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Abstract. We find and study a two-parameter family of coupled Painlevé Il systems in

dimension four, which can be obtained by a degeneration from the systems (Af(ﬁpé'hese
systems are compared with other types of coupled Painlevé Il systems from the viewpoint of
the local index. We also give the phase spaces for these systems.

1. Introduction. The confluence process in certain phase spaces of Painlevé systems
was described as deformations of manifoly Takano [9] in 2001. Preceding this, in 1998,
Noumi and Yamada [3] introduced the systems of tyﬁé? which can be considered as
a 4-parameter family of fourth-order coupled Painlevé IV systems in dimension 4, whose
Hamiltonians are given as follows:

H=xy(2y —x—2t) —2p1y — Pox + zw(Rw — z — 2t) — 2B3w — Paz + 4yzw
=Hiv(x,y,t; B1, B2) + Hiy (z, w, t; B3, Ba) +4yzw.

Herex, y, z andw denote unknown complex variables, afd B2, B3 and 4 are complex
parameters. In the present work, using a similar approach to the work of Noumi-Yamada, and
using a similar method to that of Takano, we extend the Painlevé Il systems to fourth-order
systems.

To accomplish this, we use the notion of accessible singularities clearly defined by
Kimura and Saito (see [1, 5, 7]). It is well-known that the fourth Painlevé equ#iprhas
a confluence to the second Painlevé equalipn where two accessible singularities come
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together into a single singularity (see Figure 1). This suggests that there might exist a pro-
cedure for seeking higher order versions of Painlevé Il, by using Takano’s description of the
confluence process fro®yy to P;; for the coordinate systents, y) and(z, w), respectively.

We take this approach in this work in order to find a fourth-order version of the Painlevé I
equation. The purpose of this paper is to present a 2-parameter family of fourth-order alge-
braic ordinary differential equations which cha considered as coupled Painlevé Il systems

in dimension 4, and are given by

— = —x w— =,
dr Y 2
d
£ =2xy+ai,

1) dt
dZ 2+ + t
L w— =,
dt ¢ Y 2
dw
E_Zzw+ot2.

Herex, y, z andw denote unknown complex variables, andandwz are complex parameters.
Our differential system is equivalent to a Hamiltonian system given by

HoL (2! LU (24 +
== - —|y—oax+ — — —Jw—« w
2 2)7 T T T2 2y

=Hii(x,y,t;01) + Hip(z, w, t; o2) + yw.

ReEmMARK 1.1. Kinji Kimura informed the present author that he obtained coupled
Painlevé Il systems in dimension 2n involving the system (1) by certain reduction of the
Drinfeld-Sokolov hierarchy.

From the viewpoint of symmetry, it is worthwhile to point out the following

THEOREM 1.2. Thesystem (1) isinvariant under the transformations so, s1, s2 and
defined as follows:

so: (x,y,z,w,t; ao, o1, 2) —

(x, y—200/(x—2), 2, w+200/ (x —2), t; —0t0, @1+ 2000, ct2+2010) ,

s1:(x,y,z,w, t; 0o, a1, 02) > (x +a1/y,y,2, w, t; 0o + o1, —a1, @2) ,

s2:(x,y,z, w, t; 00, @1, @2) — (x,y,2+a2/w, w, t; ap + oz, a1, —a2) ,

(X, y, 2z, w, oo, o1, 02) = (2, w, X, Y, 15 ag, 02, A1) -
Here the parameters ag, a1, a2 satisfy the following relation:

200+ a1 +ax=1.

After we obtained the transformations given in Theorem 1.2, Yamada [10] pointed out
the following
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THEOREM 1.3. Thetransformationsdescribed in Theorem 1.1 define a representation
of the affine Weyl group of type Cél) , that is, they satisfy the following relations:

2_2_ 2 2 2 4 4
so=s1=s=n"=1, (s152)° =1, (s150)" = (s5250)" = 1, 7(s0, 51, 52) = (50, 52, 51)7T .

Moreover, for the system (1), Kimura showed the following
THEOREM 1.4. The system (1) hasthe following first integral | :
I = —o1xw + a1zw + apxy — apyz — xzyw + 2xyzw — yzzw .

Theorems 1.2, 1.3 and 1.4 can be checked by a direct calculation.
We regard the system (1) as an algebraic vector fieldfined orC* x B:
a dx 0 dy d dzo dw 0

+__7 (-xsy1Z,w,t)€C4XB

V= T arox Taray Tare: T d ow

with B = C. If we take a relative compactificatid?* x B of C* x B, the extended vector
field v satisfies the condition:

i € HO(P*, Opa(—logH)(H)) .

