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Abstract. In this paper we develop some integral formulas for compact spacelike
surfaces (necessarily with non-empty boundary) with constant mean curvature in the
Lorentz-Minkowski three-space. As an application of this, when the boundary is a circle,
we prove that the only such surfaces are the planar discs and the hyperbolic caps. By
means of an appropriate maximum principle, we also obtain a uniqueness result for
compact spacelike surfaces with constant mean curvature whose boundary projects onto
a planar Jordan curve contained in a spacelike plane.

1. Introduction. In this paper we study compact spacelike surfaces (necessarily
with non-empty boundary) with constant mean curvature in the three-dimensional
Lorentz-Minkowski space Z,3. The importance of constant mean curvature spacelike
surfaces (or, more generally, hypersurfaces) in Lorentzian spaces is well known, not
only from a mathematical point of view but also from a physical one, because of their
role in the study of different problems in general relativity. A summary of several reasons
justifying it can be found in the survey papers [5], [13].

Our main aim in this paper is to give some uniqueness results for this kind of
surfaces. In particular, we investigate the influence of the boundary on the shape of
the surface. In the simplest case, that is, when the boundary is a circle, we prove (see
Theorem 6):

The only immersed compact spacelike surfaces with constant mean curvature

in L3 spanning a circle are the planar discs and the hyperbolic caps.

REMARK 1. The corresponding problem for surfaces in Euclidean three-space
concerning planar discs and spherical caps remains open. Some partial results have
recently been obtained by different authors, but it is still unknown if planar discs and
spherical caps are the only embedded examples (see [4], [9], [11], [12], [14]). In the
immersed case there are known examples with higher topological type [8].

Our proof is a consequence of some integral formulas for compact spacelike
surfaces in L3, which are developed in Section 3. Among these integral formulas there
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is a flux formula for spacelike surfaces in L3 (see Lemma 2) which allows us to obtain
some consequences for the planar boundary case. In Section 4 we develop a second
approach to the study of our surfaces. This is based on the fact that a spacelike con-
stant mean curvature surface locally satisfies a nonlinear elliptic equation for which a
maximum principle holds (see Lemma 9). In addition to providing an alternative proof
for the result above, the maximum principle allows us to prove the following uniqueness
result (Theorem 10):

Let Σx and Σ2 be two compact spacelike constant mean curvature surfaces
bounded by a curve which projects onto a planar Jordan curve contained in a
spacelike plane. If they have the same mean curvature, then Σγ—Σ2.

We also obtain some consequences when the boundary consists of two planar Jordan
curves contained in parallel planes. For instance, we prove that if a compact spacelike
surface with zero mean curvature is bounded by two concentric circles in parallel planes,
then the surface is a revolution surface (Corollary 13).

2. Preliminaries. Let L3 denote the three-dimensional Lorentz-Minkowski space,
that is, the space R3 endowed with the Lorentzian metric

where (xί9 x2, X3) are the canonical coordinates in R3. A smooth immersion x: Σ-+L3

of a smooth surface Σ is said to be spacelike if the induced metric < , ) via x
is a Riemannian metric on Σ, which is also denoted by < , >. The surface Σ is called a
spacelike surface.

Let Σ be a (connected and immersed) spacelike surface in L3. Then we can choose
a unique unit normal vector field N on Σ which is a future-directed timelike vector in
Z,3, and hence we may assume that Σ is oriented by N. We will denote by V° and V
the Levi-Civita connections of L3 and Σ, respectively. Let A: 2£(Σ)-*9£(Σ) stand for
the Weingarten endomorphism associated to N. Then the Gauss and Weingarten
formulas for Σ are written respectively as

(1) V}

and

(2)

for all tangent vectors fields X, Ye $C(Σ). The mean curvature function of Σ is defined
by H= — (\/2)tr(A). Hence the mean curvature vecotr field //=(l/2)tr(σ), where σ is the
vector-valued second fundamental form, is given by H=HN.

Let K be the Gaussian curvature of Σ. The Gauss equation and the Codazzi
equation for Σ in L3 are given respectively by

K= -det(Λ)
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and

(3) VA(X, Y) = VA(Y, X),

for any X, Ye%{Σ).

Throughout this paper we will mainly deal with compact spacelike surfaces in L3.

Since there exists no closed spacelike surface in L3 (cf. [1]), every compact spacelike

surface Σ necessarily has non-empty boundary dΣ. As usual, if Γ is a closed curve in

Z,3, a spacelike surface x: Σ -+L3 is said to be a surface with boundary Γ if the restriction

of the immersion x to the boundary dΣ is a diffeomorphism onto Γ.

