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Abstract. Let G be a simply connected semisimple algebraic group and lbe the
subgroup of points fixed by an involution 6f. For certain representations containing a line
r preserved byK, we study the normality of the closure of the set of vectors whichGare
conjugate to a vector in. Some applications of our result to the normality of certain classical
varieties are given.

Introduction. LetG be a simply connected semisimple algebraic groups let invo-
lution of G and letH be the normalizer of the subgrody of fixed points. Denoting by
the wonderful compactification @/ H and byL a line bundle generated by global sections,
we know that the ringA(£) = D, I' (X, L") is generated in degree one by [3]. So it can
be identified with the projective coordinate ring of the variety which is the imageé imito
P(I" (X, £)*). The varietyX is smooth, so the corresponding con®d" (X, £)*) is normal.

On the other hand, if we consider an irreducible modulaith a (necessarily unique)
eigenvector: for G?, then one knows that the map frofy H to P(V) defined bygH
[g - h] extends to a morphism from X to P(V). SetL = 7*(Op(v)(1)) and denote by (L)
the projective coordinate ring af(X). We prove thatA (£) is the integral closure aB(£) in
its quotient field. In particular, we obtain that the cone oveX) is normal if and only if the
highest weight ofV is a minuscule weight for the restricted root system of the involusion
In the special case of the compactificationtod group this has already appeared in [5].

The paper is organized as follows. In Section 1 we give a short description of the con-
struction and the basic properties of complete symmetric varieties. Our result reported above
aboutA (1) andB(1) is proved in Section 2.

In Section 3 we give a slight generalization of our result about normality considering a
sort of parabolic induction of a symmetric variety. In the last Section we remark that our result
can be applied to proving the normality and non normality of some rather concrete rings. For
example, we give a proof of the normality of the subring of the ring of polynomial functions
on the symmetric (respectively antisymmetric) matrices of rank less than or equal to a given
integer, generated by the minors (respectively pfaffians) of a fixed order. In the last example
we apply our result to proving that the closure of a spherical nilpotent orbit of height less or
equal to 2 is a normal variety.

We would like to thank Michel Brion for explaning to us his simple proof of Proposition
2.1 and Domingo Luna for suggesting Example 4.4.
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1. Description of complete symmetric varieties. In this Section we collect some
preliminary results for the sequel, setting up our notation. We review the construction of the
wonderful compactification ofs / H, for details one can see [7, 8].

Let g be a semisimple Lie algebra over an algebraically closed kielticharacteristic
zero, and letr be an order 2 automorphism gf Denote by the subalgebra of fixed points of
o in g. If tis ao-stable toral subalgebra gf we can decompogeasty @ t1 with tg the (+1)-
eigenspace aof andt; the(—1)-eigenspace. We recall that asmystable toral subalgebra gf
is contained in a maximal one which is itselfstable. We fix such a-stable maximal toral
subalgebra for which dimt; is maximal and denote this dimension hyve call it therank
ofo.

Let® C t* be the root system gf and letg = t ® P, ., 9o be the root space decom-
position with respect to the action afObserve that acts also ort* and that it preserve®
and the Killing form(-, -) ont andt*. Let®g = {« € @ | o(a) = o} and®1 = & ~ Dy.
The choice of ar-stable toral subalgebra for which dimis maximal is equivalent to the
conditiono |g, = id|g, for all @ € ®o. Moreover, we can choose the get of positive roots
in such a way that («) € @~ for all rootsa € @+ N @41. Let A be the base defined k™
and putdg = AN &g, A1 = AN 1. Denote byA C t* the set of integral weights @ and
observe that preservesA. Let AT be the set of dominant weights with respectitd and
let w, be the fundamental weight dual to the simple cobtfor @« € A. Fori € AT let
alsoV, be the irreducible representationgbf highest weigha..

We say thak € A™ is spherical if there existg: € V, ~ {0} fixed byh (i.e.,h-h = 0): in
this case the vectdris also unique up to scalar and we denote itRylt is called aspherical
vector and theG-moduleV, is called aspherical module. We denote the set of spherical
weights by$2* and the lattice they generate k3.

For a roota defined = o — o () and letd = {@ |« € ®1}. This is a (not necessarily
reduced) root system of rakvith baseA = {@ |« € A1}; itis called therestricted root sys-
tem. As a consequence of a result of Helgason (see also [14] or [9] for an algebraic approach),
2N AT = 27T and$2 can be identified with the lattice of integral weights of the root system
(@, 2 ®z R). We denote byR the root lattice of® and byR* the monoid generated by the
baseA.