Here™ is the boundary divisor i?* and Op4(—logH)(H) is the subsheaf ab,4 whose
local sectiorw satisfiesu(f) € (f) for any local equatiory of H. Let us extend the regular
vector fieldv on C* x B to a rational vector field on P* x B. Then? has poles along
the boundary divisof{. Moreover,v has accessible singularities along subvarieties in the
boundary divisorH. (For the definition of accessible singularities, see Definition 3.1.) In
order to explain our main results, we recall the definition of a symplectic transformation and
its properties (see [2]). Let
p:x=xX,Y,Z,W,t), y=yX,Y,Z,W,t), z=z(X,Y,Z,W,1),
w=wlX,Y,Z,W,t), t=t
be a biholomorphic mapping from a domdnin C°>(X,Y,Z,W,1) intoC°> (x, V,Z, W, ).
We say that the mapping is symplectic if
dx Ndy+dzndw=dX NdY +dZ NdW ,

wherer is considered as a constant or a parameter, namely, if, forg, ¢, = ¢ |i= IS
a symplectic mapping from thg-sectionD;, of D to ¢(D,,). Suppose that the mapping is
symplectic. Then any Hamiltonian system

dx/dt = 0H/dy, dy/di=—0H/dx, dz/dt=03H/ow, dw/dt=—3H]/oz
is transformed to
dX/dt = 9K /oY, dY/dt=—0K/dX, dZ/di=093K/oW, dW/di=—0dK/dZ,
where

(A) dxndy+dzndw—dHANdt =dX NdY +dZ NdW —dK Adt.
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Heret is considered as a variable. By this equation, the funckois determined byH
uniquely modulo functions of, namely, modulo functions independentXfY, Z and W.
Regarding the vector fieldin (1), we obtain the following

THEOREM 1.5. Thephasespace X’ over B = Cfor thevector field v in (1) isobtained
by gluing ten copies of C* x C:

UgxC=C*xC> (x,y,z,w,1),
UjxC=C4xC9(xj,yj,zj,wj,t), j=1,2,...,9,

via the following symplectic transformations:

1) xi=1/x, yp=—-x(xy+a1), z1 =2, w1 =w,

2) xo=x, 2=y, 22=1/z, wa=—zzw + a2),

3) x3 = x(1+(y+w—2x2—t)x—2w(z—x)—a1—a2), v3 = 1/x, z3 =
x%(z — x), wz=w/x?,

4) x4=7%(x—2), ya=y/2% z4=z(+(y+w—2z%—1)z=2y(x—2)—a1—0r2), wa =
1/z,

5) x5=1/x, ys = —x(xy + @1), z5 = 1/z, ws = —z(zw + a2),

6) x6=—((x —2)y —2a0)y, y6 = 1/y, 26 =2, wg = w + Y,

7 x7=xA+G+w —2x2—t)x+2(xw —zw — o) — a1 + a2), y7 = 1/x,
27 = 81/{x%(x — )}, w7 = {x%(x — ) (xw — zw — &2)}/81,

8) xg =81/{z%(z — )}, y8 = {z%z —x)(yz —xy —a1)}/8L zg = z(1+ (y + w —
22—z + 2(yz —xy —a1) + a1 —a2), wg=1/z,

9) xg = {x(xy + a1)(x%y — 200z — xyz + a1x — @12)}/z, yo = —1/{x(xy + a1)},

z9=1/z, wg = —x2y — 72w — a1x — a2z,

Since every coordinate transformation is symplectic, the Hamiltionian sygtent/g x
C is also written as a Hamiltonian system in edéhx Cfor j = 1,2,...,9. By a direct
calculation, we can also verify

THEOREM 1.6. Ontheaffineopen set (x;, yi, zi, w;, ) € U; x B inTheorem 1.5 each
Hamiltonian H; on U; x B isexpressed as a polynomial in x;, y;, z;, w; and ¢, and satisfies
the following condition:

dx Ndy+dzAndw—dH ANdt =dx; ANdy; +dzi Ndw; —dH; N dt.

This paper is organized as follows. In Section 2, we study the relation between the

systems (1) and the systems of tyzp%). In Section 3, the notion of accessible singularity

and local index is reviewed. In Section 4, we compare the systems (1) with other types of
coupled Painlevé Il systems in dimension 4. In Section 5, Theorem 1.5 is proved by giving an
explicit birational transformation for each step. In the final section, we will prove Theorem

1.6.

The author thanks Professors K. Kimura, K. Takano, Y. Yamada and S. Yamada for
giving helpful suggestions and encouragement, Professor M. Noumi for making his notes

available and giving helpful advice, and Professor W. Rossman for checking English.
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2. Relation between the systems (1) and the systems of type Afll). As is well-
known, the degeneration froiyy to P;; is given by
1 —1+4&*T 1+ 262X eY
Pr=7% Pr=a1, t:4ﬁ83 =T sE o YT
Here the change of variables fram, y) to (X, Y) is symplectic. As the fourth-order analogue
of the above confluence process, we consider the following degeneration from the systems of
typeAEll) to the systems (1).

