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PERIODIC SOLUTIONS FOR DISSIPATIVE-REPULSIVE SYSTEMS
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Abstract. It is proved that every dissipative-repulsive periodic system admits a peri-
odic solution, which is comparable with some well-known results due to Yoshizawa, Hale and
Lopes, and Burton and Zhang for dissipative systems.

1. Introduction. Consider an ordinary differential equation

(1) * ' = / ( ' , * ) ,

where / : R x Rn -> Rn is continuous and locally Lipschitz in the space variable x moreover,

f(t + ω, x) = /(ί, JC) for all t and some ω > 0. Denote by x(t, to, xo) the solution of (1)

with the initial value x(to) = xo. Then (1) is said to be dissipative if there is a B > 0 such

that

limsup \x(t, to,xo)\ < B
f-*OO

for all to and XQ.

It is well-known that such systems (including more general systems, e.g., functional

differential equations and evolution equations) admit periodic solutions ([15], [6], [2], [13]

and the references therein). For the existence of periodic solutions of nondissipative systems,

the situation becomes more complicated ([14], [3], [4], [5], [9] and [11]).

There are some systems whose solutions exhibit the following regular behavior; some

components are dissipative, and other components are repulsive relative to some states. Nat-

urally, it is concerned whether the similar results hold for these systems or not. In the present

paper, we will provide a simple and clear conclusion; such systems also admit periodic solu-

tions, via the Brouwer degree theory.

The plan of the paper is as follows. In Section 2, we first consider ordinary differential

equations. Then in Section 3, we deal with functional differential equations. Finally in Section

4, we discuss the equilibrium problems, similar to Hutson's one ([8]).

2. Ordinary differential equations. In the following, let x = (y, z), y e Rm, z € Rι

with m + / = n, and let jc(ί, co) = x(t, 0, xo). We give the exact definition on the dissipative-

repulsive system as follows.

DIFINITION 1. The equation (1) is said to be dissipative-repulsive if there exist B, d,

ro > 0 and a continuous ω-periodic function g : R —• Rι with \g(t)\ < ro (t e R) such that
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for any a > d, b' > ro, there are b > VQ and T = T(a,bf) > 0 such that the following hold

for all \yo\ < a:

i) \y(t, xo)\ < B, whenever t > T and \zo\ < b\

ii) \z(t, XQ) - g(t)\ > 0, whenever 0 < t < T and b < \zo\ < b + b'\

\z(t, xo)\ > b, whenever t > T and b < \zo\ < b 4- b'.

We have the following.

THEOREM 1. If equation (I) is dissipative-repulsive, then it admits an ω-periodic so-

lution.

PROOF. Denote by S\(σ) and S2(σ) the open balls centered at the origin with radius

σ, respectively in Rm and Rι. Now we put a = B + ro + 1, V — h in Definition 1, and set

D = S\(a) x S2Φ), where h satisfies

|*(f, *o)| < h for any t e [0, ω] and XQ e D .

Consider the Poincare map P(xo) — x(ω,;co) Fi χ a prime number Λ̂  such that Nω >

T(a, br) + ω. Since (1) is dissipative-repulsive, from i) and ii) we have

PN(x)φx for a n y xedD.

We claim that for each fixed point p of PN in D,

P(p)eD.

If this fails, then there would be a fixed point p e D such that P(p) φ D. Write

P(p) = PN+l(p) = x((N + l)α), p)=q = (qι,q2).

Clearly, (̂ V 4- l)ω > Γ(α, b') and a > B. Thus, by the definition of α, i) and the construction

of D, we derive that q\ e S\(a), and hence b < \q2 \ < b + b'. From the choice of Λ̂  it follows

that

z{{N-l)ω,q)φ~S2{b),

which implies that

p = PN-\q)tD,

a contradiction. By a modular degree theorem ([16]),

(2) deg(id - P, D, 0) = deg(id - PN,D, 0) (modΛ^).

We have to prove

| d e g ( i d - P * , D , 0 ) | = 1.

Once this is true, then from (2) it follows that deg(id — P, D, 0) φ 0. Hence P has a fixed

point p in D, and x(t, p) is an ω-periodic of (1), as desired. To see this true, consider the

homotopy:

H\ (yo, zo, μ) = (yo ~ βy(Nω, (I - μ)>>* + μ>;0, zo)» βZO ~ z(Nω, (1 - μ)v* +

where any j * G S\ (a) is chosen and μ e [0, 1]. By i) and ii),

0 £ Hι(dD x [0, 1]),
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which implies

deg(id - PN, D, 0) = deg(//i( , 1), D, 0) = deg(#i( , 0), D, 0)
( 3 )

To calculate that degree, we consider another homotopy

fyizo, μ) = z(μNω, y*, zo) -

where μ e [0, 1]. From ii) we have

0£ H2(dS2(b) x [0, 1]),

which implies

deg(z(Wω, y*, •) - 0(0), S2(fc), 0) = deg(id - 0(0), S2(b), 0) = deg(id, S2(b), 0) = 1.

