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Abstract. Given an orientable Riemannian manifold, we consider the bundle of ori-
ented orthonormal frames and the tangent sphere bundle over it, which admit natural Rie-
mannian metrics defined by the Riemannian connection. We show that there is a natural
homomorphism between the Lie algebras of fiber preserving Killing vector fields on these
bundles. In particular, for any orientable Riemannian manifold of dimension two, we show
that the homomorphism is extended to an isomorphism between these Lie algebras.

1. Introduction. It is well-known that the tangent bundle and the bundle of orthonor-

mal frames over a Riemannian manifold admit natural Riemannian metrics defined by the

Riemannian connection. In fact, let (Λf, g) be a connected, orientable Riemannian manifold

of dimension n > 2, and SO(M) the bundle of oriented orthonormal frames over Λf. Then,

for any fixed positive number λ, a Riemannian metric G on SO(M) is defined by

λ2

( 1 G(Z, W) = ιΘ{Z) θ(W) + — trace(VZ) ω(W))

for Z,W eTuSO(M), u£SO(M),

where θ and ω denote the canonical form and the Riemannian connection form on SΌ(Λf),

respectively.

In this paper we shall prove that there is a natural homomorphism between the Lie alge-

bra of fiber preserving Killing vector fields on the tangent sphere bundle over Λf and that

of fiber preserving Killing vector fields on (SO(M), G). In their paper [8], Takagi and

Yawata studied the Lie algebra of Killing vector fields on (SO(Λf), G) with λ = \fϊ and

proved that there exist natural lifts Ψso(M)(X) e i(S0(Λf), G) for each X e i(Λf, g) and

Φso(M)(Φ) € i(SO(Λf), G) for each φ e £>2(Λf)0, where i(Λf, g) and i(S0(Λf), G) denote

respectively the set of Killing vector fields on (Λf, g) and (SO(M), G), and £>2(M)o the set

of parallel two-forms on (Λf, g). Refining their results, we shall prove that the mappings

Ψso(M) - KM, g) -> i(SO(M), G) and Φso(M) : Σ>2(Λf)0 -> i(SO(M), G) are simultane-

ously factored through in terms of natural lifts to the tangent sphere bundle over Λf.

To be precise, let TM be the tangent bundle of Λf, and gs the Sasaki metric on TM.

For a given positive number λ, we consider the tangent sphere bundle TλM over Λf. The

total space of ΓλΛf is defined to be {X e TM; g(X, X) = λ2}, and gives rise to a hyper-

surface of (ΓΛf, gs). We denote the induced metric on TλM also by gs. We show a certain
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relation between the Riemannian metrics gs and G in Section 2. In Konno [4], we stud-

ied the fiber preserving Killing vector fields on (TλM, gs) and prove that there exist natural

lifts ΨTkM(X) e i(TλM, gs) for each X e i(M, g) and ΦτχM(φ) e i(TλM, gs) for each

φ € D2(M)o Then, regarding SO(M) as the total space of a principal fiber bundle over the
base manifold TλM (cf. Nagy [6]), we prove that Ψso(M) and Φso(M) are simultaneously

factored through ΨτχM and ΦτχM, respectively. Namely, we have the following.

THEOREM 1.1. Let (Λf, g) be a connected, orientable Riemannian manifold and λ a

positive number. Then there exists a unique homomorphism Ψ of the Lie algebra of fiber

preserving Killing vector fields on (TλM, gs) into the Lie algebra of fiber preserving Killing

vector fields on (SO(M), G) such that Ψso(M) = Ψ ° ^τλM and Φsθ(M) = ^ ° ΦτλM

In Section 3, we define the vector field Ψ(Z) on (SO(M), G) for any Killing vector field

Z on (TλM, gs) by using the Riemannian connection form on SO(M), and prove in Section

4 that Ψ is a homomorphism of the Lie algebra of fiber preserving Killing vector fields on

(TλM, gs).
When dimM = 2, we can refine Theorem 1.1 as follows: The tangent sphere bundle

(TλM, gs) is isometric to (SO(M), G), and there exists an isomorphism Ψ : i(Γ λ M, gs) ->

i(SO(M), G) such that Ψso(M) = Ψ ° &τλM a n d Φso(M) = Ψ ° ΦτλM- Moreover, we can

determine the structure of the Lie algebra of Killing vector fields on (SO(M), G), without

assuming the completeness of the Riemannian manifold. Namely, we obtain the following.

THEOREM 1.2. Let (Λf, g) be a connected, orientable two-dimensional Riemannian

manifold and λ a positive number. If(TλM, gs) admits a Killing vector field which does not

preserve the fibers, then (M, g) is a space of constant curvature 1/λ2. For the structure of the

Lie algebra of Killing vector fields on (TλM, g5), we have the following:

(i) If(M, g) is not a space of constant curvature 1/λ2, then

i(Γ λM, gs)/ΨτλM(i(M, g)) = ΦτxM(Ί)2(M)o).

In this case, the center of i(TλM, gs) is ΦTλMCΌ2(M)o).

(ii) If(M, g) is a space of constant curvature 1/λ2, then

i(TλM, gs)/ΨτχM(i(M, g)) = sp<m{Φτ,M(φ), S, [ΦτχM(φ), S]; φ e ^) 2 (M) 0 },

where S denotes the geodesic spray on (TλM, gs). In this case, the center ofi(TλM, gs) is

trivial.

This result is proved in Section 5. It has been known by Tanno [9] that, conversely,

if (Λf, g) is a space of constant curvature 1/λ2, then the tangent sphere bundle (TλM, gs)

always admits a Killing vector field which is not of fiber preserving.

