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Abstract. By making use of well-known extension theorems on holomorphic
mappings and CR-mappings and applying Webster's CR-invariant metrics, we give a
characterization of certain weakly pseudoconvex domains from the viewpoint of
biholomorphic automorphism groups.

Introduction. This is a continuation of our previous paper [11], and we retain

the terminology and notation there.

Let D be a bounded domain in Cn and let pedD. Then we say that the condition

(*) is fulfilled for (D,p) if

there exists a compact set K in D, a sequence {kv} in K and a sequence

{φv} in Aut(D) such that Hmv^oo φv(kv)=p .

Now assume that the condition (*) is fulfilled for (D, p). Then we may ask if it is

possible to determine the global structure of D from the local shape of the boundary dD

near p. Certainly, it is impossible without any further assumption, as one may see in

the examples such as the direct product of the open unit disk in C and an arbitrary

bounded domain in Cn~ι. As for this problem, it was shown by Wong [25] that if D

is a strictly pseudoconvex domain in Cn with smooth boundary and the condition (*)

is fulfilled for (D, p) for some p e dD, then D is biholomorphically equivalent to the open

unit ball Bn in Cn. It was later extended by Rosay [20] to the case where dD near p is

C2-smooth and strictly pseudoconvex. It is natural to see what happens when p is a

weakly (not strictly) pseudoconvex boundary point of D. It was Greene and Krantz [8]

who first dealt with this problem in the category of weakly pseudoconvex domains in

Cn with globally Cn + ^smooth boundaries. As a generalization of their result, we

obtained in [11] the following characterization of the weakly pseudoconvex domain

E(k,*)=\zeC" \Z\
2)=\

where keZ with l^k^n and 0<αe/?, and it is understood that E(k, oc) = Bn if k = n:
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THEOREM K (Kodama [11]). Let D be a bounded domain in Cn satisfying the

following conditions:

(1) /? = (l,0,...,0)e3Z)nδ£(]fc,α);

(2) there is an open neighborhood U of p in Cn such that D n U=E(k, α) n U;

(3) the condition (*) is fulfilled for {D,p).

Then D is biholomorphically equivalent to the domain E(k, α).

It should be remarked that, in general, E(k, α) is not geometrically convex

and, moreover, its boundary is not smooth at every point x of the form x =

(xί9..., xk9 0 , . . . , 0). Also, noting the fact that such a boundary point x is an

accumulation point of the AuX(E(k, α))-orbit passing through the origin of C , one

sees that exactly the same conclusion in Theorem K remains valid for an arbitrary

point x = (xί9..., xk9 0 , . . . , 0)eδDndE(k, α) as well as p = (l9 0, . . . , 0). This theorem

was later extended by Kodama, Krantz and Ma [15] to a more general domain, called

a generalized complex ellipsoid,

E(n; «!,.. ., na;pl9... ,ps) = <(zl9 . . . , zs)eC"1 x x Cn

in C" = C" ι x xC" s , where 0</>1? . . . ,pseR and 0<n1,..., nseZ with « = wt +

• +nS9 as follows:

THEOREM K-K-M (Kodama, Krantz and Ma [15]). Let D be α bounded domain

in Cn with a point p e dD and E a generalized complex ellipsoid in Cn as above. We assume

that

(1) pedE and there is an open neighborhood U of p in Cn such that D n U=Er\ U;

(2) the condition (*) is fulfilled for (D, p) and also for (E, p).

Then D is biholomorphically equivalent to E. In particular, at least one of the exponents

Pi must be equal to 1.

In view of Kodama [12], [13] (in which the structure of generalized complex

ellipsoids in Cn with all nt = 1 was investigated), it would be natural to ask the following

questions: In Theorem K-K-M,

(Q.I) can we remove the condition (*) for (E, p)?;

(Q.2) can we prove that D = E as sets!

These cannot be answered in full generality at this moment except when all

p^s are positive integers, i.e., the boundary dE is real-analytic (cf. [14]). Recall that

our proofs there relied heavily upon a result on the localization principle of holomorphic

automorphisms of generalized complex ellipsoids E with real analytic boundaries due

to Dini and Selvaggi Primicerio [5], [6]. A glance at their proof tells us that the real

analyticity of dE cannot be avoided with their technique.

