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Abstract. Let G be a real rank one connected semisimple Lie group with finite center.
As well-known the radial, heat, and Poisson maximal operators satisfy the L^-norm inequali-
ties for any p > 1 and a weak type Ll estimate. The aim of this paper is to find a subspace of

L' (G) from which they are bounded into L (G). As an analogue of the atomic Hardy space on
the real line, we introduce an atomic Hardy space on G and prove that these maximal operators
with suitable modifications are bounded from the atomic Hardy space on G to L 1 (G).

1. Introduction. The study of Hardy spaces Hp originated in the 1910's in the set-
ting of Fourier series and was developed by the so-called complex variable methods. In the
1970's these spaces were completely characterized by various maximal operators without us-
ing complex variables and the study was advanced by the so-called real variable methods.
Atomic characterization of Hp was also given at the same time. Since the real variable meth-
ods have no need for the complex structure, the Hardy space theory cound be generalized to
one on locally compact groups G such as compact Lie groups and the Heisenberg groups.
Nowadays, this fruitful Hp theory has been extended to the spaces X of homogeneous type
in the sense that they satisfy the so-called doubling condition: There exists c > 0 such that
for each x e X and t > 0

\ B ( 2 t , x ) \ < c \ B ( t , x ) \ ,

where B(t, x) is the ball with redius / centered at x and \B(x, r)\ is the volume of the ball.
Roughly speaking, on X Hardy spaces HP(X) are characterized by the radial maximal op-
erator, and the heat and Poisson maximal operators are bounded from H P ( X ) to L P ( X ) for
any 1 < p < oo (cf. [3]). However, when the space is not of homogeneous type, little work
has been done. In this paper, looking at the example of semisimple Lie groups G, we shall
consider the Hardy space theory on G of nonhomogeneous type. Actually, on G, \B(t, x)\
has exponential growth order (cf. Lemma 2.1 below), hence G is not of homogeneous type.
Our goal is to introduce an atomic Hardy space Hλ

 0(G) on G and show that the modified

radial, heat, and Poisson maximal operators are strongly bounded from // ]

 0(G) to ^(G)
under suitable conditions.

This paper is organized as follows. We suppose that G is a real rank one connected
semisimple Lie group with finite center and G = K exp p the Cartan decomposition of G. For
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each g = k exp X (k e K, X e p) let σ(g) denote the norm of X with respect to the Euclidean

structure of p induced from the Killing form. Let dg be a Haar measure on G, dk the one

on K with total mass 1, and ds the Lebesgue measure on the Lie algebra α of A. Then dg is

decomposed as dg = Λ(s)dkdsdkf relative to the Cartan decomposition G = KCL(A+)K

of G. We identify A = exp α with R. Let B(t) denote the ball with redius t > 0 centered at

the origin: B(t) = {x e G; σ(x) < t} and \B(t)\ = f$ Λ(s)ds the volume of the ball.

The Hardy-Littlewood maximal operator MHL on G is defined as follows.

MHL/W = sup\B(t)\~l\f\ *χt(χ)
ί>0

(1) =sup|β(OΓ1 i f ( x g ~ l ) X t ( g ) d g
t>o JG

= sup|5(ί)Γ1 / \f(xg~l)\dg,
t>0 JB(t)

where χt is the characteristic function of B(t). As well-known, MHL satisfies the maximal

theorem: For any 1 < p < oo, MHL is of type (p, p), and is of weak type (1, 1), that is,

it maps LP(G) into itself and Ll(G) into weak L1 functions on G (see [7]). In §3 we shall

obtain a pointwise estimate: If a is a function on G supported on B(r) with ||α||oo < \ B ( r ) \ ~ l ,
then

(2) MΉLa(x)<\B(σ(x))\-1.

We fix a smooth and compactly supported AΓ-bi-invariant function φ on G and, identify-

ing it with an even function on R, we define the dilation φt (t > 0) of φ by

1

t'

where A is the density of the Haar measure dg related to the Cartan decomposition of G.

Then, a radial maximal operator Mφ is defined as

Mφf(x) = sup |/ * φt(x)\ -

As shown by [4, Theorem 3.4], Mφf(x) is dominated by C(MHL/(*) + I/I * E(x)), where
E(x) = e~2pσ^ and hence, the radial maximal operator Mφ is also of type (/?, p) for any

1 < p < oo, and is of weak type (1, 1).

We now introduce an atom on G. Let 1 < p < oo. We say that a function a on G is a
(1, /?, 0)-atom provided that

(i) a is supported on B(r) for some r > 0,

(ii) ifr < l,then| |α| |p < \B(r)\l/P~l and /G a(g)dg = 0,

(iii) i f r > 1, then \\a\\ p < ^(r)!"1.