Now we come to the construction of complete symmetric varieties following De Concini
and Procesi [7]. LeG be a connected algebraic group okavhose Lie algebra is isomorphic
to g. The action ofo on g lifts to an automorphism of;, still denoted by . Let H be the
normalizer inG of the Lie algebray C g. As explained in [7],H is the maximal subgroup
havingh as Lie algebra,; if5 is an adjoint groupH coincides with the fixed point set efin
G. The quotientG/H is called asymmetric variety. However, sinc& /H does not depend on
the choice of the grou@ overg, we prefer to choos& simply connected, so for the rest of
the papelG is a simply connected algebraic group with Lie algegptaless otherwise stated.
We introduce also the torus (resp.,Tp andT1) whose Lie algebra is (resp.,top andt;), and
the parabolic subgroup of G associated tao.
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Consider now a (dominant) spherical weighwith the property(x, @) # O for all
& € A, such a weight is calledegular, and letxg = [h,] € P(V,). We define the variety
X = X(o) as the closur& - xg C P(V;). One can show thaiy is the unique point fixed
by H in X and that the mag — g¢xo induces an embedding/H — X which is called
the “minimal compactification” of5/H. Moreover the varietyX constructed in this way is
independent of the regular weighup to isomorphism o& -variety.

The following Proposition describesdlstructure of the compactification.

PrROPOSITION 1.1 (Theorem 3.1in[7]). Let X = X (o) be the compactification of
G/ H described above, then the following hold.

(1) X isasmooth projective G-variety;

(2) X ~ G -xpisadivisor with normal crossings and smooth irreducible components
S1,...,80;

(3) the G-orbits of X correspond to the subsets of the indices 1, 2, ..., so that the
orbit closures are the intersections S;, N S;, N -+ N Sj, Withl < i1 <ip < -+ < ij—1 <
ir <1

(4) theuniqueclosedorbitY = ﬁzls,» isisomorphic to the partial flag variety G/ P.

Fix now a dominant weight € A™ such that there exists a point P(V;) fixed by H.
By [8] we know that a point with this property is unique, so we define the vaigtio be the
closureG - r in P(V,) and defineC, as the cone oveX; in V,. By [7] it is known that the
mapG/H > gH — g -r € P(V,) extends to a morphism

T X —> X, .

In particular,, is an isomorphism in the case of a regular weight

We use such a morphism to construct some line bundle$ by settingZ, correspond-
ing to A in the identification of PieG/P) with a sublattice of the weight lattica. One can
see the following

PrROPOSITION 1.2 (Proposition 8.1 in [7]). The map Pic(X) — Pic(Y) induced by
theinclusionisinjective.

So we can identify PicX) with a sublattice of the weight lattice. Furthermore, the line
bundles constructed above account for all line bundles, since we have

PrRoPOSITION 1.3 (Lemma 4.6 in [8]). Under the described identification Pic(X) is
the lattice generated by the dominant weights A such that P(V;)# is not empty.

Notice that the lattice2 generated by the spherical weights is contained in thexRic
by definition. Further this lattice is the Picard group “almost always", i.e., except in few
situations. Indeed, one can define an involuioon A1 such that for ale € A; we have
o (o) = —o () — B for a suitable non-negative linear combinatiof roots inAg. We call a
roota € A1 exceptional if 6 («) # o and(e, 6 («)) # 0. Then the Picard group RiE) is the
lattice generated b2 and by the fundamental weights assded to the (simple) exceptional
roots.
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By construction every line bundle has a natutalinearization. Moreover, ik is not
dominant, them™ (Y, Ly y) = Indg(k_k) = 0 and hencé&,, is generated by global sections if
and only ifA is dominant.

Now we describe the sections of a line bundleas aG-module. The first useful re-
mark is that any irreducibl&-module appears ifi (X, £) with multiplicity at most one (see
Lemma 8.2 in [7]). We analyze first the case of the divis$tsl < i <. Letas, ..., o be
the elements ofi. Then, up to reindexing thé-stable divisors, we have

PrROPOSITION 1.4 (Corollary 8.2 in[7]). There exists a unique up to scalar G-in
variant sections; € I' (X, Lg,) whose divisor is S;.

For an element = Zleni&i € R*, the multiplication bys” = [1;s/" gives a linear

map

I'X, L) = I'(X, L) .
If © e Pic(X) is dominant, then by construction @f, we certainly have a submodule of
I'(X, £,) isomorphic toV¥, obtained by the pull back of the homogeneous coordinates of
P(V,) to X.

If 2 € Pic(X) is any element such that— u € R, we can consider the image of;
under the multiplication by*~* from I"(X, £,,) to I' (X, £;). We call this image*~* V.
We order Pi¢X) by settingu <, A if A —  is a non-negative integer combination#f(i.e.,
if A—p e RT).