3. Integral formulas for compact spacelike surfaces. In this section we will develop

some integral formulas for compact spacelike surfaces in Z,3, and apply it to the case

of constant mean curvature. Let x: Σ ->L3 be a compact spacelike surface, oriented by

a unit timelike normal vector field N. Let dΣ stand for the area element of Σ with

respect to the induced metric and the chosen orientation. We can choose a complex

structure J: 3£(Σ)^>3£(Σ) which satisfies

dΣ{X, Y) = <JX, Y>

for any tangent vector fields X, YeSC(Σ). The orientation of Σ induces a natural

orientation on dΣ as follows: a non-zero tangent vector veTp(dΣ) is positively oriented

if and only if [v, w} is a positively oriented basis for TpΣ, whenever we TpΣ is inward

pointing. We will denote by v the inward pointing unit conormal vector along dΣ,

whereas τ will denote the positively oriented unit tangent vector field along dΣ, which

is given by τ = — J(v).

Let aeL3 be a fixed arbitrary vector, and along the immersion x: Σ-+L3 write

where aΎeθC{Σ) is tangent to Σ. From V°β = 0, by using (1) and (2), we see that

for all XeSC(Σ). Therefore,

(4) div(β τ) = tr(Vα τ) = 2H(N, a) ,

where div denotes the divergence on Σ. Now, integrating (4) on Σ we obtain by the

divergence theorem our first integral formula,

(5) 2 H(N,a}dΣ=-
JΣ JdΣ

where ds is the induced line element on dΣ.

On the other hand,
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and using now the Codazzi equation (3) we obtain that

(6) άiw(A(a τ)) = tτ(VaτA) + tr{A{Va τ))

Observe that the Cayley-Hamilton theorem for A gives A2 + 2HA — Λ72 = 0, so that

tr(A2) = 4H2 + 2K. Therefore, from (4) and (6) it follows that

(7) άiw(A(aT) + Haτ)=-< Vi/, a}-2(H2

Integration of (7) on Σ yields our second integral formula

(8) <yH,aydΣ + 2\ (H
J Σ J Σ JdΣ

Let us recall that the vector product in L3 of two vectors v,weL3 is defined as

the unique vector υ ΛxveL3 such that

(y A w, u} — det(ι;, w, u)

for any ueL3. Notice that <ι? Λ W, V Λ W) = (v, w)2 — (y, v}(w, vv>. For a fixed arbitrary

vector a e l 3 , let us now consider the vector product x /\aeL3 and put

iΛfl = (iΛfl) τ- <7V, x Λ a)N

where ( i Λ α ) τ e f ( I ) is tangent to Σ. Covariant differentiation combined with (1) and

(2) yields

Vx(x A a)τ = (XΛ a)τ- <7V, x A a}AX,

for all XeθC{Σ). Therefore, taking V/=0 into account we have

(9) div(/(x Λ a)τ) = tr(/(V(x Λ a)τ)) = -2{N, a) .

Integrating now (9) on Σ, we obtain our third integral formula,

(10) 2 <N,a}dΣ = &) (xAa, τ}ds= - ώ (x AT, a}ds.
JΣ JdΣ JdΣ

As a first application of these integral formulas, we obtain from (5) and (10) a

flux formula for immersed spacelike surfaces with constant mean curvature in L3. The

corresponding flux formula for surfaces in the Euclidean three-space E3 was first given

in [10] and has been extensively used in the study of constant mean curvature surfaces

in E3 by several authors (see, for instance, [4], [10], [12]).

LEMMA 2 (Flux formula). Let x: Σ^L3 be a spacelike immersion of a compact

surface with boundary dΣ. If the mean curvature H is constant, then for any fixed vector

aeL3 we have
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δΣ

where τ is the positively oriented unit tangent vector along dΣ and v is the inward pointing

unit conormal vector along dΣ.

In order to derive some consequences of the flux formula, let us consider through-

out the rest of this section the planar boundary case. In that case, since the boundary

Γ = x(δΣ) is closed, it is not difficult to see that the plane Π containing Γ is a spacelike

plane. We may assume that Π passes through the origin and Π = aL, for a unit

future-directed timelike vector aeL3. Note that <α, a} = — 1 and <7V, a} < — 1 <0. Let

us consider the natural orientation on the plane Π determined by a. Then it follows that

(xΛτ,a)ds=-2\ (N,
dΣ JΣ

On the other hand, if Γ is a Jordan curve and Ω is the planar domain bounded by Γ, then

<x Λ τ, a)ds = — q) <x, η)ds = 2 area(Ω),
dΣ JdΣ

where η = — τ A a is the inward pointing unitary conormal to Π along Γ. This gives the

following result.