In the Euclidean case the moment condition fRa(g)dg = 0 of an atom a on R essentially

yields the integrability of a radial maximal function of the atom (cf. [3, Theorem 2.9]). How-

ever, in our case Mφa is not integrable on G, because the density Δ(x) cancels the order of

decay obtained in (2) (see Remark 4.7). In §4, by using (2) we shall obtain some pointwise

φt(s) = -Δ(sΓlΔ φ (s e R),
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estimates of a * φt(x) and thereby deduce the following weak equi-integrability of Mφa: For
each ε > 0

(3) I Mφa(g)(\+σ(g)Tεdg<c,
JG

where c is independent of the (1, /?, 0)-atom a on G. As an easy consequence, a refinement
of [4, Proposition 4.1] follows: If we define a modified radial maximal operator Mφ on G by

Λfί/(*) = sup(l+0~V *&(*)!,
f>0

then for each ε > 0 we have

I
J

Mε

φa(g)dg<c,
G

where c is independent of the (1, /?, 0)-atom 0 on G. In §5 we shall consider a left translation
of each (1, /?, 0)-atom a on G: 0*0?) = a(xg), (x, g € G). Then we shall introduce an atomic
Hardy space H{

 0(G) as a collection of these translations. The above estimate implies that

M£

φ is bounded from H l

p Q ( G ) to Ll(G) (see Theorem 5.3).
We shall treat the same problem for the (modified) heat and Poisson maximal operators

Mft and Mp on G, which are defined respectively by

0~Ί/*M*)l and Λf£/(*) = sup(l + tΓ*\f *
f>0 f>0

for each ε > 0, where ht and pt are the heat and Poisson kernels on G/K, respectively.
We denote M^ (resp. Mp) by MH (resp. Mp) for simplicity. As shown by [6, Chap. Ill]
and [1, Corollary 3.2], MH and Mp also satisfy the maximal theorem. In §6, applying the
sophisticated estimates for ht and pt obtained in [1], we shall prove that the inequality (3) for
MH (resp. Mp) holds for ε > 1/2 (resp. ε > 0). This implies that M^ and M| are bounded
from Hl

 0(G) to Ll(G) provided ε > 1/2 and ε > 0, respectively (see Theorem 6.1 and
Theorem 6.4).

The author wishes to thank the referee for many valuable and helpful suggestions.

2. Notation and preliminaries. Let G = KAN be a connected semisimple Lie
group with finite center and suppose that dim A = 1. Let α be the Lie algebra of A and
α* the dual space of α. Let γ be the positive simple root of (G, A), and m\,mι the multi-
plicities of γ and 2χ, respectively. We put 2ρ = m\ + 2mι and 2a = m\ + mi — 1. Let
H be the element in α such that γ ( H ) = 1. In the following we identify A, α, and α* with
R as 5- H> as = exp(s//), sH and sγ, respectively. According to the Cartan decomposition
G = KCL(A+)K, A+ = [as; s > 0}, we define σ : G -> Λ + by g e Kaσ(g)K. Then σ is
^-bi-invariant and

(4) |σ(*) - σ(3θ] < σ(jc};) < σ(x) + σ(v)

for c, v e G (cf. [8, 8.1.2]). Let dg be a Haar measure on G normalized as

(5) ί f(g)dg= I Γ ί f(kask')A(s)dkdsdk',
JG JK Jo JK
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where dk is the Haar measure on K such that fκ dk = 1, ds is the Lebesgue measure on

R, and Δ(s) = (sinhs)'"1 (sinh2s)"12 (cf. [2, (2.4)]). We use the notation L?(G) to stand for

the space L/;(G, dg) and we denote the norm by || - \\p. Let C^°(G) be the space of all C°°

functions with compact support on G. We denote by L P ( G / / K ) and C%°(G//K) respectively

the subspaces of LP(G) and C^°(G) consisting of all ^-bi-invariant functions on G. Then we

identify each A^-bi-invariant function f on G with an even function on /?, which we denote

also by the same letter:

f(g) = f(aσ(g}) = f(σ(g)) (g e G).

We recall some basic facts on the spherical Fourier analysis on G. For a survey of this

subject we refer to [2] and [8, Chap. 9]. Let Ω be the Laplace-Beltrami operator on G/K

and let φχ(x} (x e G, λ e α*) be the spherical function on G such that φχ(e) = 1 and

Ωφλ(x) = -(λ2 + p2)φχ(x). For each / e L ] ( G / / K ) , the spherical Fourier transform /(λ)

is defined by

/(λ)= I f(9)Φλ(g)dg ( λ e α * ) .
JG

Then f(wλ) — /(λ) for tu G W, the Weyl group of (G, A). Since dim A = 1, this means

that /(λ) is an even function on R. When / belongs to C%°(G//K), the spherical Fourier

transform / h-» f has an inversion formula of the form

(6) f ( g ) = c I f(λ)φλ(g)\C(λ)Γ2dλ (g G G),
Jα*

where c is a constant and C(λ) is Harish-Chandra's C-function. This transform

has an L -extension, that is, it gives an isometric isomorphism between L 2 ( G / / K ) and

L2

W(R, |C(λ)Γ2dλ), the space of even functions in L2(R, |C(λ)|"2Jλ).

In the following, we follow the custom of using the letter "c" to denote a constant which

might be different at each occurrence.

Let B(s) denote the open ball with radius s > 0 centered at the origin and \B(s)\ the

volume f^ Δ(u)du of the ball.

