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Abstract. Let G be a non-unimodular solvable Lie group which is a semidirect product

of Rm and Rn. We consider a codimension one locally free volume preserving action of G on

a closed manifold. It is shown that, under some conditions on the group G, such an action is

homogeneous. It is also shown that such a group G has a homogeneous action if and only if

the structure constants of G satisfy certain algebraic conditions.

Introduction. By a locally free action of a Lie group G, we mean an action all of

whose isotropy subgroups are discrete. A locally free action Φ then induces a foliation Tφ

whose leaves are given by the orbits of Φ. The primary purpose of this paper is to investigate

the behavior of codimension one locally free actions of some solvable Lie groups on closed

manifolds.

To begin with, let G be a nilpotent Lie group. Then, from the point of view of foliation

theory, Hector, Ghys and Moriyama [8] proved that the codimension one foliation Tφ is

almost without holonomy. That is, each non-compact leaf of Tφ has trivial leaf holonomy

([7, IV-2.11]). This implies that the qualitative structure of TΦ is comparatively simple.

When G is solvable but not nilpotent, the structure of Tφ is more complicated. Even in

the case where G is the real affine group

ί / J vΛ I

t,x eR

which is the simplest non-nilpotent solvable Lie group, it is known ([5, Propositions II. 1.4 and

II. 1.5]) that all leaves of Tφ are dense and there exists a leaf with non-trivial leaf holonomy.

However, by assuming the existence of an invariant volume form, Ghys obtained the following

remarkable result, which shows the smooth rigidity of codimension one locally free Aft4" (R )-

actions.

THEOREM ([5, Theorem B]). Let G be Aff+(J?) Let Φ : G x M -> M be a locally

free G-action of class Cr (r > 2) on a closed smooth 3-manifold M. Suppose that the action

Φ preserves a volume form of class C°. Then Φ is Cr~x-conjugate to a homogeneous action.

To be precise, let Φ and Φ' be enactions of a Lie group G on manifolds M and Mf,

respectively. Then Φ and Φ' are said to be Cs-conjugate (s < r) if there exist an isomorphism
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φ of G and a C5-diffeomorphism / from M to Mf such that / o Φ = Φ' o (φ x / ) . If a Lie

group // contains G and a cocompact discrete subgroup Γ as well, then G acts on the compact

homogeneous manifold H/Γ by left translations. Such an action is called a homogeneous

action. Note that a homogeneous action preserves the natural volume form of H/Γ that is

induced from a right and left invariant volume form of H.

Following the above theorem of Ghys, several rigidity results have since been obtained

for actions of Lie groups other than Aff+(/?) ([1], [2] and [6]).

In this paper, we consider non-nilpotent solvable Lie groups G which are semidirect

products of Rm and Rn, and study the rigidity of codimension one locally free volume pre-

serving actions of G. To state our main results, we fix some notation.

For consistency with the case of Aff^(R) = R+ x R, we use the multiplicative notation

for Rm. Since the group structure of G = R™ x Rn is determined by a homomorphism

ψ :/? + -> Aut(/Γ) = G L (n,R), we write the semidirect product by /?+x ψRn. We assume

that ψ is diagonalizable. By changing the semidirect product structure of G if necessary, we

may assume furthermore that ψ is locally injective, and in particular m < n (Lemma 1.1).

Take a basis {ey \l < j <m} ofRm and put dψ(ej) =: Aj e M(n, /?), where dψ is the

differential of ψ. Then the matrices {Ay} are simultaneously diagonalizable. Denote by λ̂

the /-th diagonal element of the diagonalized form of Aj, and by Aψ the n x m -matrix whose

i-th row vector is given by Λj := (λί, λ? , . . . , λ™) (1 < / < n). We call Aψ the structure

matrix of G = R^ \xψ Rn (see Section 1.1). Put β := Σ"=ι At.

A main theorem of this paper is the following.

THEOREM 1. Let G = R™ x^ Rn (0 < m < n) and M an (m + n + I)-dimensional

connected closed orietable smooth manifold. Let Φ : G x M -> M be a locally free smooth

action preserving a volume form Ω of class C°. Suppose that the homomorphism ψ is diago-

nalizable, locally injective and the structure matrix AψofG satisfies

β i {ai?ίlΛhbj?flΛj - ΐRΛk | 0 < α/, bj < 1, 1 < i, j , k < n}.

Then M is a solvmanifold and Φ is C°°-conjugate to a homogeneous action.

The other result is the following theorem which gives a necessary and sufficient condition

for G = /£+ Kψ Rn to have a codimension one homogeneous action. Two n x ra-matrices

A and A' are said to be equivalent if A! = KAP, where K is an n-square matrix which

exchanges rows of A and P e GL(m,R).

THEOREM 2. Let G = R™ \κψ Rn (0 < m < n). Suppose that the homomorphism ψ

is diagonalizable, locally injective and the structure matrix AψofG satisfies

Ai φ 0 (1 < i < n) and β £ {±Ah At - Aj \ 1 < /, j < n].

Then, G has a codimension one homogeneous action if and only if the (n + 1) x m-matrix

(AL, —β1)* is equivalent to a matrix A satisfying the following conditions.

(1) There exist Uk x m-matrices A(k) (1 < k < d) such that A* = (A(\Y, A(2Y,... ,
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(2) For each k (1 < k < d), let λj (k) be the (i, j)-element ofΛ(k). Then each number

exp(±λj (k)) is an algebraic integer, and there exists an algebraic integer ak of degree uk

such that expλ/(fc) = σ/°(expλ\{k)) e Q{σ^\ak)) (1 < j < m, 1 < i < uk). Here

{&k I * — ' — Uk> σk\ *̂ } ^ tne s e t ofaM conjugation mappings ofQ(otk).

The assumptions on the structure matrices in Theorems 1 and 2 depend only on their

equivalence classes, thus, only on the isomorphism classes of the Lie groups G (Lemma 1.2

and Proposition 1.3). If m < n, then the set of isomorphism classes of {R™ \*φ Rn \ Aψ

satisfies the assumptions of Theorems 1 and 2} has the cardinality of a continuum. Among

them, only countably many Lie groups have codimension one homogeneous actions from

Theorem 2, and hence, have codimension one locally free volume preserving actions on closed

manifolds from Theorem 1 (Corollary 4.4). If m — n, then the group R+ κψRn isisomorphic

to AfF^ (R)ιxAff(C)r for some non-negative integers/ and r such that/+2r = n (Proposition

1.4), where Aff(C) denotes the universal covering group of the complex affine group. As a

corollary of Theorem 2, it is shown that such a Lie group has a codimension one homogeneous

action (Corollary 2.5).

This paper is organized as follows. In Section 1, we investigate fundamental properties

of Lie groups of the form R™ Mψ Rn. In Section 2, we study cocompact discrete subgroups

of Lie groups of the form/?™ \xφR
n+ι, and then prove Theorem 2 and Corollary 2.5. Section

3 and Section 4 are devoted to proving Theorem 1. The proof of Theorem 1 is given by

improving the methods developed in [5], [2] and [6].

Throughout this paper, by manifolds we mean connected closed orientable smooth man-

ifolds, and by actions we mean smooth actions unless otherwise specified. We use the follow-

ing notation:

1. For v G C"\ ffiv (resp. 3v) denotes the real (resp. imaginary) part of v.

2. /?+ denotes the multiplicative group of positive real numbers.