The main purpose of this paper is to give partial affirmative answers to the

questions (Q.I) and (Q.2) when the boundary dE is not necessarily smooth. In fact, we
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consider here exclusively generalized complex ellipsoids E(n; k,n — k; 1, <x) = E(k, α) with

arbitrary real numbers α > 0 and prove the following theorems, which were announced

at the POSTECH International Conference on Several Complex Variables in Pohang,

South Korea, 1997:

THEOREM 1. Let Eι = E(k, α), E2 = E(l, β) be generalized complex ellipsoids in C"

with arbitrary real numbers α, β>0 and let px edEu p2edE2. We assume that

(1) k^n-2 andl^n-2\

(2) there are open neighborhoods U1 of pu U2 of p2 in Cn and a biholomorphic

mapping f\ΌiL-+U2 such that f(Pί)=p2, f(U1nEί)=U2r\E2 and f(UιndEί) =

U2ndE2.

Then f extends to a biholomorphic mapping F from E1 onto E2. In particular, we have

(fc,α) = (/,jS).

Combining this with a result of Bell [2; Theorem 2], we obtain the following:

COROLLARY. Let E(k, α) and E(l, β) be generalized complex ellipsoids in Cn with

k^n — 2, l^n — 2 and assume that f: E(k, α)—• E(l, β) is a proper holomorphic mapping.

Then (k, α) = (/, β) and f is a biholomorphic automorphism of E(k, α).

THEOREM 2. Let D be a bounded domain in Cn and let E=E(k, α) be a generalized

complex ellipsoid in Cn with 0<<xeR. We assume that

(1) there exist a point pedDndE and an open neighborhood U of p in Cn such

that DnU=EnU;

(2) the condition (*) is fulfilled for (D, p).

Then we have D — E as sets.

We would like to remark that the assumption (1) in Theorem 1 is essential. Indeed,

consider the generalized complex ellipsoids Eγ = {(z, w)eCxC\ \z\2 + \w\2θί<l},E2 = B2

and a branch / of (z, w)ι—>(z, wa) defined in a small neighborhood of a point

p 1 = (z0, w0) e dE1 with w0 Φ 0, where 0 < α e R, oc φ 1. Then / gives rise to a biholomorphic

equivalence between a neighborhood Uί of pγ and a neighborhood U2 of

p2''=f(Pι)^SE2 satisfying the condition (2) in Theorem 1; however, it is clear that /

cannot be continued to a biholomorphic mapping from E1 onto E2. Also, considering

the special case oc = β=\ in the corollary above, we see that every proper holomorphic

self-mapping of the unit ball Bn must be a biholomorphic automorphism of Bn. This

is just a well-known theorem of Alexander [1].

In Section 1, by making use of Rudin's extension theorem [21; p. 311] on

holomorphic mappings defined near boundary points of Bn, we show some properties

of generalized complex ellipsoids E(k, α), which will be a key step to the proofs of our

theorems. After this preparation, Theorems 1 and 2 will be proved in Sections 2 and

3, respectively. Our proofs here are based on some extension theorems on proper

holomorphic mappings and CR-mappings obtained by Forstneric and Rosay [7],

Pinchuk [18], [19], Bell [3], and also on the existence of Webster's CR-invariant metrics
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on strictly pseudoconvex real analytic hypersurfaces in Cn without umbilical points
[22], [23].

The author would like to express his thanks to Professors Junjiro Noguchi and
Kang-Tae Kim for their useful comments on the subject of this paper.

1. A key lemma. For later purpose, we prove some facts on the structure of
the model spaces E(k, α) with arbitrary real numbers α>0.