PrROPOSITION 1.5 (Theorem 5.10 in [7]). Let A € Pic(X). Then

_ A—y %
(X, L) = b v
n<srandueA+t

2. Thenormalization. LetX be the complete symmetric variety associate@ioo ),
and letx be a dominant weight in the Picard groupXf Let A,,(A) = I'(X, L,,), and con-
sider the graded ring (A) = @,,c\ An(A). Let B(1) be the subring oA (1) generated by the
moduleV;* C A1(A); also denote bys, (1) = B(1) N A, (1) the homogeneous components
of B(1). In this Section we prove that the rifg 1) is the normalization of the ring(1).

On the geometric side, lef, c P(I"(X, £;)*) be the image ok under the morphism
7, of X defined by the line bundl€, generated by its global sections. Since by [3] the ring
A(%) is generated in degree 1, it is the coordinate ring of the €ar@ver X ;.. By construction
B(2) is the coordinate ring of the con®, over X;, and we have the following commutative

diagram:
X
X
~ Ui
X, ’ X,

Notice also that, sinc& is smooth, the ringi () is integrally closed (see for example [10]
Exercise 11.5.14). Hence to prove th&thr) is the normalization oBB (1), it is enough to prove
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thatn, is birational (which clearly implies that the two cones are birational) andAkaY is
integral overB(A).

Our original proof of the following proposition was by far too complicated. We thank
Michel Brion who explained us the following proof.

PROPOSITION 2.1. Let A beadominant weight in Pic(X). Then A() isintegral over
B()).

PROOF. LetS(L;) be the symmetric algebra sheaf constructed dgrand letL =
SpecS (L)) be the total space of the dual 6f. Further, denote by the total space of the
dual of Op(y,)(1). By construction we have the following pull back diagram

L——=M

l PB
s

X —P(V;)

By definition A(A) = I'(L,Or) = I'(M, 7,.Or) and the image of the natural morphism
'M,Opy) — I'(M, 7,0p) is the subringB(1). Now observe that is projective, sot,.O
is a coherent sheaf ai. HenceA (1) is finite as alI" (M, O,7)-module, or equivalently, as a
B()x)-module. O

We now prove thati (1) and B(A) have the same quotient field by proving that the map
n. © X, — X, is birational. We need the following simple lemma on the dominant order;
only for its statemend® is an arbitrary irreducible root system.

LEMMA 2.2. Let @ beanirreducibleroot syssemand A C @ a set of smpleroots. If
A € A~ {0} isadominant weight, then there exists a positive integer m and a dominant weight
wsuchthat (i, ") > Ofor all simplerootsa and mA > u with respect to the dominant order.

PROOF. Set supph) = {a € A | (A, a¥) # 0}. If suppr) = A, there is nothing
to prove. So suppose the contrary. hete A be such that there exists € supgx) with
(y,a") < 0. Takingm to be any integer greater than 2, we have supp— o) D suppr) U
{y}. Using this remark and the irreducibility g@f, the claim follows by an easy inductiofl

We recall that an involutiom is said to besimple if g has noo-stable proper ideal. It
is known (Lemma 15.5.6 in [14]) that for a simple involutidnis irreducible and eithey is
simple org >~ g1 x g1 with g1 simple ands (x, y) = (y, x).

LEMMA 2.3. Let o be a simple involution. Let A be a dominant weight in Pic(X)
which is not a multiple of the fundamental weight corresponding to an exceptional root, and
let x; € P(V,) bethe point fixed by H. Then the stabilizer in G of x; is H.

PROOF. By hypothesis we havél C Stalys(x;) and by [7, §1] we know thaH is
a maximal subgroup havinig as Lie algebra. So it suffices to show that dim gtah) =
dim H, or, equivalently, dink, = dimX.
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By Proposition 2.1 we also have that dky = dim ProjA(A). Hence we need to verify
that the dimension af (X, £, ), whenn goes to infinity, grows with the same order of infinity
of the polynomialn — nd9MX+1 More precisely, since we already know that ditn <
dim X, it is enough to show that the dimensionlofX, £,,) grows at least with this order of
infinity. Observe that to verify this property we can substitutey any multiplem ., with m
a positive integer.

Now, if A is spherical, using the previous lemma 2.2 applied tove can choose: such
that there exists a regular weightwith the propertiest <, mi. Then, by Proposition 1.5
we have

dimI(X, Lymy) = dimI'(X, L) .

Sincep is regular,C,, is an ample line bundle oK. Hence the dimension of the right-hand
side has the desired order of growth, by a standard property of the Hilbert polynomial (see
Theorem 7.5 in [10]).