3. For x, y e C \ x y denotes the standard inner product x'y = Σ " = 1 */ j / .

4. For an n-row vector u and an ^-column vector v, the product uv as matrices is often

written by the same notation u v.

5. En denotes the n-square identity matrix and J denotes the matrix ί j .

6. For ftz-square matrices A; (1 < / < k), we denote by diag(Λi, Λ2,... , Ak) the

(X]/=i ft/)-square block-diagonal matrix.

7. M(n, m, K) (resp. M(n, K)) denote the set of all Λ'-matrices of type n x m (resp.

n x n).

1. On the group R17^ K ψ Rn. In this section we study basic properties of Lie groups

of the form/?™ KψRn.

1.1 Structure matrix of the group /?+ tx^ Rn. Let t = (t\, t2, , tmY € Rm, x =
(*i, Jc2, , xnY £ Rn, and let expt be the vector (etι, eΐ2, , etmY e R™. We denote

by R™ \κψ Rn the semidirect product group of R™ and Rn determined by a homomorphism

ψ : R™ -+ Aut(/T) = GL(n, R). By definition, R™ \xψ Rn is the direct product R™ x Rn
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as a set, and the multiplication law is given as follows ([10, p. 18]):

(expt, x)(expt', x') = (exp(t + t'), x + ^r(expt)(x')), t, t' e Rm,x, x' e Rn .

In this paper, we always assume that the homomorphism ψ is diagonalizable. That is,

we assume that the matrix dψ(t) is diagonalizable over C for any t e Rm, where dψ : Rm ->

M(n,R) denotes the differential of ψ.

Take a basis {ey | 1 < j < m] of Rm and put dψ(ej) =: Aj. Choose a complex n-

square matrix U which simultaneously diagonalizes {Aj | 1 < j < m}, and let λ̂  be the i-th

diagonal element of U~ιAjU. Let Λψ e M(n, m, C) be the matrix whose (/, y)-element is

λj. We call the matrix Λψ the structure matrix (with respect to {ey} and U) of the semidirect

product group G = R™ \xψ Rn. Denote by A\ e Cm the i-th row vector of Aψ. Note that, if

A[ e Cm \ Rm, then there exists a permutation σ e Sn such that 71/ = Aσ(i) (1 < / < n).

Two matrices A, λ! e M{n,m,C) are said to be equivalent if A' = KAP, where K is

an Ai-square matrix which exchanges rows of A and P e GL(m,R). It is easy to see that the

equivalence class of the structure matrix Aψ does not depend on the choice of {ey} or U.

Denote by Nc the maximal connected nilpotent normal subgroup of G ([13, p. 2]).

LEMMA 1.1. (1) IfR-mnk(Λψ) = m - s (s > 0), then the group G = R^ \xψ Rn

has another semidirect product structure G = R^~s Kψ>RnJrS, where R-mnk(Aψ') = m—s.

(2) R-mnk(Aψ) = m if and only ifNG = {1} \Xψ Rn.

PROOF. Suppose R-rank(Aψ) = m — s. Choose a basis {ê  | 1 < j < m] of Rm such

that the subset {e' \m—s+l < j < m] spans the kernel of dψ : Rm -> M(n,R). Defineaho-

momoφhism^' : R+~s -> GL(n+s, R) by ^'(exp(e^ )) := diagί^ ίexpίey)), Es) (1 < j <

m—s), and consider the semidirect product /?^~5 K ψ>RnJrS. Then it is easy to see that the map

(exp(Σ7=i f/e})' CJCI xn)) ^ (exp(ΣJJi5 tj*'j)> (x\. . Xn, tm-5+\,... , tm)) deter-

mines an isomoφhism from G = R™ \Xψ Rn to /?^~5 K^/ i? Λ + 5 . Obviously the homomor-

phism ψ' is diagonalizable and /?-rank(Λ^/) = m — s. Thus we have proved (1) and the

sufficiency part of (2) because N G D {1} *φ> Rn+S.

We prove the necessity in (2). Suppose No ^ {1} Kψ Rn- Choose (exps, x) e NQ \

{1} Kψ Rn. Then the d-th iterated commutator of (exp«s, x) (a e R) and (1, x') (x; e

Rn) is given by [(expαs, x), , [(expαs, x), [(expαs, x), (1, x;)]] •••] = (!, (V^(exp^s) —

id)ί/(x/)) Since No is nilpotent, there is d > 0 such that (^(expαs) — id/ = 0 for any

a e R. This implies Λψs = 0 andR-rank(Aψ) < m. D

Note that R-rank(Aψ) = m if and only if ψ is locally injective, that is, J ^ is injective.

By Lemma 1.1(1), in considering a semidirect product /?+ \Xψ Rn, we may assume that the

homomorphism ^ is locally injective (and in particular, m < n). Put D(n, m) := {R™ \*ψ

Rn I ψ is diagonalizable and locally injective}, and let V(n, m) denote the set of isomoφhism

classes of D(n, m). From Lemma 1.1, we obtain the following.
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LEMMA 1.2. Let G be a Lie group. Then G e V(n, m) if and only if the following

conditions are satisfied'. (1) NG = Rn and G/NG = Rm. (2) The natural exact sequence

1 —> NG —> G -> G/NG —> 1 has a splitting ξ : G/NG —> G. (3) The homomorphism

ψ : G/NG -> Aut(Λfc) determined by i{ψ{h)){g) = ξ(h)i(g)ξ(hΓι (g eNG,h e G/NG)

is diagonalizable.

Let S(n, m) := {A e M(n, m, C) |/?-rank(Λ) = m and A = KA for some row ex-

changing matrix K}. The structure matrix of a semidirect product group G = /?+ xφ Rn e

D(n,m) belongs to S(n, m). Let S(n,m) denote the set of equivalence classes of matrices in

S(n,m).

PROPOSITION 1.3. The map R™ Kψ Rn h+ Aψ induces a bijectionfrom V(n, m) to

S(n, m).

PROOF. We show the well-definedness of the induced map. Suppose G = G/NG X ^

NG and G' = G'/NG' *ψ' NG> (G, G' e V(n, m)) are isomorphic by φ : G -> G'. Then

the isomoφhism φ naturally induces two isomoφhisms φo : NG -> NG> and φ\ : G/NG ->

G'/NG', which satisfy the following condition:

0-1(^ /(0i(expt))(0o(x))) = ^(expt)(x), expt € G/NG , x e NG .

It follows that the groups G and G' have equivalent structure matrices. The rest of the proof
is easy and is omitted. D

Lemma 1.2 and Proposition 1.3 imply that V(n,m)Γι'D(n',mί) = 0 if (n,m) Φ (n',mf),

and the equivalence class of the structure matrix of G e \Jn,mV(n, m) is determined by its

isomoφhism class. It is easy to see that the assumptions on structure matrices in Theorems 1

and 2, and in the succeeding Propositions as well, depend only on their equivalence classes.

By these reasons, as the structure matrix of a given Lie group G G Ί)(n, m) we may take any

representative in its equivalence class.

1.2. Canonical coordinates. Let / and r be non-negative integers such that / 4- 2r = n.

We say that A e S(n, m) is of type (/, r) if A has / real row vectors and 2r non-real row

vectors. In that case, we say that A is well-arranged if the last 2r row vectors are non-real

and Λ/+2y-i = Aι+2j (1 < j < r).