Throughout the rest of this paper, we use the following notation: For a point
z = (zu . . ., zn)eCn and for a domain E(k, α), we set z' = (z1, . .., zk), z" = (zk + ί, . . ., zn),
E=E(k, α) and

d*E= {{z\ z")eCkxC"~k
| z |2

which is an open dense subset of dE. Then, by using the facts in the previous paper
[11; Section 1], the following assertions are easily proved:
(1.1) d*E is a connected, strictly pseudoconvex, real analytic hypersurface in C";
moreover, it is simply connected if k^n — 2 [9; p. 346].
(1.2) Aut(£) can be regarded as a subgroup of Aut(2?k x Cn~k).
(1.3) Aut(E)* d*E=d*E and Aut(£) acts transitively on 3*£ as a real analytic
CR-automorphism group of d*E.

The following lemma will play a crucial role in our proofs of Theorems 1 and 2.

LEMMA. Let E=E(k, α) be a generalized complex ellipsoid in Cn with k^n — 2 and
let ped*E. Assume that there are an open neighborhood V of p in Cn and a biholomorphic
mapping f from U into Cn such that

UndE=Unδ*E,f{Und*E) = f(U)ndBn and f(UnE) = f(U)nBn.

Then f extends to a biholomorphic mapping F: E^>Bn. In particular, we have <x= 1.

PROOF. Since δ*E is a connected, strictly pseudoconvex, real analytic hyper-
surface in Cn by (1.1), it follows from a result of Pinchuk [18], [19; p. 193] that / can
be continued along any path lying in d*E as a locally biholomorphic mapping. Since
d*E is now simply connected by our assumption k^n — 2, the monodromy theorem
guarantees that / extends to a locally biholomorphic mapping F defined on some con-
nected open neighborhood Fof d*E in Cn such that F{d*E)adBn and F(VnE)^Bn.
Now we will proceed in several steps.

(1) F extends to a holomorphic mapping F from E into Bn. To prove this, take
an arbitrary r with 0 < r < 1 and put

Since Krad*E<^ Fand Kr is compact in V, one can choose a small ε = ε(r)>0 in such
a way that

Ur^: = {(z\ z")E Ck x CΛ"M I z' I <r, 1 - ε < | z' |2 +1 z" |2 α < 1 + ε} c V.
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Clearly, UriE is a bounded Reinhardt domain in Cn. Moreover, since λ rgλz —2, we have
Ur^n{zeCn\zj = 0} Φ0 for j= 1,...,«. Hence, by a well-known fact [16; p. 15] every
component function Fj of F has a holomorphic extension F] to the domain

the smallest complete Reinhardt domain in C" containing £/,. ε. In particular, putting

P _ U7' 7"\cz Ck X Cn~k I I τ ' l ^ T \ 7r \2 4-\ 7" \2cί *? λXE,r—\\Z,Z JfcL. X t | | Z | < Γ , | Z I - h | Z | < A / 9

we see that F=(FU ..., Fn) has a holomorphic extension Z7': = (/Γϊ, . . . , Fr

n) to Er u F.
Note that EraEs for 0<r<.s<:l, ( J 0 < r < 1 £,. = £ and that the holomorphic extensions
i^ are uniquely determined by the values of F on a small neighborhood of the point
(0, . . . ,0, l)eVnd*E. Then, by standard argument, one can define a holomorphic
extension F: Eu F->C™ of F: V->C\

Now we wish to show that F(E)czBn. For this let us fix an arbitrary point
zo = (z'O9z'o')eE and set

which can be regarded as an open ball in Cn~k. Consider the non-constant, continuous

plurisubharmonic function ψ: 2" 1—• — 1 +1F(z'o, z")\2 defined on some open neighbor-

hood of the closure ~E(z~) of E(z0) in Cn~k. Then φ(dE(zo)) = 0 and ψ(z")<0 on E(zo)n V.
This, combined with the maximum principle for plurisubharmonic functions, guarantees
that ψ(z'o')<0, i.e., F(zo)eBn and accordingly F(E)czBn.