LEMMA 2.1. The density Δ(s) and the volume \B(s)\ have the following properties.

(i) Δ(s) -e2Ps (s > 1),

(ii) Δ(s) -52α+1 (s < 1),

(iii) \B(S)\^e2?* (s> 1),

(iv) \B(s)\ -5

2(Q'+1) (s < 1),

(v) 1^(5)1' = ̂ ),

where the symbol "~" means that the ratio of the left hand side to the right hand side is

bounded below and above by a positive constant, and the prime in (v) means the derivative

with respect to s.

LEMMA 2.2. Suppose that x, y e R+ and x — y > 1. Then for each q > 1

i Δ(σ(axka~l}Γqdk < c

JK
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PROOF. Ifx-y > lanάy < 1, then (4) and Lemma 2. l(i) imply that Δ(σ(axka~l))~tl <

e-2pq(x-y] < C£-2pqx for a j j ^ 6 ^? so we may assume that x, y, x — y > 1 . We recall the

kernel form of the product of spherical functions φ\ (see [2, (4.2)]):

Φλ(g\}Φλ(g2) = I K(9\,92,93)Φλ(93)dg3 ( g \ , 92, 93 ε G) .
Jc

Applying (6), we see that for / € C

I f(gιkg2)dk = c I /(λ) ( ί φλ(g\kg2)dk] \C(λ)\~2dλ
JK Ja* \Jκ /

= c ί f(λ)φλ(g{}φλ(g2}\C(λ}\-2dλ
Ja*

= ί K(gι,g2,93)(c ί f(λ)φλ(g3)\C(λ)\-2dλ]dg3
Jc V Ja* /

= / K ( g \ , g 2 , g 3 ) f ( g 3 ) d g ι .
JG

Here K(g \,g2, 93) = 0 if σ (g^ satisfies σ (#3) < \ σ ( g \ ) - σ ( g 2 ) \ orσ(^3) > σ(g\)+σ(gι)
(see [2, (4.17)]). Therefore, approximating Λ ( σ ( g ) ) ~ < ί , q > 1, by functions in C™(G//K),
we may replace / in the above equations with Δ(σ(g))~cί . Then it follows from (5) and
Lemma 2. l(i) that

ί Δ(σ(axka~l)Γqdk= ί K(ax, av, g)Δ(σ(g)Γqdg
JK JG

ί
J x

'

Since K(ax,ay,az) = O(e~p(x+y+z}) provided jc, v, z > 1 (see [2, (4.14)]), the desired
result follows. D

3. The Hardy-Littlewood maximal operator. We keep the notation in the previous

sections. We shall treat the Hardy-Littlewood maximal operator MHL on G defined by (1) and
prove the estimate (2).

PROPOSITION 3.1. Suppose that a function aonG is supported on B(r) and \\a\\oo <

\B(r)\~λ . Then

MHLa(x) < min(\B(r)Γl, \B(σ(x))\~l) (x e G) .

PROOF. Without loss of generality, we may assume that^(^) = \B(r)\~l χ r ( x ) , where
χr is the characteristic function of the ball B(r). We shall show that the supremum over t > 0
of

χr * χ t ( x )

is dominated by mm(\B(r)\~l, \ B ( σ ( x ) ) Γ l ) . Clearly, F(t) < \B(t)\~l and \ B ( r ) \ ~ l , and
hence we may assume that σ( c) > r. Since F(t) = 0 for t < σ(x) — r, to obtain the desired
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estimate it suffices to prove that F(t) is increasing on the interval σ(x) — r < t < σ ( x ) . If
we put

(7) /(*, r,y)= I χr(xky-l)dk (x, y e G) ,
JK

then we see that

•f /(*,r, f l j
Λτ(jt)-r

= IBίfOΠWOΓ 1 / I(x,r,as)Δ(s)ds.
Jσ(x)-r

Here we note that, as a function of s, I(x,r,as) is increasing on σ(x) — r < s < σ ( x ) .

Therefore, since \B(t)\f = Δ(t) and f^(x}_r Δ(s)ds < \B(t)\, it follows that

\B(r)\ \B(t)\F'(t) = 7(jc, r, ̂ )^(ί) - |β(ί)Γ ^(OΓ1 / /(*, Λ αj^ίj)^

, r, at)Δ(t) l - \B(t)\~l

σ(x)-

>0

l f I ( x , r, as

Jσ(x)-r

Γ Δ(s)ds]
Jσ(x)-r /

D

COROLLARY 3.2. Suppose that a function a on G is supported on B(z,r), the ball

with redius r centered at z, and ||α || oo ^ \B(r)\~l

(i) For every λ > 0,

|{^c G G; MHL^(^) > λ}| <

(ii) For every 1 < p < oo,

II^HL«llσ <

PROOF. Since Z?(;c) = α(z c) is supported on B(r) and H^Hoo < \B(r)\ !, it follows
from Proposition 3.1 that

MHLa(x) = MHLb(z-lx) < mm(\B(r)Γ\ \B(a(z~lx))\-{) .