The systems of typﬂﬁll) are given as follows:

d
d—): = —x° 4+ dxy — 2x — 281 + 4zw,
dy _ 2
i —2y° 4+ 2xy + 2ty + B2,
dZ 2
o =% +4zw — 2tz — 283+ 4yz,
dw 2
i 2w+ 27w + 2tw + B4 — dyw.
The systems of typagl) are reduced to the systerly by putting
p 1 p P 1 P Lo T+ 4T
= — =, = B = —, = B =,
1= 7% 2 1 3= 76 4 2 /253
1+ 262 eY 1+ 2627 eW
x:i’ y:—’ Zzi’ U):—,
V2e3 V2 V2e3 V2

and taking the limit — 0.

3. Accessiblesingularities. Let us review the notion of accessible singularity in ac-
cordance with [5]. LeB be a connected open domainGrandz : W — B a smooth proper
holomorphic map. We assume thdtc W is a normal crossing divisor which is flat ovBr
Let us consider a rational vector fieldbn WV satisfying the condition

7€ HOW, O (= logH)(H)) .

Fixingto € B andP € W,,, we can take a local coordinate system, xo, .. ., x,) of Wi,
centered atP such thatHsmeoth can be defined by the local equatien = 0. Sincev €
HOOW, Oy (— log’H)(H)), we can write down the vector fielinear? = (0,0, ..., 0, 10)
as follows:

d a» o a, 0

U=E+ala—m+x—la—x2+“'+x—laxn.
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This vector field defines the following system of differential equations

dxq ( 9

— =a1(x1, x2, ..., X, 1),

dt "

dxz  ax(x1,x2,...,%,1)

dt o X1 ’
(2

dx,  ap(x1,x2,...,%n,1)

dt o X1 '
Herea;(x1,x2,...,x,,1), i = 1,2,...,n, are holomorphic functions defined neBr =
©,...,0,1).

DEFINITION 3.1. With the above notation, assume that the rational vectorield
)V satisfies the condition

7€ HOW, Ow(—logH)(H)) .
We say that has araccessible singularityat P = (0,0, ..., 0, ro) if

x1=0 and 0,0,...,0,70) =0 for everyi, 2<i <n.

If P € HsmoothiS NOt an accessible singularity, all sbans of the ordinary differential
equation passing through are vertical solutions, that is, the solutions are contained in the
fiber W, overr = 1o. If P € HsmoothiS an accessible singularity, there may be a solution of
(2) which passes through and goes into the interio®y — H of W.

Let us recall the notion of local index. When we construct the phase spaces of the higher
order Painlevé equations, an object, called the local index, is the key to determining when
we need to make a blowing-up of an accessilmgu@arity or a blowing-down to a minimal
phase space. In the case of equations of higher order with favorable properties, for example
the systems of typﬂﬁll) [3], the local index at the access#dingular point corresponds to the
set of orders that appears in the free parameters of formal solutions passing through that point

(8].
DEFINITION 3.2. Letwv be an algebraic vector field which is given by (2) and

(X, Y, Z, W) be aboundary coordinate system ineaghborhood of an accessible singularity
P =(0,0,0,0,t). Assume that the system is written as
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dX
—=a+ fiX,Y,Z,W,1),
dt

day bY+ fa(X,Y,Z,W,1)
dr X ’
dZ cZ+ f3(X,Y,Z,W,1)
dar X ’
dW  dW + fa(X, Y, Z, W, 1)
dr X

near the accessible singulari®; wherea, b, c andd are nonzero constants. We say that the
vector fieldv has thdocal index (a, b, ¢, d) at P if f1(X,Y, Z, W, t) is a polynomial which
vanishes aP = (0,0,0,0,¢) and f; (X, Y, Z, W, 1), i = 2,3, 4, are polynomials of order 2
inX,Y,Z, W.Heref; e C[X,Y,Z W,t]fori =1,2,3,4

REMARK 3.3. We are interested in the case with local inde» /a, c/a, d/a) € Z*.
If each component ofl, b/a, c/a, d/a) has the same sign, we may resolve the accessible
singularity by blowing-up finitely many times. However, when different signs appear, we
may need to both blow up and blow down.

