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Abstract. Let (M, go) be a complete, noncompact Riemannian manifold with a pole,
and let g = fgo be a conformally related metric. We obtain conditions on the curvature of go

and on / under which the Laplacian on p-forms on (M, g) has no eigenvalues.

Let (Λf, go) be a complete, noncompact Riemannian manifold with a pole o, and denote

by r(x) the corresponding distance function from o. We assume throughout that the radial

sectional curvature satisfies the pinching condition

(0.1) 0<Kr<
 B

1 +r(x)z

for some constant 0 < B < 1/2. In the sequel we will denote by B' the constant related to B

by the formula

(0.2)

Let also g = fg0 be a conformally related metric, where / is a smooth positive function on

Λf.

We denote by ΛP(M) the space of /?-forms on M. Given ω and θ in ΛP(M) we define a

pointwise inner product

£(ω, 0) = —
^ ' /i,...,/^ = l

and denote by | | the induced norm. The symbol L2ΛP(M) denotes the space of square

integrable p-forms, i.e., forms such that \ω\2 is integrable on M. If X is a vector field on Λf,

and ω is a p-form (p > 1) we define the interior product X J ω e Λp~ι(M) by

For notational convenience, we extend the definition of inner product by setting X J ω = 0 if

ω is a 0-form.

Finally, we denote by Δp = Δ^ the Laplacian on /?-forms of (Λf, g), so that Δ p =

dd* + d*<i, where <i and d* are the exterior differential and codifferential. Note that when

p = 0, A°g = — div grad is the positive definite Laplacian Δ. It is well-known that the operator
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Ap is self-adjoint on L2ΛP(M), indeed, essentially self-adjoint on the space C™ΛP(M) of

compactly supported smooth /7-forms [St]. We denote the corresponding operator domain

with the symbol V(AP).

The purpose of this note is to obtain conditions on the function / and on the curvatures

Kr under which Ap

g has no point spectrum, i.e., there are no nonzero square integrable p-

forms in V(AP) satisfying the eigenvalue equation Apu = λu. Observe that, by elliptic

regularity, solutions of the eigenvalue equation are necessarily smooth.

The negative curvature case was considered by Donnelly [Dn], and Donnelly and Xavier

[DnX]. Our results improve and complement those obtained by Escobar and Freire in [EF1]

and [EF2].

The case of harmonic p-forms (λ = 0) goes back to Dodziuk [Dl], [D2], [D3], and

Sealey [Se], In this case, a direct application of [RS, Theorem 2.3] shows that if 1 < p < m/2,

2 dr

and the left hand side is not identically zero, then there are no nonzero harmonic p-forms in

L2(ΛpM).
It is readily verified that if / satisfies the above relation with p = 0, then the manifold

(Λf, g) has infinite volume, and therefore it does not carry any nonzero L2 harmonic functions

(see [Y]). Thus, the above statement holds for every p < m/2. Finally, the case where

p > m/2 may be dealt with by Hodge duality.

It may be worth noting that, if / = 1, so that there is no conformal deformation of the

metric, the condition becomes (m — p)Bf — p > 0, that is, B' > p/(m — p), which improves

somewhat the condition in [EF2] (we note that our B' corresponds to their cn).

Next, we consider the case of /7-forms satisfying the eigenfunction equation with λ > 0.

We consider separately the cases p = 0 or m, and 1 < p < m — 1. Our results are the

following.

THEOREM A. Assume that (0.1) holds with a constant B such that Bf > (m - 2)/m

and that

, 3 / 1 *
iΓ < -[mBf -(m-2)]r-1 .
or m — 1

Ifu is in V(A) and satisfies Au = λu with λ > 0, then u = 0.

THEOREM B. Assume that (0.1) holds with a constant B such that Bf > (m - 1)/

(m + 1) and that

dr

m + \ Γ , m — 11 i
< Bf r " 1 if 2 < 2p < m ,

m - 2 / ? + l | _ m + l j J - v

1 a / > _
J dr ~dr ~ 2

Ifu is in V(Ap) (1 < p < m/2) and satisfies Apu = λu with λ > 0, then u = 0.
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As in the case of harmonic /?-forms, the conclusion for p > m/2 follows from Theorems

A and B by Hodge duality. We also remark that, when / = 1, the conditions in Theorems

A and B become B' > (m - 2)/ra and Bf > (m - l)/(m + 1), respectively. The former

coincides with that obtained in [EF1], while the latter improves that in [EF2]. We stress,

however, that the main new feature of our results is that in all cases we allow a controlled

conformal deformation of the metric.

