ON THE L^{2} FORM SPECTRUM OF THE LAPLACIAN ON NONNEGATIVELY CURVED MANIFOLDS

Marco Rigoli and Alberto G. Setti

(Received September 29, 1999, revised August 3, 2000)

Abstract

Let (M, g_{o}) be a complete, noncompact Riemannian manifold with a pole, and let $g=f g_{o}$ be a conformally related metric. We obtain conditions on the curvature of g_{o} and on f under which the Laplacian on p-forms on (M, g) has no eigenvalues.

Let (M, g_{o}) be a complete, noncompact Riemannian manifold with a pole o, and denote by $r(x)$ the corresponding distance function from o. We assume throughout that the radial sectional curvature satisfies the pinching condition

$$
\begin{equation*}
0 \leq K_{r} \leq \frac{B^{2}}{1+r(x)^{2}} \tag{0.1}
\end{equation*}
$$

for some constant $0 \leq B \leq 1 / 2$. In the sequel we will denote by B^{\prime} the constant related to B by the formula

$$
\begin{equation*}
B^{\prime}=\frac{1}{2}\left(1+\sqrt{1-4 B^{2}}\right) . \tag{0.2}
\end{equation*}
$$

Let also $g=f g_{o}$ be a conformally related metric, where f is a smooth positive function on M.

We denote by $\Lambda^{p}(M)$ the space of p-forms on M. Given ω and θ in $\Lambda^{p}(M)$ we define a pointwise inner product

$$
g(\omega, \theta)=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{m} \omega\left(e_{i_{1}}, \ldots, e_{i_{p}}\right) \theta\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)
$$

and denote by $|\cdot|$ the induced norm. The symbol $L^{2} \Lambda^{p}(M)$ denotes the space of square integrable p-forms, i.e., forms such that $|\omega|^{2}$ is integrable on M. If X is a vector field on M, and ω is a p-form ($p \geq 1$) we define the interior product $X\lrcorner \omega \in \Lambda^{p-1}(M)$ by

$$
X\lrcorner \omega\left(X_{1}, \ldots, X_{p-1}\right)=\omega\left(X, X_{1}, \ldots, X_{p-1}\right) .
$$

For notational convenience, we extend the definition of inner product by setting $X\lrcorner \omega=0$ if ω is a 0 -form.

Finally, we denote by $\Delta^{p}=\Delta_{g}^{p}$ the Laplacian on p-forms of (M, g), so that $\Delta^{p}=$ $d d^{*}+d^{*} d$, where d and d^{*} are the exterior differential and codifferential. Note that when $p=0, \Delta_{g}^{0}=-\operatorname{div}$ grad is the positive definite Laplacian Δ. It is well-known that the operator

[^0]Δ^{p} is self-adjoint on $L^{2} \Lambda^{p}(M)$, indeed, essentially self-adjoint on the space $C_{c}^{\infty} \Lambda^{p}(M)$ of compactly supported smooth p-forms [St]. We denote the corresponding operator domain with the symbol $\mathcal{D}\left(\Delta^{p}\right)$.

The purpose of this note is to obtain conditions on the function f and on the curvatures K_{r} under which Δ_{g}^{p} has no point spectrum, i.e., there are no nonzero square integrable p forms in $\mathcal{D}\left(\Delta^{p}\right)$ satisfying the eigenvalue equation $\Delta^{p} u=\lambda u$. Observe that, by elliptic regularity, solutions of the eigenvalue equation are necessarily smooth.

The negative curvature case was considered by Donnelly [Dn], and Donnelly and Xavier [DnX]. Our results improve and complement those obtained by Escobar and Freire in [EF1] and [EF2].

The case of harmonic p-forms $(\lambda=0)$ goes back to Dodziuk [D1], [D2], [D3], and Sealey [Se]. In this case, a direct application of [RS, Theorem 2.3] shows that if $1 \leq p<m / 2$,

$$
\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}+\left[(m-p) B^{\prime}-p\right] r^{-1} \geq 0
$$

and the left hand side is not identically zero, then there are no nonzero harmonic p-forms in $L^{2}\left(\Lambda^{p} M\right)$.

