0=/(x(ί), t) = Φ(y0, t), we have

, ί)

At ι ' o W Ί Λ

We note that the vector [<ίΦ(>,0 ίo)(0, δ/δί)]1 does not vanish from our construction of

Φ (cf. Lemma 3 and its proof). On the other hand, we have

Ldt , = t 0 J dt ; v ( t 0 ) dt
,0 ,

and
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)l °'"37J = df{φ,{y{to)\ i

dt

[dφt(γ(h))

T dt

Indeed, the last equality follows from dφt(γ(t0))/dt \t=t0= - X'x°a, df^JQ, d/dt] = rf\XΰM,

(x0, to)eM, and Lemma 4. Therefore, we have

(4.2)
\dy dl Γ dγ Ί

(y«0),«0) ~ Γ ' T " = ^O.«O) (^to)^Γ '(XO) " Γ ' 0

Since dΦy{to)(dy/dt\t== to) = dfiJ{toUo)[dy/dt\t=to, d/df] by the definition of Φ, the equations

(4.1) and (4.2) imply that Φ is a local conformal diffeomorphism. q.e.d.

In Lemma 5 we obtained a new parameter space π(M) c (Sn, gcan) of conformally
flat hypersurface Φ(Sn~1 xJ). Then the space π(M) is diffeomorphic to Sn~x xJ and
the mapping Φ:π(M)^Sn + 1 is a conformal immersion.

To study the domain π(M) in more detail, we represent the Mόbius transformations
φt by rotations and pure Mobius transformations. By the definition and the proof of
Lemma 4, we have

(4.3)

and

(4.4) X'x= -

Π + 2

i = 3

LEMMA 6. We have the following:

(1) For given smooth functions λt(t) (i = 3,..., n + 2) on [/l5 / ! + / 2 ] ,

p2(t) for te[lί9lί + l2'] in S"<=Rn + 1 = (e2, ..., en + 2) and vector fields pt(t)

(ί = 3,...,« +2) on S" along the curve p2 such that iphpjy{t) = δij (3<i,j<n + 2)9

P2(t) = Σni = 3 λMPi(t) andpl= -λ^ήp^t) (3<i<n + 2).

(2) We regard vector fields p^t) (3<i<n + 2) as vectors of Rn+1 issuing from the

origin. Let us take (/>2(Ί), . ->Pn + i(l\)) = (e2> ^en + i) We define a one-parameter family

of Mobius transformations without rotations by



COMPACT CONFORM ALLY FLAT H YPERSURF ACES 191

(4.5)

Then we have <jφ) = Σ , = 2 <Mx),Pj(φej.

PROOF. (1) is the result immediate from an ordinary differential equation on

SO(n + 1). We prove (2). The first (resp. the second) term of Xrepresents an infinitesimal

vector field of rotations (resp. of pure Mobius transformations). Therefore, for each t,

we change the basis of Rn + 1 from {έ?2, ...,en + 2} to {p2(ή, •-,/>„+ 2W} satisfying (1).

When we represent φt(x) as

( n+2 \ n + 2

= Σ <PtS(x)*j)= Σ <Ψfa)>Pj{φej,
7=2 / j=2

where ψt(x) is a Mobius transformation for each t defined by (4.5), we have

n + 2

q.e.d.

We summarize Lemmas 5 and 6: Let us define an (n— l)-sphere NtdSn for each

teJ by

1

Putting Nt = φ-\Nt) and 7V= U t

We define a mapping ^ : Sn~x x

w e h a v e 3iV=iVIt u
" by

), and

ny, t)=ΨΓ1Γ
L

(nΣ
\i = 3

(t)\b(t)p2(t)+c(t)

THEOREM 2. /« //ze above notation we have the following:

(1) The mapping Ψ: 5 " " 1 xJ^Sn is a dίjfeomorphism into Sn.

(2) The mapping Φ.N^ΦiS"'1 xJ) corresponding Ψ(y,t) to Φ(y,t) for (y,t)e

S"'1 xJ is a local conformal diffeomorphism.