Let G = R™ \κψ Rn e D(n, m). We also say that G is of type (/, r) if ks structure

matrix Aψ = (λj) is of type (/, r). For such a G, up to equivalence, we may assume that

Aψ is well-arranged, and can take a coordinate (expt, x) of G so that the differential dψ(t)

is given by the following real canonical form.

/ m m / m \ / m \

Σ^ λ / + 2 r -,)0 )E2 + Σ(3λ/+2r-l)
\y=l / \y=l

V ^

Such a coordinate of G will be called a canonical coordinate.
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From now on, we assume that the structure matrix of G e V(n, m) is well-arranged and

G has a canonical coordinate, unless otherwise specified.

1.3. The case of m = n. Let Gn(l, r) be the Lie group R\ ιx^π(/,r) Rn in D(n, n),

where the homomorphism ψn(l,r)is defined by

dψn(l, r)(t) = diagfa,... , th ifME2 + ί/ + Γ +i7), . . . , {tι+rE2 + tMrJ)).

It is easy to see that the group Gn(l, r) is isomorphic to Aff+(JR)/ x Aff(C)r.

PROPOSITION 1.4. Let G = R\ K^ Rn e D(n,n) be of type (/,r). Then G is

isomorphic to Afr^(R)1 x Aff(C)r.

PROOF. Let

Then it is easy to see that AψP~x = yl^(/ r). From Proposition 1.3 it follows that G is

isomorphic to Gn(l, r), and hence to Aff+C/?)' x Aff(C)r. D

1.4. Lie algebra of R% x ψR
n. LetG =RΊκψRn e D(n, m) be of type (/, r). Then

the Lie algebra £ of right invariant vector fields on G is generated by the following elements:

(1.2)

They satisfy the following commutation relations:

[X, , X,'] = [Yj, Yr] = 0 (1 < i, i' < «, 1 < j , ) < m),

[Yj,Xi] = λJ

iXi (1 <(" </, 1 < j < m ) ,

( 1 [y), X,+2*-ι] = (iHX/+2Ar_,)X/+2>t-i + (3λ/+ 2 ( t_,)X/ + 2* ,

lYj, Xl+2k] = -&λί+2k-ι)Xl+2k-\ + (aU/+2A_,)X/+2* (1 < j < m, 1 < t < r ) .

For an element 5 = (expt, x) of G, the left translation Lg and the inner automorphism

Ad(g) = LgRg-\ act on these vector fields according to the following formulas:

^ (X) ^ - . ) t)7)
(1.4)
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k=\ k=\

-l - Xl+2k-\Xl+2k)
k=\

1.5. Unimodular Lie group containing R^_\KψRn. Let G be a Lie group. The modular

function A : G —> /?+ is defined by Z\(#) = |det(Ad#)|, which measures the deficiency

of left invariance of the right invariant volume form of G. The Lie group G is said to be

unimodular if A(G) = 1. In particular, if G is connected, G is unimodular if and only if it

has a biinvariant volume form. It is easy to see that a Lie group is unimodular if it contains a

cocompact discrete subgroup.

Let G=R^.t<ψRn e D(n, m). Denote by β the real row m-vector £ ? = 1 Λ;. From the

formula (1.4), the modular function A : G ->• R+ is given by Z\(expt, x) = exp(^" = 1 A\

t) - exp(β t).

PROPOSITION 1.5. LetG = R™txψRn e D(n, m). Suppose that the structure matrix

Aψ of G satisfies

Aι φ 0 (1 < / < ή) and β <£ {±Ai9 At - Aj \ 1 < /, j < n].

Then there exists uniquely an (m+n-\-\)-dimensional simply connected unimodular Lie group

H which contains G as a subgroup.

PROOF. Consider the Lie group G := R™ tx^ Rn+ι e D(n + 1, m), whose structure

matrix A r is given by (A*., —β*)*. Note that the group G is unimodular and there is a natural

embedding of G into G.

We prove the uniqueness. Let H be an (m + n + 1)-dimensional simply connected

unimodular Lie group which contains G. Suppose G is of type (/, r), and let {X/ (1 < i <

n), Yj (1 < j < m)} be the basis of the Lie algebra Q of G given in (1.2). From the

assumption on Aψ, we can take a vector t = (t\, t2,... ,tmY e Rm which satisfies

β-tφQ, (β±Ai)-t φθ (1 < / < / ) , Λ t 7^0 (1 < / < / ) ,

( L 5 ) (Λ - j8) t # Λ r t (1 < /, j<n), (3il/+2Λ-i) t # 0 (1 < k < r).

For such a t, put y := ΣJ=\ tjγj- τ h e n w e h a v e

[Y, Yj] = 0 ( 1 < j < m ) , [Y, Xι] = (At t)Xi ( 1 < / < / ) ,

(1.6) [

Let W be the Lie algebra of //, and take Z e H\G> Since // is unimodular, we have

tr(ady) = 0. Hence, from (1.6), the bracket [Y, Z] is given by -(β - t)Z + ^ = 1 atXi +

Σy=i feyy) for some flz , ̂  G /?. Put Γ := Z + ^ = 1 c X; + ^7=1 d y τ y' w h e r e dJ =
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-bj/(β t) (1 < j < m), a = -ai/((β + At) t) (1 < / < /), and

(cι+2k-Λ _
\ Q+2k ) ~

-l +β)'t - t λ

+ β)

Then, an easy calculation shows that [F, Γ] = -(β t)Γ.

Next we show [X, , Γ] = 0 (1 < i < /ι). From the Jacobi identity for the triple

(y, Xi, Γ), we have [y, [X;, Γ]] = ((Λ/ - β) t) [X;, Γ]. This shows that (At - β) t

would be an eigenvalue of ad Y if [X;, Γ] ^ 0. However, from (1.5) and (1.6), we see that

it is not the case, and hence [X;, T] = 0. Replacing X; by X/+2*-i ± Λ/^TX/+2A:? we also

obtain [X/+2*-i, T] = [X/+2*, Γ] = 0.

Similarly, the Jacobi identity for the triple (7, YJ9 T) gives the identity [F, [Fy, Γ]] =

-{β t)[7 y, Γ]. This shows that [Yj, T] = aT for some a e R. From (1.3) and tr(ad Yj) = 0,

we conclude that [Yj, T] = -(Σ!ϊ=\ λ / ) Γ

The Lie algebra H is spanned by the vector fields {Γ, X/ (1 <i <n), Yj (I < j < m)}

whose bracket products are now completely determined. Since H is isomorphic to the Lie

algebra of G, the simply connected Lie group H is isomorphic to G. D

2. Homogeneous actions. The object of this section is to prove Theorem 2.

2.1. Eigenvalues of commuting integer matrices. In this subsection, we investigate a

relation between the eigenvalues of commuting integer matrices.

Let Q (a) be an algebraic number field of degree u. Denote by O(a) C Q (a) the subring

of all algebraic integers in Q(a). As aZ-module, O(a) has aZ-basis consisting of u algebraic

integers w\, W2, . , wu. Such a basis is called an integral basis. Put B = {1, a,... , au~1}

and Bf = {ω\,... , ωu}. Then both B and I?' are (?-bases of the β-vector space Q(a). Let

{σ(z) I 1 < / < u} be the set of all conjugation mappings of β(α), where σ ( 1 ) is the identity

map (see, e.g., [4]).

