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DIFFERENCE SPECTRUM AND SPECTRAL SYNTHESIS

THETTATH K. MURALEEDHARAN AND KRISHNAN PARTHASARATHY

(Received August 4, 1997, revised April 15, 1998)

Abstract. As an aid in understanding sets of synthesis for the Fourier algebra A(G)
of a locally compact abelian group G, the difference spectrum Δ{E) for a closed set E
in G is studied. Numerous relations involving difference spectra of unions, intersections
and cartesian products are obtained and their implications on unions, intersections and
cartesian products of sets of spectral synthesis are deduced. The set Λ(E) of locally
nonsynthesizable points of E is introduced and its relation with Δ{E) is discussed. The
concept of ^-difference spectrum is introduced and is used to study weak spectral synthesis.
Local methods are employed throughout.

Introduction. The concept of a function belonging locally to an ideal at a point
has been studied and exploited in spectral synthesis for a long time. If /, / are two
closed ideals of A(G) (the Fourier algebra of a locally compact abelian group G), the
set Δ{I, J) of points where neither / nor / is locally contained in the other has also been
utilized in the study of spectral synthesis (e.g., Katznelson's proof [5, p. 36] and
Stegeman's proof [8] of extensions of Helson's result and Saeki [6]) under different
notations. For a closed subset E of G let Δ{E) = Δ(I{E\ J(E)\ where I(E) and J(E) are
respectively the largest and the smallest closed ideals of A(G) with cospectrum E. Δ(E\
the difference spectrum of E, has been studied and systematically exploited in problems
on spectral synthesis by Saeki [6], Stegeman [9] and Salinger and Stegeman [7]. Using
local techniques and difference spectrum some results on unions and intersections of
sets of synthesis have been recently given by the authors in [2].

In this paper, besides giving some examples of difference spectrum and further
results on difference spectra and spectral synthesis, we introduce the concept of
^-difference spectrum and use it to study weak synthesis. We also introduce Λ(E), the
set of 'locally non synthesizable points' of E, which is closely related to Δ(E).

1. The difference spectrum. For spectral synthesis we generally follow the
notations of [2], [7] and [9]. As general references for harmonic analysis, we cite [1]
and [5]. We recall the definition of Δ(E\ the difference spectrum of a closed set
E: Δ{E) = {x: I(E) ΦXJ(E)} so that Δ(E) is a union of perfect subsets of dE, the boundary
of E. E is a set of synthesis (an 5-set) if and only if Δ{E) = 0. No computation of Δ(E)
has been given in the literature. So we start with some examples. We make use of some
results of the next section.
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EXAMPLE 1.1. (i) It is a well-known result of Laurent Schwartz that Sn, the unit
sphere, is not of synthesis in Rn + 1, n>2. Thus Δ(Sn)φ0. By rotation invariance of
J(Sn) and of I(Sn\ it follows that Δ(Sn) = S\

(ii) We can get an example with 0 = Δ(E)ΦE as follows. Let E be the union of
Sn and a line segment, for instance. Then Δ(E) = Sn (e.g., use Lemma 2.2 below).

(iii) Δ(Sn x Sm) = Sn x Sm(n, m > 2).

(iv) If E is a set of synthesis in G, then Δ(SnxE) = Sn xE. (For (iii) and
(iv), use Lemma 2.7 below and (i) above.)

(v) If S<=Sn is a spherical cap, n>2, then J(S) = S. (Use Lemma l(ii) of [2].)

Reiter [5, p. 40] has proved the following local characterization of an 5-set (Wiener
set in Reiter's terminology): If E is a closed set in G such that each point of E has a
closed relative neighbourhood in E which is an *S-set for A(G), then E itself is an S-set.
So it seems natural to introduce the following set, which also gives some measure of
nonsynthesis for E. We define

Λ(E) = {x e E: x has no closed relative neighbourhood in E which is an £-set} .

Points of Λ(E) may be called locally nonsynthesizable points of E and, by Reiter's
result, E is an S-set if and only if Λ(E) = 0.

It would be natural to investigate the relation between Δ(E) and Λ(E). Here is a
first step. We recall that j(E) = {feA(G):f vanishes in some neighbourhood of E) so
that J(E)=](E).

LEMMA 1.2. Δ(E)αΛ(E).