To give a global conformal correspondence between a hypersurface Φ((S" ~ * x

[0, lx + /2])Λ/) and a Schottky manifold, we take a real number CeR and a closed

domain N'aSn satisfying the following conditions (cf. §3, Ex. 1):

(1) TV' is either N[ or N'2 below such that N n N' = 0:
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/b2 + c2

(2) There exists a conformal immersion of Nr into Sn+1 such that the image is

Thus we can prolong the immersion Φ: N^Sn + 1 conformally to Φ: N u N'-+Sn+1

so that the image is a conformally flat hypersurface Φ((Sn~1x [0, /i+/2])/^) We
obtain the Schottky manifold from N U JV' by identifying two (n— l)-spheres of the
boundary d(N u Nf) = S1 u S2, where S ^ ί C ^ + ̂ Ϊ ^ C 1 ^ ? ^ 2 j ^ ) | j e S""1} and

i + ι2) This identification is defined by Φ, and given by= ΨΓ

l+h

1

for each J 6 5 " " 1 from (3.1). Since the action of each φt does not include any rotation,
the rotation τ in (2.1) of the Schottky manifold determines from the correspondence
with Nh and Nll + h given by

(4.6)

l
n+2

If q^t) is a geodesic in Sn+1, then each p^t) is a constant by Lemma 6. Since we
constructed the mapping ΦdS"'1 x [0, lί + 12J)M in Theorem 1 by swinging a geodesic
# ̂ t), the rotation [τ]c5Ό(«) determined by Φ is an element in some neighborhood of
the identity (cf. Ex. 3 below).

EXAMPLE 2. We give an example of {/>,-(£)} corresponding to {#,-(£)} given in Lemma
6. For the sake of simplicity we consider a loop q^t) in S3. For 0<p<π/2, peZ and
r = v/cos2p+/?2sin2p, let us define

^(ί) = cos pjsinίί/r)

for 0 < t < 2πr. Then we have

q2(t) = (cos p/r){cos(t/r)e1 - sin(ί/r)^2} + (p/r) sin p{cos(pt/r)e3 - si

We take

£3(0= -sinplsin^/r)^ +cos(t/r)e2} +cosp{sin(pt/r)e3 +cos(pt/r)e4} ,

^4(0 = -(P/r)sinpjcosίί/r)^! -sin(ί/r)έ?2} + (cosp/r){cos(pt/r)e3-ύn(ptlr)e±} .

Then q3(t) and qjψ) satisfy

2} + sin p{ύn(pt/r)e
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'3 = (p2-l)/r2 sin p cos pq2(t) + (p/r 2)qA{t), q'4(t) = - {p/r 2)q3{t).

193

Γ cos(pt/r2), sin(pί/r2) Ί

L - s i n ( ^ / r 2 ) , cos(/7ί/r2)J

If we put

then we have

f qW) = (P 2 — 1)A 2 sin p cos p cos(pΐ/r 2)q2(t),

I q'J^t) = (p 2 — 1 )/r 2 sin p cos p sin(/>//r 2)qi{t).

Therefore, ||A|| =(p2 — l )/r 2 sinpcosp and

cos(2πp/r), sir

— sin(2π/?/r), cos(2πp/r).

) = (/?2 — 1) sin p cos p and

r) Ί

r) J

For u = y](p2 — l ) 2 s in 2 pcos 2 p+/> 2 and φ with

w cos φ =/?, we define

= cos φ sinφ
L 0 J

+ sin φ <
sinφ

-cosφ

0 J

+ cos(ι/ί/r2)

[•!•
siiKp ~|

- c o s φ +sin(M?/r2)| 0

L 0 J
(ut/r2)\ 0

FIGURE 1.
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FIGURE 2.

Γ cosφ"

p4.(t) = — sinφ\ sinφ

L o J

+ cosφ< sin(wί/r2)

smφ
+ cos(w?/r2) 0 ,

for 0<t<2πr. Thenp3(t) and/>4(ί) satisfy

β'3(t) = (p2-l)/r2sinpcospp2

We define

— cos φ I + cos(ut/r )

L o

»;= -(pinpM •

[ cos(pt/r2), sin(pΐ/r2)~\

-sm(pt/r2), cos(pt/r2)J

Then we have

1 K ( 0 = (P 2 - l)/r2 sin p cos p sin(/?ί/r2)/?2(ί).

We note that {p2(t\p3(t\pΛt)} is a Frenet frame (cf. Ex. 3). q.e.d.

|<4/5.EXAMPLE 3. Let us take/? = 2 and p = π/\2 in Example 2. Then we have

We put α(ί) = {5 sin(,/4Ti/5) -4}/^/82, b(t) = cos(74Ϊί//5)/JΎ and c(ί) = {4 si

5}/^/82. The hypersurface ΦίS"" 1 x [0, 2πr]) constructed from {gl5 2̂» 3̂» <?4» α> ̂  c}

does not close at ί = 0 and t = 2πr, but we can study the rotation τ determined from

the correspondence between No and N2πr given by (4.6). In Figure 1, we illustrate this

correspondence with N o and N2nr. Note that £f = 3 (η ~ 1y)ipi(2πr) = Σ*= 3 >yίpi(2πr). Figure