For an element γ e Q{ot), define a linear transformation Tγ of the Q-vector space

Q(a) by Tγ(x) = γx for all x e β (α) . Denote by [Tγ]B» the matrix of Tγ with re-

spect to a basis B". When γ = a, the matrix [Ta]βrf has distinct eigenvalues σ^\a) =

α, σ ( 2 ) ( α ) , . . . , σ ( M )(α), and is diagonalizable. Since each y e Q(a) is expressed as a β-

polynomial Σ " ~ Q ^ ° ^ ^ 5 G ^ ' t h e m a t r i x [^y]^;/ — Σ"=o ^([^αlβ")* i s diagonalizable
and has eigenvalues σ ( 1 ) (y), σ ( 2 ) ( y ) , . . . , σ ( M )(y). If y is a unit in (9(α), then the matrix
[Tγ]β' lies in GL(u, Z).

Let /z(x) = Σ"=o as*s be an irreducible monic β-polynomial of degree u. Consider the

companion matrix U(h) oϊh(x):

U(h) :=

If a is a root of A(x), then ί/(A) coincides with the matrix [Ta]β.

/

\

0

Eu-\

-qo

-q\

-qu-\

\

/
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The following sublemma is well-known (see, e.g., [3, Proposition 6 in §5, Chapter VII]).

SUBLEMMA 2.1. Let C e GL(n + 1, Q) and χc(x) the eigenpolynomial of C. Let

χc(x) = h\(x)h2(x) - 'hd(x) be the decomposition of χc(x) into irreducible monic Q-

polynomials. If C is diagonalizable, then there exists a non-singular rational matrix P such

that

P~XCP = diag(ί/(/ii), I/(A2),... , U(hd)).

Now we prove the main lemma of this subsection.

LEMMA 2.2. Let {Aj | 1 < j < m} be commuting, diagonalizable real (n + \)-square

matrices such that exp Aj G SL(n + 1, Z)for any j . Let diag(λj, λJ

2,... , λ^+ 1) be a simulta-

neousely diagonalized form of Aj (1 < j < m), and let A be the matrix whose (/, j)-element

is λj. Then there are an integer vector t = (t\, t2, . . . , tmY G Zm and a positive integerp for

which the following hold.

Put A \= p ΣT=i O^y» and let h\(x)h2(x)... hd(x) be the Z-irreducible decomposi-
tion of the eigenpolynomial 6>/exp A.

(1) There exists a non-singular rational matrix P such that

P " 1 (exp A)P = diag(ί/(Ai), t/(A 2),... , £/(*</)),

where Bj(k) G GL(uk, Q) anduk = deghk(x) (1 < k < d).

(2) For each] (1 < j < m) and k (1 < k < d), there exist bjks € Q (0 < s < uk - 1)

such that Bj(k) = Σ"ίLo ^jksU(hk)s. Hence, denoting by ak a root ofhk(x) and by σ^ =

id, σ^ , . . . , cr^ the conjugation mappings of Q(ak), the matrices U(hk) and Bj(k) are

simultaneously diagonalized to

diagtσ/1 W , σf W , . . . , σ[Uk\ak)) and diag(jβ/(*), β{{k\ ... , βίk(k)),

respectively, where β{(k) = Σ"^ bjks(akY and β{(k) = σjf\β{(k)). Moreover each

βΐ(k)isaunitinθ(a).

(3) Putl(k) := Σt=\ ut (^ — ^ — ̂ ) ^ ^ ^ ίA^rβ ejcwίΛ1 a permutation τ G <Sn+i 5wc/z

ίΛαί βj(k) = exp(pλJ

τ{i+l(k)))for any ί,j and k.

PROOF. Denote by A[ the /-th row vector of A. For each /, /', consider the sub-

group Kn> = [t G Zm I (Λi - Ai>) - t G 2 π v c : T β } of Z m . Take an integer vector t =

(t\, t2,... JmY e (Urankκ,,,<m κn'Y a n d a positive integer p such that p(Λi - Av) e

2π<s/^ΪZm whenever A[-Av e 27Γ^/^Tβm. Put A := p ΣJ=] tjAj. Then the set of eigen-

values of A (resp. pAj) is given by {pAi 11 1 < / < n -f 1} (resp. {/?λ/ | 1 < / < n + 1}).

It is easy to see that, for each /, /' (1 < / , / ' < π + 1), the following three conditions are

equivalent:

(A) rank A",-// = m , (B) exp(/M; t) = exp(/M// t ) ,

(C) exp(/?λ/) = exp(pλ/,) (1 < 7 < m).
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From the implication (B) => (Q, it follows that each eigenvector of exp A is also an eigenvec-

tor of exp pAj for each j .

On the other hand, from Sublemma 2.1, there is a non-singular rational matrix P such

that p-\expA)P = diag(ί/(Ai), C/(Λ2), .. , U(hd)). For each k (1 < k < d), take a

matrix V(k) diagonalizing U(hk), and put V := diag(V(l), V(2),... , V(d)). Then the

matrix PV diagonalizes expΛ, and hence exp/My for each j . This shows that there exist

Bj(k) e GL{uk,Q) such that P~\tx^pAj)P = diag(#/(l), Bj(2),... ,£,-(<*)). Hence

we have proved (1).

Let ak be a root of /z^U) and take the basis B = {1, ak, (ak)
2,... , (α^)"*"1} of the Q-

vector space Q(ak). Then we can define a linear map 7)(A:) of Q(ak) by |Ty (&)]£ := Bj(k).

Since U(hk) and By (A:) are commutative and U(hjc) = [Tak]β, the linear maps Γαjt and 7y (Λ:)

are also commutative. Therefore we have, for each x = X^ig 1 β ^ ( α ^ ) 5 G

5 = 0 S=0 ^ 5=0

This shows that Tj(k) is the linear map given by Tj(k)(x) = Tj(k)(l)x. Put β{(k) :=

Tj(k)(l). Then there exist bjks e Q (0 < s < uk - 1) such that β{(k) = ΣTJ*

andhencethematrix[Γ7 (/:)]β = ^ ( ^ i s o f t h e f o r m ^ i o 1 bJksYΓakfB = Σ " l o 1

Since exp(±/?Ay ) e ^LCπ + 1, Z), each number β/ (/:) is a unit in 0(α/O This proves (2).

The assertion (3) follows from the definition of the numbers [βj (k)}. D

2.2. Cocompact discrete subgroups of /?+ K Rn+ι. In this subsection we give a nec-

essary and sufficient condition for a unimodular Lie group H = /?+ x^ /?" + 1 € D(n + 1, m)
to have a cocompact discrete subgroup.

LEMMA 2.3. L^ί// = / ^ κ ( p / ? " + 1 be a group in D(n + \,m). Let Γ be a cocompact

discrete subgroup ofH. Then the following hold.

(1) The intersection V~b := Γ Π /?" + 1 w α cocompact discrete subgroup of Rn+ι =

(2) Γ/ẑ  quotient Γ\ := Γ/Γo C /?+ is a cocompact discrete subgroup of R™ =

(3) W/ί/z respect to any generating sets {expey | 1 < j < m] of Γ\ and {f/ | 1 < / <

n + 1} of Γ$, the homomorphism φ : /£+ -^ Autί/?72"^1) = GL(« + 1,1?) w expressed as

follows: Put dφ(ej) =: Aj e M(n + 1,R) (1 < j < m). Then the matrices {Aj} are

commutative, exp Aj e SL(n + 1, Z) α r c d ^ e x p ^ J ^ j ί/e/)) = exp(^J = 1 tjAj).