1. Proof of the theorems. We begin by noting that (0.1) and the Hessian comparison

theorem imply that the estimate

Φ' 1
(1.1) ^-(go-dr^dr) <Hessgor < -(go-dr®dr)

φ r
holds on M in the sense of quadratic forms, where φ is the solution of the problem

B2

φ" + Ίφ = 0 on [0, +oo),

Standard comparison arguments show that

Bf φ1 1
— < — (t) < - for any t > 0,
t φ t

where B' is defined in (0.2).

The proofs of the theorems follow the lines of those in [EF1] and [EF2], and depend on

appropriate integral formulae. These formulae may be obtained by applying the divergence

theorem to suitable vector fields which are constructed in terms of the /7-form u and its exterior

differential and codifferential.

Ultimately, the formulae we use coincide with those used by Escobar and Freire, but we

find it convenient to express them in a form slightly different from theirs. For this reason, and

for the convenience of the reader we outline below how they may be derived.

Given a p-form ω and a vector field X on M, a generic vector field which is quadratic in

the components of ω is a linear combination of the vector fields 7} = Tt (ω, X), Si = Si(ω)

and Ui = Ui(ω) defined as follows:

g(Tu Y) = M2<?(X, Y), g(T2, Y) = g(X J ω, Y J ω),

g(Sχ, Y) = g(Y J dω, ω), g(S2, Y) = g(Y J ω, </*ω),

g(Uχ, Y) = g(Yb A ω, dω), g(U2, Y) = g(Yb A d*ω, ω),

' Λ ω, Yb A ω),

and of those obtained replacing ω with dω and d*ω. Here, b : TM ->• T*M is the musical

isomorphism. Simple computations show that in fact U\ = S\, Ui — S2, and that ί/3 =

T\ — T2, so that we only need to consider Γ, and 5/, i = 1, 2.

Let {eι} be a local orthonormal frame field which is normal at the point q, and denote by

Lx the Lie differentiation in the direction of X. Computing the divergence of the vector fields
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Ti and 5/, one finds, at the point q,

-\

div72 = #(Vχω, ω) - g(X J ω, d*ω) - g(X J dω, ω)

Δω,etΔ ω)Lxg(es, et),
1 s,t

= \dω\2 - g(ω, d*dω), div52 = -\d*ω\2 + g(ω, dd*ω).

If we further impose the requirement that the divergence of the vector fields depends only ω,

dω and d*ω, then we see that the only possible combinations are Z = T\ — 2Γ2, S\ and 52.

We explicitly note that

div^Z = - M 2 t r Lxg - J ^ # f e J ω, et J ω)Lxg(es, et)
^ s,t

+2g(ω, XΔdω) + 2g(X J ω, d*ω).

The above considerations immediately yield the following Lemma.

LEMMA 1.1. Let u be a p-form (p > 0) satisfying d*u = 0 and Apu = λu (λ > 0).

Let also X be a given vector field, and k a constant in R. For every compact domain D with

smooth boundary in M, we have

-\du\ 2(tτL xg -k)-J2 9(es J dut et J du)Lxg(es, et)

-λ| ^\u\2(tτLxg -k)-J2 9(es Ju,et_J u)Lxg(es, <?,)j 1

ί [(\du\2-λ\u\2)g(X,v)-^g(vJdu,u)
JdDl 2

-2(g(X Δdu,v J du) - λg(X J M, V J u)) \ ,

where v denotes the outward unit normal to 3D.

PROOF. Let W be the vector field defined by

W = Z(du, X) - λZ(u, X) - -Sι(u).

= ^(\du\2 - λ\u\2)(tτLχg - k)

Then

I du, et J du) - λg(es Δu,etΔ u))Lxg(es, et).