When (Λf, g) is the unit two-sphere in the Euclidean three-space with the standard metric,

it follows from Theorem 1.2 that the tangent sphere bundle (TXM, gs) is isometric to the

three-dimensional real projective space of constant sectional curvature 1/4, which was proved,

for instance, by Klingenberg and Sasaki in [2].
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2. The Riemannian metric on SO(M). In this section, we fix our notation used

throughout this paper and prove a certain relation between the Sasaki metric cf on TλM

and the metric G on SO(M) defined in the Introduction.

Let V denote the Riemannian connection of (Λf, #), and π : TM -> Λf be the bundle

projection of the tangent bundle TM of Λf. Recall that the connection map K .TTM^TM

corresponding to V is defined to be

τ(X(f)) - X
K(Z) = lim ° for Z e TXTM , X eTM ,

r-»o t

where X(t), — ε < t < ε, is a differentiable curve on TM satisfying X(0) = X, X(0) = Z,

and TQ(X(O) denotes the parallel displacement of X(t) from π(X(t)) to π{X) along the

geodesic arc joining π(X(t)) and π(X) in a normal neighborhood of π(X). We define distri-

butions H and V on ΓM by

Hx = KCT(K\TXTM) , Vx = Ker(τr*|Γ χrM),

where X is in TM. The space Iίχ is called the horizontal subspace oϊTχTM and Vx the

vertical subspace oϊTχTM. The tangent space TXT M of T M is decomposed into a direct

sum TXTM = Vx 0 Hx. Then the Sasaki metric gs on TM is defined by

/ ( Z , W) = g(π*(Z), τr*(W)) + g(K(Z), K(W)) for Z,W e TXTM , XzTM.

The space Hx is orthogonal to Vx with respect to the Sasaki metric.

Let Σ)2(M) denote the Lie algebra of two-forms on M, and Σ)2(M)o be the Lie subal-

gebra of parallel two-forms in Σ)2(M) with respect to V. We shall identify D 2(M) with the

set of all skew-symmetric tensor fields of type (1, 1) on M in the usual manner. For each

φ e Σ)2(M), there exists a unique vector field φL on TλM such that

(π\τχM)ΛΦLγ) = 0, (K\TγTxM)(φL

γ)=φ(Y) for any Y eTλM.

Given a Killing vector field X on (Λf, g), since the tensor field VX is regarded as an element

of Ί)2(M), we then define the vector field XL on TλM by

(2.1) X L = XH

where X^ denotes the horizontal lift of X. It follows from Corollary in [4] that XL and φL

are fiber preserving Killing vector fields on (TλM, g5). We recall that ^ λ M is the mapping

of i(M, p) into i(Γ λ M, / ) defined by ΨτχM(X) = XL for X e i(Λf, #), and that Φ Γ λ M is

the mapping of Σ) 2(M) 0 into i(ΓλΛf, / ) defined by ΦTλM(φ) = φL for 0 € Σ)2(Λf ) 0 .

We consider SO(M) as a principal fiber bundle over the base manifold Λf with structure

group SO(n), the special orthogonal group of n x ^-matrices, and denote it simply by P. Let

πp : P ->• Λf denote its bundle projection, and ωp be the Riemannian connection form on
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P. Let ( , •) denote the canonical inner product on the ^-dimensional real vector space Rn.

We regard each u e P as an isometry of (Rn, ( , •)) onto (Tπp(u)M, g\πp(U)) a s follows: For

u = (Xu... ,Xn)eP9

u{ei) = Xi for a = ' ( 0 , . . . , 1 , . . . , 0) € Rn , 1 < i < n .

Let o(n) be the Lie algebra of SO(n). For φ e J) 2(M), we define an o(n)-valued function 0 ΰ

on P and a vector field φLp on P respectively by

(2.2) φHu) = u~ι oφπp{u)ou for M G P and ωP(φLp) = 0 t t, (πP)*(ΦLp) = 0.

Given a Killing vector field X on (M, #), the vector field XL/3 on P is defined by

(2.3) XLp = XHp + (VX)L p ,

where XHp denotes the horizontal lift of X. For any X <Ξ i(M, p) and φ € D2(M)0, XL / ί

and φLp give rise to fiber preserving Killing vector fields on (P, G), which can be seen in the

same manner as in [8]. We define the mapping Ψp of i(M, g) into i(P, G) by Ψp(X) = XLp

for X e i(M, ^), and also the mapping Φ/> of D 2 ( M ) 0 into i(P, G) by Φp(0) = φLp for

0 e Σ) 2(M) 0.

Let us identify 5Ό(n — 1) with a subgroup of SO(n) given by

The set of oriented orthonormal frames over Λf, or SO(M), can be regarded as the total space

of a principal fiber bundle over the base manifold TλM with structure group SO(n — 1). In

fact, the bundle projection πQ : SO(M) -> Γ λ M is defined by

τr£(w) = λ Xn for u = (Xi, . . . , Xn) e SO(M),

and the structure group SO(n — 1) acts on SO(M) on the right as follows:

ua = I £V» !**,,... , Σ ^ - V A ^ , Xi, I for a = (a1 j) e SO(n - 1).
*1

Each α in SO(n) defines a diffeomorphism Ra : u e SO(M) \-+ ua e SO(M). We denote

this principal fiber bundle simply by Q.

We define an inner product ( , •) on the vector space o(n) by (Λ, C) = trace(rΛ C) for

A, C e o(n). Let o(n — I)1 denote the orthogonal complement of o(n — 1) in o(n), and

p : o(n) —> o(n — 1) be the orthogonal projection. Define COQ = p o ωp. We remark that WQ

is a connection form on Q. Indeed, by a direct computation, we can see that Q)Q(A*) = A

for A e o(n — 1) and Ra*cύQ = ad(a~ι)ωQ for a e SO(n — 1), where A* denotes the

fundamental vector field corresponding to A e o(n).