COROLLARY 3. Let x: Σ-^L3 be a spacelike immersion of a compact surface

bounded by a planar Jordan curve Γ. Let a be the unit future-directed timelike vector in

L3 such that Γ is contained in the spacelike plane a1. If the mean curvature H is constant,

then the flux

φ <v, a)ds
JdΣ

does not depend on the surface, but only on the value of H and Γ. In fact,

(11)
dΣ

where Ω is the planar domain bounded by Γ.

REMARK 4. It is worth pointing out that, in contrast to the Euclidean case, the

equation (11) does not imply here any restriction on the possible values of the constant

mean curvature. For instance, if Γ is a circle of radius r > 0 and Σ is an immersed

compact surface in E3 bounded by Γ with constant mean curvature H, then the

corresponding flux formula implies that 0<\H\<l/r (see [7]). However, for the case

of the Lorentz-Minkowski space, the family of hyperbolic caps

Σ ={(xί9x2,x3)eL3:
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where 0 < p < o o , describes a family of spacelike compact surfaces in L3 bounded

by a radius r circle with constant mean curvature Hp=\/p, so that 0<Hp<co.

On the other hand, now the integral formula (8) gives

(12) (j) «A(v),a} + H(v,a})ds = 2 \ (H2 + K)(N, a}dΣ .
JdΣ JΣ

Since <τ, α> = 0, we have a = (v, a}v — (N, a}N along Γ, so that

Moreover, we also obtain tr(A) = (A(τ), τ> + O4(v), v>= — 2H along Γ, so that

(A{v), v>= — 2H+κn, where κn stands for the normal curvature along Γ, that is,

Therefore (A(v), a} = — 2//<v, a} + κn(v, a} and the equation (12) becomes

(13) d) κn(v,a}ds-ώ H(v,a}ds = 2\ {H2 + K)(N, a)dΣ .
JdΣ JdΣ J Σ

Now we observe that // 2 + A:=(l/2)(tr(^ 2)-(l/2)tr(^) 2)>0, and the equality holds at

a point pe Σ if and only if p is an umbilic point. Moreover, since <iV, a) < — 1 <0, the

equations (11) and (13) imply the following result.

COROLLARY 5. Let x: Σ^>L3 be a spacelike immersion of a compact surface

bounded by a planar Jordan curve Γ. Let a be the unit future-directed timelike vector in

L3 such that Γ is contained in the spacelike plane a1. Let Ω be the planar domain bounded

by Γ. If the mean curvature H is constant, then

κ/v, a}ds<2H2area(ί2),
dΣ

where κn stands for the normal curvature along the boundary. Moreover, the equality holds

if and only if the surface is totally umbilical.

Corollary 5 can also be stated in terms of the curvature of Γ. Let α be a positively

oriented parametrization of Γ by arc length s, so that OL'(S) = T(OL(S)) = T(S). Let K be the

signed curvature of α as a planar curve. Then we have

(χ"(s) = κ(s)η(s),

where η= — τΛa and η(s) = η(oc(s)). On the other hand,

ot"(s) = κg(s)v(s) + κn(s)N(s),

where κg denotes the geodesic curvature of Γ, v(s) = v(a(^)) and N(s) = N(oc(s)). Since

<*/, v> = - <ΛΓ, a} and <*/, N}=- <v, a\ we get
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κg = — κ(N, a} and κn = /c<v, a) .

Therefore, from the inequality in Corollary 5 we obtain

r
(14) φ κ<v,α>2Λ<2//2area(Ω),

JdΣ

and the equality holds if and only if the surface is totally umbilical. When the boundary

is a circle, this yields our uniqueness result.

THEOREM 6. The only immersed compact spacelίke surface in L3 with constant mean

curvature spanning a circle are the planar discs and the hyperbolic caps.

PROOF. Let a be the unit future-directed timelike vector in L3 such that Γ = Sί(r)

is contained in the spacelike plane a1. Then, the inequality (14) becomes

f
(15) φ (v,a}2ds<2πH2r3 ,

JdΣ

and the equality holds if and only if the surface is totally umbilical. On the other hand,

from (11) we know that

so that using the Cauchy-Schwarz inequality we obtain

f
φ <v,a}2ds>2πH2r3 .
J dΣ

This yields the equality in (15) and the result. •

4. Uniqueness of spacelike surfaces with constant mean curvature. In this section,

we will obtain an appropriate maximum principle for spacelike surfaces with constant

mean curvature in L3. This will allow us to give a uniqueness result for such surfaces.