This together with (3) implies the desired conclusion. The proof is complete.

3. Functional differential equations. In this section, we will prove an analogous

result for functional differential equations. Since the phase space is infinite-dimensional for

such systems, the Poincare type map looses compactness in case of larger delay. Hence we

have to treat the system under consideration as a finite-dimensional one.

Consider the functional differential equation

(4) x' = F(t,xt),

where F : R x C -» Rn is continuous and locally Lipschitz in the second variable; moreover

F{t + ω, φ) = Fit, φ) for all it, ψ) and takes any bounded sets in C into bounded sets in Rn.

Here ω > 0 is given, xt(θ) = x(t + θ),θ e [-r, 0] with r > 0; C = C([-r, 0], Rn) with

the usual supremum norm | |. In the following, denote by x(t, s, φ) the solution of (4) with

initial value xs = φ. For simplicity, we let x(t9φ) = x(t, 0, φ).

DEFINITION 2. The equation (4) is said to be dissipative-repulsive if there exist B, d,

ro > 0 and a continuous ω-function g : R —> S2(/o) such that for any a > d, b' > ro, there

are b > r0, M = Mia), T = T(a, bf) > 0 such that the following holds:

i) \x(t, φ)\ < M, whenever t > 0 and \φ\ <a+b\

ii) \yit, φ)\ < B, whenever? > T,\ψ\\ < a and l ^ l < b9 where φ = (τ^i, Ψi)\

iii) \z(s, ψ) - g(s)\ > 0, whenever 0 < s < Γ, | ^ i | < a and b < |^2(0)| < br\ and

\z(t,φ)\ > b, whenever t >T,\ψ\\<a and b < |^2(0)1 < br.

THEOREM 2. If equation (4) is dissipative-repulsive, then it admits an ω-periodic so-

lution.

PROOF. Putα = £ + ro + l,b = biB + ro + l), Mo = MiB + ro + 1) andZ?7 = Afi =

M(Mo 4- 2). Since F maps any bounded sets in C into bounded sets in Rn, there is a constant

L > 0 such that for any ί e /? and \φ\ < 2M\,
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Set

S = [φ e C : \φ\ < M o , \φ(sχ) - φ(s2)\ < L\sχ - s2\, J, e [-r, 0], i = 1,2},

and

S' = {φ G C : \φ\ < 2MU \φ(sχ) - φ(s2)\ < L\sx - si\, st e [-r, 0], / = 1,2}.

Then S and S' are compact. Take any partition

t0 = 0 > t\ > > tk = -r , t[ - ί/+i = - = Z\, / = 0,. . . , fc - 1.
A;

Given φ e S, define

* 1 i 1 ) - φ ( t i ) ] , 5 G [ t i + u t i \ , / = 0 , . . . , k - 1

(5)

Note that for each φ e 5, there is an / such that

(6) l ^ - ^ l =msLX[ti+ιJi]\φ-φk\ <2LΔ -> 0,

as /: ->• ex) uniformly on 5.

Define f{t,φk) = F(t,φk) and consider the delayed equation

(7) *'(*) = / ( * , * ( * + **),.-• ,x(t + to)).

Denote by Xk(t, s, φk) the solution of (7) with initial value (xk)t0 = Φk and let Xk(t, ψk) =

Xk(t, 0,φk). Clearly, they are unique and continuous in initial values. In particular, by (6) and

(7), we have

(8) xk{t,s,φk)-+x(t,s,φ),

as k -> oo uniformly for φ e S and t, s on any finite interval.

Indeed,

\xk(t, φ k ) - x(t, φ)\ < \xk(t, φ k ) - x k ( t , φ)\ + \xk(t, φ) - x(t, φ)\ = I \ + I 2 .

Since F is locally Lipschitz in φ and Sf is compact, there is a K > 0 such that

\F(t, φ) - F{t, ψ)\ < K\φ - ψ\ for any φ, ψ G S'.

\ϊt G [-r, 0], then

h < \φk -φ\ <2LΔ, I2 = 0.

If ί > 0, t h e n

m a x [ 0 , ί ] / i < ί \ F ^ k J ~ ^
Jo

0

<2LΔKt I
Jo
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which together with GronwalΓs inequality implies

h < 2LΔKteKt

similarly, we estimate h. These estimates also hold for x(t, s, φ) and Xk(t,s,φk). This

implies (8).