PROOF. If xφA(E), then there is a closed relative neighbourhood V of x in E
which is an S-set. Choose a neighbourhood W of x with En W^ V. Choose keA(G)
such that k = 1 near x and supp&c W. Let f eI(E). Since Fis an S-set, for each posi-
tive integer n, there is a gnej(V) with \\f—gn\\<\/n\\k\\. Then gnkej(E) and
fk = \imgnkeJ(E). Thus fexJ(E), so x

COROLLARY 1.3. 7/" £ is α closed set in G and if each point of dE has a closed

relative neighbourhood in E which is an S-set, then E is an S-set.

PROOF. A(E)<=Λ(E)ndE.

Observe that E\A(E) is relatively open in E, so A(E) is relatively closed in E.
Since E itself is closed, this implies that A(E) is always closed (in contrast to Δ (E)).
Moreover, from the definition, it does not seem to follow that A(E) c dE. (However, in
the case of Rn this inclusion does hold.) When is Δ(E) = A(E)Ί We begin by proving
the following result.

THEOREM 1.4. IfE is a closed subset oflR (or ofT, the unit circle), then Δ(E) = A(E).

PROOF. In view of Lemma 1.2 we have to prove that A(E)czΔ(E). Let xeA(E).
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Let V=[x — ε, x + έ] nE be a closed relative neighbourhood of x. Then Δ(V)Φ0. If
yeΔ(V) then yedE. Indeed, suppose yeΔ(V) and y lies in the interior of E. Let / be a
closed interval around y with la E. Then Vn I— \x — ε, x + ε] n / is a closed interval and
is a relative neighbourhood of y in F, so yφΛ(V) and hence yφΔ(V). Now /I(F), being
a union of perfect sets (actually a perfect set in this case), is uncountable and E\V
has only two possible limit points in V. Hence we can choose yeΔ(V) such that y is
not a limit point of E\V. Then there is a neighbourhood W of y with Wn(E\V) =
0. Choose keΛ(G) such that k=\ near 7 and suppkaW. Since yeΔ(V), there is
an /e/(F) with fφyJ(V). But fkel(E), fk=y /and fφyJ{V)=>J(E). Hence >>eΛ(£).

Thus, for each positive integer «, we get a j n e [ x - 1/w, x + 1/n] nE with >>„eΔ(E).
Since J(2s) is closed, x = \imyneΔ(E).

Essentially the same proof holds for T.

REMARK 1.5. It is likely that the same result holds for Rn (and for Tn) as well,
but we are unable to settle this. (A more general conjecture would be: Δ{E) = A(E)ndE
when G is metrizable.)

2. Spectral synthesis. Here we discuss some results on unions, intersections and
cartesian products of sets of synthesis using the difference spectrum. Some of the results
given below on difference spectra have already been made use of in the previous section
to compute some examples on difference spectrum.

The union problem for sets of spectral synthesis is a central unsolved problem
in the subject. There have been several attempts, giving rise to partial results. As
our contribution in this direction, we obtain some relations between the difference
spectra of two closed sets Eu E2 and their union Ex vE2. We make use of local equality
of sets. Recall that E=XF means En V=Fn V for some neighbourhood V of x.

LEMMA 2.1. Let E, Fbe closed sets in G and let xeG. IfE=x F, then (i) J(E) = x J(F)
and (ii) Δ(E) = XΔ(F).

PROOF. Suppose Fis a neighbourhood of x such that En V=Fn V. (i) Choose a
neighbourhood W of x with Wa V and a keA(G) such that k— 1 near x and supp&
c W. Let feJ(E)9 so /=lim/n, fnej(E). Then kfnej(F), kf=\imkfneJ(F) and f=xkf.
Thus J(E) a x J(F) and the result follows by interchanging E and F. (ii) We prove that
Δ(E)n V=Δ(F)n V. Let yeΔ(E)n V. Now choose a neighbourhood W of y with Wa V
and choose a keΛ(G) supported in W with k=\ near y. Since yeΔ(E) there is an
fel(E) such that fφyJ(E). But E=yF and so kf=yfφyJ(F) by (i), whereas kfeI(F).
Thus yeΔ(F). This proves that Δ(E)n VαΔ(F)n Fand, by symmetry, (ii) follows.

We shall also make use of the observations that the boundary of a closed set E
in G is dE={xeE: 0φEφxG} and that the inclusion AαBvC holds if AczxB for
each xφ C for subsets A, B, C of G.
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LEMMA 2.2. Let Eί, E2 be closed sets in G and let

£ 1 2 = {xe dEx n dE2 n d(E1 u E2): x is a limit point of E1AE2} ,

where EίAE2 denotes the symmetric difference. Then

Δ(E1υE2)<=.Δ{E1)\)Δ{E2)υE12.