PROOF. Obviously, Γo is discrete in Rn+X. From Lemma 1.1(2), the normal subgroup

Rn+X of // coincides with NH. By a theorem of Mostow ([13, Theorem 3.4]), NH Π Γ is

cocompact in TV//. Hence (1) is proved.

The extension 1 -• /? n + 1 Λ ^ 4 ΛJ -> 1 induces continuous maps Λ Λ + I /^o -^

H/Γ -> R+/Γ\. The quotient R+/Γ\ is the continuous image of the compact space ///Γ
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by ft and hence is compact. Suppose Γ\ is not discrete in R*£. Then there is a sequence

{exptt \k = 1, 2,...} in Γi such that lim^oo expt& = exptoo G Γi C /? + and expt& φ

exp t ^ for all k. From (1) there is a compact fundamental domain K c Rn+ι for the subgroup

Γb C Rn+ι. So, for each k, we can take a lift (expt*, x*) e Γ of expt^ e Γi such that

xk e K. Because the sequence {(exptk,xk)} c Γ is both discrete and lies in a compact

subset of J? + x i ? n + 1 , it is a finite set. This contradicts the choice of {expt*}. We have thus

proved (2).

We now prove the third assertion. From (1) and (2), the group Γo (resp. Γ\) is isomor-

phic to Zn+X (resp. exρ(Zm)). For any element expt e Γ\ and its lift (expt, x) e Γ, we

have (expt, 0)Γ0(expt, 0)" 1 = (expt, x)Γ0(expt, x)" 1 = Γo. It follows that φ(expt) €
Aut(Λπ + I,Γ 0) := {/ e Aut(Rn+ι) \ f(Γ0) = Γo}. The group Aut(Λrt+1, Γo) is identi-

fied with GL(n + 1, Z), whenever we choose a generating set of ΓΌ. Obviously, φ{Γ\) c

l ,Z) . D

Now we are in a position to prove the main proposition of this subsection.

PROPOSITION 2.4. Let H =Rr^κφR
n+x be a unimodular Lie group in D(n + 1, m).

Then H contains a cocompact discrete subgroup if and only if the structure matrix Aφ ofH is

equivalent to a matrix A satisfying the following conditions.

(1) There exist Λ(k) e M(uk, m, C) (1 < k < d) such that λι = (Λ(l)', Λ(2)r, . . . ,

Aid)')'.

(2) For each k (1 < k < d), there exists an algebraic integer α^ of degree uk such

thatεxpλ{(k) = σ^\txpλ{(k)) e Q(σ^(ak)) (1 < j < m, 1 < i < uk). Here {σ^i] \ 1 <

i < Uk, o^ = id} w ί/ίβ set of all conjugation mappings ofQ(ak), and λjik) denotes the

(/, j)-element of A(k).

(3) Each number exp(±λ^ (k)) is an algebraic integer.

PROOF. Suppose that H contains a cocompact discrete subgroup. From (3) in Lemma

2.3, we can choose a basis {e7 | 1 < j < m} of Rm such that expA ; e SL(n + 1,Z) for

Aj := dψitj). We apply Lemma 2.2 to these matrices {Aj}. Then the structure matrix

Aφ = A = (λ/) of H is equivalent to a matrix A whose (/, ^-element is Mw/)> w n ^ r e

yi G ^(π + 1, m), p e Z and τ G ίS^+i are as in the lemma. The matrix A satisfies the

conditions (l)-(3) from Lemma 2.2.

Next we prove the sufficiency. From (2), for each j (1 < j < m), we can define a

linear automorphism Tj(k) of Q{ctk) by Tj(k)(x) = (expA{(/:))x. Let Bf(k) be an integral

basis of O(ak). Then, there exists V(k) e GL(uk, C) such that V(k)-ι[Tj(k)]Br{k)V(k) =

diag(expλ{(fc),expλ^(fc),... ,expλJ

Uk(k)). From (3), [Tj{k)]B>{k) e GL(uk,Z). Because

H is unimodular, γfk=χ Y^k

=χ λ/(Jk) = 0. It follows that the matrix Xj := diag([Γ/(l)]β/(1),

[Γ/(2)]β'(2),... , [Tj(d)]B'(d)) is in SL(n + 1 , Z). It is easy to see that there exist commuting,

diagonalizable matrices Cj G M(n + 1, R) such that (a) exp C} = Xj and (b) the eigenvalues

of Cj are {λj(k) | 1 < / < uk, 1 < k < d}.
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Now define a homomorphism φf : R™ ->• SL(n + 1, J?) by #/(exp(ii,... , tmY) =
e x P ( Σ 7 = i f/^Ά a n c * P u t H' : = ̂  + *V J? Λ + 1 . From (a), //' contains a cocompact discrete

subgroup Γ" := exp(Zm) κφ> Z " + 1 . From (b), the structure matrix of H' is equivalent to A,

and hence to Aφ. Thus H' is isomorphic to // from Proposition 1.3. Consequently, H also

has a cocompact discrete subgroup. •

It should be remarked that a general theorem of Mostow [11] gives a necessary and

sufficient condition for a solvable Lie group to have a cocompact discrete subgroup. On the

other hand, our conditions in Proposition 2.4 are for Lie groups of the form H = R™\xφR
n~*~ι

and are more concrete.

2.3. Proof of Theorem 2. From Proposition 2.4, we can now prove Theorem 2 in

Introduction.

PROOF OF THEOREM 2. Let H be an (m + n + 1)-dimensional simply connected

unimodular Lie group which contains G. From Proposition 1.5, H is isomorphic to G =

/?+ x^ fl71*1 e D(n + 1, m) whose structure matrix Aψ is given by (A^, -ft)*. Thus the

theorem follows from Proposition 2.4. D

In the case where m = «,we obtain a corollary of Theorem 2.

COROLLARY 2.5. Let G =R+\Xψ Rn (n >2)bea group in D(n, n). Then G has a

codimension one homogeneous action.

Note that, when n > 2, the asumptions that (1) A[ φ 0 (1 < i < ή) and (2) β £

{±Λ/, A[ — Aj• \ 1 < /, j < n} in Theorem 2 follow from the local injectivity of ψ. When

n = 1, the condition (2) does not hold. But, in this case, the Lie group G = R+ Kψ Rι is

isomorphic to AfF1"(R) and the conclusion of the corollary is true (see, e.g., [5]).

To prove Corollary 2.5, we first show a lemma.

LEMMA 2.6. For each integer s > 2 and a pair of non-negative integers (ί, u) such

that t -\-2u = s, there exists an irreducible monic Z-polynomial of degree s which has t real

roots and 2u non-real roots.

PROOF. For the given integer s, let fs(x) = (-l)s~ι(x - 4)(x - 42) (JC - 45),

and {fs(oίi)} (o?i < α?2 < < as-\) be the set of all local maxima and minima of fs(x).

Obviously one has (1) 41' < α, < 4 / + 1 (1 < / < s - 1) and (2) fs(a2j-\) > 0 > fs(a2j)

(j = 1,2,...). Put a[ := (4' + 4 / + 1)/2 (1 < i < s + 1). Then, by some calculations, one

can show (3) /,(αi) > fs(ax) > 36 and (4) | / 5 ( α / + i ) | > |/,(α/)| > 2|/ s(α/_i)| (2 < / < s).