4. Comparison of the systems (1) with other types of coupled Painlevé |l systems
in dimension four. It is known that certain reduction of the Drinfeld-Sokolov hierarchy
of type Cél) reduces to a fourth-order differential system with affine Weyl group symmetry
W(Cél)) [4]. This system is an autonomous ordinary differential equations for 5 unknown
functions fo, f1, f2, u1, u2 involving complex parametersy, a1, a2 satisfyingog + 201 +
az = —4, which are given as follows:

% = —2u1fo— o0,

% = (u1 —u2)f1—ai1,

% = 2uzf2 —az,

% =(M1+M2)Ml—¥,
% = —(u1 + u2)uz — fo;fl,

whereh’ = 0, fo+ 2f1 + fo = 4T + 2huiup. Setting the variables, y, z, w, r and the
nonzero parameter as
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we can obtain the following coupled Painlevé Il systems in dimension 4:

d.x 2 t
ar 3w— -,
o X"+ y+ow 2
d
dt

) y
o 243 -i—w—i
dr Z y 4’
dw
EZZZU)—FWZ

Here the Hamiltonian of this system is given as follows:
2 2
t t
H = y? - (xz—i-‘—l)y—alx—i-w? - (Z2+Z)w—azz+3yw
=Hi(x,y, t;01) + Hyp(z, w, t; a2) + 3yw .

From the viewpoint of the local index, there are the following differences between these
coupled Painlevé Il systems.

NOTATION 4.1. (X,Y,Z, W) = (y/x2—2,1/x,z/x, w/x).

Systems | Accessible singularities Type of local index
(1) (X,Y,Z,W)=1(0,0,1,0) (-4,-1,-3,+1)
(X,Y,Z,W)=1(0,0,-2,0) | (—4,-1,+3,-5
3) (X,Y,Z,W)=(0,0,2,0) (—4,-1,-5+3
(X,Y,Z,W)=1(0,0,-3,0) | (—=4,-1,45,-7)
Py x Py | (X,Y,Z,W)=(0,0,0,0) (—4,-1,-1,-1)

(X7 Ys Zs W) = (07 Oa _15 O)

(-4,-1,+1, -3

REMARK 4.2. The present author does not Wwnahether the accessible singular
points(X, Y, Z, W) = (0,0,2,0) and(X, Y, Z, W) = (0, 0, —3, 0) of the systems (3) can be
resolved or not.

5. Proof of Theorem 1.5. In this section, we will give an explicit resolution of ac-
cessible singularities of the systems (1) and will construct a family of phase spaces for the
systems. In the case of Painlevé equatiorscan obtain their phase spaces by adding sub-
spaces of codimension 1 to the original space. Hamen the case of fourth order differential
equations, we need to add codimension 2 subvarieties to the original space in addition to codi-
mension 1 subvarieties.

5.1. Accessible singularities of the systems (1). Pdie an accessible singular point
in the boundary divisoH and(X, Y, Z, W) a coordinate system centerediatwhere{X =
0} C 'H. Rewriting the systems in the local coordinate systémyY, Z, W), the right hand
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side of each differential equation has poles alahdf we resolve the accessible singulariy

and the right hand side of each differential etiprmbecomes holomorphic in the coordinate
system(X', Y, Z/,W') € U = C*% then we can use Cauchy’s existence and uniqueness
theorem of solutions. In order to consideraariily of phase spaces for the system (1), let us
take the compactificatioR* x B of C* x B. Moreover, we denote the boundary divisoPify

by H. Fixing the parameter;, consider the produé* x B and extend the regular vector field
onC*x B to arational vector field onP* x B. The following lemma shows that this rational
vector fieldv has six accessible singular ptd on the boundary diviséi x {t} C P4 x {1}

for eachr € B.

LEMMA 5.1. Therational vector field v has six accessible singular points

P ={(X;,Y:,Z;,W;) =(0,0,0,00} fori=123,4,

Ps={(X1,11,Z1, W) | Xa=Y1=W1=0,Z1 =1},
and
Ps ={(X3,Y3,2Z3, W3) | X3=Y3=273=0, W3 =—-1}.

Here, (X1, Y1, Z1, W1) = (I/x, y/x, z/x, w/x), (X2, Y2, Z2, W2) = (x/z,y/z,1/z, w/2),
(X3, Y3, Z3, W3) = (x/y,1/y,z/y, w/y) and (Xa, Ya, Za, Wa) = (x/w, y/w, z/w, 1/w)
arethe usual coordinate systems of P*.

PROOF. For the open subséf; := {(X1,Y1,Z1,W1) | X1 = 0} x B C P* x B
centered atPi, let us calculate the accessible siryupoints of the systems (1). By this
coordinate systerty;, in a neighborhood of; the system (1) is rewritten as follows:

FIGURE 2.
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dx
d—tl =1— XaW1 — X1Y1 +1X3/2,
Lol ynwi-v X1+1tX171/2,
7 X1 W1 —Y{ +a1X1+1X111/
dZ1  Z1(1-2Z
A2 222D Ly 2w YiZa— iXa/24 1X120)2,
dt X1
dwi  Wi(l+2Z
dtl = 1 X v — Wf —YiWi+ axXo +1tX1Wy/2.
1

By Definition 3.1, we obtain the following system:
X1=0, Y1=0, Zi(1—2Z1) =0, Wi(l+2Z1) =0.
By solving the above system, we obtain two solutions:
Pp:={(X1,Y1,Z1,W1) = (0,0,0,0)}, Ps:={(X1,Y1,Z1,W1) =(0,0,1,0)}.