PROOF. Let xφE12. Then xφdE1 or xφdE2 or xφd(Ex uE2) or x is not a limit

point of EXAE2. If xφdEu either Eί=x0 or Eί=xG, that is, E1uE2=xE2 or
EίuE2=xG and so J(£Ί u£I

2) = xzl(£'2) or A(E1uE2) = x0. The cases xφδE2,

xφdiE^uE^ are similar. If x is not a limit point of EίAE2, then E1ΔE2=x09 so

EίϋE2=xE1 and z l ^ u£ t

2) = xzl(J£
t

1). Thus in any case xφE12 implies A(Eί \JE2)<=X

A(E1)\JA(E2). Hence the result follows.

A relation in the reverse direction is given in [2]. A consequence of Lemma 2.2

is the following result (a slight improvement of a result of Saeki [6]).

THEOREM 2.3. Let Eu E2 be S-sets. If there exists a C-set C such that

uE2, then E1 uE2 is an S-set.

PROOF. This is immediate from Lemma 2.2 and the result of Stegeman [9] that

E is an S-set if there is a C-set C with A(E)a CczE.

COROLLARY 2.4. Let Eu E2 be two S-sets and suppose Ex nE2 is relatively open

in Eί\jE2, then Eγ u E2 is an S-set.

PROOF. In this case El2 = 0.

It is well-known that the intersection of two S-sets need not be an S-set; indeed

this phenomenon occurs in any nondiscrete G (see [3]). The following lemma and its

corollary, giving a sufficient condition for the intersection of two S-sets to be an <S-set,

are improvements of corresponding results in [2].

LEMMA 2.5. Let £\, E2 be closed sets in G and let E12 = {xedEιf)dE2: x is a

limit point ofΈXΔE2}. Then A(Eγ n E2)a Zl(£Ί)u Δ(E2)\J E12.

COROLLARY 2.6. If Eί9 E2 are S-sets in G and if there is a C-set C with

E12 <^CaE1Γ\E2, then Eί Γ\E2 is an S-set.

An outstanding open problem is the cartesian product problem for S-sets: Is the

cartesian product of two S-sets an S-set? The next lemma on the difference spectrum

of a cartesian product gives a result in the converse direction to this problem.

LEMMA 2.7. IfE1 and E2 are nonempty closed sets in G, then

Eγ x A(E2)u J(£Ί) x £ 2 c A(Eγ x E2).

PROOF. Let (x, y)eE1x A(E2). Then y e A(E2), so there is a function f2 e I(E2) such

that f2φyJ(E2). Choose f1 eA(G) with fγ — 1 near x. Then fx ®f2eI(E1 x E2), but we



DIFFERENCE SPECTRUM AND SPECTRAL SYNTHESIS 69

prove that ft ® f2 φ{x^y)J{E1 x E2). Here fλ ®f2{xu *2) = /i(

Suppose /i ® / 2 e ( x y ) / (^Ί x £ 2 ), so that there is a # e / ( £ x x ϋ y with fγ ® f2 = (x,y) g.

Let {gn} be a sequence inj'(Eί xE2) such that gn converges to g. Then gn(x, )ej(E2)

and gfπ(x, •) converges to g(x, •). This leads to the contradiction f2=yg(x, ')eJ(E2).

By symmetry we also get Δ(E1) x E2aΔ(Eι x E2).

An immediate consequence is the following converse of the cartesian product

problem first proved in [4] by different methods.

THEOREM 2.8. Let Eί9 E2 be two nonempty closed subsets of G. If EγxE2 is an

S-set {in G x G), then so are El9 E2 (in G).

Both Lemma 2.7 and Theorem 2.8 remain valid even if Eγ, E2 are subsets of two

different groups Gί9 G2.

In view of Lemma 2.7 we ask the following question:

Question: Is Et x Δ{E2) u AiEJ xE2 = Δ{Eλ x E2)Ί

3. The ^-difference spectrum and weak synthesis. The concept of difference

spectrum is generalized here to define ^-difference spectrum, which is then applied to

the study of weak spectral synthesis defined in [11] and studied also in [4].

DEFINITION 3.1. Let n be a positive integer. For a closed subset E oί G we define

Λn(E)=\JfeI{E){x:f"φxJ(E)}

and we call it the ^-difference spectrum of E.