Let UQ be the largest integer such that 2UQ < s. From (2), (3) and (4), we have (5):

0 < Mai) - 2 < /5(αi) < fs(a3) - 2 < fs(a3) <

< /j(«2iio-l) ~ 2 < Ma2uo-\) < l/j(«2

For each integer w (0 < u < UQ), put /5,M(JC) := /5(JC) — (|/j(«2«+i)l — 2). Then the monic

Z-polynomial fs,uM is irreducible from Eisenstein's Irreducibility Criterion. Furthermore,

from (5), the polynomial fs,u(x) has exactly 2u non-real roots. D
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element g € G acts on a vector field X* as follows: g*X* = g*(Φ+(X)) = Φ+{(Lg)*X) =

Let {X*,... , X*, y*, . . . , Y^} be the vector fields on M which are induced from the

basis {Xi,... , Xn, Y\,... , Fm} of Q given in Section 1.4. Recall the modular function A :

G -> /?+ is given by Z\((expt, x)) = exp(]Γ"=1 Λ, t) = exp(β t). Here Λ[ is the i-th row

vector of the structure matrix Aψ and β = Σ ί = i A'

PROPOSITION 3.1. Let G = R™ \*ψ Rn (0 < m < n) be a group in D(n,m),andlet

M be an(m-\-n + \)-dimensional connected closed orientable manifold. Let Φ : GxM -+ M

be a locally free action which preserves a volume form Ω of class C°. Suppose that the

structure matrix AψofG satisfies

β i {ai^Ai.bj^Aj -mAk\0<ahbj < 1,1 <ij,k<n}.

Then there exists uniquely a vector field T of class C° on M such that

(1) fl(X*,... ,X*,yf,... , y* ,Γ) = l ^ J (2) ^*Γ = Z\(^)-1Γ/orαny ^ € G.

3.2. Homothety equivariance. In this subsection, we show the following lemma.

LEMMA 3.2. Let G, M, Φ and Ω be the same as in Proposition 3.1. Then there exists

uniquely a vector field T of class C° satisfying the following conditions:

(1) f 1

(2) (expt,0)*T = A((expt,0)Γι T = e~βtT for any t € Rm.

We prove the lemma through four steps.
Step 1. We assume G is of type (/, r), and use a canonical coordinate of G so that

dψ{t) is described as in (1.1).

From a theorem of Ghys ([5, Theorem A]), the above volume form Ω is smooth. Take a

smooth vector field Z on M satisfying β ( X * , . . . , XJ, y*,. . . , y*, Z) = 1. Then for each

g = (expt, x) € G we have, from (1.4),

Thus we can write #*Z = ί T ^ Z (mod(X*,... , X*, y*, . . . , y^)). Hence, for each t e Rm,

there are families of smooth functions {φ![ \1 < k < m] and [ψ^ | 1 < /: < n) on Λf, indexed

by t, such that

(3.1) (expt, 0)*Z =
k=\ k=\

These functions satisfy the following transition formulas.
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SUBLEMMA 3 . 3 .

(3.2) φk

v+t = e-βtφk

t, + φk

t o Φ(exp(-t'),0) (1 < k < m),

(3.3) ψ[l+ι = e-^ψ , + eΛit'f[ o Φ(eχp(-t'),0) d < i < 0 ,

(3.4) ,

\ ψ^J o Φ(eχp(-tO,O)

PROOF. From (3.1) and (1.4), the right hand side of

(exp(t' 4-1), 0)*Z = (expt7, 0)* o (expt, 0)*Z

is calculated as

k=\ k=\
m I

° φ(eχP(-t0,0)^(- sinft x + 2 ^ ! + cosbj'Xf+2j)f+2j)
7 = 1

where we put Λι+2j-\ t ; = aj + bjyf^Λ (1 < j < r, aj, bj G /?). The lemma follows

immediately from this identity. D

Let C°(M) denote the space of all continuous functions on M with the distance function

d induced from the supremum norm || ||. Any vector field T of class C° satisfying (1) in

Lemma 3.2 is described as

m n

(3.5) T = Z + Σ FkY£ + Σ G****' F^ °k € C ° ( M )

k=\ k=\

We show that, by choosing suitable continuous functions Fk and Gk
9 the vector field T satis-

fies the equivariance condition (2) in Lemma 3.2.
Step 2. In this step we choose the functions Fk (1 < k < m). From (3.5), (3.1) and

(1.4), we have

m m

(expt, 0),Γ = e~βtZ + Σ<l>ϊγk + Σ F * ° φ(^-t).«)γk (mod(Xf, , X*n)).
k=\ k=\
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Hence the vector field T satisfies the congruence (expt, 0)*Γ = e~βtT(mod(X*,... , X*))

if and only if each of the function Fk (1 < k < m) satisfies the equality

(3.6) Fk = e*\φ\ + Fk o Φ(exp(-t),0)) •

For each k (1 < k < m) and each t e Rm, consider a continuous operator Uk from

C° (M) to itself defined by

Uk(F) := eβ \φk + F o Φ(exP(-t),0)).

Obviously, we have d(Uf(F), £/*(F')) = eβid(F, Fr). So the operator £/£ is Lipshitz con-

tracting and has a unique fixed point if β to < 0. From the assumption on Λψ, the vector

β is non-zero, and hence such a vector to can be chosen. Furthermore, from the identity

0*+tf = 0r + t a n d ( 3 2 ) ' t h e f a m i l y of operators {£/* 11 e Rm} is abelian. Thus if Fk is a fixed

point of Uk

Q, then, for an arbitrary t e Rm, the function Uk(F^) is also a fixed point of ί/̂ .

Consequently, from the uniqueness of the fixed point of UJ^, there exists uniquely a continu-

ous function FQ on M which is a common fixed point of the operators Uk for any t e Rm,

and satisfies (3.6). Using this function F^ as Fk in (3.5), we obtain

( m \

ik=l ^

Step 3. Next we choose the functions Gz (1 < / < /) in (3.5). From (3.7), (3.1) and

(1.4) we have

(expt,
/ /=1

For each i (1 < / < /) and each t e Rm, define an operator V( on C°(M) by

V/(G) := ^ ' V ^ + ^ ' - ' G o Φ(exp(-t),<»)

Then we have d(V{(G), V/ίG')) = ^ ( / 3 + Λ ) V ( G , G') From the assumption on Λψ, we can

choose a vector to with (β + At•) to < 0. The commutativity of the operators {V{} follows

from (3.3). Thus, as in Step 2, there exists uniquely a function Gι which is fixed by Vt

z for

any t e Rm. Using such a Gι in the expression (3.5) of 7\ we obtain

(3.8) (expt, 0)*Γ EE e-P Ί Z + ^ FkY^ + ^ G'Xf (mod(X;+ 1,... ,
^ k=\ ι = l /

Step 4. Lastly, we consider the functions Gι+2j~ι, G / + 2 y (1 < j < r) in (3.5). In this

case we define an operator W( on the product space C°(M) x C°(M) as follows:

'GoΦ ( e X p(_t) ,oΛ |

^Gf o Φ(eχp(-t),0)/ I



LOCALLY FREE ACTIONS OF SOLVABLE LIE GROUPS 257

Again we have

From the assumption on Λψ, we can choose a vector to such that (β + ϊflΛι+2j-\) to < 0.