We now define the horizontal and the vertical subspaces of the tangent spaces of P and

Q. Let N denote either the bundle P or Q. Distributions H^ and VN on SO{M) are defined

by

(HN)U = Ker(ωN\Tusθ(M)), (VN)U =
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where u is in SO(M). The space {H^)u is called the horizontal subspace of TUN and

the vertical subspace of TUN. At each point u in SO(M), the tangent space TUSO(M) is

decomposed into a direct sum TUSO(M) = (//#)« θ (VN)U- Given a vector field Z on TλM,

there exists a unique vector field ZHN on SO(M) such that

= Z ,

which is called the horizontal lift of Z to N.

Let TV be a Riemannian manifold with metric h. Let $(N) denote the ring of C°°-

functions on N, X(N) the #(Λ0-module of vector fields on N, and i(N, h) the Lie algebra

of Killing vector fields on (N, h), respectively. Suppose N has a structure of a fiber bundle.

Then a vector field X on N is called a fiber preserving vector field if any element of the local

one-parameter group of local transformations of X maps each fiber of N to another fiber.

Suppose further that N is one of the fiber bundles TλM, P, and Q. For a vector field W on

N, we call W horizontal (resp. vertical) if the tangent vector Wp is in the horizontal (resp.

vertical) subspace of TpN for each point p of N. A vector field Z on N is of fiber preserving

if and only if the commutator product [W, Z] is vertical for any vertical vector field WoniV.

A useful relation between gs and G is given by the following.

THEOREM 2.1. (i) For a given λ > 0, we have

G(Z, W) = / ( ( π β ) * Z , ( π β ) * W ) + y ( ω β ( Z ) , ωQ(W)) for Z,W e T(SO(M)).

(ii) Let Vs and D denote the Riemannian connections of(TλM, gs) and (S0(M), G),

respectively. Then we have

HQ, ZHQ) = / ( V 5

x y , Z) for X,Y,Ze X(TλM).

To prove Theorem 2.1 we need the following lemma.

LEMMA 2.2. Let Z and W be vector fields on TλM and A be in o(n — 1). Then we

have G(ZHQ, WHQ) = gs(Z, W).

PROOF. Since each tangent space of TλM is decomposed into the direct sum of the

horizontal subspace and the vertical subspace, it suffices to verify the identity for the following

three cases for each u in SO(M).

Case 1. Z7Γβ(M) and WπQ(u) are both in HπQ(u). The identity holds in this case, because

the projections π\TλM and πp are Riemannian submersions, and (XH)HQ = XHp holds for

anyXinjt(M).

Case 2. ZπQ^ is in HπQ(u), but WπQ(U) is in VπQ(U). Since there exists a vector field

X on M such that ZπQ(μ) — XH

πQ(u), we have

G(ZHQ, WHQ)U - G(XHp, WHQ)U = 0 = / ( Z , W)πQ(u).

Case 3. ZπQ^u) and WπQ(u) are both in VπQ(M). Then there exists A in o(n — I)1 such

that ZHQU = A*U. Setting
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A =
0

-ξι -ξn-l

ξl

ξn-l

we have G(ZHQ, ZHQ)U = λ2Σl={(ξk)
2. Furthermore, putting expίA = (a1 j(t)), -ε <

t < ε, and u = (X\,... , Xn), we have

, Z) - — [(πQo RcxptA)(u)}t=o
n-\

k=\ k=\

and hence G(ZHQ, ZHQ)U = gp(Z, Z)πQ{u). D

We are now in a position to prove Theorem 2.1. Since the tangent space at u e SO(M)

is orthogonally decomposed into

(2.4) TUSO(M) = {XHQU; X e TπQ(u)T
λM} Θ {A\; A e o(n - 1)},

the statement (i) of Theorem 2.1 follows from Lemma 2.2. From Lemma 2.2 and the above

decomposition, we know that the projection ΈQ is the Riemannian submersion. Hence, by the

O'Neill's formula [7], the statement (ii) holds. We proved Theorem 2.1.

REMARK 2.3. Let Z and W be in £(S0(M)). By (1.1) and (i) of Theorem 2.1, we

have

λ2 λ2

((π β )Y)(Z. W) = (0(Z), Θ(W)) + — (ωp(Z), ωP(W)) - —(ωQ(Z), ωQ(W)).

Putting λ = 1 in the formula above, we obtain

where one-forms #/ and ω i/z, / = 1,... , n, on SO(M) are defined respectively by #;(•) =

(θ(-), efi and ω i n ( ) = (ω( )βn, ̂ f ) . This formula is proved by Musso and Tricerri [5, Propo-

sition 6.1].

3. The lifts of Killing vector fields on tangent sphere bundles. Given a Killing

vector field Z on TλM, we shall define the lift ZLQ of Z to SO(M), and find necessary and

sufficient condition for ZLQ also to be a Killing vector field for G.

We first define Λ/y £ o(n), /, j = 1,... , n, by A// = 0 if i = y,
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0 - 1 (0
if / < j ,

and Ajj = —A^ if/ > j.

For Aij, we recall here, without proof, the following well-known facts which will be

frequently used in the following argument.

L E M M A 3.1. Put At = Anifori = 1 , . . . , rc-1. Whenn > 3, the set {A\,... , An-\)

is a basis ofo(n — I ) 1 - and {A;; 1 < / < j < n — 1} is a basis ofo(n — 1). Moreover, we have

[A/, Aj] = Aij, [Aij, Ak\ = δikAj - δjkAi, and [A/7 , A*/] = δ//^/* - <5yΊtA; / - &uAjk +

δikAjifor i, j,k,l = 1, ... ,n — 1, where δij denotes the Kronecker delta.