Let 5(λ) = {jc e G; MnLa(x) > λ}. Obviously, if λ > \ B ( r ) \ ~ l , then 5(λ) is empty,
and if λ < ^(r)!"1, then 5(λ) C 5(z, rλ) = {Λ: € G; ^(σfe-1^))!-1 > λ}. Therefore,

< \B(z, rλ)| = |B(rλ)| = λ-1. Moreover, it follows that

r r\B(r)Γ p

I \MHLa(x)\Pdx = p I λ?-lS(λ)dλ < -^
JG Jo P -

D

4. The radial maximal operator and atoms. Let φ be a /f-bi-invariant, differen-

tiable function on G. We say that φ belongs to the class As (<$ > 0) if it satisfies, as an even



HARDY SPACES AND MAXIMAL OPERATORS 7

function on /?,

(i) C0,o =\\ΦΔ ||ι < 1,

(8) (ϋ) CΦΛ = \\(φΔ)(s)\s\(l + \s\)s\\00<l9

(in) Q>,2 - \\(φΔY(s)\s\2(l + M)δ||oc < 1 .

For each φ e AS we define the dilation φt (t > 0) of φ and the corresponding modified radial

maximal operator Mf (ε > 0) on G by

- -Δ(sΓlΔ 0

Λfί/00 = sup(l + 0~Ί/ * 0; W l (* e G) .
ί>0

Then, as explained in §1, the maximal operator satisfies

Mε

φf(x) < Mφf(x) < c(MHL/00 + I/I * £00) ,

and hence it satisfies the maximal theorem on G.

We first obtain some estimates for φt * a when a is supported on a ball #(r).

PROPOSITION 4.1 . Let φ e As- Suppose that a function aonG is supported on B(r),

\\a\\\ < I, and if r > I, then \\a\\ p < \B(r)\~l for some p > 1. Then

\a * σ ~ Γ

where ΓQ = 2r z/r < 1, and ΓQ = r + 1 ifr > 1.

PROOF. Let r < 1 and σ(αc) > 2r. Then it follows from (ii) of (8) that

j rσ(x)+r ^ s\~s Γ Γ

M 0/001 < -Q>,1 / -(1 + -) Δ(*Γl I I \a(xka-lkf)\dkdk'Δ(s)ds
t ' Jσ(x)-r s V ^ JK JK

c / o IΛ j — r '

< σ(x)
^ ( 1 + σ(x)~r\ A(σ(x) - r)-1 \\a\\i .
)-r V t )

> 2, thenσ( c) -r > 1, and hence, Δ(σ(x) - r)~l ~ g-2/°(σ(Jf)-Γ) ~ ^(σOOΓ1 by

(i) of Lemma 2.1. Moreover, if 2r < σ( c) < 2, then σ( c) - r > σ( c) - σ(jc)/2 = σ(jc)/2,

which implies that 2\(σ(jc) - r)"1 < Δ(σ(x)/2)~l ~ ^(α^))"1 by (ii) of Lemma 2.1.

Therefore, the desired estimate follows.

Let r > 1 and σ ( x ) > r + 1. We note that, if s < r, then by (4), σ(a~lkx) > σ(x) — s >

σ(x) — r > 1 for all k € K. Therefore, using Holder's inequality three times, we see from
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(ii) of (8), Lemma 2.2, and (i) of Lemma 2.1 that \a * φt(x)\ is dominated by

-δ
-CΦΛ Γ ί ί \a(kask

f)\dkf —{
t JQ JKJK <*W ~r t

'
Jo \Jκ \Jκ

α -i -i \l/q ί 1 l

σ as x J s s ^ ^ _

c ( σϋc) - r\~8 / fr f Γ \ 1 / / ?

1 1 + -̂  / / \a(kask')\pdk'dkΔ(s)ds]
) - r V t ) VΛ) JK JK )

x e
\lq

σ(x)-r

Since \\a\\p < \B(r)\~} - e'2^ (r > 1) and e~
2pσ(x} - Δ(σ(x)Γl (σ(x) > 1), we are

done. D

REMARK 4.2. In the proof of Proposition 4.1, when r > 1, we used Holder's inequal-
ity to divide the integral over K into the ones of fκ \a(kask

f)\dkf and Δ(σ(a~lk~lx))~l. If a
is left K -invariant on G, then this process is not necessary and we can directly apply Lemma
2.2 with q = 1 to fκ Δ(σ(a~lk~]x))~^dk. In this case, \\a\\Pe

2pr in the last inequality can
be replaced by ||α|| \ < 1, and therefore the assumption \\a\\p < ^(r)!"1 is not necessary.