The commutativity of the operators {W }̂ follows from (3.4). Thus, as in Steps 2 and 3, using

the unique pair of functions (Gι+2j~ι, Gι+2jY fixed by W( for all t € / ? m , w e obtain

(expt, 0)*Γ - (expt, 0)Jz + ] £ FkY£ + £ Gkx{) = e'β'xT .
^ k=\ k=\ '

Through Steps 1 to 4, we have found a continuous vector field T which satisfies (1) and

(2) in Lemma 3.2. By the construction, the vector field T is unique. This completes the proof

of Lemma 3.2.

3.3. G-equivariance. Next we show that the vector field T in Lemma 3.2 is equivari-

ant by any g e G —R^KψR11. Namely, we prove the following

LEMMA 3.4. Let G, M,Φ and Ω be the same as in Proposition 3.1. Let The a vector

field satisfying (1) and (2) in Lemma 3.2. Then g*T = e~P'lT for any g = (expt, x) e G.

For g = (expt, x) e G, there exists a family of continuous functions μk

g and vk

g on M

indexed by g e G such that

(3.9) (expt, x)*Γ = e-^T + £ μk

gY* + £ vX

We prove the lemma by showing that the functions μk

g and vk are identically zero. By the

assumption we have

( 3 1 0 ) f
In the following, we omit the detail of calculations.

3.3.1. Nullity of μk

g. From (3.9) and (1.4), for g = (expt, x) and h = (expt', x')

G, the following congruence is derived.

(hg)*T = *-/Ht+f)Γ + £ ( * - / " μ J + μk

g o ΦΛ-i)^* (mod(X*,

Thus the following transition formula holds.

(3.11) k Vχ

Let f; denote the i-th unit vector in Rn. Then from (3.10) and (3.11), the following

equalities are derived.

k = M(3.12) βk

{UeΛrtχ(i) = M(eχpt,0)(l,^ )(exp(-t),0) = ^ V ( U f / . ) o Φ(exP(-t),0) d < I < 0 ,
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(3.13)

(3.14) μ ^ x + x 0 - /4i,χ) + M(i,χ0 o Φ(i,-

(3.15) M(eχpt,x) = ^(l,x)(expt,0) = e ^(l,x)

lations on the supremum norms of μgHence we obtain the following relations on the supremum norms of μk

g.

(3.16) K U Λ M ) 1 1 = ^ΆhxvW (ι<'<1),
k

"μ(\ , e

s u '+2j- i •' exp(PΛ/+2,_, .t)/)U,f/+2, _
(3-17)

(3 .18) l l /*( i . , + ^) l l<l lM(. .» ) l l + ^ ( i . « ' ) l l -
Let x = (JCI , *2, , XnY € /?". Then from (3.18), we have

/ r

II/4X)II < Σ 11/4^)11 + J ] ll^i.x/+2,_lί+2,_I+χl+2y-ft+2/)ll
i=\ j=\

From this inequality and (3.15), to prove μ L φ t x ) = 0. it is sufficient to show μk,{ x . f ) =

/ 4 u / + 2 , - i f / + 2 , - . + W / + 2 7 ) =0(l<i <l9l<j <r). For notational convenience, we

put ( x ) ; : = jc/+2y—lf/H-2y—l + *ι+2jfι+2j For a fixed k (1 < k < m), define non-decreasing

functions τf and σk. on /?+ U {0} by

τf{d) : = sup | |μ* f J | (1 < i < /) and σkΛd) : = sup ||/x^ ( x ) } | | (1 < 7 < r).

k/l<^ ll(χ)yll<^ ;

We first show τk = 0 (1 < i < I), and hence μk

{1 Xjfi) = 0.

SUBLEMMA 3.5. (1) For each 1 (1 < ι < / ) andteRm, we have

(3.19) τk(eΛitr) = eβ'ιτk(r) for any r > 0.

(2) For eαc/z 1 (1 < 1 < /) and t e Rm such that A-xΛφ 0, we have

(3.20) τ/(d) = dWτfil) for any d>0.

(3) For each i (1 < / < /), we /zαve

(3.21) τk(d) < (d+\)τk(\) for any d > 0.

PROOF. The first assertion follows directly from (3.16). The second assertion follows

from (3.19) by putting r = 1 and d = eΛit.

It follows from (3.18) that τk(d + d') < τk(d) + τ\{d'). For d > 0, choose a positive

integer a such that d < a < d + 1. Then we have τf (d) < τk(a) < aτk{\) < (d + l)τ^(l).

We have thus proved the third assertion. D

If A[ = 0, then from (1) in Sublemma 3.5 we have τk(r) = e^tfir). Hence, from the

assumption β φ 0, we obtain τk(r) = 0 for any r > 0. When A t φ 0, we first suppose
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β φ a[Aι (di > 0). Then we can choose a vector t € Rm such that Λ, t < 0 < β t. For

such a t, we have

τk(eΛίtd)<τk(d)<e^τk(d).

Thus, from (3.19) we obtain τk(d) = e^τk{d) and hence τk(d) = 0.

Next suppose β = a[A[ (α, > 0). Then, from the assumption on Λψ, a t is larger than 1.

So we can choose a vector t € /?m such that 0 < Λ; t < β t. Put & := (β t)/(Λ; t) (> 1).

Then from (3.20) and (3.21) we have

dbτk{\) = τϊ(d) <(d+ \)τk (1) for any d > 0.

So we obtain τ*(l) = 0, and hence τk(d) = 0. Thus we have proved τk(d) = 0 (1 < k <

m, 1 < i < I).
Similarly, one can prove σ^{d) = 0 ( 1 < k < m , l < j < r ) , using (3.17) instead

of (3.16). From the nullity of τ* and σ | , we have the required result μk

g = 0 for any k

(l<k<m).

3.3.2. Nullity of vk

g. The nullity of vk

g (1 < fc < n) is proved in a fashon similar to

the case of μk

g. So we only remark the formulas corresponding to (3.11), (3.12) and (3.13),

but omit the detail of the proof. All the formulas are given under the assumption that μk

g = 0

(1 < k < m). As before, we put g = (expt, x), h = (expf/, x'). We continue to use the

notation (x)j = x/+2;-if/+2y-i +^/+2yf/+2y.

SUBLEMMA 3.6. (1) Caseof\<k<l.

),0) (1 < j < r).

(2) Case ofl + 1 < k < I + 2r. L^ί ifc' : = [ ( * - / + l)/2] = ίΛ^ largest integer not

greater than (ifc — / + l)/2.

+ ' - i t = a{t)+b{t)*J=\ andΛι+2j-X t = dtHdWV^-ΐ (a(t), b(t), c(t), d(t) e

This completes the proof of Lemma 3.4 and Proposition 3.1.
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4. Proof of Theorem 1. In this section we first prove Proposition 4.1 which states

that the vector field T in Proposition 3.1 is smooth, and then complete the proof of Theorem

1. Let {X\,... ,Xn,Y\,... , Ym} be the basis of the Lie algebra of G given in Section 1.4.

PROPOSITION 4.1. LetG = R+\XψRn (0 < m < n) be a group in D(n, m) and let M

be an(m+n +1)-dimensional connected closed orientable manifold. Let Φ : G x M —> M be

a locally free action which preserves a volume form Ω of class C°. Suppose that the structure

matrix AψofG satisfies

β i {aiMΛi I - 1 < aι < 0, 1 < / < n}.