Given a Killing vector field Z on Γ λM, we define an o(n — l)-valued function F(Z) on

(3.1)
λΔ

, Ai*)u for u e

To see that F(Z) is o(n — l)-valued, we first note A,*M is in (HQ)U, and there exist X; in

X(TλM) with i = 1,... ,n- 1 such that A/*M = {XιHQ)u. It then follows from these and

(ii) in Theorem 2.1 that

eh ei) = -^ , A;*)M = 1

which shows that F(Z) is o(n - l)-valued. We then define the vector field ZLQ on SO(M)

by

(3.2) ZLQu = ZHQu + {{F(Z){u)))\ atueSO(M),

and get the mapping Ψ : i(ΓλM, gs) -+ X(SO(M)) by Ψ(Z) = ZLQ. We call ZLQ the lift

of a Killing vector field Z on TλM.

LEMMA 3.2. // Z is a Killing vector field on {TλM,gs), then G{ZLQ,Aij*) =

G(DAi*ZHQ,Aj*).

PROOF. At each point W G SO(M), we set F = (F(Z))(ιι) and F'^ = {Fehei). Then

we have

λ2

y2 , A / / ) M - τ t r a c e ( ί F . A / ; ) -

proving Lemma 3.2.

, A/)M ,

D



356 T. KONNO

PROPOSITION 3.3. Let Z be a Killing vector field on (TλM, gs). Then ZLQ is a

Killing vector field on (SO(M), G) if and only ifZLQ satisfies the following equation:

LZLQG(XHP, A*) = 0 for any X e X(M) and A e o(n - 1).

To prove Proposition 3.3, we need several lemmas.

LEMMA 3.4. Let Ω denote the curvature form ofV. For any A,C e o(n) and

ξ, η, ζ e Rn,we have the following:

G([B(ξ), B(η)], A*) = -λ2(Ω(B(ξ), B{η)), A), G([B(ξ), B(η)], B(ζ)) = 0 ,

[A*,B(ξ)] = B(Aξ), [A*,C*] = [A,C]*,

λ2λ
G(DB(ξ)B(η), A*) = - — {Ω(B{ξ), B{η)), A), G(DB(ξ)B(η), B(ζ)) = 0 ,

λ2

G(DB(ξ)A*, C*) = 0, G{DB(ξ)A\ B(η)) = —(Ω(B(ξ), B(η)), A),

λ2

G(DA*B(ξ), B(η)) = —(Ω(B(ξ), B(η)), A) + (Aξ, η) ,

G(DA*B(ξ),C*) = 0, DA*C* = ^[A,C}*,

where B(ξ) denotes the standard horizontal vector field corresponding to ξ e Rn.

PROOF. We prove only the first identity, because the others can be seen in a similar

way as in the proof of lemma 1 in [8]. By the structure equation of E. Cartan, we have

G([B(ξ), B(η)l A*) = -(ωp([B(ξ), B(η)]), ωP(A*)) = -λ2(Ω{B(ξ), B{η)\ ^>,

which shows the first identity. D

From this lemma, it is easy to see that the tensor DA* on SO(M) is skew-symmetric

with respect to G, hence A* is a Killing vector field on SO(M).

To prove Proposition 3.3, we now find a condition which is equivalent to L Z L Q G = 0.

LEMMA 3.5. IfZ is a Killing vector field on (TλM, gs), then L Z L Q G(XHQ, YHQ) =

0 holds for any X, Y in X(TλM).

PROOF. Since πς> is the Riemannian submersion, the above identity holds. D

LEMMA 3.6. IfZ is a Killing vector field on (TλM, gs), then LχLQ G(A*, C*) = 0

holds for any A, C in o(n — 1).

P R O O F . It suffices to show that LzLQG(Aif, Akι*) = 0 for 1 < /, j,k,l < n - 1.

Since A/7*, A&/* are Killing vector fields on (S0(M), G), we have by Lemmas 3.1 and 3.2

that

L Z L Q G(Aij*, An*) =Aij*G(ZLQ, Ak[*) + A

=δik{G(DAj*ZHQ, A/*) + G(Z)y4/*Z//e, A/)}

- δjι{G(DAk*ZHQ, Af) + G(DAi*ZHQ, A**)}.
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The formula above vanishes, because Z is a Killing vector field on (TλM, gs). D

LEMMA 3.7. IfZ is a Killing vector field on (TλM, gs), then LZLQG(A*, C*) = 0

holds for any A in o(n — 1) and C in o(n — I)-1.

PROOF. There exist functions akl with kj = I,... ,n - I on SO(M) such that

(3.3) ZLQ = ZHQ + ΣaklAkl* ,

k<ι

which implies that

G([ZLQ, A*], C*) = G([ZHQ +ΣaklAkι\ A*], C*) = 0,

where G([ΛW*, A*], C*) = 0 and G(A*/*, C*) = 0 hold, since [Akh A] and A*/ are in

o(/ι - 1). By these formulas, we see that LZLQG(A*, C*) = -G(A*, [Z L e, C*]). Since C*

is a Killing vector field, we further have

(3.4) LZLQ G(Λ*, C*) = C*G(A\ ZLQ) - G([C*, A*], ZLQ).