Let us now assume that we are in the exceptional case and ihabt a multiple of one
of the two exceptional fundamental weights. Write= 1o + nw with Ag spherical (different
from 0 by hypothesis); positive ando an exceptional fundamental weight. In particular, by
what we have proved for spherical weights, we can assume the lemma provwed for

Consider the projective morphisfn= 75, X fnw : X = Xiy X Xy Itis now cleart
factors through’h and this proves our claim. O

In the case. = mwg with g an exceptional root, we observe ti¥ats not birational to
X,. Nevertheless[" (X, £;) = V,* in this case, s, is equal toX; and in particulam;, is
birational.

THEOREM 2.4. If »isadominant weight in Pic(X), then A()) isthe normalization of
B()).

PROOF. We have already observed thath) is integrally closed and in Proposition 2.1
have proved that (1) is integral overB()). Finally, Lemma 2.3 and the remark above imply
thatn, is birational, and we see that}) and B(1) have the same quotient field. O

3. Parabolicinduction. In this Section we introduce a family of varieties related to
the complete symmetric varieties; one can think of these varieties as a parabolic induction.
They share most properties with the complete symmetric varieties; also the proofs of such
properties are almost similar. More details can be found in [5] for the case of the group
compactification; here we simply generalize tr@mework of [5], reporting the main results.

As in the previous sectiong; will denote a semisimple simply connected algebraic
group,T C G amaximal torus an® C G a Borel subgroup containing. Also,o : G - G
is an involution with the fixed point séf. Furthermoreg is the adjoint quotient of; and H
is the fixed point set of the induced involutien: G — G.
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Now we take another semisimple simply connected grgup maximal torus/ in G
and a Borel subgroup > 7 in G. We shall denote the character grouploby Ag and the
monoid of dominant weights with respectfdy AJQF.

We shall assume tha contains a parabolic subgrodp c B having the following
property. IfS c P denotes the solvable radical Bf we have a surjective homomorphism
7 : P/S — G with finite kernel. Composing with the quotient homomorphis@ — P/S,
we get a surjection’ : P — G. Equivalently, we can assume that we have an isogeny from
G to a semisimple Levi factor @?. In particular, we have an action 6fon S and a surjective
homomorphisny : S x G — P with finite kernel. Using/, we can consider arf?-module,
and hence ang-module, as @& x G-module.

Furthermore, we can clearly assume that the homomorphismP — G takes the
Borel subgroup to the Borel subgroug, which is the image irG of B and the maximal
torus7 to the maximal torug’, which is the image ifG of 7. We can also assume that under
the homomorphisny : S x G — P, T is mapped td/. So we can identify the chosen base
A of the root system of; with a subset oAg.

We setH equal to the preimage undef of the subgroug of G.

Let us consider now the wonderful compactificatiérof G/H and define

X=GxpX.

We want to make a study of some of the propertiestofThis study is in fact essentially
identical to that ofX. First of all, notice that, since we have an obvigusquivariant fibration

p:X—>G/P

with fiber X, we immediately deduce that &torbits in X’ are of the formg xp Z, Z being

a G-orbit in X. This gives a codimension preserving bijection betwgeorbits in X and
G-orbits in X with the property that, sincg/P is projective, ifZ is a G-orbit in X, then
G xp Z = G xp Z. In particular, each orbit closure it/ is smooth. The complement of
the open orbit, which is isomorphic /H, is a divisorD with normal crossings and smooth
irreducible component®;,i =1, ..., 1, each of which is the closure ofzorbit.

Furthermore, each orbit closure it is the transversal intersection of those among the
D;’s which contain it. Finally X contains a unique closed ormleD,- which is isomorphic
toG xp G/P ~ G/Q, where@ is the minimal parabolic subgroup gfcontaining3 such
thatoNGg = P.

We are now going to determine the Picard groupgtofRecall that, by Proposition 1.2,
the homomorphisni* : Pic(X) — Pic(G/P) induced by the inclusion: G/P — X as the
closed orbit, is injective. Consider now the inclusipn G/Q < X as the closed orbit and
the inclusiom: : G/ P — G/Q as the fiber orP of the fibrationG/Q — G/P. We have

PropPOSITION 3.1. Thehomomorphism j* : Pic(X) — Pic(G/Q) isinjectiveand has
the lattice (2*)~(i*(Pic(X))) asimage.

Now, having computed the Picard groupAf we can pass to analyze the space of sections
of a line bundle onY'. Notice that we have an injective map: A — Ag corresponding
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to the inclusionA C Ag and a surjective map : Ag — A defined by the restriction of
the characters df to 7. Using this last map, we can express the Picard group &a&'Pic
r~L(Pic(X)), identifying Pid X) with a subset ofA. We can further define the elemepis=
k(a;)fori=1,...,1.