Let T = T(M\, Mi) and choose a prime N such that Nω > r + ω'+T. Then from (8)

we may assume that the following hold on S.

iv) \xk(t, φk)\ < Mo + 1/2, whenever t e [0, (N + 2)ω] = J and \φ\ < a + b\

v) |y*(ί, φk)\ < B + 1/2, whenever/ € [7Vω - r, (N + l)ω], | ^ i | < a and |τ/r2| < Z?,

where φ = (\j/\, Ψ2Y,

vi) \z(s9 φ
k) — g(s)\ > 0 and |z(ί, ^ ) | > £, whenever s e J, t e [Nω, (N

<αandZ? < |^2(0)1 < M\ + Mo.

Define Π(φk)(t) = (Jcjt)r( , ̂ ) . Clearly, it is continuous in ί and φ, since

^ ft, ^ ) , . . . , xk{t ^

By iv)-vi) we have that on S,

1) Π(φk)(t) e S, whenever / e J and \φ\ < a + b;

2) \(yk)t(m>Φk) ^ B + l, wheneverί E [Λ^ω, (N + l)ω], \ψ\\ <a and |^r2| < ^, where

3) |(5*)5( , ^ ) - f t l > 0and|(2ik)f( , ^ ) | > ft, whenever* eJ,te [Nω, (N + l)ω),

\ψ\ I < a and ?̂ < |^2(0)| < M\ + Mo.

1) and 2) are obvious. Note that for φ 6 S, x(t,φ) e Sf\ hence

\Tχkh(', Φk) ~ (^)r( , φk)\ < 2LΔ for any ί 6 [0, (N + 2)ω],

which together with (8) implies 3).

Let D = (Si(α) x S2(b))k+ι. For any /? e D, we have

- ^ - ( p i + \ - p i ) f o r 5 G [ ί / + i , ti], i = 0 A: —

Set

p#(ί) = p; - (s - ti-x)a ( P M P i λ f o r s e [ίi+i, ί/1, 1 = 0, . . . , t - 1,

where a : Rn -^ 5(0, L) is the usual continuous retract.

By 2), 3) and a similar argument as in the proof of Theorem 1, we obtain

(10) deg(Π( *)(tfω),D,0) = l .

Define

P{p) = (ί*)ω( , P*) for any p e Sf.

Then P : D -> /?(*+1)/1 is continuous, because of |p* — ^*| < \p — q\ for all p, q. Moreover,

P is well defined for \p\ < a + b.

Note that
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and on S,

Pi + \p) = Pl o (χk)ω(., pj = P1-1 o (**)„(., (χk)ω(., pjώ) .

Hence

\P2(p) - Π(p*)(2ω)\ < \(Xk)ω(', (JC*W , P*)) ~ (Xk)ω(', (ϊk)ω(', P*))\

, (Xlc)ω( , P*)) ~ (Xk)ω(', (Xk)ω(; P*))\

+ I U ) ( , P*) ~ (Xk)2ω(', P*)\

2LΔKeKω.

Generally,

I/>'"(/>) - mP*)(iω)\ < \(xk)ω(; (xk)ω( , , (xk)ω( p * ) -))

-(Xk)ω(; (Xk)ω('> * . ( * * ) ω ) 0 . P*) * * * ) ) M

+ l (^)ω(, (^)ω(,

( ) ( ( ) ( ,'••• , (Xk)ω(',P*)'"))\

(', P*)\

< ALA + 2LΔK2e2Kω + + 2LAKi-γe{i-χ)Kω = ε/* .

Hence

(13) /"'(p) G S(Π(p*)(iω), εik), 0 < i < Λ̂  + 2,

where S(/?, 5) denotes the open ball of /?^ + 1 ) n centered at p with radius 5.

By (10) and (13), for k large enough,

(14) dεg(PN, D, 0) = deg(/7(*)(Λ^ω), D, 0) = 1.

From 2), 3) and (13) we have that PN has no fixed point in 3D. By(13) and the choice of N,

T and M\, for k large enough, each fixed point p of PN in D satisfies that p = p*. We claim

that P(p) e D. If this fails, then there would hold: q = P(p) = (q\,q2) i D. By 2), 3) and

(13), qx e (Si(fl))*+1, q2 t (S2(ft))*+1. Note that \x(t, p # ) | < Mo, ί € [0, ω]. By 3), (13)

and the choice of N,

and hence

p = PN-ι(q)ΪD,

a contradiction. By the modular degree theorem and (14),

0 φ deg(Λ D, 0) = deg(PN, D, 0) (mod TV).