It is readily verified that if f satisfies the above relation with $p=0$, then the manifold (M, g) has infinite volume, and therefore it does not carry any nonzero L^{2} harmonic functions (see $[\mathrm{Y}]$). Thus, the above statement holds for every $p<m / 2$. Finally, the case where $p>m / 2$ may be dealt with by Hodge duality.

It may be worth noting that, if $f \equiv 1$, so that there is no conformal deformation of the metric, the condition becomes $(m-p) B^{\prime}-p>0$, that is, $B^{\prime}>p /(m-p)$, which improves somewhat the condition in [EF2] (we note that our B^{\prime} corresponds to their c_{n}).

Next, we consider the case of p-forms satisfying the eigenfunction equation with $\lambda>0$. We consider separately the cases $p=0$ or m, and $1 \leq p \leq m-1$. Our results are the following.

THEOREM A. Assume that (0.1) holds with a constant B such that $B^{\prime} \geq(m-2) / m$ and that

$$
\left|f^{-1} \frac{\partial f}{\partial r}\right| \leq \frac{1}{m-1}\left[m B^{\prime}-(m-2)\right] r^{-1} .
$$

If u is in $\mathcal{D}(\Delta)$ and satisfies $\Delta u=\lambda u$ with $\lambda>0$, then $u \equiv 0$.
THEOREM B. Assume that (0.1) holds with a constant B such that $B^{\prime} \geq(m-1) /$ ($m+1$) and that

$$
\begin{aligned}
\left|f^{-1} \frac{\partial f}{\partial r}\right| & \leq \frac{m+1}{m-2 p+1}\left[B^{\prime}-\frac{m-1}{m+1}\right] r^{-1} & \text { if } 2 \leq 2 p<m, \\
f^{-1} \frac{\partial f}{\partial r} & \geq-\frac{m+1}{2}\left[B^{\prime}-\frac{m-1}{m+1}\right] r^{-1} & \text { if } 2 p=m .
\end{aligned}
$$

If u is in $\mathcal{D}\left(\Delta^{p}\right)(1 \leq p \leq m / 2)$ and satisfies $\Delta^{p} u=\lambda u$ with $\lambda>0$, then $u \equiv 0$.

As in the case of harmonic p-forms, the conclusion for $p>m / 2$ follows from Theorems A and B by Hodge duality. We also remark that, when $f \equiv 1$, the conditions in Theorems A and B become $B^{\prime} \geq(m-2) / m$ and $B^{\prime} \geq(m-1) /(m+1)$, respectively. The former coincides with that obtained in [EF1], while the latter improves that in [EF2]. We stress, however, that the main new feature of our results is that in all cases we allow a controlled conformal deformation of the metric.

1. Proof of the theorems. We begin by noting that (0.1) and the Hessian comparison theorem imply that the estimate

$$
\begin{equation*}
\frac{\phi^{\prime}}{\phi}\left(g_{0}-d r \otimes d r\right) \leq \operatorname{Hess}_{g_{0}} r \leq \frac{1}{r}\left(g_{0}-d r \otimes d r\right) \tag{1.1}
\end{equation*}
$$

holds on M in the sense of quadratic forms, where ϕ is the solution of the problem

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+\frac{B^{2}}{1+t^{2}} \phi=0 \quad \text { on }[0,+\infty) \\
\phi(0)=0 \phi^{\prime}(0)=1
\end{array}\right.
$$

Standard comparison arguments show that

$$
\frac{B^{\prime}}{t} \leq \frac{\phi^{\prime}}{\phi}(t) \leq \frac{1}{t} \quad \text { for any } t>0,
$$

where B^{\prime} is defined in (0.2).
The proofs of the theorems follow the lines of those in [EF1] and [EF2], and depend on appropriate integral formulae. These formulae may be obtained by applying the divergence theorem to suitable vector fields which are constructed in terms of the p-form u and its exterior differential and codifferential.

Ultimately, the formulae we use coincide with those used by Escobar and Freire, but we find it convenient to express them in a form slightly different from theirs. For this reason, and for the convenience of the reader we outline below how they may be derived.