When A = AiJ9 i φ j , and C = A/, it is verified that C*G(A*, ZLQ) = G([C*, A*], ZLQ)

in the following way. From Lemma 3.2 and the assumption that Z is a Killing vector field on

Γ λ M, we have

Ai*G(ZLQ, Ay*) = Ai*G{DAi*ZHQ, A / ) = -Ai*G{DA]*ZHQ, A/*)

= -Ai*Aj*G(ZH<>, A/*) + Ai*G(ZHQ, DAj*Ai*),

where DA^A,-* is vertical on β by Lemmas 3.4 and 3.1. Hence the second term of the right

hand side of the above formula equals zero. On the other hand, for the first term, we compute

that

= Aji*G{ZHQ, A/*) - Aj*G(DAi*ZHQ, A/*) - Aj*G(ZHQ, DA.*Ai*).

Since Z is a Killing vector field on TλM, we see G(DAi*ZHQ, A/*) = 0 by (ii) of Theorem

2.1. The formula DAi* A/* = 0 holds trivally by Lemmas 3.1 and 3.4. Since Aμ* is a Killing

vector field, we have

Aβ*G(ZHQ, A/*) = G([Aμ*, ZHQ\ A/*) + G(ZHQ, [Aμ*, A/*]) = G([At\ Au% ZLQ),

where we use (3.2) and the fact that [Aiy*, A/*] = Aj* is horizontal on Q. Hence we have

A f*G(A l 7*, ZLQ) = G([Ai*, Aij% ZLQ\ and LχLQ G(AU*, A/*) = 0 by (3.4).

When A = A/y and C = A& with & ̂  /, j , we see from Lemma 3.1 that

(3.5) [Ak*,Aij*] = 0.

Since A -̂* is a Killing vector field, we have by (3.5) that

(3.6) Aki*G(ZHQ, Aj*) = G([Aki\ ZHQ], A/) + G(ZHQ, [Aki*, A/]) = 0 .

Applying (3.5) to (3.4) and using Lemma 3.2, we see

\ Ak*) = Ak*G(DAi*ZHQ, A / ) ,
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and, by (3.6), we further have that

Ak*G(DAι*ZHQ, A / ) - Ai*G(DAk*ZHQ, A / ) .

Therefore L Z L Q G(A/y*, A^*) is symmetric with respect to i, k, and is skew-symmetric with

respect to /, j . Hence we have that LχLQ G(Aij*, A*;*) = 0. D

We are now in a position to complete the proof of Proposition 3.3. At each point u in

S0(M), the tangent space TUSO{M) is decomposed ([6]) into a direct sum:

(3.7) TUSO(M) = (HP)U Θ {A\ A e o(n - I)1} Θ {C*M; C e o(n - 1)}.

Lemmas 3.5, 3.6 and 3.7 together with this decomposition imply that ZLQ is a Killing vector

field on S0{M) if and only if ZLQ satisfies the equation of Proposition 3.3. We thus proved

Proposition 3.3.

4. The proof of Theorem 1.1. In this section, we prove Theorem 1.1. Let Z be a

fiber preserving Killing vector field on TλM. We first show that the lift ZLQ is also a Killing

vector field on (SO(Af), G).

LEMMA 4.1. Let Zbe a Killing vector field on TλM. Then we have

LZLQG(XHP, A^) = G([Ai*, ZHQ\ DχHpAj*) - G([Aj*, ZHQ], DχHpAi*)

for any X in X(M) and A/y with 1 < /, j < n — 1.

PROOF. Recall that ZLQ is represented as (3.3). We first prove the following identities:

(4.1) Aι*G([ZHQ, XHp], Aj*) = Ai*Aj*G(XHp, ZHQ),

(4.2) G([Ai*, [ZHQ, XHp]l Aj*) = 2G([A/*, ZH<*], DχHpA*) - XHpG{ZLQ, Au*),

(4.3) G ί

CZ(\ΎHQ \HPΆ Λ..*\— A.*Δ.*r:(yHp 7HQλ — ?Π([A * 7^Qλ Π u A •*}
ij j * A r J '

+XHpG(ZLQ,Aij*).

Since Z € i(ΓλM, / ) and A* G i(50(Λf), G), we have
A * ΓKXΎHQ γHPΛ A *\ A * 7^0 ΓZίyHp A . ^ A.*Π(γHp

**-i ^-'VL^' ' J ' / / — i \j \J\ , / / i v-» V-Λ- j

= Ai*Aj*G(XHp,ZHQ).

This shows (4.1).
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(4.2) is proved as follows: Using [A;*, XHp] = 0 together with Jacobi's identity, we
have

, XHp]l Aj*) = G([[Λ/*, ZHQ], XHpl Aj*)

= G(D[Ai.tZHQ]X
Hp,Aj*) - G(DχHp[A,*, ZHQl A/)

= -G(XHp, D[A^ZHQ]AJ*) - XHpG([Ai\ ZHQ\ A/)

Since Aj* and A/* are in i(5Ό(M), G), we have

-G(XHp, D[Λ.< ZHQ]AJ*) = G(DχHpAj*, [A/*, ZHQ]),

-XHpG([Ai*, ZHQ\ Aj*) = -XHpAi*G(ZHQ, Aj*) + XHpG(ZHQ, [A/*, A/])

= -XHpG(ZLQ,Aij*).

Hence (4.2) follows.

It follows from (3.3) that

G M £ > * % , * , X*' , Aij*\ = -XHpG(ZLQ, AU*),

which proves (4.3).

Since A/* is a Killing vector field, we have by (4.1) and (4.2) that

G([ZHQ, XHpl Au*) = Ai*G([ZHQ, XHp], Aj*) - G([Λ/*, [ZHQ, XHp]l Aj*)

= Ai*Aj*G(XHp, ZHQ) - 2G([A/*, ZHQ], DχHpAj*)

+ XHpG{ZLQ,Aij*).
This proves (4.4).