(2) There exists a locally injective, real analytic homomorphism Φ: Aut(ii) —•
such that Φ(σ)oF=Foσ on E for all σeAut^). Indeed, take an arbitrary σe
By virtue of (1.2) and (1.3), one can choose an open neighborhood W of the

pointped*E so small that Wvσ(W)c: Fand Fis injective on PFand on σ(W). Let us
consider the biholomorphic mapping Ψ: = F°σ°(F\ W)~x: F{W)->F(σ(W)). By an
extension theorem due to Rudin [21; p. 311] we obtain an element ΨeKλ\t(Bn) such
that Ψ(z) = Ψ(z) for all zeF(WnE). Note that Wf\E and F(WnE) are non-empty open
subsets of E and Bn, respectively. Then, by the principle of analytic continuation, we
have that ψop=Foσ on E and Ψ is uniquely determined by σ. Accordingly, one can
define a mapping

Φ: Aut(£) -> AuttSn)

by setting Φ(σ)= Ψ so that Φ(σ)op=Foσ on E for all σeAut(E).
It is easy to check that Φ is a group homomorphism. Once it is shown that Φ is

continuous at the identity element id£ of Aut(£"), it follows that Φ is real analytic on
AutOE) (cf. [9; p. 117]). Since the topology of Aut(£") satisfies the second axiom of
countability, we have only to show that Φ is sequentially continuous at id£. For this
let us take an arbitrary sequence {σv} in AutOE) which converges to id£ and assume
that {Φ(σv)} does not converge to the identity element idβn of Aut(i?M). Passing to a



60 A. KODAMA

subsequence, we may assume that there is a neighborhood O of iάBn in Aut(i?") such
that Φ(σv)φO for all v. Pick an arbitrary point xeE. Then limv^aoΦ(σv)(F(x)) =
\imv^QoF(σv(x)) = F(x)eBn, which implies that {Φ(σv)(F(x))} lies in a compact subset of
Bn. Hence, after taking a subsequence if necessary, we may assume that {Φ(σv)} con-
verges to some element geAut(Bn) (cf. [16; p. 82]). Since gφO, we see that gφ\άBn.
On the other hand, we have g(F(z)) = \imv_>ooΦ(σv)(F(z)) = limv^ooF(σv(z)) = F(z) for all

zeWnE; consequently, g = iάBn by analytic continuation. This ia a contradiction.
Therefore, Φ is continuous at id£, as desired.

Finally we claim that Φ is locally injective. It suffices to prove that Φ is injective
in some neighborhood O of id£. To this end, let us select a small open neighborhood
W of the point ped*E in Cn and non-empty open subsets Wγ, W2 of WnE with the
properties: Fis injective on W, and Wί is a relatively compact subset of W2. We claim
that 0={σeA\xt(E)\σ(W1)c- W2) is what is required. Indeed, it is clear that O is an
open neighborhood of id£ in Aut(is). Moreover, assume that Φ(σγ) = Φ(σ2) for σ1? σ2 e O.
It follows that Fiσ^z)) = Φ(σx)(F{z)) = Φ(σ2)(F(z)) = F(σ2(z)) for all zeE. Since Pis injective
on W2a Wand since σx(z\ σ2(z)e W2 for all ze Wu this says that σi =σ2 on Wγ\ and
hence σ1 — σ2 on E by analytic continuation. Therefore, we have shown that Φ is locally
injective on Aut(E).

(3) F: E^Bn is locally injective. Set S = {zeE\ (JF)(z) = 0}9 where (JF)(z) denotes
the holomorphic Jacobian of Fat z. Assume that Sφ0. Then S is a complex analytic
subset of E of dimension n—\. Once Scz{(z\ z")eCk x Cn~k\z" = Q} = Ck is shown, we
arrive at a contradiction, since dim S = n — 1 >& = dim Cfc by our assumption. Thus we
have only to show that SczCk x {0}. To this end, take an arbitrary point x = (x\ x")eS
and assume that x"Φ0. We may assume that x is a regular point of S. Recall that
Foσ = Φ(σ)oFon E for all σe Aut(£) by (2). Then

(JF)(σ(x)) - (Jσ)(x) = (JΦ(σ))(F(x)) (JF)(x) = 0 and (Jσ)(x) Φ 0

for all σeAut^). This means that Aut^) '^ , the Aut(2s)-orbit passing through the
point x, is contained in S. This is impossible. Indeed, since x"φθ, one can show by
using the explicit expression of Aut(E(k, α)) as in [11; Section 1] that the orbit Aut(is) x
is a real analytic submanifold of E of real dimension In — 1 on the other hand, S near
x is a real analytic submanifold of E of real dimension 2n — 2. Therefore we conclude
that Scz Ck x {0}, completing the proof of (3).