Given a p-form ω and a vector field X on M, a generic vector field which is quadratic in the components of ω is a linear combination of the vector fields $T_{i}=T_{i}(\omega, X), S_{i}=S_{i}(\omega)$ and $U_{i}=U_{i}(\omega)$ defined as follows:

$$
\begin{array}{ll}
g\left(T_{1}, Y\right)=|\omega|^{2} g(X, Y), & \left.\left.g\left(T_{2}, Y\right)=g(X\lrcorner \omega, Y\right\lrcorner \omega\right), \\
\left.g\left(S_{1}, Y\right)=g(Y\lrcorner d \omega, \omega\right), & \left.g\left(S_{2}, Y\right)=g(Y\lrcorner \omega, d^{*} \omega\right), \\
g\left(U_{1}, Y\right)=g\left(Y^{\mathrm{b}} \wedge \omega, d \omega\right), & g\left(U_{2}, Y\right)=g\left(Y^{\mathrm{b}} \wedge d^{*} \omega, \omega\right), \\
g\left(U_{3}, Y\right)=g\left(X^{\mathrm{b}} \wedge \omega, Y^{\mathrm{b}} \wedge \omega\right), &
\end{array}
$$

and of those obtained replacing ω with $d \omega$ and $d^{*} \omega$. Here, b: $T M \rightarrow T^{*} M$ is the musical isomorphism. Simple computations show that in fact $U_{1}=S_{1}, U_{2}=S_{2}$, and that $U_{3}=$ $T_{1}-T_{2}$, so that we only need to consider T_{i} and $S_{i}, i=1,2$.

Let $\left\{e_{i}\right\}$ be a local orthonormal frame field which is normal at the point q, and denote by L_{X} the Lie differentiation in the direction of X. Computing the divergence of the vector fields
T_{i} and S_{i}, one finds, at the point q,

$$
\begin{aligned}
\operatorname{div} T_{1}= & \frac{1}{2}|\omega|^{2} \operatorname{tr} L_{X} g+2 g\left(\nabla_{X} \omega, \omega\right) \\
\operatorname{div} T_{2}= & \left.\left.g\left(\nabla_{X} \omega, \omega\right)-g(X\lrcorner \omega, d^{*} \omega\right)-g(X\lrcorner d \omega, \omega\right) \\
& \left.\left.+\frac{1}{2} \sum_{s, t} g\left(e_{s}\right\lrcorner \omega, e_{t}\right\lrcorner \omega\right) L_{X} g\left(e_{s}, e_{t}\right), \\
\operatorname{div} S_{1}= & |d \omega|^{2}-g\left(\omega, d^{*} d \omega\right), \quad \operatorname{div} S_{2}=-\left|d^{*} \omega\right|^{2}+g\left(\omega, d d^{*} \omega\right) .
\end{aligned}
$$

If we further impose the requirement that the divergence of the vector fields depends only ω, $d \omega$ and $d^{*} \omega$, then we see that the only possible combinations are $Z=T_{1}-2 T_{2}, S_{1}$ and S_{2}. We explicitly note that

$$
\begin{aligned}
\operatorname{div}_{g} Z= & \left.\left.\frac{1}{2}|\omega|^{2} \operatorname{tr} L_{X} g-\sum_{s, t} g\left(e_{s}\right\lrcorner \omega, e_{t}\right\lrcorner \omega\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \left.+2 g(\omega, X\lrcorner d \omega)+2 g(X\lrcorner \omega, d^{*} \omega\right) .
\end{aligned}
$$

The above considerations immediately yield the following Lemma.
Lemma 1.1. Let u be a p-form $(p \geq 0)$ satisfying $d^{*} u=0$ and $\Delta^{p} u=\lambda u(\lambda>0)$. Let also X be a given vector field, and k a constant in \boldsymbol{R}. For every compact domain D with smooth boundary in M, we have

$$
\begin{aligned}
\int_{D}\{ & \left.\left.\frac{1}{2}|d u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner d u, e_{t}\right\lrcorner d u\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \left.\left.\left.-\lambda\left[\frac{1}{2}|u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner u, e_{t}\right\lrcorner u\right) L_{X} g\left(e_{s}, e_{t}\right)\right]\right\} \\
= & \int_{\partial D}\left\{\left(|d u|^{2}-\lambda|u|^{2}\right) g(X, v)-\frac{k}{2} g(v\lrcorner d u, u\right) \\
& -2(g(X\lrcorner d u, v\lrcorner d u)-\lambda g(X\lrcorner u, v\lrcorner u))\},
\end{aligned}
$$