Hence P has a fixed point pk € D, i.e.,

Pk = P(Pk) = (xk)ω( , (Pk)*),

which shows that pk = (pk)* £ S. Applying the Arzela-Ascoli theorem, we may assume

Pk —> φ as k -> 00 ,

in C. Note
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Then

Ψ) -φ\ < \Xc

+1
+1

Λ φ)

(Xk)ω(

\{χk)
k(

- (Xk)a

: , ψ) -

: ,Φ)-

>(;<P)\

(Xk)ω(

(Xk)k (••, Pk)\ •

•\(Xk

- Pk\

+ \(Xk)ω(, Ψ) (Xk)ω(; Φ)\ + l(**)α>(, Φ) (**)&(, Φ)\

< 6LΔKeKω + (l+eKω)\φ-pk\ - > 0 ,

as & -> σo. From uniqueness it follows that

x(t + ω,φ) = x(t, φ) for any t € R ,

that is, jc(ί, <p) in an ω-periodic solution of (4). This completes the proof.

4. Equilibria for nonpermanent systems. Deterministic modelling in the biologi-

cal sciences often reduces to ordinary differential equations, e.g., an ecological differential

equation with state space R\\

(16) x'i=xiMx) = F(x).

We assume F satisfies a local Lipschitz condition. For such a system, it is important to

discover if permanence implies the existence of equilibria. A positive answer has been proved

by several authors [7] and [8].

Roughly speaking, the system (16) is said to be permanent if there are A/ < β;, i =

1,... , n, such that for any solution x(t, XQ), xo € /?+, there is a T = T(xo) > 0 for which

A; < Xi(t, xo) < Bi , i = 1, . . . , n ,

whenever t >T. Hence such a system is dissipative.
In this section, we will prove that dissipative-repulsive systems also admit equilibria. Let

us state our result as follows.

THEOREM 3. Let 0 < A/ < Bi < oo, / = 1 , . . . , n, and 0 < mj,m + / = n. Let
A/ < C[ < Bi, i = m + 1, . . . ,n. Assume that for any α < a t < A/ and Bi < bi < b'^

i = 1,...,«, there is a T > 0 such that

i) x(s, XQ) e R+, whenever t > 0 and xo G /?ί|_;

ii) Xi(t,xo) e [A;,Z?;], / = /, . . . ,ra, whenever t > T and (JCO)/ € [tf/,6/], i =

1 , . . . , n ;
iii) Xi(s, xo) φ Ci and jc/(ί, JCO) £ [fl/, £/], i = m + 1, . . . , n, whenever s > 0, ί > 7\

(JCO)/ G [β/, ^ ], i = 1 , . . . , m, anda' < (JCO); < fly 6>r Z?y < (jco)y < b' for some m + 1 <

7 < n.
Γ/z^« (16) admits an equilibrium p with A/ < pi < Bi, i = 1 , . . . , n.

P R O O F . Put

ω = - , /: > 1, a/ = -A/ , a\ = h- , fe/ = Bi + 1, fc = Z?/ + A+ ,
AC ^

where A_ and A+ satisfy

A_ <x/(i,xo) < A+,
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whenever t e [0, 1] and av < (JCQ)/ < &/, i = 1,... ,n. Set P(xo) = x(ω,xo), D =

(a\,b\) x x (an,bn). By a similar argument to that in the proof of Theorem 1, P has

a fixed point pk e D. By compactness, we may assume pk -> p as k —• oo. Since

x(l/k, pk) = Pk, it follows that F(p) — 0, as desired.

Finally, let us make some comments.

REMARK 1. The existence of the continuous curve g(t) in above theorems is neces-

sary, otherwise the following is a counterexample:

Consider the equation

y' = -y, Z ' = l .

Clearly, y(t, JCO) is dissipative, z(t, xo) = zo + t is repulsive, there is no such continuous

periodic curve g(t), and this equation also has no periodic solution.

REMARK 2. The case m = n corresponds to some well-known theorems for dissipa-

tive systems [15], [6] and [2].

REMARK 3. For functional differential equations with infinite delay, there should be

some similar results. This will require a correspondent phase space theory [1].

REMARK 4. If we combine our approach with some theories about differential inclu-

sions (e.g., [10] and [12]), then we can obtain similar results for differential inclusions.

5. Example. Consider the system

7 ) / = -y3 + e~zl + sinί = Fι(t, y, z),

zf = z + y2 + cos t = F2(ί, y, z).

Set

B = 2, d = 0, ro = 6, g(t) = 0.

Note

sgna F\ (ΐ, a, z) < —5 for a n y t,z e R a n d \a\ > 2 .

Then

(18) \y(t, yo, zό)\ < yo for any t > 0, \yo\ > 3 and zo e R,

and

(19) |y(ί, yo, zo)l < 2 for any ί > T{ = -%- , |yo | < α and z0 e R .

Put

b = a2 + 2.

Then

(20) |z(ί, yo, zo)l > b for any t > 0, |yo| < α and z0 > b.

By (19) and (20), we can apply Theorem 1 to conclude that (17) admits a 2π-periodic solution.
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