PROPOSITION 3.2. Let A € Pic(X) and L, the corresponding line bundleon X'. Then
the restriction map
(X, L) > I'(G/Q, L)
issurjective.
Once the above result has been established, the following propertigsaoé proven
exactly as in [7]. The first one is

PropPoOsITION 3.3. We can order the divisors D;, i = 1,...,[ in such a way that,
under the above identification, the classin Pic(X') of O(D;) is fi.

Let us now choose for each= 1, ...,I, a non zero section € I'(X, Lﬁ;,_) whose set
of zeros isD;. Consider the ring

A= P rw.Ly.

rePic(X)
Given sequencds= (h1, ..., h;) andk = (k1, ..., k;) of non negative integers, we shall say
thatk > hif k; > h; foreachi = 1,...,l and seth| = hy + --- + h;. If we now fix such a
sequencé, we set4, (1) equal to the image of the map

(X, L )= ['(X, L))

A= hi i
given by multiplication byt’f1 . «-tl’”. Clearly, Ac(A) € A,(») ifand only if & > 1 and
D;.cpiax) An(2) is the ideal generated bﬁl e t[”.
THEOREM 3.4. (1) For each A € Pic(X),
An()/ Y A
k>h
isisomorphic, asa G-module, to I'(G/B, LFZ- h,-B;)' In particular, as a G-module, we have
an isomorphism
r.Ly=~ @ rG/B.L, x4
(hy,....h1)
(2) Ifweset
C= P ra/s Ly

LePiC(X)

Ai = @ AE(X)ZZIJ}_I1~~I;”A,

|h|=i,1ePic(X) |h|=i

and
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then the associated graded ring
GrA = @Az’/Az’H

i>0
isisomorphic to the polynomial ring Clx1, ..., x;], wherefor j = 1,...,1, x; istheimage of
thet; in. A/ A».
(3) Let A € Pic(X) be a dominant weight. Then the ring

A =@ r, L)

n>0

isnormal with rational singularities.
As a consequence of the surjectivity of the multiplication map% efe have
PROPOSITION 3.5. Let A, u € Pic(X) N A*g‘. Then the multiplication map
I'(X, L) @ I'(X, L) = I'(X, Lyyy)
is surjective.

We are now going to use the propertiestto study certain orbit closures. Let us take
a representatio of G and a non zero vectar e M which, as we can suppose without loss
of generality, span8f as aG-module. The assumptions we are going to make are

ASSUMPTIONS 3.6. (1) Thereis a charactgr: H — k* such thativ = x (h)v for
allh e H.
(2) LetWw c M betheG-module spanned by. ThenW has a highest weight vector.

Let us now make some considerations. By assumption (1) the subgfong fixes[v], so
that the orbit mag — ¢ - [v] factors through the ma@ — G/H. Moreover, since in an
irreducible representation the line fixed Hyis unique, the decomposition &f in irreducible
modules is multiplicity free. Thus, we get @hequivariant inclusion of the vector spadé
into the coordinate ring[G/H]. In particular, using assumption (2), we deduce that there is
adominant.” € Pic(X) and a subse®’ c X ()') containingl’, such that, as &-module,

W ~ @ VM/'

ne®’

Also, by Assumption (1), we have that preserves the line spanned fyso thatW is stable
under the action oP andW ¢ MY, wherel/ is the unipotent radical ifP. Sincev spans
M as aG-module, we deduce that inde®d = MY. Since theg-moduleM is irreducible if
and only if theG-moduleM is irreducible, using our description of Rit), we deduce that
there is a subse® C Pic(X) mapped bijectively ont®’ by the map- : Pic(X) — Pic(X)
such that, as g-module,

M~ M,.

HE®
Let) € © be the unique element mappedidy r. Given a dominant’ = 1" — Y a;a;, we
setp(u') = A — Y a; B;. Notice that the se® (1) of all p (1) for i as above, coincides with
the set of highest weights of the irreducible components oftheodulel” (X, Ly).
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DEFINITION 3.7. The varietyX(®) is the cone over the orbi - v, i.e., lettingG,,
act onM by homotheties, we define

X(@)=(G xGp)-v.
In the following theorem we summarize the properties of the variefi@s).

THEOREM 3.8. (1) ® = p(®'). Inparticular, ® C O(A).

(2) Thevariety X () depends, up to isomorphism of G-varieties, only on ® and not
on the choice of a specific vector v satisfying Assumptions 3.6.

(3) Thevariety X () isnormal with rational singularitiesif and only if ® = @ (1).

(4) Forageneral ® C ®(1), X(O (1)) isthe normalization of X'(®). In particular,
X ({A}) isnormal if and only if " is minuscule for the restricted root system.