where v denotes the outward unit normal to ∂D.
Proof. Let W be the vector field defined by

$$
W=Z(d u, X)-\lambda Z(u, X)-\frac{k}{2} S_{1}(u)
$$

Then

$$
\begin{aligned}
\operatorname{div}_{g} W= & \frac{1}{2}\left(|d u|^{2}-\lambda|u|^{2}\right)\left(\operatorname{tr} L_{X} g-k\right) \\
& \left.\left.\left.\left.-\sum_{s, t}\left(g\left(e_{s}\right\lrcorner d u, e_{t}\right\lrcorner d u\right)-\lambda g\left(e_{s}\right\lrcorner u, e_{t}\right\lrcorner u\right)\right) L_{X} g\left(e_{s}, e_{t}\right) .
\end{aligned}
$$

We integrate $\operatorname{div} W$, and apply the divergence theorem to obtain the required conclusion.
We now specialize the discussion to the case where the metric g is the conformal deformation of the background metric g_{o}, as specified in the Introduction, and obtain the following lemma.

Lemma 1.2. Assume that u satisfies the hypotheses of Lemma 1.1. Suppose further that $g=f g_{0}$ and that $X=\gamma(r) \partial_{r}$, where (r, θ) are the geodesic polar coordinates centered at o of the metric g_{o}, and γ is a function satisfying $\gamma^{2 k}(0)=0, \gamma^{\prime}(0)=1$ and $\gamma(r)>0$ for every $r>0$. Finally, assume that there exists a constant $C>0$ such that for every θ in S^{m-1}

$$
\begin{equation*}
\text { (i) } \liminf _{r \rightarrow+\infty} \gamma^{2}(r) f(r, \theta) \geq C>0 \quad \text { and } \quad \text { (ii) } \int_{1}^{+\infty} \frac{1}{\gamma(r)} d r=+\infty \text {. } \tag{1.2}
\end{equation*}
$$

Then, there exists a sequence $R_{n} \rightarrow+\infty$ such that, denoting by B_{R} the g_{o}-geodesic ball of radius R centered at o,

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \left.\int_{B_{R_{n}}}\left\{\frac{1}{2}|d u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner d u, e_{t}\right\lrcorner d u\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \left.\left.\left.-\lambda\left[\frac{1}{2}|u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner u, e_{t}\right\lrcorner u\right) L_{X} g\left(e_{s}, e_{t}\right)\right]\right\}=0 . \tag{1.3}
\end{align*}
$$

Proof. We apply the identity of Lemma 1.1 taking as D the g_{o}-geodesic ball B_{R}. Denoting by $S(R)$ the boundary term, the proof amounts to showing that there exists a sequence $R_{n} \rightarrow+\infty$ such that $S\left(R_{n}\right)$ tends to zero as $n \rightarrow+\infty$.

Since $u \in \mathcal{D}\left(\Delta^{p}\right),|u|^{2}$ and $|d u|^{2}$ are integrable on M. Also, the following identities are easily verified:

$$
v=f^{-1 / 2} \partial_{r} \quad\left|\nabla_{g} r\right|_{g}^{2}=f^{-1}\left|\nabla_{g_{o}} r\right|_{g_{o}}^{2}=f^{-1}
$$

so that the co-area formula reads

$$
\int_{B_{R}} \phi d V_{g}=\int_{0}^{R} d r \int_{\partial B_{r}} f^{1 / 2} \phi d \sigma_{g, r} \quad \text { for any } \phi \in C_{c}(M)
$$

where $d \sigma_{g, r}$ denotes the surface measure induced by $d V_{g}$ on ∂B_{r}. Moreover, $g(\nu, X)=$ $\left.\left.\left.\left.f^{1 / 2} \gamma, g(X\lrcorner d u, v\right\lrcorner d u\right)=f^{1 / 2} \gamma g(v\lrcorner d u, v\right\lrcorner d u\right)$ and $\left.\left.g(X\lrcorner u, v\right\lrcorner u\right)=f^{1 / 2} \gamma g(v\lrcorner u$, $v\lrcorner u)$. Using the Cauchy-Schwarz inequality and the assumption (1.2) (i), we estimate