Using these identities (4.3) and (4.4), we prove Lemma 4.1. By (3.3), we obtain

LZLQG(XHP, Au*) = -G([ZHQ, XHpl Au*) - G ί ΣaklAki*, XHp

\lk<ι
From (4.3) and (4.4), we see that the above formula equals

-Ai*Aj*G(XHp, ZHQ) + 2G([A/*, ZHQ\ DχHpAj*).

We then have

LZLQG(XHP,AU*)

= --Aij*G(XHp, ZHQ) + G([Ai*, ZHQ], DχHpAj*) - G([Aj*, ZHQ\ DχHpA *)

Hence we obtain Lemma 4.1. D

Using Lemma 4.1, we next show that LzLQG(XHp, Aij*) = 0, which is a condition
for ZLQ to be in \(SO(M), G) by Proposition 3.3. From Lemma 3.4, each DXHPAΪ* is
horizontal on P, so that, from Lemma 4.1, it suffices to show that [A/*, ZHQ\ / = 1,... , n,
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is vertical on P. Let U (Resp. W) be a horizontal (resp. vertical) vector field on TλM. From

the assumption that Z preserves the fibers on TλM, we have by Theorem 2.1 that

(4.5) G(DZHQWHQ, UHQ) - G(DWHQZHQ, UHQ) = 0.

Then, from (4.5), it is verified that

(4.6) G{[Ai\ ZHn B(ej)) = 0 (or G{[Ai\ ZLQ], B(ej)) = 0).

It follows from (4.6) that [A/*, ZHQ] is vertical on P. Therefore LZLQG(XHP, A//) = 0

holds, and ZLQ is a Killing vector field on (SO(M), G) by Proposition 3.3.

Next, we show a lemma which completes the proof of Theorem 1.1.

LEMMA 4.2. (XL)LQ = XLp and (φL)LQ = φLp for any X in i(M, g) and φ in

2 2 ( M ) .

PROOF. Given a vector field W on M, there exists a unique vector field Wv on TM,

called the vertical lift of W, such that

π^Wv

γ) = 0, K(WVγ) = Wπ(Y) for any YeTM.

For any Y in TM, the vector Wvy at Y depends only on the connection V and the given

vector Wπ(γ). Let Vy be the vertical space of TyTM. We define Iγ := K\γ, which is an

isomorphism from Vy to the tangent space Tπ(j)M. Let u = (Y\,... , yπ) be an arbitrary

point in SO(M). Set exp tAi — (α^)kι(t)). Then we obtain

which implies that

(4.7) Ai\ = {(λu{ei))y

Yn}
HQu.

We shall use this in the following argument.

To prove the first formula in Lemma 4.2, it suffices to show that

(4.8) (πP)MXL)LQ) = (πP)*(XLp), ωP((XL)LQ) = ωP(XLp).

Note that, putting F = F(X L ) , we get

(XL)LQ = (XL)HQ + F* = (XH + (VX)L)HQ + F* = XHp + ((VX)L)HQ + F* ,

which gives rise to the decomposition of (3.7) for {XL)LQ. Then the first identity of (4.8)

follows from (2.3) and the decomposition above.

For the second identity of (4.8), it suffices to prove the following identities for each u in

SO(M) and/, /, j with 1 < /, /, j <n- 1,

(4.9) (ωP(((VX)L)HQu) en, ei) =

(4.10) (ωP(F*) eh ej) = (((VX)ΰ(W)) eu
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where (VX)tt is defined by (2.2).

Indeed, setting

(4.11) «\

we see that

k=\

and hence

λ
Therefore it follows that

(ωP(((VX)L)HQu

7X)

rQ(u

)en,

L ) H Q

ex)

n-\

' = y^ ξk

k=\

Ak*, ξke$(SO(M)),

\ 71-1

\ x—'

^ *=1

= !<7((VX)(λXn), X,) -
A

which proves (4.9).

Next, we show (4.10). Using (3.1), (4.7), (ii) of Theorem 2.1, and (2.1) in order, we

obtain

(ωP(F*) • eitej) = ^G{DAi*{XL)"Q, Aj*)u

Note here that the first term in the right hand side above vanishes. In fact, by (4.7) and

Theorem 2.1, we see

(XH)HQ, Aj*)u = -G(XHp, DA.*Aj*)u = 0,

since XHp is horizontal and DAi*Aj* are vertical on P. On the other hand, we see

= g(VXiX, Xj)π(Xn) =

In consequence, we obtain (4.10), which completes the proof of the first formula of Lemma

4.2. The proof of the second formula proceeds in the same way as that of the first one. D

Now we prove Theorem 1.1. From the fact proved in the beginning of this section, it is

known that the mapping Ψ defined in Section 3 is regarded as a mapping of the Lie algebra of

fiber preserving Killing vector fields on TλM into i(SO(M), G). Let Z be a fiber preserving

Killing vector field on TλM. It is easy to see that the image Ψ(Z) = ZLQ preserves the fibers

on P.
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In fact, using (3.3), we have the following for 1 < /, j < n — 1.

G([ZLQ, Au% B{ek)) = G{[ZHQ, A//], B(ek)) + G ί JVΆ*/*, A// , £(e*)) = 0 .

This formula and (4.6) imply

(4.12) G([ZLQ,Aij%B(ek)) = 0 for 1 < i, j, k < n .

Hence ZL<2 preserves the fibers on P.