The theorem above can be extended as follows. SupfoseG1 x G2 x -+ x Gy,
with involutiono = o1 x 02 x --- x 0,. Let M1, ..., M, beG-modules and letq, ..., v,
be vectors withy; € M; each of which satisfying Assumptions 3.6. Assume further that for
eachi =1,...,nandj # i, G; fixesv;. By what we have already seen, for eaclV; is a
highest weight module of highest weight and we get a subsgt € ®; c Pic(X) such that
M; ~ @Me@i M,,;. Denote byV the subspace i = M1 @ - - - @& M,, spanned by the vectors
V1, ..., ;. We now define¥(©4, ..., ©,) as the closure af - V C M. One then obtains

THEOREM 3.9. (1) Thevariety X(©1, ..., ©,) isnormal withrational singularities
ifandonlyif ®; = ®@(};) foreachi = 1,...,n.

(2) For a general sequence @1, ..., ®, with ®; C @ (A;), the normalization of the
variety X(01,...,0,) is given by X(®(11),...,0(,)). In particular the variety
X ({11}, ..., {A,}) isnormal if and only if A} is minuscule for the restricted root system of
(Gj,o;)foreachi =1,...,n.

4. Examples. Inthis Section we are going to illustrate a number of examples of vari-
eties of the formX' (©®).

ExXAmMPLE 4.1. LetO< &k < n beintegers, tak6 = SL(n) and letP be the parabolic
of G whose Levi factor has semisimple pétt= SL(h) x SL(n — k). Consider the involution
o(A,B) = ‘A1, B) onG, whose fixed point subgroui in G is clearly SQh) x SL(n —h).
In theG moduleVa,, of n x n symmetric matrices, take the matrix

_(1In O
u-(5 9)

Denote byO,, the orbit ofM under the action of; x G,, (with G,, acting by homotheties).
Consider theG equivariant morphism\" : Va,, — V2, mapping each matrix to its-
exterior power.

Remark that the closure oR"(0,) is the varietyX' ({2w,}). We can now apply our
Theorem 3.8 and conclude that this variety is normal, simge2minuscule for the restricted
root system ob.
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Now letX = (x; j)1<i, j<n With x; ; = x;; be a symmetric matrix of indeterminate. In
the polynomial ringS = K|[x; ;1;,; consider the subrin§, generated by the determinants of
ther xr minors ofX. Let ;1 be the ideal generated by the determinants ofRel) x (h+1)
minors ofX and denote by, , the image ofS, modulo/;,1. Our construction clearly implies
thatsS, j is the coordinate ring ok’ ({2w,}), hence itis an integrally closed domain (recall that
the ideall, 1 is prime [6]) with rational singularities. A similar statement holds for non
symmetric matrices (see [2]).

In particular, ifr = 1, we obtain a (very complicated) proof of the normality of the
determinantal varieties for symmetric matrices.

ExAMPLE 4.2. In a similar fashion, using the symplectic involution instead of the
orthogonal involution, we get the following result, the details of whose proof we leave to the
reader.

Let X = (x;j)1<i,j<n With x; ; = —x;; be a antisymmetric matrix of indeterminates.
In the polynomial ringS = K[x; ;1;,; consider the subring, generated by the pfaffians of
sizes 2 x 2r of principal minors ofX. Let I;,;1 be the ideal generated by the pfaffians of the
2(h 4+ 1) x 2(h 4 1) principal minors ofX and denote by, ; the image ofS, modulo7;1.
Then the ringsS; j, is an integrally closed domain (also in this case whigtg is a prime ideal
[6]) with rational singularities.

In particular, forr = 1 we get the normality of the pfaffian varieties for antisymmetric
matrices.

ExamMpLE 4.3. Consider the vector spacenok n symmetric matrices of trace 0. This
is the representation &§O(n) = {A|A’A = |, detA = 1} of highest weight @;. Take the

matrix
_((n—=h)l, 0
My = < 0 _hln—h) ’

The stabilizerH of this matrix is isogenous t8O (k) x SO(n — h). It follows thatH is the
subgroup fixed by the involution given by conjugation with the matrix

(0
=6 )

The closurey), of the orbit of the matrixM, under the action oz x G,, is our variety
X ({2w1}).

If » = 1, the restricted root system is of type and the Picard group is generateddyy
so that 21 is not minuscule. Henckg; is not normal.

If 1 < h < |n/2], the restricted root system is of tyBg and@; = 2w1 but@; is not
minuscule for the restricted root system. Hence also in this Eagenot normal.

If h = n/2 (son is even), the restricted root system is of typg @1 = 2w1 anda; is
minuscule for the restricted root system. Helige is normal.