$$
\begin{aligned}
\left|S_{R}\right| & \leq \gamma(R) \int_{\partial B_{R}} f^{1 / 2}\left\{3\left(|d u|^{2}+\lambda|u|^{2}\right)+\frac{k}{2 \gamma(R) f^{1 / 2}}|u||d u|\right\} d \sigma_{g, R} \\
& \leq C \gamma(R) \int_{\partial B_{R}} f^{1 / 2}\left(|d u|^{2}+|u|^{2}\right) d \sigma_{g, R}
\end{aligned}
$$

By the co-area formula,

$$
\int_{0}^{+\infty} d R \int_{\partial B_{R}} f^{1 / 2}\left(|d u|^{2}+|u|^{2}\right) d \sigma_{g, R}=\int_{M}\left(|d u|^{2}+|u|^{2}\right) d V_{g}<+\infty
$$

whence, using (1.2) (ii), we conclude that

$$
\liminf _{R \rightarrow+\infty} S(R)=0
$$

as required.

Lemma 1.3. Maintaining the notation of the previous lemma, assume that $\gamma(r)=r$. Then, for every p-form $\omega(p \geq 1)$, and every $k \in \boldsymbol{R}$, we have

$$
\begin{aligned}
& r\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p-(m-p) r \frac{\phi^{\prime}}{\phi}\right] r^{-1}\right\}|\omega|^{2} \\
& \left.\left.\quad \leq \frac{1}{2}|\omega|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner \omega, e_{t}\right\lrcorner \omega\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \quad \leq r\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p r \frac{\phi^{\prime}}{\phi}-(m-p)\right] r^{-1}\right\}|\omega|^{2} .
\end{aligned}
$$

If ω is a 0 -form, then we also have

$$
\frac{1}{2}|\omega|^{2}\left(\operatorname{tr} L_{X} g-k\right) \geq r\left\{\frac{m}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}-1-(m-1) r \frac{\phi^{\prime}}{\phi}\right] r^{-1}\right\}|\omega|^{2} .
$$

Proof. The proof is a modification of that of Lemma 2.2 in [RS] (see also [K]), and we outline it here for completeness. We consider the case $p \geq 1$. The statement relative to the case $p=0$ can be proved in a similar way.

It is easy to show that in a neighbourhood of each point q there is a local orthonormal frame $\left\{e_{s}\right\}$ which is normal at q, and diagonalizes $L_{X} g$. Further, if Y is g-orthogonal to ∂_{r}, then $L_{X} g\left(Y, \partial_{r}\right)=0$, and we may therefore arrange that one of the vectors, say $e_{s_{r}}$ be proportional to ∂_{r}. Let μ_{s} be the corresponding eigenvalues of $L_{X} g$, so that $L_{X} g\left(e_{s}, e_{t}\right)=$ $\delta_{s, t} \mu_{s}$. We further assume that the indexing be chosen in such a way that $\mu_{1} \geq \mu_{2} \geq \cdots \geq$ μ_{m}. By definition of inner product in $\Lambda^{p}(M)$, we may write

$$
\begin{aligned}
\left.\left.\sum_{s} g\left(e_{s}\right\lrcorner \omega, e_{s}\right\lrcorner \omega\right) \mu_{s} & =\frac{1}{(p-1)!} \sum_{s} \sum_{i_{1}, \ldots, i_{p-1}}\left|\omega\left(e_{s}, e_{i_{1}}, \ldots, e_{i_{p-1}}\right)\right|^{2} \mu_{s} \\
& =\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}}\left|\omega\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)\right|^{2} \sum_{j=1}^{p} \mu_{i_{j}} .
\end{aligned}
$$