Let us start by reviewing some basic facts about spacelike graphs in L3. For each

smooth function u: Ω-+R defined on a compact domain Ω<=R2,u = u(xί9 x2), the natural

embedding x:Ω->L3, x(x l 9 x2) = (x1? x2, w(x1? x2)), induces a (possibly degenerate)

metric tensor on Ω which is given by

(dxp(v\ dxp(w)} = (v, w>-(Du(p\ v}(Du(p), w> , peΩ , υ, weR2 ,

where Du denotes the gradient in R2. Thus, the graph determined by u is spacelike if

and only if u satisfies | Du \ < 1. In the following result, which is an analog of Proposition

1 in [16], we prove that any compact spacelike immersed surface is essentially a graph

provided that its boundary projects onto a planar Jordan curve.

PROPOSITION 7. Let x: Σ-^L3 be a compact spacelike surface in L3 bounded by a
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curve Γ. Let us assume that there exists a spacelike plane Π such that the orthogonal

projection Γ' of Γ on Π is a planar Jordan curve. Then there exists a diffeomorphίsm

F: Ω^Σ from a compact domain Ω<^R2 such that χoF is a spacelike graph on Ω.

In particular, when the boundary is planar we have:

COROLLARY 8. Any compact spacelike surface in L3 bounded by a planar Jordan

curve is a spacelike graph.

PROOF OF PROPOSITION 7. We may assume without loss of generality that Π = R2

is the plane {x3 = 0}, so that π : L3 ->/?2 is the projection π(x l 9 x2, x3) = (x1, x2, 0). Since

the immersion is spacelike, the projection x = π o x int(Γ) -> R 2 is a local diffeomorphism

and, therefore, is an open map. Let Ω = x(int(Σ))<^R2, which is an open subset in R2,

and let Ω' be the planar domain bounded by the planar Jordan curve Γ' = π(Γ) = x(dΣ).

Our aim here is to show that Ω = Ω' and that x\ Σ^Ω is a diffeomorphism. Thus,

letting F=x~γ we see that xoFis the graph determined by w = i 3 ° F .

Let us first see that dΩ = dx(Σ)^Γ'. Observe that since Σ is compact, for any

qedx(Σ) there exists peΣ such that x(p) = q. We would like to show that pedΣ. If

p e int(Γ), then there is an open neighborhood Up ofp in int(Σ) and an open neighborhood

Vq of q in Ω such that x: Up -• Vq is a diffeomorphism. This implies that q e Ω, in

contradiction to the fact that q is a boundary point of x(Σ). Therefore, dΩ<^Γf. If there

exists a point in Ω which is not in Ω\ since Ω is bounded, there are points in dΩ outside

Ω\ which is not possible. Analogously, if there is a point in Ω' which is not in Ω, there

are points in dΩ inside Ω\ which again is not possible. Thus Ω = Ω'. As a consequence,

x: Σ —• Ω is a local diffeomorphism, and the compactness of Σ implies that x is a covering

map. Since Ω is simply connected x must be a global diffeomorphism. •

Below we will show that a spacelike surface of constant mean curvature H bounding

a planar Jordan curve Γ is a unique spacelike surface with the same mean curvature

and boundary. The reason is that, locally, any spacelike surface with constant mean

curvature satisfies an elliptic equation to which we can apply the classical maximum

principle. Specifically, if u defines a spacelike graph over Ω, then the mean curvature

function H of the graph is given by

where Div stands for the divergence in R2. Therefore, the graph determined by u is a

spacelike surface with constant mean curvature H if and only if u satisfies

(16) Qu = ( l ^ ^

with
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\Du\<\

on the domain Ω. Observe that the operator Q is quasi-linear and elliptic at a

solution u which defines a spacelike surface. However, if u and v both satisfy the

equation (16), then u — v satisfies a linear elliptic equation, to which we can apply the

classical Hopf maximum principle (cf. [6]). Therefore, we can state the following

maximum principle.

LEMMA 9 (Maximum principle). Let I \ and Σ2 be two constant mean curvature

spacelike surfaces tangent at some point p such that their mean curvatures agree for

a common orientation at p. If one of them is locally above the other one, then Σ1 and

Σ2 agree in some open set around p.

Note that as a consequence, a compact maximal surface (H=0) with planar

boundary is in fact a part of a plane. From Proposition 7 and Lemma 9 we obtain the

following uniqueness result.

THEOREM 10. Let Σγ and Σ2 be two compact spacelike constant mean curvature

surfaces bounded by a curve which projects onto a planar Jordan curve contained in a

spacelike plane. If they have the same mean curvature, then Σι=Σ2.