ExaMPLE 4.4. We can apply our theory to the study of the normality of the closure
of nilpotent orbits of height equal to 2 as Domingo Luna pointed out to us.
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LetG be a simple algebraic group over an algétaty closed field of characteristic zero
and let® be its Lie algebra. LeD be a nilpotent adjoint orbit, let € O be a non zero element
and consider agl(2)-triple (e, k, f). Choose a maximal toral subalgel¥af & containing
h and a Borel subalgebfs containing® ande. Letas, ap, ... be the simple roots defined
by the choice off and®s.

The numbersg (h), az2(h), ... uniquely determine the orbi®, moreover they are non-
negative integer numbers less or equal to 2. d_be the highest root for the chosen simple
system and define the height©fas height©O) = 6(h). The height does not depend on the
various choices we have made (see [4]); furtherm®¥és spherical (i.e., it has a dense orbit
under a Borel subgroup @) if and only if height©) < 3 (see [13]). (Notice that this last
condition is equivalent to say thék is {0} or it has height equal to 2 or to 3, see again [4].)

Assume for now on that heigit?) = 2. Forn € Zlet®, = {x € & | [h, x] = nx}
and notice that, being semisimple and(h) = 2, we have® = @_,_,_,8,. LetP
be the parabolic subalgeb@,_, ., ®, and notice thatl = &g is a Levi factor of P and
i = &1 @ B, is the nilpotent radical of3. Call P, £ andi/ the subgroups of whose Lie
algebras are respectively, £ andyl. LetG = £/Z(£) and letG be the simply connected
cover ofG: we have a morphism fror@ onto the derived subgrouy of £. In particular, we
regard each representation®s a representation 6f and we identify the Lie algebrgof
G with £’ through this morphism.

Consider the morphistfiL(2) — G induced by thel((2)-triple (e, h, f) and the image
w in G of the elemen f’l })) € SL(2). Observe thatv defines an involution of and this
induces an involutios of G and ofG. We denote byd the normalizer inG of the subgroup
of o-fixed points. We want to apply the discussion of Section 3 to deduce the following result
originallly proved in [12],

PrRoOPOSITION 4.5. If O isanilpotent adjoint orbit of height 2, then the closure of O
isnormal.

ProoOF. We want to apply Theorem 3.8 to the grodpthe parabolicP, the module
M = & and the vecton = e (using the notation of the previous Section 3). As in the
preliminary discussion of that Theorem we raleck that Assumptions 3.6 are verified for
such choices. Next we will show that({6}) = O and thatd is a sphericab-minuscule
weight and conclude the proof.

In order to show that Assumptions 3.6 are verified, we denotethg line spanned by
and claim that:

(i) &2 isanirreducible representation 6fof highest weight;

(i) [t e]=0;
@iy zZWL)-r=r;
vy H-r=r.

Indeed, (ii), (iii) and (iv) imply Assumption 3.6 (1), while (i) implies Assumption 3.6 (2).
We begin provingZ o (¢) = £°. The decomposition of th&Z (2)-module®_> ® £ @ &2
into isotypical components is given By ® &2) & Za(e), whereV is the three-dimensional
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SL(2)-module, andb,; andZ¢(e) are considered as trividlL (2)-module. Now letVp be the
zero weight space of and notice thatv acts by multiplication by-1 on Vp. So we have a
o-equivariant morphisnt >~ (Vo ® &2) & Ze(e). Hence we concludg® = Zga(e) proving
our claim.

So, in particular, the Lie algebfa= [£, £]° of H commutes witle.

Now notice that{®,;, &;] C &;,;. From this we derive at once (ii) and also that any
highest weight vector foG in &; is also a highest weight vector fgr. This shows that
&2 hasxy (the root vector of weigh®) as its unique highest weight vector. Herg is a
spherical (irreduciblez-representation, and (i) and (iv) follow.

Now also (iii) follows, since the vector fixed by is unique up to scalar&> being
irreducible) andZ (L) commutes withy. This finishes the proof that the Assumptions 3.6 are
fulfilled.

Notice that the orbitD = G - ¢ is already a cone, sindé, ¢] = 2¢, and it is now
clear that its closure i&'({6}), using the notation of the previous Section. So we are now
in a position to apply Theorem 3.8, and the normalityfollows once we show that the
sphericalG-representatio®; is o-minuscule.

We choose the set of positive roots fpwith torusT N g according to the BordB of G.

Suppose now thab, has a vector, not multiple ofy, which is also a dominant weight
vector with respect tg. We can assume that it is a root vectgr Notice that, sinceg € &,
we have obtaine@ by subtracting fromd simple roots in the root system gf Sog is
dominant also fo®.

In particular, ifg is simply laced, this is not possible, and hertegis minuscule as a
g-module, which is alse -minuscule.