For the other cases, the proofs are similar. |

REMARK 5.2. By the symmetryr : (x, y, z, w; a1, @2) — (z, w, x, y; a2, a1), it is
easy to see that(P1) = P2, 7w(P3) = Pa.

Now we are ready to prove Theorem 1.5.

5.2. Resolution of the accessible singular pagtnt In this subsection, we give an ex-
plicit resolution process for the accessible singular pBirity giving a convenient coordinate
system at each step.

By the following steps, we can resolve the accessible singular pgint

In a neighborhood o1, the system (1) is rewritten as

dX

d_;l =1—X1W1 — X1Y1 +1X3/2,

dY 3Y:

12 ywy— le +oa1X1+1X111/2,
dt X1

dzZ, 71 Z?
L Wiy — ZaWh — Y171 — 1 X1/2 4 1X171/2,
dt X1 X1

dw: W 2Z1 W
o A W2 W+ aaXa 4 (X Wa/2.
dt X1 X1

By Definition 3.2, the above system has local ind#x3, 1, 1) at the pointP;.
STeP 1. We blow up at the poing;:

Y1 Z W1
o1 o_Z4 oM

@ _
X = X1, s >
! 1. N X1 X1 X1
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In a neighborhood oPl(l) = {(x1 D, y1 D, 21D w1 Dy = (0,0, 0,0}, the system (1)
is rewritten as

dtllt( S + AP, 1@, 2P w @),
dydlt(l) = %(it) + f21 P, 31V, 21D w Dy
di;t(l) = f3(x1®, 31 P, 21D, w1 @),

du;lt(l) = fa1®, 1P, 21D, wa @),

wheref; 1D, y1 D, 21® w1 Dy € Clexa®, 1@, 21D, w D] fori = 1, 2, 3, 4. By Def-
inition 3.2, the above system has local indé&x2, 0, 0) at the pointPl(l).

STEP 2. We blow up along the surfadéx;®, y1 @, 21D wi D) | x@® = y@ =
0}

@
@ = x, @ @ _ N

C o= a@= @ @ @
X1

In a neighborhood oPl(z) = {(x19, 1@, 219 w1?@) = (0,0, 0, 0)}, the system (1)
is rewritten as

dxl(z)
T 1+ fs(x1?, 312,212, w1 @),
dn®  yn?+a @ @ @ . @
dii - q® + fe(x1 ™, y1'7, 207w ),
d11(2)
= f7x1@,31@,21@ w1 @),
dwl(z)
= fo(x1@, 1@, 21@ w1 @),

wheref; (x1@, y1@, 219, w1?) € C[1][x1@, y1@, 1@, w1@] fori = 5, 6, 7, 8. By Def-
inition 3.2, the above system has local indé&x1, 0, 0) at the pointPl(z).
STEP 3. We blow up along the surfadgx1®, y1@,21@, w1@) | y1@ + 1 =
x®@ = 0}:
@ 4
x®@ =@ @_Y Tn @

X1

We have resolved the accessible singular pBint
By choosing a new coordinate system as
(1, y1, 21, w1) = 1@, =31®, 219, w1 @) |

we can obtain the coordinate systém, y1, z1, w1) in the description oft’ given in Theorem
1.5.
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FIGURE 3. P2-flop.

5.3. Resolution of the accessible singular pdtet In this subsection, we give an ex-
plicit resolution process for the accessible singular pBitbty giving a convenient coordinate
system at each step.

By the following steps, we can resolve the accessible singular pgirirst of all, we
take the coordinate systef(Xs, Y5, Zs, Ws) = (X1, Y1, Z1 — 1, W1)} centered afs.

STEP 1. We blow up along the curvgXs, Ys, Zs, Ws) | X5 = Y5 = Ws = 0} = PL:

Y W
@ _ @ _ 15 1 _— @_"s
X = X5, = —, =75, w = —.
5 5, 5 X 5 5 X
STEP 2. We blow down the 3-fold(x5®, y5s@, 25D, ws®) | x5 = 0} = P? x PL:
(1)
@2 _ . 2 _ D @ _ _* 2 _ (1)
X577 =X577, Y5 =)5", 25 T D1 w5 = w5 .

The resolution process from Step 1 to Step 2 is well-knowP?afop. In order to resolve
the accessible singular poifig and obtain a holomorphic coordinate system, we need to blow
down the 3-foldv; = P? x P! along theP!-fiber. After we blow down the 3-fold/;, we can
resolve the accessible singular pohstby only blowing-ups.