Since the eigenvalues are arranged in decreasing order,

$$
\sum_{j=m-p+1}^{m} \mu_{j} \leq \sum_{j=1}^{p} \mu_{i_{j}} \leq \sum_{j=1}^{p} \mu_{j}
$$

and we conclude that

$$
\begin{equation*}
\left.\left.|\omega|^{2} \sum_{j=m-p+1}^{m} \mu_{j} \leq \sum_{s, t} g\left(e_{s}\right\lrcorner \omega, e_{t}\right\lrcorner \omega\right) L_{X} g\left(e_{s}, e_{t}\right) \leq|\omega|^{2} \sum_{j=1}^{p} \mu_{j} . \tag{1.4}
\end{equation*}
$$

Denoting by Q the quantity to be estimated, and using the above inequalities we get

$$
\begin{align*}
& \frac{1}{2}|\omega|^{2}\left(\mu_{p+1}+\cdots+\mu_{m}-\mu_{1}-\cdots-\mu_{p}-k\right) \leq Q \tag{1.5}\\
& \quad \leq \frac{1}{2}|\omega|^{2}\left(\mu_{1}+\cdots+\mu_{m-p}-\mu_{m-p+1}-\cdots-\mu_{m}-k\right)
\end{align*}
$$

To estimate the eigenvalues μ_{j}, we repeat the argument that led to [RS, formula (2.7)]. As mentioned earlier, the curvature assumption implies the bound (1.1) for the Hessian of $r(x)$ with respect to the background metric g_{o}.

Now, since X is the gradient vector field $r \partial_{r}=1 / 2 \nabla_{g_{o}} r^{2}$, by definition of Lie differentiation we have $L_{X} g_{o}=\operatorname{Hess}_{g_{o}}\left(r^{2}\right)=2 r \operatorname{Hess}_{g_{o}} r+2 d r \otimes d r$, so that (1.1) is equivalent to

$$
2 r\left\{\frac{\phi^{\prime}(r)}{\phi(r)} g_{0}+\left[\frac{1}{r}-\frac{\phi^{\prime}(r)}{\phi(r)}\right] d r \otimes d r\right\} \leq L_{X} g_{0} \leq 2 g_{0}
$$

Since L_{X} is a derivation, $L_{X} g=(X f) g_{0}+f L_{X} g_{0}$, and, in terms of the conformal metric $g=f g_{0}$, the last inequality implies

$$
r\left\{\left(f^{-1} \frac{\partial f}{\partial r}+2 \frac{\phi^{\prime}(r)}{\phi(r)}\right) g+2\left(\frac{1}{r}-\frac{\phi^{\prime}(r)}{\phi(r)}\right) f d r \otimes d r\right\} \leq L_{X} g \leq r\left(f^{-1} \frac{\partial f}{\partial r}+2 \frac{1}{r}\right) g
$$

Recalling that $e_{s_{r}}=f^{-1 / 2} \partial_{r}$, we therefore obtain

$$
\mu_{s}=r\left[f^{-1} \frac{\partial f}{\partial r}+\frac{2}{r}\right] \quad \text { if } s=s_{r}
$$

while

$$
r\left[f^{-1} \frac{\partial f}{\partial r}+2 \frac{\phi^{\prime}}{\phi}\right] \leq \mu_{s} \leq r\left[f^{-1} \frac{\partial f}{\partial r}+\frac{2}{r}\right] \quad \text { otherwise } .
$$

The required conclusion now follows, substituting these estimates into (1.5).
Lemma 1.4. Let p be such that $0 \leq 2 p \leq m$, and assume that the curvature bound (0.1) holds with a constant B such that $B^{\prime} \geq(m-2) / m$ if $p=0$ and $B^{\prime} \geq(m-1) /(m+1)$ if $p \geq 1$. Suppose also that

$$
\begin{aligned}
\left|f^{-1} \frac{\partial f}{\partial r}\right| & \leq \frac{m}{m-1}\left[B^{\prime}-\frac{m-2}{m}\right] r^{-1} & & \text { if } p=0, \\
\left|f^{-1} \frac{\partial f}{\partial r}\right| & \leq \frac{m+1}{m-2 p-1}\left[B^{\prime}-\frac{m-1}{m+1}\right] r^{-1} & & \text { if } 2 \leq 2 p<m-2, \\
f^{-1} \frac{\partial f}{\partial r} & \geq-\frac{m+1}{2}\left[B^{\prime}-\frac{m-1}{m+1}\right] r^{-1} & & \text { if } 2 p=m-2 \text { or } 2 p=m, \\
f^{-1} \frac{\partial f}{\partial r} & \geq-(m+1)\left[B^{\prime}-\frac{m-1}{m+1}\right] r^{-1} & & \text { if } 2 p=m-1 .
\end{aligned}
$$