REMARKS, (i) Weak synthesis can also be studied using the sets

An(E) = {xeG: there is an feF(E) with fφxJ{E)} .

(Here /" denotes the closed ideal generated by {/i •••/„: /7 e/}.) Then ΔX(E) =

Δ1(E) = Δ(E) and Δn(E) = 0 if and only if Δn(E) = 0. Thus Δn and Δn give rise to the

same notion of weak synthesis, (ii) Since the difference spectrum of two closed ideals

is sequentially closed ([7]), Δn(E) is sequencially closed. Salinger and Stegeman ([7])

showed that every nonmetrizable G contains a closed set E for which Δ(E) is not closed.

Adapting their proof, we have proved the following result (the details can be found

elsewhere): Every nonmetrizable locally compact abelian group G contains a closed set

E for which Δn(E) is nonclosed for each n.

DEFINITION 3.2. We say that a closed set E in G is a set of weak synthesis (or a

weak S-set) of characteristic n if Δn(E) = 0 and Δk(E)φ0 for k<n.

We have the following inclusions for the ^-difference spectra of unions and

intersections.

LEMMA 3.3. (a) Let Eu E2 be closed sets in G. Then
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( i ) z U ^ n ^ c
(ii) An(Ei^E2)^
(iii) ΔJiEJv Δn(E2)c= Δn{E, uE2)u(E, nE2),
(iv) £t x Δn(E2) u J ^ i ) x £ 2 c /!„(£, x £2).
(b) Suppose {E(} is a collection of mutually disjoint closed sets in G such that, for

each], [j^jEt is closed Then Δn(\J E()= \)Δn(E{).

PROOF. Lemma 2.1 holds with Δn in place of A, so the proofs of (i) and (ii) are
the same as for Lemmas 2.5 and 2.2, respectively. Similarly, the proofs of the case n = 1
of (iii) and (b) given in [2] and that of (iv) given in Lemma 2.7 carry over for any n.

EXAMPLE 3.4. (i) S" in Rn+1 has characteristic k = [w/2] + 1 for n > 2 (Varopoulos
[10]). If m<k, then Δm(Sn) = Sn. (ii) If £ is the union of S" and a line segment, then
Δm(E) = Δm(Sn) for any m. The other examples discussed in 1.1 can also be treated easily.

COROLLARY 3.5 (Warner). There is apairwise disjoint sequence {Ek} of weak S-sets
in Γ00 whose union is closed but is not of weak synthesis.

PROOF. J 0 0 contains mutually disjoint weak *S-sets Ek of characteristic k such that
(J j¥:kEj is closed for each k (see proof of Theorem 2.6 of [11]). We can now apply
Lemma 3.3(b).

To deduce results on weak synthesis from Lemma 3.3, we need a Stegeman-type
result for weak synthesis. To prove such a result, we make use of the following simple
lemma proved by Stegeman [9].

LEMMA 3.6 (Stegeman). Let feA(G), I a closed ideal in A(G) and E a closed set
in G. If fex I for every xφE, then fj(E)czI.

THEOREM 3.7. Let E be a closed subset of G. If there is a weak S-set W with
characteristic n such that Δm(E)a WaE, then E is of weak synthesis with characteristic

PROOF. Let fel(E). IfxφW, then xφAm(E) and so fmexJ(E). Thus, by Lemma

3.6, Tnj(W)<= J(E). Now I(E)aI(W) as W^E.sofeI(W). Hence /"e J(W) =]{W)
fm+nefmj(W)aJ(E). The theorem is proved. (Note that if W is a C-set, the proof
shows that E is of characteristic <m).

We can now give some consequences of Lemma 3.3 and Theorem 3.7. Some of
these are new results, some others are improvements of known ones and the rest
give simplified proofs of existing results.

COROLLARY 3.8. If Δm(E) is of weak synthesis (of characteristic ή), then E is of
weak synthesis (of characteristic <m + n).

One of the problems posed by Stegeman [9, Problem (iv)] is whether Δ(E) is of
synthesis implies E is of synthesis. This problem appears to be rather difficult. Corollary



DIFFERENCE SPECTRUM AND SPECTRAL SYNTHESIS 71

3.8 gives an easy answer to the corresponding problem for weak synthesis. The next

corollary gives a partial answer to Stegeman's question (and also to the more general

question asking for the actual value of the characteristic of E in Corollary 3.8).