STEP 3. We blow up along the surfacééis@, y5@, 25, ws?@) | x5@ = y5@ =
0} and{(xs?, y5@, z5®, ws?) | ws? = z5@ = O}

@ _ 52
T 5@

ws®
T 5@

(3]

x5® = 5@ | y5 @

5@ =75@  ws®

STEP 4. We blow up along the surfacéss®, 5@, 25 ws®) | x5@ = y5& —
a1 = 0} and{(x5®, y5®, 25, ws®) | ws® — ap = 25 = 0O}:

3 3
57 — o] ws™ —
5@ =x5®, 3@ = SR 3 5P =25%, ws® = a3
X5 Z5
We have resolved the accessible singular pBint
By choosing a new coordinate system as
(x5, 5, 25, ws) = (x5'Y, —y5@, 25, —ws™),

we can obtain the coordinate systéms, ys, z5, ws) in the description oft’ given in Theorem
1.5.
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5.4. Resolution of the accessible singular pdigit In this subsection, we give an ex-
plicit resolution process for the accessible singular pBiihy giving a convenient coordinate
system at each step.

By the following steps, we can resolve the accessible singular PginFEirst, we take
the coordinate systeitrg'?, y6©, 6@, we@) centered aPs.

STeEP 1. We blow up at the poinPe:

0 0
@ _ ¥ @ _ .0 @ _ 62

=5 Yo =6 % =g M- 2o
6@’ ’ 6@

y6©@
STEP 2. We blow up along the surfadgxs®, ye'V, 26, we®) | xg® — z6® =
@ — o
ye') = O}

X6

xp — 76

@ (€] (€]

x? = c 6@ =y, 6@ =2". we® =we.

v
STEP 3. We blow up along the surfadéxe®, y6, z6@, ws?) | x6@ — 209 =
v6® = 0):

@ x6® — 2a9
o e®?
We have resolved the accessible singular pBint

By choosing a new coordinate system as

(x6, ¥6, 26, we) = (—x6>, 612, 26, we®) ,

@ @ (@3]

X6 o 60 =96?, 6@ =22, we® =we?.

we can obtain the coordinate systeérs, ve, z6, we) in the description oft’ given in Theorem
1.5.

5.5. Resolution of the accessible singular pdigit In this subsection, we give an ex-
plicit resolution process for the accessible singular pBithy giving a convenient coordinate
system at each step.

By the following steps, we can resolve the accessible singular paint

STeEP 1. We blow up along the curvigXs, Y3, Z3, W3) | X3 = Y3 = Z3 = 0}:

Y3 Z3
3D =2, P ==
X3 X3

STEP 2. We blow up along the surfadéxz®, y3@, z3®, wz®) | yz@® = x3@ =

x3(l) = X3 ’ y w3(l) = W3 .

0}
@ _ x3? @ @ @ @) @
3T =gy, ¥y3T =3, 3T =37, w3t =wst.
y3
STEP 3. We blow up along the surfadéxz@, y3@, 23, w3®@) | x3@ = w3®@ =
0}
(@)
w3
3 =x3@ . 33® = 35@ 5@ = 7@ @ =
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STEP 4. We make a change of variables

1
3@ =—o ¥ =y 5@ =20 wy® =wz®.
P

This change of variables is necessary for making the transition functions in the description of
X symplectic [2]. Itis easy to see thattte are two accessible singular points
P3 = (3@, y3@, 23@ ., w3@) | x3@ + ws® = 2, y3® = 3@ = 0, 25@ = 1
and
Pr = (3@, 3@, 23@, wg®) | x3@ + w3® = 2, y3@ = wg® = 0, 73¥ = —2}

in the domain{(x3®@, y3@, z3®@, w3@) | y3® = 0} = C3,
STEP 5. We blow up along the surfa¢exs@, y3@, 3@, w3@) | yg® = 75 -1 =
0}:

4

@ _
@ @ el e @

6 _— o _
x3 =x3",  y3¥ =y3', 2@
STEP 6.  We blow up along the surfa¢erz®, y3®, 23, w3z®) | x3®@ +w3® -2 =
y3® =0k
o 13O +ws® — 2
3=
y3®
STEP 7. We blow up along the surfadgxz®, y3®, z3® w3®) | y3® = 736 =

o 339 =339, 239 =239 w3® =w3®.