Suppose furthermore that there exists a C°-vector field T on M such that Ω(X*,... , X*,

y * , . . . , y^, Γ) = 1 and g*T = Δ(g)~ιT for any g e G. Then the vector field T is smooth.

For the proof we use the invariant manifold theory of hyperbolic diffeomorphisms ([9]).

Let S := {t e Rm | - β t > 0, -β t φ ίίiΛi t (1 < i < n)}. Choose t e 5, and define

M(t) := {/ e {1,... , n) \ - β t < ffiΛ; t}. Put F := Φ(expt,θ) Then we have an F-invariant

continuous splitting T(M) = E\ 0 E2, where E\ (resp. £2) is generated by the vector fields

{X? (1 e «(t)), T] (resp. {X* (i £ w(t)), YJ (1 < j < m)}). Let p > 1 be a real number

such that max{|^Λ / t | | / φ u(t)} < p < e~β'1. The splitting E\ 0 £2 satisfies the following

property.

LEMMA 4.2. There exists a smooth Riemannian metric \ \ of M such that 0 φ v e

Eι =» |F*(υ)| > p\v\,andθφ v e E2 => |F*(υ)| < ρ\v\.

PROOF. For each 8 > 0 choose a smooth vector field T§ on M such that Ω (X*,... , X*,

y*, . . . , Y£, Ts) = 1 and lim^^o Tδ = T in the C°-topology. Let | | 0 (resp. | \δ) be the

C°- (resp. C°°-) Riemannian metric of M such that the vectors {(X*)^, (YJ)P, Tp} (resp.

{(X*)p, (Ypp, (Ts)p}) are orthonormal at any point p e M. Then, for each 8 > 0, there

exists ε(<5) > 0 such that (1) (1 - ε(8))\v\0 < \υ\δ < (1 + ε(8))\v\0 for all υ e T(M) and (2)

Let pi be a positive number such that p < p\ < e~P'i. From the formula (1.4) and

F*Γ = e~βtT, it is easy to see that 0 φ υ e E\ =» |F*(υ)lo > Pi | υ | 0 . Then we have

\F*(υ)\6 > (1 - ε(δ))|F*(υ)|0 > (1 - s{8))px |v|0 > j

1

So, if we choose 8\ > 0 small enough so that ((1 — s(8))p\)/(l + ε(8)) > p for any 8 < 8\,

then we have |F*(υ)|$ > p\υ\& (8 < 8\). Similarly we can choose 82 < 8\ so that the metric

I \δ also satisfies the second condition if 8 < 82. •

By Lemma 4.2, the diffeomorphism F is p-pseudo hyperbolic ([9], §5). From Theorem

(5.5) in [9], the continuous plane field E\ is uniquely integrable and is tangent to a C°-

foliation, denoted by >V(t), with C°°-leaves.

LEMMA 4.3. The foliation W(t) is preserved by the action Φ and is smooth.

PROOF. For each g e G, we have g*E\ = E\. So the action Φ preserves the foliation
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Let G2 be the subgroup of G defined, with respect to the canonical coordinate of G, by

G2 = {(exps, (*i , . . . , xnY) e G I s € Rm, Xi = 0 for / e 11 (t)}.

Consider the restricted action Φ\Gl : G2 x M -+ M. Then the action Φ\Gl is locally free

and preserves the foliation W(t). Furthermore the orbit foliation Tφ\Gi is of complementary

dimension and is transverse to >V(t). In other words, the foliation W(t) is a transversely G2

foliation ([7, p. 152]).

We will show the smoothness of W(t) from this fact. Let n\ = dim E\ and let D be the

unit disc in Rnι. Take an arbitrary point p e M. Since each leaf of W(t) is of class C 0 0 ,

there is a smooth embedding fo : D -+ M such that /o(O) = p and /o(£>) is contained in

a leaf of W(t). Define a C°°-map f : D x G2 ^ M by f(x, g) = Φg(fo(x)). Then there

exists in G2 a neighbourhood V of the identity element such that f\oχv : D xV -+ M is an

into diffeomorphism. For each g e G2, the image f(D x {g}) is contained in a leaf of W(t)

because Φ\G2 preserves W(t). This shows that the foliation W(t) has a smooth distinguished

chart /\DX V at p. Since p is arbitrary, the foliation W(t) is smooth on M. D

PROOF OF PROPOSITION 4.1. From the assumption on the structure matrix, for each

i (1 < i < Λ)> there exists t, € 5 such that - β t, > J)til, t/. Then we have pf= 1 w(t, ) = 0,

and T = Π?=i W(t, ) is a one dimensional foliation tangent to T. Note that the foliation T

is smooth from Lemma 4.3. Since Γ is tangent to T and satisfies Ω(X*,... , X*, 7* , . . . ,

y^, T) = 1 for the smooth volume form Ω (see Step 1 in Section 3.2), the vector field T is

smooth. D

We are now in a position to prove Theorem 1 in Introduction. Note that the assumption

on the structure matrix in Proposition 4.1 follows from that in Proposition 3.1.

PROOF OF THEOREM 1. By Proposition 3.1, there exists a continuous vector field T

on M such that Ω{X*V . . . , X*, Ff,... , Y*, T) = 1 and g*T = Δ(gΓιT for any g e G.

From Proposition 4.1, the vector field T is smooth.

Let [φt 11 e R] be the flow of M generated by the C°° vector field T. Let g e G.

Because g*T = Δ(g)~ιT,we have

(4.1) ΦgθφtoΦg-ι =φΔ{g)-ιt.

Let G = G ix 4-i R be the semidirect product of G and R determined by the homomor-

phism Δ~ι : G ->• R+ C GL(1, /?). From (4.1) we can define a smooth action Φ of G on

M by Φ(#, t) = φt o Φ^. Since the flow 0 f is transverse to the foliation Tφ and Φ is locally

free, the action Φ is also locally free. A locally free action Φ of an (m + n + 1)-dimensional

Lie group G on an (m + n 4-1)-dimensional connected manifold has a single orbit, and hence

Φ is homogeneous. It follows that the action Φ, which is the restriction of Φ to the subgroup

G C G, is homogeneous. Since G is solvable, M is a solvmanifold. •

REMARK. The group G in the proof of Theorem 1 is naturally isomorphic to the Lie
group G constructed in the proof of Proposition 1.5.

From Theorems 1 and 2, we have the following corollary.
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COROLLARY 4.4. Let G = R™ xψ Rn be a group in D(n,m). Suppose that the

structure matrix AψofG satisfies

Ai φθ (1 <i <n) and β i {a^A^bj^Aj -^RAk\0<ahbj < 1, 1 <i,j,k < n].

If the matrix (ΛL, —β*)* is not equivalent to a matrix A satisfying the conditions (1) and

(2) in Theorem 2, then G has no codimension one locally free volume preserving action on a

closed manifold.

When m = n > 2, the structure matrix of G e D(n,n) always satisfies the assumption

on Aψ in Theorem 1. Thus, from Proposition 1.5, Corollary 2.5 and Theorem 1, we also

obtain the following concluding corollary.

COROLLARY 4.5. Let G =R\\Kψ Rn (n >2)bea group in D(n, ή). Then we have

the following.

(1) There exists uniquely a simply connected unimodular Lie group which contains G

as a subgroup.

(2) G has a codimension one homogeneous action.

(3) IfG acts on a (2n + 1)-dimensional connected closed orientable manifold locally

freely and preserves a volume form of class C°, then the action is C°°-conjugate to a homo-

geneous action.
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