We integrate divW, and apply the divergence theorem to obtain the required conclusion. D

We now specialize the discussion to the case where the metric g is the conformal defor-

mation of the background metric g0, as specified in the Introduction, and obtain the following

lemma.
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LEMMA 1.2. Assume that u satisfies the hypotheses of Lemma 1.1. Suppose further

that g = fgo and that X = γ(r)dr, where (r, θ) are the geodesic polar coordinates centered

at o of the metric g0, and γ is a function satisfying γ2k(0) = 0, /'(0) = 1 and γ(r) > Ofor

every r > 0. Finally, assume that there exists a constant C > 0 such that for every θ in Sm~*

/

+OO J

dr = +oo .
Y(r)

Then, there exists a sequence Rn —> +oo such that, denoting by BR the go-geodesic ball of

radius R centered at o,

(1.3)

ί ί 1
lim / \-\du\2(trLχg -k)-Y]g(es_\du,et_\du)Lχg(es,et)

- λ | i \u\2(tτLxg -k)-Σ g(es Δu,etΔ u)Lxg(es, et)\ 1 = 0 .
s,t

PROOF. We apply the identity of Lemma 1.1 taking as D the go-geodesic ball BR. De-

noting by S(R) the boundary term, the proof amounts to showing that there exists a sequence

Rn -> +σo such that S(Rn) tends to zero as n -> +00.

Since u e V(AP), \u\2 and \du\2 are integrable on M. Also, the following identities are

easily verified:

v = / - ' / 2

9 r |Vίrr|2 = /- 1 |V f t ( r |^ = / - 1 ,

so that the co-area formula reads

ί φdVg= f dr f fι/2φdσgj for any φ e CC(M) 9

JBR JO JdBr

where dσgj denotes the surface measure induced by dVg on dBr. Moreover, g(v, X) =

fχl2γ,g(XΔdu,vΔdu) = fι/2γg(v Δ du, v Δ dύ) and g(X Δ u, v Δ u) = fι/2γg(v J M ,
v Δ u). Using the Cauchy-Schwarz inequality and the assumption (1.2) (i), we estimate

< Cγ(R) ί fl/2(\du\2 + \u\2)dσg%R .

By the co-area formula,

[ °° dR [ fl/2{\du\2 + \u\2)dσg,R= f (\du\2 + \u\2)dVg <+oo ,
Jo JdBR JMJdBR

whence, using (1.2) (ii), we conclude that

liminfS(fl) =

as required.
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LEMMA 1.3. Maintaining the notation of the previous lemma, assume that γ(r) = r.

Then, for every p-form ω (p > 1), and every k € R,we have

m-2p xdf Γfc _ _ 0 Ί -il, ,2

2 J 3r [ 2 + / ? l " P)rφ\r \ m

< -\ω\2(tr Lxg - k) - ^ f e J ω , ^ J ω ) L χ ^ f c , ^ )
1 s,t

{ m -2p λdf \k φ' χl - l l , ,2

— / I - + pr— - (m - p) \r \\ω\
L or

If ω is a 0-form, then we also have

PROOF. The proof is a modification of that of Lemma 2.2 in [RS] (see also [K]), and

we outline it here for completeness. We consider the case p > 1. The statement relative to

the case p = 0 can be proved in a similar way.

It is easy to show that in a neighbourhood of each point q there is a local orthonormal

frame {es} which is normal at q, and diagonalizes Lxg. Further, if Y is #-orthogonal to

θ r, then Lχg(Y, dr) — 0, and we may therefore arrange that one of the vectors, say eSr be

proportional to dr. Let μs be the corresponding eigenvalues of Lxg, so that Lχg(es,et) =

&s,tμS' We further assume that the indexing be chosen in such a way that μ\ > μ2 > ^

μ m . By definition of inner product in ΛP(M), we may write

_ J ^ ^ \ω(es, eh, ... , έ?/^)! 2/^

p
1

= M Σ

Since the eigenvalues are arranged in decreasing order,

j=m-p+\ j=\ 7=1

and we conclude that

m

(1.4) M z

j=m-p+\ s,t 7 = 1

Denoting by Q the quantity to be estimated, and using the above inequalities we get

-\ω\2(μp+ι H V μm- μ\ μP - k) < Q
(1.5) 2 j

< -\ω\2(μ\ H h μm-p - μm-p+\ μm - k) .
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To estimate the eigenvalues μ ; , we repeat the argument that led to [RS, formula (2.7)]. As

mentioned earlier, the curvature assumption implies the bound (1.1) for the Hessian of r(x)

with respect to the background metric g0.