0}:
(6)
23
23 =x3®, 330 =y3®, 230 = NGR w3 = ws®.
y3
STEP 8. We blow up along the surfadexs”, y3”, 23, w3™) | x3™@ = y3 =
0}:
(@)
x3
x3® = ol ¥3® = 330 23® = 3 wz® = 3P
STEP 9. We blow up along the surfadéxz®, y3®, 238 w3®) | y38 = 73® —
0}:
(8
23
539 = x3®, 3@ 2y ®, OB @ ®,
y3

STEP 10. We blow up along the surfadéxs®, y3®@, 23, w3®) | x3®@ — ¢ =
3 = oy
10 _ x3(9) —t
N ()
Y3

STEP 11. We blow up along the surfagers1?, 319, 7310 4510 | 4,10 —
X3(10) — 2z3(10)w3(l® +1—a1—ax =0}

o 3310 =339 2310 =50 g0 = @

X3(10) - 2z3(10)w3(10) +1—a1—oa2
)’3(10) Y

xa1D = 1D _ 1,00
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JNGCE NG IR

We have resolved the accessible singular pBint
By choosing a new coordinate system as

(x3, y3, 23, w3) = (13, yal™P, 23, w3h),

we can obtain the coordinate systeérg, ys, z3, w3) in the description oft’ given in Theorem
1.5.

5.6. Resolution of the accessible singular patat In this subsection, we give an
explicit resolution process for the accessible singular pBirgiven at Step 4 in 5.5 by giving
a convenient coordinate system at each step.

By the following steps, we can resolve the accessible singular pgint

STEP 1. We take the coordinate system centeregzat

PG NG NI C N S CL () B¢ D S S G D (0

STEP 2. We blow down the 3-fold (x7, y7, 27D, w7D) | y;@ = 0} c P! x
1. pl.
P x P*:
)’7(1)17(1)
1=z M/3)°
Step 3. We make a change of variables

@ =D @D =@ S C

¥ =P ¥ =3P 7O =%+3y?, w® =w,®.

STEP 4. We blow up along the surfadéx7®, y7®, z7® w7®) | x7,® = 1, =
0}

@ _ x7®

@ — .3
X7 s YT U =YTT,
y7®

O N

STEP 5. We blow down the 3-fold (x7¥, y7®, z7®, w7®) | y7® = 0} c P! x
Pl x PL

() 4

7@ =@ 3@ =@ 5O = @@ @

79, w® =w¥.

STEP 6. We blow up along the surfadex7®, y7®, z7®, w7®) | x7® = y;® =
0}

© _ *7°

_ ® _ .6
X7 =, YT =Yyr,
y7®

7® = 2Oy ® — O

STEP 7. We blow down the 3-fold (x7©, y7®, z7® w7®) | y7;® = 0} c P! x
Pt x PL:

) ©®

7D =x79, 3D =3® 0 = 070 ®

7©,  wr'” =w®.
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STEP 8. We blow up along the surfacdéx7”, y7(7, 27 w7y | x7D — ¢ =
y7? = 0} and{(x7?, y7, 270, w7D) | 22D = w7() = O}:

(@) @)
x7v —1t wy
x7(8) — , y7(8) — y7(7) , Z7(8) — Z7(7) , w7(8) —

v L0

STEP 9. We blow up along the surfacgs7®, y7®, 27®  w7®) | x7® 4+ 18w7;® +
1— o1 — a2 = y7® =0} and{(x7®, y7®, 27®  w7®) | w7® — a2/9 = 27® = 0}:

© _ X7(8) + 18w7(8) +1—a1—a2

9 _ ,-®
x? ’ y? - )’7 ’
y7®
(€)]
w7'® —a/9
79 =%, w®= —-®
27
We have resolved the accessible singular p8int
By choosing a new coordinate system as
x7, y7, 27, w7) = (72, y72, 27, w7 @),

we can obtain the coordinate systém, y7, z7, wy) in the description oft’ given in Theorem
1.5.

5.7. Resolution of the accessible singular lo6ys By using the coordinate system
(x5, 5, z5, ws) given in Theorem 1.5, we will now make a coordinate system associated
with small meromorphic solution spaces (see [8]). First, we can take the coordinate sys-
tem (xs, ys, z5, ws) = (1/x, —x(xy + 1), 1/z, —z(zw + @2)). As a boundary coordinate
system of this systerxs, ys, z5, ws), we can take the coordinate systéRy, Yo, Zg, W) =
(x5 — z5, 1/ys, z5, ws + y5). It is easy to see that there is an accessible singular locus along
the surfaceSg = {(Xo, Y9, Zg, Wg) | X9 = Y9 = 0}. Now we blow up along the accessible
singularity So.

STeP 1. We blow up along the surfad¢€Xg, Yo, Zg, Wo) | X9 = Yo = O}:

Xo
xg'P = Yo o =Ye, 2P =27y, wo™ =Ws.

STEP 2. We blow up along the surfadéxg™®, yo, zg®, wg®) | xo® — 209 =
™ _ o
yoi/ =0}

@ xo® — 209
o= @
Y9

We have resolved the accessible singular lafys
By choosing a new coordinate system as

@ @ @

) y9(2) =9 19(2) =29 w9(2) =w9.