We remark that the mapping Ψ is a homomorphism, which is proved in the following

way. Note that each TλM is an integral manifold of the distribution {TTλM; λ > 0}. For a

given chart (£/, / ) of M, a chart ( π " 1 (ί/), / ) of the tangent bundle ΓM is defined by:

jH ), V y")eR",

where /(/?) = (xι(p),... , xn(p)) for p e U. Using these charts (cf. [4], Section 2), we

easily see that

(4.13) [X\ YL] = [X, Y]L , [0 L , ψL] = - [ 0 , ψ]L , [XL, φL] = -[VX, 0 ] L

for any X J G i(M, ^) and φ,ψ e D2(M)o On the other hand, in the same manner as in

[8], it is verified that

[XLp, YLp] = [X, Y]Lp , [φLp, ΨLp] = - [ 0 , ψ]Lp ,
(4.14) . . .

[XLp,φLp] = -[VX,φ]Lp

for X, Y e i(M, g) and φ, ψ e Σ)2(M)o Since there exist uniquely X e i(M, g) and 0 e

£>2(M)o such that Z = XL + 0 L [4], it follows from formulas (4.13), (4.14), and Lemma 4.2

that Ψ is a homomorphism. Since Ψ satisfies Ψso(M) = ΨoΨτxM and Φso(M) = ^°Φr λM>

the uniqueness of such homomorphism follows from that of the decompositions of the fiber

preserving Killing vector fields on (TλM, gs) and (SO(M), G). This completes the proof of

Theorem 1.1.

5. The case of dimension two. In this section we assume that (Λf, g) is two-dimen-

sional. Since the connection form of the bundle Q then vanishes, Theorem 2.1 says that G =

(πQ)*gs and the mapping KQ : (SO(M), G) -> (TλM, gs) is an isometry. From Proposition

3.3, we can define the one-to-one homomorphism Ψ : i(TλM, gs) -> i(SO(M), G) by

Ψ(Z) = ZLQ for Z e i(TλM, gs).

To prove the first part of Theorem 1.2, we suppose that there exists a Killing vector field

Z on TλM which does not preserve fibers. Set J := (πρ)*(Ai*), which is a vertical Killing

vector field on TλM satisfying | | / | | = λ. For each positive integer /, let us define Killing

vector field W/ on (TλM, gs) and open set U\ of TλM as follows:

Wι = [ 7 , Z ] , W/ + 1 = [J, Wi\, Uι = {Ye TλM; (W/)y φ 0 } .

Then, we have the following lemma.
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LEMMA 5.1. (i) W/ is a horizontal Killing vector field on (TλM, gs), which satisfies
s(W,, Wι+ι) = Oandgs(Wι+u W/+1) = -gs(W,, Wι+2)forl > 1.

(ii) Uι = TλM, and || W/1| is a constant function on TλM for / > 1.

(in) IIW/II2 = λ2{Ω(Wh W/_i), Λi)/or/ > 2.

PROOF, (i) Put Wo = Z. Since Killing vector fields constitute the Lie algebra, it is

proved by induction that W/ is a Killing vector field on (TλM, gs). It follows from

9SU, Wι) = gs(J, [7, Wι-ι]) = - ^ W,_!/(7, 7) = 0

that Wι is horizontal on TλM. Hence we have

gs(Wh Wt+ι) = gs(Wh [7, W/]) = -W//(W/, 7) + /([W/, W/], 7) = 0.

Since 7 is a Killing vector field on (TλM, gs), we have

gs(Wt+u W/+i) = 7/(W/, WM) - gs(Wh [7, W/+1]) = -gs(Wh Wι+2).

(ii) Using the second formula of (i), it is proved by induction that Um D Um+\ for

m > 1 and Um C Um+\ for m > 2. It follows that ί/m = ί/2 for m > 2.

We next show that ί/2 is not empty. To do this, we suppose that U2 is an empty set, and

derive a contradiction. If ί/2 is an empty set, that is [7, W\] = 0 on Γ λ M, the Killing vector

field W\ preserves the fibers on TλM. Hence, by Corollary in [4], there exist X in i(Λf, #)

and 0 in D2(M)o such that

Wi = XL + 0 L = XH + (VX + 0 ) L

Since W\ is horizontal by (i), we have VX + φ = 0. It follows that VVX = - V 0 = 0,

and hence R(Y, Y')X - 0 on M for any Y, Y' e X(M), that is (π(ί/i), ^) is flat. But

this contradicts the fact that a Killing vector field Z\yλ, which does not preserve fibers,

exists on U\. Because, if (π(U\), g) is flat, then the distribution Hp is integrable, and

((π\TλM)~ι(π(U\)), gs) is also flat, which can be easily seen from the formula for the cur-

vature tensor of (TλM, gs) (cf. Blair [1] and Section 3 of [4]). Hence there exists an open set

U\ of U\ such that ((π\TλM)~{(π(UY)), gs) is isometric to an open set of R3/Γ, where Γ

is the free group generated by 2πλe?> e R3, which contains a whole fiber. But, on such an

open set, there exists no Killing vector field which does not preserve fibers. On account of

these facts, we conclude that ί/2 is not empty.

Since W/ and 7 are Killing vector fields, it follows that

(5.1) = -2W19

S(WM, Wι) + 2gs(Wl+u [Wh W,]) = 0

7(||Wι\\z) = 2g*([J9 Wil Wι) = 2^(W/+i, W/) = 0.

So, II Wm II is a constant function on each connected component of Um for m > 2. Then,

because of the continuity of the vector field Wm, we see that Um = TλM. Hence we conclude

that Uι = TλM for any / > 1. This proves the assertion (ii).
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(iii) Since Wι and J are in i(TλM, gs), we have by Lemma 3.4 that

gs(Wl+l, W/+i) = / ( [ / , Wil WM) = gs(VsjWh W/+i) - / ( V V ,

= -gs(Vswι+ι Wh J) + gs(Vswl+ιΛ W/) = λ2(β(W/+i, W/), Ai>.