2 also shows the correspondence with No and N2πr when we replace by yι the coefficients

(η~ ιyy ofpi(2πr) (i = 3, 4) in (4.6). The circles No and N2πr in Figures 1 and 2 have the
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same center. This is obtained as follows: First we map the surface in S2 into R2 by
stereographic projection from the north pole. Next we map the origin of circle N2πr on
the one of No by a linear fractional transformation preserving No. But these cor-
respondences of No to N2nr are not exact rotations, because these include an action of
a linear fractional transformation without a rotation. q.e.d.

5. Other conformally flat hypersurfaces. For 0 < α < 1 we fix an ^-sphere
Sα:<xeί+β(Σn

i+ϊx^i) in Sn+\ where α2 + β2 = 1 and X = 2

2.(x1)2 = 1. Let DΛ be an open
round disk in Sn +1 which includes ex and has SΛ as the boundary. Let Φ be a hypersurface
in Sn+1 diffeomorphic to Sn~1x[09 1]. Namely, we define Φ(y,t) = ά(ήeι+b(t)e2-\-
cίrXΣ^Vi?,.), where te[0, 1], Σ ^ 2 ( y i ) 2 = h (d2 + b2 + c2)(t)=l and c(ί)>0. Since
\\Φ(y, ή — oce^^β2 implies α(ί)<α, we have ΦίS""1 x {ή)aDa if α(ί)>α,

First, we construct a conformally flat torus in Sn + 1 with umbilic points. We can
obtain them by slightly deforming hypersurfaces Φ^S""1 x [0, /i+/2])A/) given in
Theorem 1 at the part ΦΐS""1 x [0, /J). In the definition of the above Φ, we replace
the domain [0, 1] of Φ by [0, /J, and represent the curve ά(t)eί+b(t)e2 by using the
geodesic ^1(ί) = cos(ί — lί/2)eί-\-sin(t — IJ2) e2 and the velocity vector field q2(t). Then
there exists a conformally flat hypersurface Φ given in Theorem 1 such that
Φ(y, ή = Φ(y, t) for ίe[0, l{\. In particular, we take the curve τ(ί) = (α^ 1+^ 2)(ί) with
<τ(/2/2),^1>>α, <τ(0), ^!><α and ( τ ^ ) , ̂ t><α. Then there exist tίe(0,lι/2) and ί 2e
(IJ2J,) such that Φ ^ " " 1 x {tt}) n S ^ Φ ί S " " 1 x (ίj) for /= 1, 2. Furthermore, we
assume Φ ^ " " 1

wiched between Φ ^
by

" " 1

1 x {/2}) = 0 W e denote by 5« the domain of 5α sand-
and Φ ^ " " 1 x {ί2}). We replace Φ ^ " " 1 x [0, lγ + /2])/»/)

(5.1) Φ(Sn : x [0, ί J ) u S'x u Φ(S" x x [ί2, ?! + /2]).

Furthermore we modify functions a(t), b(ή and c(ή in neighborhoods of ΐ = t1 and ί2 so

FIGURE 3. FIGURE 4.
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that the hypersurface (5.1) becomes smooth. Thus we have a conformally flat torus in
Sn + ί with umbilic points.

Next we construct conformally flat hypersurfaces diffeomorphic to the Klein bottle
Sn~1 xn S* which always have umbilic points. Take a curve τ(t) = ά(t)eι + b(t)e2, 0 < t < 1,
as in Figure 3. We construct a hypersurface Φ by inflating the curve τ, and connect
5α with Φ as in Figure 4. Thus we have a conformally flat Klein bottle in Sn+1.

Naturally, the curve τ can be swung between P and Q in the same way as in
Theorem 1. Thus we obtain conformally flat Klein bottles in Sn+1 corresponding to
elements in a neighborhood of [̂ 4] a O(n), where A = {aij) with aγι = — 1 and aij = δij if
( U ) ^ ( l , 1).

Finally, let M1 and M2 be two conformally flat tori in Sn + 1 both of which have
umbilic points. We assume that a local minimum of the distance between two tori is
attained at umbilic points of each torus. Take a minimal geodesic in Sn+ι connecting
the points, and construct a connected sum of two tori by inflating the geodesic. This
gives a conformally flat hypersurface diίfeomorphic to (S"'1 x 5 ί l)#(5r"~1 x S1).
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