PROPOSITION 4.3. Let φ e As. Suppose that a function a on G is supported on B(r),
\\a\\\ < \,and fca(g)dg=Q. Then

( ϊ — \ ~δ

\a*φt(x)\ < -—7 ( 1 + — -) MHLa(x) (x € G).< — ̂  -
σ(x)-r V

PROOF. For simplicity we put Φ = φΔ and

A(x,y)= i I a(xky~lk')dkdkf (jc,
JK JK

Clearly, as a function of s, the support of A(x, as) is contained in the interval [σ(x)—r,σ(x) +
r], and /Q°° |Λ(jc, as) l^^)^^ < ||α||ι < 1. Moreover, it follows from the moment condition
that

i A(x,as)Δ(s)ds= I a
Jo JG
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Therefore, by integration by parts, we see that

a*φt(x)
1 /*oo

= - Φ(-)Δ(sΓlA(x,as)Δ(s)ds
t Jo v'7

= - / (φ(-)Δ(sΓ1)' ί A(x,au}Δ(u)duds
t Jo v v '7 7 Jo

_ r(x}+r ( \ _ ,/s\ _, j_ /£\ , -2\ Γ
~ L(x}-r \ t2 \t) S t \t) S ) JO

Here we note that

(9) \B(s)Γ
[s

I A(x,au
Jo

)Δ(u)du

Since \B(s)\Δ(s)~l - s / ( l + 5) and
of (8) that

= \B(s)Γl\a*χs(x)\<

1 ~ (1 + s ) / s , it follows from (ii) and (iii)

/

σ(x)+r / j

(-2
U)_r V ^

σ(x)

cr

cr ( CT(JC) — r\

—r(l + ̂ -)

-δ

D

PROPOSITION 4.4. Let φ and a be as above, and suppose that r < 1. Then

-8
1 (σ( jc)>2r).

PROOF. Since r < 1 and σ(x) > 2r, it follows that \B(σ(x) - r)Γ ! < c\B(σ(x))\~{

(see the proof of Proposition 4.1). Therefore, we can replace the estimate (9) by

\B(s)Γ ι: Λ(JC, au)A(u)du < \B(σ(x)-r)Γl\\a\\l\\χs\\00<c\B(σ(x))Γ

DThe rest of the proof is the same as in the proof of Proposition 4.3.

Let 1 < p < oo. We say that a function a on G is a (1, /?, 0)-atom provided that
(i) a is supported on B(r) for some r > 0,

(ii) if r < l,then \\a\\ p < \B(r)\^P~l and fc a(g)dg = 0,

(iii) i f r > l , t h e n | | 0 | | p < \ B ( r ) \ ~ l .
Then, combining the estimates obtained in Propositions 4.1, 4.3, and 4.4, we can obtain

the following.
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THEOREM 4.5. Letφ e AQ, ε > 0, and 1 < p < oo. Then for every (1, /?, ty-atom a
onG,

r
\—£sI. Mφa(g)(\+σ(g)Tεdg<c,

)G

where c is independent of a.

PROOF. Let ΓQ be as in Proposition 4.1. Since Mφ is of type (/?,/?), it follows that

(10) / Mφa(g)dg<
JB(r0)

Hence, M^α is equi-integrable on B(ΓQ). Let us consider the integrability in the exterior
B(ro)c of #(ro). We note that ||α||ι < 1, and without loss of generality we may assume that
0 < ε < 1. If r < 1, then Proposition 4.4 with δ = 0 yields that

/» /»oo r i 14-5" Γ°° 1
/ Mφa(g)(\+σ(g)Γεdg<c / ds < c -.(1 + s)1'^ < c ,

Jβ(2r)c J2r ^ (1 + S)ε S J2 SL

and if r > 1, then Proposition 4.1 with 5 = 0 gives

f f°° 1 1 Γ°° 1
/ Mφa(g)(\+σ(g)) εdg<c I -——ds<c ds < c.

JB(r+\y Jr+ι s-r (l+s)ε Jλ s(\+sY

D

COROLLARY 4.6. Letφ e Λε (ε > 0) and I < p < oo. Then for every (1,/?,0)-
a on G,

ί Mε

φa(g)dg<c,
J G

where c is independent of a.

PROOF. We modify the proof of Theorem 4.5. Since the estimate (10) similarly holds

in this case, the equi-integrability of M^a on #(ro) follows. Let σ(g) > ΓQ. Here we note that

iff > l,then(l+0~ ε(l + (σ(;c)-r)/ίΓε - (t/\+t)ε(t + σ(g)-rΓε < (1 +σ(g) -r)~ε,
and if t < l , then(l +0~ε(l + (σ(g) -r)/tΓε < (1 4- σ(g) - r)~ε, and hence

(1 + t)~B\a * 0f((7)| < (l + σ(^~Γ^ (1 + (σ(g) - r)Γε\a * ̂ (^)|.

Then, applying Propositions 4.1 and 4.4 with δ = ε to the right hand side, we see that for

σ(g) > ro, M*φa(g) < crσ(g)~l B(σ(g)Γl(l + (σ(g) - r)Γε if r < 1 and c(σ(g) -

r)~lΔ(σ(g))~l(l + (σ(g) - r))~ε if r > 1. Therefore, as in the proof of Theorem 4.5,
we have the equi-integrability of M^a outside B(r$). D

REMARK 4.7. (1) In the Euclidean case, each function a on R supported on [—r, r]

with IHloo < (2r)-1 satisfies Mφa(x) < cM\^a(x) < c\x\~l, and furthermore if a satisfies
the moment condition fRa(x)dx = 0, then Mφa(x) < cr\x\~2. This estimate yields the
integrability of Mφa on \x \ > 2r (cf. [3, Theorem 2.9]). On the other hand, let a be a function

onG supported on B(r) with ||α||oo < \ B ( r ) \ ~ l . Then MHL« satisfies (2) and, if a satisfies the
moment condition fGa(g)dg = 0, then Mφa(x) < crσ(x)~^\B(σ(x))\~^ (see Proposition
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4.4). Since this estimate is not enough to obtain the integrability of Mφa on σ(x) > 2r, some
modification seems to be necessary to obtain the integrability of Mφa on G.