If $u \in \mathcal{D}\left(\Delta^{p}\right)$ is such that $d^{*} u=0$ and $\Delta^{p} u=\lambda u(\lambda>0)$, then $u \equiv 0$.
Proof. Observe first of all that, since $B^{\prime} \leq 1$, our assumptions imply that $f^{-1} \partial f / \partial r \geq$ $-2 r^{-1}$, whence integrating this we deduce that there exists a constant $C>0$ such that

$$
f(r, \theta) \geq C r^{-2} \quad(r \geq 1) .
$$

We may therefore let $\gamma(r)=r$ in Lemma 1.2 and apply the integral identity with $X=r \partial_{r}$.

We consider the case $p \geq 1$. If $p=0$, the argument is similar. Since $r \phi^{\prime} / \phi \geq B^{\prime}$, we deduce from Lemma 1.3 that

$$
\begin{align*}
& \left.\left.\frac{1}{2}|d u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner d u, e_{t}\right\lrcorner d u\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \quad \leq r\left\{\frac{m-2 p-2}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+(p+1) B^{\prime}-(m-p-1)\right] r^{-1}\right\}|d u|^{2} \tag{1.6}
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left.\frac{1}{2}|u|^{2}\left(\operatorname{tr} L_{X} g-k\right)-\sum_{s, t} g\left(e_{s}\right\lrcorner u, e_{t}\right\lrcorner u\right) L_{X} g\left(e_{s}, e_{t}\right) \\
& \quad \geq r\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p-(m-p) r \frac{\phi^{\prime}}{\phi}\right] r^{-1}\right\}|u|^{2} \tag{1.7}\\
& \quad \geq r\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p-(m-p) B^{\prime}\right] r^{-1}\right\}|u|^{2}:
\end{align*}
$$

Assume first that $2 \leq 2 p<m-2$. We determine the constant k in such a way that

$$
\frac{2}{m-2 p-2}\left[\frac{k}{2}+(p+1) B^{\prime}-(m-p-1)\right]=-\frac{2}{m-2 p}\left[\frac{k}{2}+p-(m-p) B^{\prime}\right] .
$$

Then, a computation shows that the left hand side is equal to

$$
\frac{1}{m-2 p-1}\left[(m+1) B^{\prime}-(m-1)\right]
$$

which is nonnegative by our assumption on B^{\prime}. Keeping into account the condition satisfied by f, we deduce that the right hand side of (1.6) is nonpositive, and that of (1.7) is nonnegative.

Arguing in a similar way, it is easily verified that the same conclusion holds if $2 p$ is equal to $m-2, m-1$ or to m, provided we choose $k=1+B^{\prime}, k=0$, or $k=-1-B^{\prime}$, respectively.

In all cases, the integrand in the left hand side of (1.3) is of constant (nonpositive) sign, and the integrals over the balls $B_{R_{n}}$ tend to the integral over M as n tends to ∞. We conclude that the left hand side of (1.7) vanishes identically, and all inequalities are in fact equalities. In particular,

$$
r\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p-(m-p) r \frac{\phi^{\prime}}{\phi}\right] r^{-1}\right\}|u|^{2} \equiv 0 \quad \text { on } M .
$$

Now, note that the quantity in braces on the left hand side is strictly positive in a neighbourhood of o. Indeed, we may rewrite it in the form

$$
\left\{\frac{m-2 p}{2} f^{-1} \frac{\partial f}{\partial r}-\left[\frac{k}{2}+p-(m-p) B^{\prime}\right] r^{-1}\right\}+(m-p)\left(r \frac{\phi^{\prime}}{\phi}-B^{\prime}\right) r^{-1}
$$

If $B^{\prime}<1$, then the claim follows from the fact that $r \phi^{\prime} / \phi \rightarrow 1$ as $r \rightarrow 0$. If $B^{\prime}=1$, then $B=0$ and $\phi(r)=r$, so that the second term is identically zero. But then

$$
-\left[\frac{k}{2}+p-(m-p) B^{\prime}\right]=\frac{m-2 p}{m-2 p-1}
$$

and since $f^{-1} \partial f / \partial r$ is bounded in a neighbourhood of o (f being smooth and positive on M), the first term is strictly positive near o.