Before proceeding further, we need some preparation. First, notice that Bn is
homogeneous and each element g e Aut(2?n) extends to a biholomorphic mapping defined
in an open neighborhood of Bn. Thus, shrinking the neighborhood V of d*E and
replacing Fby a suitable mapping of the form g°FW\ih some geAut(iΓ), if necessary,
we may assume that the holomorphic mapping F: E\J V^Cn satisfies an additional
condition F(o) = o, where o stands for the orgin of Cn. Next, let us consider the toral
subgroups TE and Tβn of Aut(is) and Aut(iΓ), respectively, induced by the rotations on
Cn as follows:
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(z 1 ? . . . , zn)

Then Φ(TE)(o) = Φ(TE)(F(o)) = F(TE(o)) = F(o) = o, which says that Φ(TE) is contained in

the unitary group U(n) of degree n (the isotropy subgroup of Aut(Bn) at the origin o).
Since Φ(TE) as well as Tβn is now a maximal torus in U(ή) by (2), it is well-known that
they are conjugate to each other in U(n), that is, there exists an element τ e U(n) such
that τ Φ(TE) - τ~ ι = Tβn. Thus, considering τop, τ°Φ°τ~ι instead of F, Φ if necessary,
we may further assume that Φ(TE)=TBn. Under these assumptions, we claim the
following:

(4) F: E-^Bn is, in fact, a biholomorphic mapping. Thanks to the fact (3) one
can choose a small open ball Bp = {zeCn\ \z\<p}aE on which F is injective. Then,

since F(Bp) = F(TE(Bp)) = Φ(TE)(F(Bp)) = TBn(F(Bp)), we see that F(Bp) is a bounded

Reinhardt domain in Cn with center at F(o) = o. Therefore, by a well-known theorem
of H. Cartan [21; p. 24], the restriction F\Bp\ Bp-+F(Bp) is a linear transformation.
So we may assume that .FeAut(C"). This, combined with the facts that F(δ*E)czdBn

and δ*E is dense in dE, guarantees that F(E) = Bn; and hence F: E-+Bn is a
biholomorphic mapping. Finally, the assertion α = 1 follows from a result of Naruki
[17]. This completes the proof of the Lemma.

2. Proof of Theorem 1. The proof is divided into three cases as follows:
Case 1. oc = β=l. We have Eι=Bn = E2 in this case; hence our theorem follows

at once from Rudin's result [21; p. 311].
Case 2. oιΦ\, β=\ or a=\, βΦ\. We claim that this case does not occur. Indeed,

assume the contrary. Since d*E1 and d*E2 are open dense subsets of dEγ and dE2,
respectively, and since / : U1 -> U2 is a biholomorphic mapping, we may assume that

pίed*Eί9 U1nδE1 = U1c\d*E1, aφ\ and β=l .

In particular, we have E2 = Bn. As an immediate consequence of the Lemma in Section
1, we now have <x= 1, a contradiction.

Case 3. α φ 1, β Φ1. Without loss of generality, we may assume that pted *Et and
UiΠdE— Uind*Ei for each /= 1, 2. Here, we claim that any strictly pseudoconvex real
analytic hypersurface d*Et has no umbilical points in the sense of CR-geometry; hence,
Webster's CR-invariant Riemannian metric gt can be defined on the whole space d*2sf.
(For the notion of umbilical points and Webster's CR-invariant metrics in CR-geometry,
see [4]; and also, [22], [23], [24].) To prove our claim, assume that there exists an
unbilical point on d*Eit Then, all the points of d*Et are umbilical, since A u t ^ ) acts
transitively on d*Et by (1.3). Hence, d*Et must be locally biholomorphically equivalent
to the sphere dBn (see, for example, [22; p. 213]). By the Lemma in Section 1 we
conclude that α= 1 or β= 1 according as /= 1 or i = 2. This is a contradiction, as desired.
Moreover, we see that (d*Eh g() is complete as a Riemannian manifold, because d*Et

is homogeneous under the CR-automorphism group A u t ^ ). As a result, each (d*Ei9 g^)
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is a connected and simply connected, complete real analytic Riemannian manifold. On
the other hand, / : Ui n d *Eγ -> U2 n 3 *£τ