(2) As pointed out in Remark 4.2, if we restricted to left ^-invariant (1, p, 0)-atoms
on G, then we can replace \B(r)\~l in (iii) of the definition of the (1, /?, 0) -atoms on G by

asin(ii).

5. Atomic Hardy spaces. We retain the notation in the previous sections. Since each
atom a on G is supported on a ball centered at the origin, in order to obtain a wide class of
functions which satisfy the estimates in Theorem 4.5 and Corollary 4.6, we need to translate
each atom. For a function / on G we define the translation and the average over K as follows.

= I
JK

/*(<?)= f(gk)dk,

f\g) = f(kgkf)dkdkf .
JK JK

Then we introduce an atomic Hardy space Hp 0(G) on G as follows.

DEFINITION 5.1. Let 1 < p < oo. We define

Hp 0(G) = I / = y^ λ/fli,*. at is a (1, /?, 0)-atom on G, jc, e G, and ̂  |λ, | < oo } ,

and H/111,^,0 = inf Σί l ^ l > where the infimum is taken over all such representations / =

Σί ^ϊai,χi Furthermore, we define H ^(G) and // '0(G) as the spaces consisting of /& and

/b of / in Hp 0(G), respectively, and we define the norms in the same way as in Hv

 0(G).

Let a be a (1 , p, 0)-atom on G and c e G. Since || fe)^ || i and || fe)b || i are bounded by
\\ax\\ι = \\a\\\ < 1, it follows that

and ||/||ι < ||/||ι,p,o for all / e Hl

pQ(G) (resp. Hl

p'#(G)). Here we note that

ax *Φt(9) = a$ *φt(xg),

and

(ax) *φt(g)= I cfi * φt(xkg)dk.
JK

In particular, for ε > 0, ||M!^||i and ||M?(aJC)b||i are bounded by H M f ί z ^ H i . Since aft is a
(1, /?, 0)-atom on G, Theorem 4.5 and Corollary 4.6 yield the following.

THEOREM 5.2. Lets > Oandφ e AQ. Then the radial maximal operator Mφ satisfies

( Mφf(g)(l+σ(g)Γεdg<c\\f\\ι,p9Q
JG

for all f e Hi '^'— ^1'b



12 T. KAWAZOE

THEOREM 5.3. Let ε > 0 and φ e Λε. Then the modified radial maximal operator

M satisfies

LJG

r lfor all f e Hl

pQ(G) (resp. H

We shall give a characterization for // '0(G) without using the translation and the av-

erage over K of (1, /?, 0)-atoms on G. Let x e G and r > 0. We set the domain R(x, r)

as

R(x, r) = {g 6 G; σ ( x ) -r < σ(g) < σ( c) + r}

and for a function / on G supported on R(x, r) we put

α?

where / is given by (7) and ΓQ is the same as that in Proposition 4.1. When p — oo, | j t , r , o o

means \\f(g)I(x, ΓQ, g"1)"1 Hoo Then we say that a function a on G is a (1, /?, 0, t])-atom
provided that

(i) β is Λ'-bi-invariant and supported on R(x,r) for some x e G and r > 0,

(ii) i f r < l,then ||/|UΓ,P < \B(r)\l^~l and fc a(g)dg = 0,

(iii) ifr > l , then | | /L f Γ ϊ / , < I^WΓ 1 .

By using these t]-atoms on G we define an atomic Hardy space //'^(G) on G as follows.

DEFINITION 5.4. Let 1 < p < oo. We define

H l

p ^ ( G ) = I f = ^λ/α/; α/ is a (1, p, 0, t|)-atom on G and ̂  |λ/ < oo i ,
I i i )

and | |/ | | ι , j7,o,tι — m^Σ/ l^'l' where the infimum is taken over all such representations / —

THEOREM 5.5. HpQ(G) = Hp^(G) and \

PROOF. To prove H 'Q c H}^ it suffices to show that each (1, p, 0, ^)-atom a on G is
rl,l

/M
contained in H '0(G) and ||α|| 1,^,0 5 l Suppose that a is supported on T?(JC, r) and put

Since α and /(^, r, •) are A^-bi-invariant on G, it follows that

f b(g)dg = ί a(9) ( [ Xro(xkg)dk] dg= f a(g)dg = 0 if r < 1 .
JG JG I(x*rθι9~) \Jκ / JG

ver, since

= ί F / α(^ I Λ ί XrQ(xkg)dkdg< f \a(g)\n(x, r0, g~lγ-pdg = \\a\\
JG I(x,rv,g-}) JK JG