COROLLARY 3.9. Suppose E is a Helson set. If Δ(E) (or even Δm(E), for some m)

is of synthesis, then E is of synthesis.

PROOF. This is a consequence of Corollary 3.8 and the easily proved fact (see

[12]) that a Helson set of weak synthesis is automatically a set of synthesis.

COROLLARY 3.10. IfdE is a weak S-set (of characteristic n), then E is a weak S-set

(of characteristic <n + \).

COROLLARY 3.11. If Eu E2 are weak S-sets of characteristic m, n respectively,

then Eγ uE2 is a weak S-set of characteristic <m + n.

These two corollaries are due to Warner [11]. The next one is an improvement

of a result of Warner [11] who got rnn + m, in place of m + n. His methods are entirely

different.

COROLLARY 3.12. Let Eu E2 be closed sets in G. Suppose E1 u E2 and Eί n E2 are

weak Ssets of characteristic m and n respectively. Then Eu E2 are weak S-sets of

characteristic <m + n.

It is not known whether the intersection of two weak S-sets is a weak -S-set. Here

is a sufficient condition for this to hold.

COROLLARY 3.13. If Et, E2 are weak S-sets in G and if there is a weak S-set W

such that dEx n 3E2 <= W<=. Eγ n E2 then Ex n E2 is a weak S-set.

Our last result in this list of corollaries is due to Parthasarathy and Varma [4].

COROLLARY 3.14. Let Ex, E2 be nonempty closed sets in G. If EίxE2 is a weak

S-set of characteristic n in Gx G, then Eί, E2 are weak S-sets with characteristic <n.

REMARKS 3.15. (i) Warner's union result (Corollary 3.11) can be given a direct one

line proof: feI(E1\jE2)^fm = x gejφj and fn = xheJ(E2) for all χ^fm + n = xghe

/ C E Ί ) / ^ ) c J(EX u E2) for all x.

(ii) It follows from Corollary 3.12, for example, that a spherical cap is of weak

synthesis in Rn + 1.

Finally, we have a look at the difference spectrum in restriction algebras. For

closed sets EaFaG, let JF(E), IF(E) and Δζ(E) denote the analogues of J(E), I(E) and

Δn(E) in the restriction algebra A(F).

LEMMA 3.16. (i) If EczFιczF2czG are closed sets, then Δζ'(E)ciΔζ2(E).

(ii) If E, £\, E2 are closed sets in G with ECZE1ΌE2, then
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PROOF. We omit the simple proof of (i). To prove (ii), let xeA» 1 uEl(E). Suppose

xφEinE2. Then xeEnE1 or xeEnE2, but not both. Assume xeEnE^ Choose a

neighbourhood V of x such that VnEίnE2 = 0 and VnEnE2 = 0. There is an

/ e / E l ϋ E 2 ( £ ) w t h / " k / £ l ^

keA(G) such that k=\ near JC and suppkczV. If geA(G) satisfies A = ̂ | £ l , then

(kg)\EluE2eJElvE2(E)- So / ^ ^ U ^ - t o l k u f ^ / ^ u ^ ) , a contradiction. Thus

ί). In the same way we get xeAE2(EnE2) if xeEnE2.

We need a definition to state our next theorem.

DEFINITION 3.17. A closed set E is called a set of weak spectral resolution if every

closed subset of E is a weak S-set.

THEOREM 3.18. (i) If weak synthesis fails for A{FX\ then it fails for A{F2). More

precisely, if EczFt czF2czG and if E has characteristic n in A(F2), then in A(Fι) it has

characteristic <n.

(ii) Let Eu E2 be closed, non-empty sets in G. Assume that Eγ n E2 is a set of weak

spectral resolution for A(E1 uE2). Then weak synthesis holds for A{Ei ϋE2) if and only if

it holds for both A(EX) and (E2).

PROOF, (i) is immediate from (i) of Lemma 3.16, while (ii) follows from Lemma

3.16 and the analogue of Theorem 3.7 for A(E1\JE2). (Note that the assumption that

Eγ nE2 is a set of weak spectral resolution is needed in one implication only.)

REMARKS 3.19. The qualitative and the quantitative versions of Theorem 3.18(i)

coincide for « = 1 . When F2 = G, this is [1, 39.19]. Following the proof given there

(which is entirely different from the present one), the qualitative part of (i) has been

obtained in [4].

We are indebted to J. D. Stegeman for suggesting the use of local equality of sets

in the proofs of Lemmas 2.2 and 2.5 in place of our earlier arguments.
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