This completes the proof of Lemma 5.1. D

It follows from (i) of Lemma 5.1 that ||W/+i||/||W/|| is independent of the number /.

Hence, from (ii) and (iii) of Lemma 5.1, we know that the Gaussian curvature of (A/, g) is

equal to the constant c = || W/+i || (λ21| W/ H)"1 on M. We show that c can be computed in a

different way.

LEMMA 5.2. For each I > 1, we have

Vs

WιWι=0 and gs(R{Wh

 2

PROOF. Since it follows from (5.1) and (i) of Lemma 5.1 that

we get Vswι Wι = 0, which implies that (Vswι+ι VsWι)Wι+\ = VV/+1 V5W/+i W/. Since

any Killing vector field W on (TλM, gs) satisfies the following differential equation

(VsYVsW)(Yf) + R(W, Y)Yr = 0, Y,Yf e X(TλM),

we have

( ί? ί W7 XKT \ WT XA7 \ ^— n ^ ί V7 ̂  V7 ̂  WJ WT \ — 11 V7 T/l/ 11

where (5.1) is used. From the second identity of (5.2) together with the fact that W/ is a Killing

vector field, we know that Vsψι+ι Wι are vertical on TλM, and hence it follows from Lemma

3.4 that

1 r,S<

A' •

On the other hand, by a formula of the curvature tensor of (TλM, gs) (cf. Blair [1] and

Section 3 of [4]), we have the following: For an arbitrary point Y in TλM, put (π\τxM)(Y) —

Yb and (π|ΓλM)*((W,)y) = X/ for I > 1. Then it holds that

gs(R(WhWι+ι)Wι+uWι)γ

= g(R(X,, Xι+ι)Xl+ι, Xι) + X-9(R{Y\ R(Xι+ι, Xι+\)Yb)X,, X,)

+ l-g(R(Y\ R(Xt, Xl+l)Yb)Xl+l, Xt) + λ-g(R{Y\ R(Xh Xι+ι)Y»)Xι+ι, X,)

= II Wι | |2 || W,+ι ||

From Lemma 5.2 and the formula above, we get c = 0 or c = 1/λ2. However, in the proof of

Lemma 5.1, we see that if c = 0, then there exists no Killing vector field Z which does not
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preserve fibers. Hence (Λf, g) is a space of constant curvature 1/λ2, which proves the first

part of Theorem 1.2.

Now we decompose the Killing vector field Z and prove the second part of Theorem 1.2.

There exists a unique vector field S on TλM, called the geodesic spray on TλM, such that

Y, (K\ττxM)(Sγ) = 0 for any Ye TλM .

Since the mapping ΈQ is an isometry, Theorem E in [9] says that λ B(e2), which is the lift of

S, is a Killing vector field on SO(M). Indeed, we can see (π\TλM)*({(πζ))*(λB(e2))}γ) = Y

for each F in Γ λ M.

It then follows that both

Bx := - [ / , S] = (πQ)*(B(eι)) and B2 := - 5 = (τrβ)*(B(e2))
A A

are in i(Γ λ M, gs). Since W/ is horizontal, there exist functions bx\ and b2ι on Γ λ M such

that Wι = bιιB\ + ^2/^2 We show that both bx\ and b2ι are constant on TλM. In fact, for

m = 1, 2, we have

0 = gs(VSjWh Bm) + gs(J, V5

β/n W/) = δlm(Jbιι) + δ2m(Jb2ι),

from which we get

(5.3) Jbmι=0.

For any vector fields F and Y' on TλM, we have

= ( y f c 1 / ) / ^ ! , γf) + (FZ72/)^5(β2, r ) + (γ'bιt)gs(Y, Bι) + (y/ft2/)^5(y, B 2 ) .

Setting Y = Y' = B\ (resp. Y = Y' = B2) in the formulas above, we get

(5.4) Bφιi = 0 (resp. B2b
2ι = 0).

Moreover, we have

0 = gs(Vs

YWt+u Y') + gs(Y, V s

= gS(VSγ(b2ιBι - bιιB2),

Setting y = Y' = B\ (resp. Y = Y' = B2) in the formulas above, we get

(5.5) Bχb2ι = 0 (resp. B2b\ = 0).

These formulas (5.3), (5.4) and (5.5) imply that both bιι and b2\ are constant on TλM, and

hence Wt = (πQ)*(B(bιιeι +b2ιe2)).

Setting Z' = Z - W4, we have

[7, Z'] = Wi - (πβ)*([Ai*, [Ai*, [A!*, [A!*, β ^ S e i + ^ 2 ^ 2 )]]]]) = 0,
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which implies that Z' is a fiber preserving Killing vector field on TλM. It follows that there

exist X in i(Λf, g) and ψ in D2(M)o such that Z' = XL + V"L Hence we decompose Z as

Z = W4 + Z' = α 5 + β [/, S] + XL + V^ ,

whereα = λ " V ( [ Λ [7, Z]], S) <md β = λ~2gs([J, [J, Z]], [/, 5]).

The following formulas for the bracket products are proved in the same manner as in [8].

LEMMA 5.3. (i) Let (M, g) be a connected, orientable two-dimensional Riemann-

ian manifold and λ a positive number. Then for any X,Y e i(Λf, g) and φ,ψ e Σ)2(M )o it

holds that

[Z L , YL] = [X, Y]L , [φL, ψL] = 0, [XL, φL] = 0.

Furthermore, if(M, g) is a space of constant curvature 1/λ2, then for m = 1,2, it holds that

[BΪ9 B2] = ~ J , [XL, Bm] = 0, [J, Bm] = SlmBι - 82mB2 .

Accordingly, these facts and Corollary in [4] lead us to the second part of Theorem 1.2.
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