Moreover, since
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and H & l l o c < \\a(g)I(x, ΓQ, g~})~] Hoc = l|0|U,r,oo, it is easy to see that b is a (1, p, 0)-atom
on G. Here we note that

(bx}\g} = ί b(xkg}dk = a(g) f χr,(xkg)dk = a(g) ,
JK I(x,rv,g-i) Jκ

and thus, a e H^(G) with | |fl | | ι,p,o < 1-

Next, to prove HI'Q C //^ it is enough to show that (ax)
b e H l

p ^ ( G ) with

l l ( t f γ ) b | | ι ,/?,o,b — 1 f°r eacrι (1, /?, 0)-atom a on G. Suppose that a is supported on
Clearly, (axγ is supported on R(x, r), and if r < 1, then

ί (ax)
b(g)dg= ί ί a*(xkg)dkdg= ί a(g)dg=0.

JG JGJK JG
Moreover, since

= a*(xkg)XrQ(xkg)dk
κ

and ||fe)b||oo < l l« u l loo/U, r0, g~l), it follows that

( C \ 1 / / 7 / Γ
<( \a\xkg)^dk) ( XrQ

\Jκ / \Jκ
Q(xkg)dk

α?? / \JGJK

Therefore, fe)b e ̂  J(G) with 11(^)^11,^0,^ < 1. D

6. The heat and Poisson maximal operators. We define the modified heat maximal
operator M^ (ε > 0) on G by

Mε

Hf(x} = sup(l + tΓε\etΩf(x)\ = sup(l + 0~Ί/ * A / W I ,
/>0 r>0

where ^rβ is the heat diffusion semigroup over G / K realized by the convolution with the heat
kernel ht, and we denote M^ by MH for simplicity. As mentioned in §1, M^ (ε > 0) satisfies
the maximal theorem.

First we shall prove the following.

THEOREM 6.1. Let ε > 1/2. Then

MHf(g)(\+σ(g)Γεdg<c\\f\\Lp,0
G

L
and

forallfeH^(G)(resp.H^0(

PROOF. We note that the argument preceding to Theorem 5.2 is also applicable to M^
with φt replaced by ht. Therefore, to deduce the desired estimates it is enough to show that
for each (1, p, 0)-atom a on G, M\\a and M^a satisfy, respectively,

(11) ί Mua(g)(\ + σ(g)Γεdg < c ,
JG



14 T. KAWAZOE

(12)

for some constant c independent of a (cf. Theorem 4.5 and Corollary 4.6). Then, we need the

estimates for a * ht(x) corresponding to those in Propositions 4.1 and 4.4. In order to obtain

the estimates we shall use the ones for ht and h't obtained in [1, Theorem 3.1]:

+ \s\r~1 (t < i),

where n = dim G/K = m\ + mi + 1 = lot + 2 and α, (1 < i < 3) depend on the three

regions in [0, oo) x [1, oo) to which (\s\, t) belongs: explicitly, they are given as a\ — 1/2 if

\s\ < Λ/t, α?2 = 1 if Vt < \s\ < ί, and #3 is the smallest integer > n — 1/2 if 1 < t < \s\ (see

[1, Fig. 5]) and when 1 < t and \s\ < «Jt, we used the fact that (1 + \s\)/t < 2. Similarly,

('< 1).

where β\ = a\, β2 =
HΓ"2^

Here we note that F(t) = t-ie-Vpt-\s\YI* (/ > Q) has a maximum at ί0

, and ft = 0x3 + 1 according to the regions on which the α/ depend.

\s\/2p if \s\ > 1
and at to ~ |,y|2 if \s\ < 1. Moreover, F(t) is increasing on (0, ίo] and decreasing on [ίo, oo).

Therefore, we can take constants Q (5 > 0), C§,k (k = 0, 1), and C so that

ί^-J e-(2pM*l)2/4r < Q (1 < ,, χ = α/, A., 1 < / < 3) ,

Mλ 2 / i λ
— I ^ — ̂  l^ 1 1 I i i — I
t ) \ |ί|/

n/2+1

(ί < 1, |ί| < 3), where C« and Ca,t are independent of (|ί|, ί) and C of ί. Hence, we have

(ί < 1, \s\ > 1),
(13) |A,(s)| < -s

(14)

Cs\s 1-1/2 Jϋ

(ί < 1 , 1

(1<0
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LEMMA 6.2. Letr > 1 andδ > 0. Then for σ(x) > ΓQ = r

(l+σ(;c)-r)- ( 1 + δ> (ί < 1),

\a *ht(x)\ < -δ

Since σ
and hence

PROOF. We shall recall the proof of Proposition 4. 1 and note that

| α * λ / ( * ) l < f ί f \a(kask
f}\dkf\ht(σ(a-lk-lx))\dkA(s)ds.

Jo JK JK

"1^) > σ( c) - s > 1 for A: e /£, we can substitute (13) into \ht(σ(a~lk~lx))\

(l+σ(jc)-rΓ ( 1 + < 5 ) (ί < 1),

The rest of the proof is the same as that in Proposition 4.1.