Now, since X is the gradient vector field rdr = l/2V9or
2, by definition of Lie differ-

entiation we have Lxgo = Uess9o(r2) = 2r Hess^r + 2dr ® dr, so that (1.1) is equivalent

to

Since Lx is a derivation, Lxg = (Xf)go + fLχgo, and, in terms of the conformal metric

g = fg0, the last inequality implies

Recalling that eSr = / ~ 1 / 2 3 Γ , we therefore obtain

while

The required conclusion now follows, substituting these estimates into (1.5). D

LEMMA 1.4. Let p be such that 0 < 2/7 < m, and assume that the curvature bound

(0.1) holds with a constant B such that B' > (m - 2)/m if p = 0 and B' > (m - l)/(m 4-1)

if p > 1. Suppose also that

dr

v
dr

m

m - 2/7 - 1

m —

. - i

, - i

//• 2 < 2/7 < m - 2,

if 2p = m — 2 or 2/7 = m ,

iy 2/7 = m — 1.

Ifu e V(Ap) is such that d*u = 0 and Δpu = λ« (λ > 0), ί/*en M = 0.

PROOF. Observe first of all that, since Bf < 1, our assumptions imply that f~ι df/dr >

-2r~ι, whence integrating this we deduce that there exists a constant C > 0 such that

f(r,θ)>Cr~2 ( r > l ) .

We may therefore let γ(r) = r in Lemma 1.2 and apply the integral identity with X = rdr.



4 5 0 M. RIGOLI AND A. G. SETTI

We consider the case p > 1. If p = 0, the argument is similar. Since rφ'/φ > B', we

deduce from Lemma 1.3 that

-\du\2(tτLχg - k) - Y^g{es J du, et J du)Lxg(es, et)

(1.6)

and

-\u\2(trLxg - k) - ^2g(es Δu,etΔ u)Lxg(eSi et)
* s,t

k

2

Assume first that 2 <2p < m — 2. We determine the constant k in such a way that

1 r
m — 2p — 2

Then, a computation shows that the left hand side is equal to

1

; - (m - p - 1)1 = ^— Γ^ + p - (m - p)Bf] .
\ m — 2p\_2 J

m-2p-\

which is nonnegative by our assumption on B'. Keeping into account the condition satisfied by

/ , we deduce that the right hand side of (1.6) is nonpositive, and that of (1.7) is nonnegative.

Arguing in a similar way, it is easily verified that the same conclusion holds if 2/7 is equal

to m — 2, m — 1 or to m, provided we choose k = 1 + B', k = 0, or k = — 1 — B', respectively.

In all cases, the integrand in the left hand side of (1.3) is of constant (nonpositive) sign,

and the integrals over the balls BRΛ tend to the integral over M a s n tends to oo. We conclude

that the left hand side of (1.7) vanishes identically, and all inequalities are in fact equalities.

In particular,

Now, note that the quantity in braces on the left hand side is strictly positive in a neighbour-

hood of o. Indeed, we may rewrite it in the form

r " 1

If Bf < 1, then the claim follows from the fact that rφ' jφ -> 1 as r -• 0. If B' = 1, then

B = 0 and φ(r) = r, so that the second term is identically zero. But then

Γfc , ,1 m - 2/7_ + p _ (m _ p)B> = _ ί ^ f

|_2 J m — 2/7 — 1
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and since f~ιdf/dr is bounded in a neighbourhood of o (/ being smooth and positive on

M), the first term is strictly positive near o.

It follows that u must vanish in a neighbourhood of o. Since u satisfies the equation

d*du = λu, its components u\ (I = (i\,... , ip)) with respect to a local orthonormal frame

satisfy the linear system

Auj = λui + L(u),

where L is a linear differential operator of order < 1. By unique continuation (see [A, Remark

2], or [Kz, Theorem 1.8]) u must vanish identically on M, as required to finish the proof. D

PROOF OF THE THEOREMS (see [EF1] and [EF2]). Theorem A follows immediately

from the case p = 0 in Lemma 1.4. We prove Theorem B.

Thus, assume that p > 1, and let u e V(AP) be such that Apu = λu with λ > 0. Then

v = d*u belongs to V{AP~X) and satisfies Ap~ιv = λv, d*υ = 0. It is readily verified that

/ satisfies the condition in Lemma 1.4 relative to p — 1, if p > 2, or that of Theorem A if

p = 1, so that v = d*u = 0. But / also satisfies the condition of Lemma 1.4 relative to p,

and therefore u = 0, as required. D
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