It follows that u must vanish in a neighbourhood of o. Since u satisfies the equation $d^{*} d u=\lambda u$, its components $u_{I}\left(I=\left(i_{1}, \ldots, i_{p}\right)\right)$ with respect to a local orthonormal frame satisfy the linear system

$$
\Delta u_{I}=\lambda u_{I}+L(u),
$$

where L is a linear differential operator of order ≤ 1. By unique continuation (see [A, Remark 2], or [Kz , Theorem 1.8]) u must vanish identically on M, as required to finish the proof.

Proof of the theorems (see [EF1] and [EF2]). Theorem A follows immediately from the case $p=0$ in Lemma 1.4. We prove Theorem B.

Thus, assume that $p \geq 1$, and let $u \in \mathcal{D}\left(\Delta^{p}\right)$ be such that $\Delta^{p} u=\lambda u$ with $\lambda>0$. Then $v=d^{*} u$ belongs to $\mathcal{D}\left(\Delta^{p-1}\right)$ and satisfies $\Delta^{p-1} v=\lambda v, d^{*} v=0$. It is readily verified that f satisfies the condition in Lemma 1.4 relative to $p-1$, if $p \geq 2$, or that of Theorem A if $p=1$, so that $v=d^{*} u=0$. But f also satisfies the condition of Lemma 1.4 relative to p, and therefore $u \equiv 0$, as required.

References

[A] N. ARONSZAJN, A unique continuation for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (1957), 235-249.
[D1] J. Dodziuk, L^{2} harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Amer. Math. Soc. 77 (1979), 395-400.
[D2] J. DodZiuk, L^{2} harmonic forms on complete manifolds, Seminar on Differential Geometry, Ann. of Math. Stud. 102 (1982), 291-302.
[D3] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of V.K. Patodi, Indian Acad. of Sci. (1981), 21-27.
[Dn] H. Donnelly, The differential form spectrum of hyperbolic space, Manuscripta Math. 33 (1981), 365385.
[DnX] H. Donnelly and F. Xavier, On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106 (1984), 169-184.
[E] J. F. ESCOBAR, On the spectrum of the Laplacian on complete Riemannian manifolds, Comm. Partial Differential Equations 11 (1986), 63-85.
[EF1] J. F. ESCObAR AND A. FREIRE, The spectrum of the Laplacian of manifolds of positive curvature, Duke Math. J. 65 (1992), 1-21.
[EF2] J. F. ESCobar and A. Freire, The differential form spectrum of manifolds of positive curvature, Duke Math. J. 69 (1993), 1-41.
[GW] R. Greene and H. H. Wu, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math. 699, Springer Verlag, Berlin, 1979.
[K] A. KASUE, A note on L^{2} harmonic forms on a complete manifold, Tokyo J. Math. 17 (1994), 455-465.
[Kz] J. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), 667-681.
[RS] M. Rigoli and A. G. Setti, Energy estimates and Liouville theorems for harmonic maps, Internat. J. Math. 11 (2000), 413-448.
[Se] H. C. J. Sealey, Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory, Math. Proc. Cambridge Philos. Soc. 91 (1982), 441-452.
[St] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 44-79.
[Y] S. T. YAU, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.

Dipartimento di Matematica e Applicazioni
Università di Milano-Bicocca
Via Bicocca degli Arcimboldi 8 I-20126 Milano
Italy
E-mail address: rigoli@mat.unimi.it

Dipartimento di Scienze Chimiche Fisiche e Matematiche
Università dell' Insubria-Como
Via Valleggio 11
I-22100 Сомо
Italy
E-mail address: setti@uninsubria.it

[^0]: 2000 Mathematics Subject Classification. Primary 58A10, 58G25.
 Key words and phrases. Differential forms, Hodge Laplacian, L^{2}-spectrum.