LEMMA 6.3. Letr < 1 and 8 > 0. Then for σ(x) > ΓQ = 2r

D

(σ( c) - (t < l , o r ( j c ) < 2 ) ,

(* <

PROOF. We recall the proof of Propositions 4.3 and 4.4. Integration by parts yields that
r>σ(x)+r r>s

\a*ht(x)\< \hf

t(s)\ \A(x,au)\Δ(u)duds.
Jσ(x)-r JO

Since σ( c) - r < s < σ(x) + r < 3 if σ(x) < 2 and s > σ( c) - r > 1 if σ(x) > 2, we can
substitute (14) into |/^(s)|. Then, replacing \s\~l (I > 0) with (σ( c) — r)-/, we can deduce
the desired estimate from the same arguments as those in Propositions 4.1 and 4.3. D

Now, we return to the proof of (11) and (12). Since MH is of type (p, p), 1 < p < oo,
MH satisfies (10) instead of Mφ and thereby M^ (ε > 0) is equi-integrable on B(ΓQ). Let us
consider the integrals of Mna(g)(l + σ(g))~ε and M^a(g) in the exterior of #(ro). Clearly,
without loss of generality, we may assume that 1/2 < ε < 1. Then we shall show the equi-
integrability for the local and global parts of the maximal operator M^j:

MH,O^( ̂ ) = sup \a * ht(x)\ and M^ ^( c) = sup (1 + t)~ε\a * ht(x)\.
0<f<l ' l<f<oo

Let r < 1. Then Lemma 6.3 with δ = 0, ε, together with the fact that Δ(s) ~ \s

\s\n~l if \s\ < 2 and Δ(s) ~ e~2p^ if |j| > 2 (see Lemma 2.2), yields that

,,<rx
(15)

ι

4- -ds

<c
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and

(16)
f f°° 1
/ AfH, 10(0)0 + σ(0)) εdg < cr I -r-y- :

JBClrY hr (s ~ r)l'2(\ + s)ε

illows from Lemma 6.2 with δ = 0 that

Γ f°° 1
/ M^oa(g)dg < I — ^ττ^ds < c

JB(r+\Y Λ+l (1+5 ~r)1+ε

Let r > 1 . It follows from Lemma 6.2 with δ = 0 that

°°(17)

Λ O
<c /

Λ

and

(18)
+i

Therefore, MH,O«(^) and MH«(^)(! -I- σ(g))~ε are equi-integrable outside B(r$). This com-

pletes the proof of ( 1 1 ).

As for (12) it remains to show the equi-integrability of M^ { a ( g ) on B(r$)c '. Let σ(g) >

ro and 1 < t < oo. Since (1 + t ) ε ( ( σ ( g ) - r ) / t ) ε > (σ(g) - r)ε , it follows that

(\+tTε\a*ht(g)\ < ^σ (^~Γ^ (σ(g)-rΓε\a*ht(9)\

Then, applying Lemma 6.3 and Lemma 6.2 with δ = ε to the right hand side, we see that

if r < 1, then M* χa(g) < cre~2p(j(9\o(g) - rΓl/2~ε and if r > 1, then M£ } a ( g ) <

ce~2pσ(^(σ(g) - rΓl/2~ε Therefore, as in (16) and (18), the equi-integrability of M£ χa on

B(ΓQ)C follows. This completes the proof of (12) and finally, Theorem 6.1. D

Next, we shall consider the same problem for the modified Poisson maximal operator

Mp (ε > 0) on G defined as

Mj>f(x) = sup(l + tΓε\etV° * /(*)| - sup(l + ί)"Ί/ * PtW\ ,
t>0 />0

where pt is the Poisson kernel of e**Ω , and we denote Mp by Mp for simplicity. Then, Mp

(ε > 0) satisfies the maximum theorem.

We recall the estimates for pt and p't obtained in [1, Theorem 6.1, (6.3) and (6.4)]:

t(t2 + s

2Γn/2~{/2 + t(t2 + l S2 )-n/2+l/2 (/ < 1? μ| < j) ^

and for |/?J(5)| we replace the first line on the right hand side by (t + \s\) ("+1) and t/(t + \s\)

in the third line by (1 + t)/(t + \s\). Let 5 > 0 and we note that
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where C is independent of t and we used the fact that the left hand side in the last inequality
takes a maximum at t ~ vW Then, it easily follows that

s~3/2 (t < i, M > i),

(1 < f , \s\ > 1),

and
M-<Π+I

k 1-3/2

"(Ύ-}

(* < ι , M < υ,
(f < 1, \s\ > 1),

(1 <t, \s\ > 1).

Then, letting δ — 0 and 8 = ε > 0 and repeating the same arguments that yielded Theorem
6.1, we obtain the following.

THEOREM 6.4. //£ > 0, then

L
and

/or all f e H[

p()(G) (resp. Hp

REMARK 6.5. It follows from (15) and (17), together with the corresponding esti-
mates for Mp?o that the local maximal operators MH,O and Mp,o are bounded from Hl

 0(G)

(resp. toL ](G),thatis,

l | A f H f o / l l ι < c | | / | | ι f p i 0 and ||MP,0/||ι <

for all/e/f^G) (resp.//;;;;
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