If g is not simply laced, then this forcg®s = 6 the highest short root fog. Also,
the support ob — @ (i.e., the set of simple roots appearing with nonzero coefficient in the
expression ob — § as a sum of simple roots) is contained in the root syster. ofVe
conclude now by analyzing the remaining possibilities (we use the numbering convention as
in Bourbaki [1]):

CaseB;,/ > 3: Wehaved — 0 = az + --- + a7, andf = w1. Sog is the semisimple
part of the Levi factor whose root system is generatedfy. .., oy and &3 is the trivial
representation.

CaseC;, I > 2: We haved — 6 = a3 andd = 2w;. In this casey is the semisimple
part of a Levi factor whose root system contaifis In particular,g need not to be simple but
certainly the rooty; is contained in a factar; of typeA of the Lie algebra: i.e.,g = g1 g2
with g1 simple and of typé\.. Notice now that, being the highest weight®j equal to 21, g»
acts trivially on®,. In particular, sinceZy(e) = g%, the involution leaves this part fixed and
&, is a spherical representation of weight2f g1. Finally, for groups of type there is only
one involution that has the representation of highest weightias a spherical representation
and this is the orthogonal involution for whiclv2 is ao-minuscule spherical weight.

CaseF4: We haved — 0 = a1 + ap + a3 andf = w;. Sog is the semisimple part of
the Levi factor whose root system is generatedbywz, a3. Hence®s; is the representation
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of highest weighto; of a groups of typd3: a minuscule representation and in particular a
o-minuscule representation.
Case G: We would haved — 6 = a1 + ap and sog = &, which is not possible. O

REMARK 4.6. We can complete the analysis of the proof given above by describing
for each nilpotent orbit of height 2 the associated involution.

This is easily done as follows. From the Dynkin-Kostant diagram we deduce the Levi
factor £ and from the expression éfwe deduce which representation is the spherical repre-
sentation,. Now from the classification of the involutions, it is easy to see that in each case
there is only one involution that has the representatioras a faithful spherical representa-
tion. (With being faithful here we mean that the stabilizer of the spherical vedto; is
exactlyh and not bigger.) We have to make this remark because the Levi factor is in general
not simple.

We list in the table below the result of this dysis. For each nilpotent orbit of height 2
we report the Lie algebr&, the module®, and two diagrams: the first is the Dynkin-Kostant
diagram and the second one is the Satake diagram of the invotutiory. For the classical
cases we give also the partition related to the nilpotent orbit.

11 sl +0,1>1: &, ~Endk), 7 = 12"

0—+—0—1—0— —0—1—0——_0
1 r r+l 2r+1-1
o—...— O e —. .. ° 0O —..— O
1 r—1 r+1 r+l—1 r+l+1 2r+1—-1

T—
1.2) sl@2r) : o ~EndK), 7 =2"
0—  —0——2——0— - —0
1 r 2r—1

o—-...— O O —...— O

1 r—1 r+1 2r—1
\—/M
@21 spRer+1),1>1: &y~ S2K), 7 =122
0—  —0—1—0— - —10=0
1 r r+l

o—...— O o —..—ek o
1 r—1 r+1 r+l

(2.2) sp(2r) : By~ S2K), w=2"

0—  —0<=2
1 r

o—-...— O

1 r—1
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(31 s0(2+3),1>2: &y~kdtl 5 —1231

2-0—0——0>0

I+1
oO—eo— .- —o0=> ®
2 I+1

(32) so(dr+2+1) : By~ AKY, x =124+10%

0—0—0—-—0—0—0—1—0——0> 0
1 2r 2r+l

&—o0—e— - -—e—0—_ @

o —.. = e
2r—1 2r+1 2r+1

(4.1) s0(2 +4) : By~ k¥+2 g =124+13L

0
2-0—0—0— —b-0
[ ]

oO—e—eo—: - -—e—@
(4.2) so(dr+2),1>2: By~ A%KY, 7 =142%
0
0—0—0——0—0—1—0— '—Fo

o—o—e— - —0— © e — ..—e—e

2r—1 2r+1
(4.3) s0(dr+2) : &~ Ak, 7 =1%2%
1

0—0—0—+—0—b1

O—O—e@ 0@

613
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(4.4) s0(dr) : By~ A%KY 71 = (2!

2
000000
OO0 @ - @ O0—e@

(45) s0(dr) : By~ A%KY 1 = (22H!1
0

0—0—0——0—b—2
[

e—O0—e@ - —@ O

(5) Eg: Gy~ KB
0

1—0——0—1

(6.1) E7: ®,~ki0

0
0—0—b—0-1-0

o—e—e—e [}

6.2) E7: ®p~k%’
0

00002

O—e—e—e—O
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(7) Eg: &, ~ki4

o—e=>e

We hope that it is possible to develop a similar approach also for the nilpotent orbits of
height equal to 3. In this case symmetric varieties should be replaced with a more general
class of spherical varieties.
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