In particular, the only compact spacelike surfaces with constant mean curvature

bounded by a circle are the planar discs and the hyperbolic caps. This allows us to give

an alternative proof to our Theorem 6, which is based on the elliptic equation theory

instead of on the integral formulas given in Section 3. The existence theory of

constant mean curvature spacelike surfaces in L3 differs significantly from the Euclidean

case. For example, it holds that for any convex planar curve Γ and real constant H,

there exists a spacelike graph in L3 with constant mean curvature H bounded by Γ (see

[3] and [15, Proposition 6]).

Now let us study the case of non-connected boundary. Let x: Σ -> L3 be a spacelike

immersion of a compact surface bounded by two planar Jordan curves Γ x and Γ 2,

which are contained in spacelike parallel planes Πι and 772, respectively. We may

assume without loss of generality that Π1 is the plane {x3 = 0} and Π2 is the plane

{x3 = c}9 cφO. Let π : Z,3—>/?2 be the projection π(xl9 x2, x3) = (xι, x2, 0). It is worth

pointing out that the spacelike property of the surface imposes some restrictions on the

boundary curves. For instance, π(Γ2) = Γ1 cannot occur because if this is the case, then

reasoning as in Proposition 7 we see that Ω = π o χ(int(Σ)) is the domain bounded by Γί

and πoχ: Z->Ώ is a diίfeomorphism, which is impossible since π(Γ2) = Γ1.

In the rest of this section, let us focus our attention on the following case:

π(Γ2) is contained in the domain bounded by Γγ .

In this case, a reasoning similar to that in Proposition 7 shows that the projection of

the surface is the annulus determined by Γx and π(Γ2).
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THEOREM 11. Let Γ x and Γ2 be two Jordan convex curves as above and let us

assume that there exists P a vertical symmetry plane of Γί uΓ2. If Σ is an embedded

compact spacelίke surface of constant mean curvature with boundary Γ 1 u Γ 2 such that

Σ lies in the slab determined by the boundary planes, then P is a symmetry plane of Σ.

PROOF. Let us attach to Σ the two planar domains bounded by J\ and Γ2.

Since Σ does not intersect the boundary planes, this determines a bounded domain W

in ZA Now we apply the Alexandrov reflection method [2] by vertical planes parallel

to P coming from infinity (observe that reflections with respect to non-degenerate planes

are isometries in Z,3, so that the reflected surface also has constant mean curvature).

To simplify the notation, let us assume that P is the plane {x2 = 0} and let us denote

by Pt the plane {x2 = *}> teR.

Take t > 0 large enough so that Pt does not intersect Σ, and move Pt towards the

left by decreasing t until it touches Σ the first time at t = t0. If we slighty move Pt0

towards the left and reflect the right side of Σ with respect to the plane Pt9to — ε<t<to,

then the reflected surface lies inside W. If we go on moving Pt by decreasing t, then

from the compactness of Σ9 there is a plane Ptί with t1>0 such that the reflected surface

with respect to Ptί has a contact point/? with Σ. Ifp is a tangent point between Σ and

the reflected surface, then since the surface is embedded the orientation of Σ agrees at

p with the orientation of the reflected surface. From the maximum principle (Lemma

9) it follows that Ptι is a symmetry plane of Σ (and so, of its boundary), so that it has

to be t1=0. If p is not a tangent point, then p has to be a boundary point of Σ and

by convexity of the boundary t1 =0. In that case, repeat the same reflection process by

beginning now from the left and increasing t. By the same reasoning we conclude that

there is a symmetry plane of Σ, which has to be P. •

As a first consequence of Theorem 11 we obtain the following result.

COROLLARY 12. Let Γγ and Γ2 be two concentric circles in parallel planes and

let Σ be an embedded compact spacelίke surface of constant mean curvature with

boundary Γ1 u Γ 2 . If Σ is contained in the slab determined by the boundary planes, then

Σ is a surface of revolution.

When the mean curvature is H=0, then we can remove the assumption that the

surface is lying in the slab determined by the boundary planes since this always holds

true. Indeed, if there are points outside the slab, then either the highest or the lowest

point of the surface is not a boundary point. Comparing now the surface with the

parallel plane to the boundary planes at that point, the maximum principle gives a

contradiction. On the other hand, the assumption that the surface is embedded can be

weakened to immersed, since in a maximal surface the mean curvature does not depend

on the orientation.

COROLLARY 13. If Σ is an immersed maximal compact surface bounded by two
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concentric circles in parallel planes, then the surface is a surface of revolution.
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