2 is an isometry with respect to the CR-invariant
metrics gγ and #2 By a well-known fact in Riemannian geometry [10; p. 256], / can
now be uniquely extended to a global isometry F: [d*Eu gί)-+(d*E2, g2). It is easily
seen that F: d *Et -+d*E2 is a real analytic CR-diffeomorphism. Accordingly, by a result
of Pinchuk [18], [19; p. 186] there are open neighborhoods Vγ ofd*Eι and V2 ofd*E2

in Cn such that F: d *Eι -> d *E2 and its inverse G:=F~ί: d *E2 -> 3 *£\ extend to locally
biholomorphic mappings written in the same notation F: Vγ^Cn and G: V2-^Cn

satisfying F(V1 r\Eι)<=E2 and G(V2nE2)<=E1. Hence, in exactly the same way as in (1)
of the proof of the Lemma in Section 1, it can be shown that F and G extend to
holomorphic mappings F: Eγ->Cn and G: E2^Cn. Moreover, replacing φ{z") by
ψί(z") = p2(F(z'O9 z")) in (1) of the proof of the Lemma in Section 1, we can prove that
F(Eί)aE2, where p2 is the continuous plurisubharmonic function on Cn defined by

p2(z)=-l+Σ\=i\zi\2 + (Σnj=ι+i\zjl2)β

z

zεCn' Analogously, we see that G(E2)czEi.
Since GoF=id£ l near d*Eί and FoG = idE2 near d*E2, we conclude by analytic
continuation that G°F=idEί and FoG = idE2; consequently, F: E1->E2 is a biholo-
morphic mapping. Finally the assertion (fc, α) = (/, j8) follows now from Naruki [17],
completing the proof of Theorem 1.

3. Proof of Theorem 2. The case k = n — 1 is contained in our previous paper [13].
Thus it suffices to prove Theorem 2 when k^n — 2. We have two cases to consider:
Case 1. The point pedD is a strictly pseudoconvex boundary point. Hence D

is biholomorphically equivalent to Bn by a result of Rosay [20]. Fix a biholomorphic
mapping F: D -• Bn. Using a theorem on the boundary continuity of proper holomorphic
mappings due to Forstneric and Rosay [7], one sees that F extends to a homeomorphism
from a connected open neighborhood M of p in 3D n dE onto an open subset M' of
dBn. Accordingly, by results of Bell [3; Theorem 2], Pinchuk [19; p. 186], the
CR-homeomorphism F: M^M' can be extended to a biholomorphism between some
open neighborhoods O of M and O' of M' in Cn. Hence, E=Bn by the Lemma in
Section 1 and F extends to a biholomorphic automorphism Φ of Bn by [21; p. 311].
Set Ψ = Φ~1eAut(Bn). Then, since Ψ = Fι near Λf, we have that Ψ = F~ι on Bn by
analytic continuation. Thus we obtain that D = F~1(B") = Ψ(Bn) = B" = E, as desired.

Case 2. The point pedD is not a strictly pseudoconvex boundary point. The point
p must be of the form p = (pι, ... ,pk, 0, . . ., 0) by (1.1). Therefore, it follows at once
by Theorem K in the introduction that there exists a biholomorphic mapping F: D-+E.
In exactly the same way as in the proof of [13; Lemma 3], it can be shown that F
extends to a homeomorphism from an open subset of Und*EndD onto an open subset
of d*E. By the same reasoning as above, one can now find pointsp1 e Und*E,p2ed*E,
open neighborhoods Uι ofpu U2 ofp2 in Cn and a biholomorphic extension F: Uγ -• U2

of F satisfying all the conditions in (2) of Theorem 1. Thus F extends to a biholomorphic
automorphism Φ of E\ hence, repeating exactly the same arguments as in Case 1, we
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can show that D = E as sets. This completes the proof of Theorem 2.
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