(x9, ¥9, 29, w9) = (—x9'?, yo?, 29@, wg?)) ,

we can obtain the coordinate systém, yg, zg, wg) in the description oft’ given in Theorem
1.5.
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5.8. Resolution of the remaining accessilsingular points. Each procedure is the
same as that given in the preceding sections 5.2 through 5.7, provided the variables and pa-
rametersy, y, z, w, a1, ap are replaced by the transformation

(X, )y, z, wi o, 02) B> (2w, x, Y0, 01) .
Each coordinate systetw;, y;, zj, w;) for j = 2, 4, 8 is explicitly given as follows:
(xj,yj.zj,wj) =m(xj_1,yj-1,2j-1, wj-1), j=2,4,8.
In Sections 5.2-5.8, we have resolved h# ficcessible singularities for the system (1),
thus completing the proof of Theorem 1.5.
6. Hamiltonian systems. In this section, using Equation (A) we prove Theorem 1.6.
The system (1) is written as a Hamiltonian system:
dx 9H dy 0H dz 0H dw  9H

dt 9y di  ox ' dt  ow’ o dt 9z

Here the Hamiltonian is given as follows:

H = y_Z_ <x2+£)y—a1x+w—2— (z2+£>w—azz+yw.

2 2 2 2
We list below the Hamiltonian for each coordinate systém y;, z;, w;) for i =

1,2,...,9.
The Hamiltonian Hy in U7. We obtain

Hy = %( — twy + w? + 2y1 + txZy1 — 2Zyqwy + x7yE — 225wy

+ ta1xg — 201x1w1 + 2011xfy1 + a%x% — 20221) ,
where
x1=1/x, yn=-x(y+ta), z1=z, wi=w.
The HamiltonianH1 and coordinate systes, y1, z1, w1) above satisfy the condition:
dxiAndyr+dzandwr —dHLANdt =dx Ady +dzAdw —dH Ndt.

The Hamiltonian Hz in Uz. We obtain

Hz = %(2@ — ty3+ ¥5 + tx3y5 — 2x3y3 + X33 + 2t yaz3wa — 4y5zaws + 4x3y3zaws
— 2y5z5ws + 4y3z3w3 + ra1ys — 201y3 + 201x3y5 + daryszaws + a2 ys
+ tapysz — 2a2y32, + 2052x3yé3 — 2a2y32,z3 + 4a2y§z3w3 + 2a1a2y§ + a%yg) ,
where
x3=x(L+(+w—2"—Dx —2wiz—-x)—a1—a), y3=1/x,

z3=x2(z —Xx), w3= w/xz.
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The HamiltonianH3 and coordinate systems, y3, z3, wa) above satisfy the condition:
dxzANdyz+dzzandwz—dHaAdt =dx ANdy +dzAdw —d(H +x) Adt.

The Hamiltonian Hs in Us. We obtain

1
Hs = §(2w5 + 2ys + tx§y5 + xéyg + tz§w5 + 2x§y5zgw5 + zéwé + tagxs + 2a1xgy5

+ 201x528ws + aExd + taazs + 202x5y525 + 20223ws + 201002x525 + €575) |
where
xs=1/x, ys=—-x(xy+oa1), zz=1/z, ws=—z(zw+a2).
The HamiltonianHs and coordinate systems, ys, z5, ws) above satisfy the condition:
dxs ANdys+dzs ANdws —dHs ANdt =dx ANdy +dz Adw —dH Adt.

The Hamiltonian Hg in Us. We obtain

1
Hg = E( — twe + wi — 8adye + Baoxey3 — 2xZyE — Baoze + 4xeyezs — 225we

— dagaye + 201x6Y3 — 20126 — 20226) ,
where
x6=—((x —2)y—200)y, y6=1/y, 6=z, we=w+y.

The HamiltonianHg and coordinate systes, ys, z6, wg) above satisfy the condition:
dxe Ndys +dze Ndwe —dHe ANdt =dx ANdy+dzAdw —dH ANdt.

The Hamiltonian H7 in U7. We obtain

1
H7 = §(2x7 — 1y7 4 y2 — 162y3w7 + tx7y2 — 2x7y3 + x2yF — 2ty727W07
+ 4y2z7w7 — Ax7ySz7wr + 4y222w? + tagyr — 201y2 + 201x7y3 — dary2z7wy

+ a%y% — tapy7 + 2a2y$ — 2a2x7y? + 4a2y$z7w7 — 2a1a2y$ + a%y?) ,
where

r=x(1+ 0+ w—22—Hx + 200w —zw —a2) —a1+a2), y7=1/x,
81 x2(x — 2)(xw — zw — )
= —a ", w7: .
x2(x — 2) 81

7

The HamiltonianH7 and coordinate systemy, y7, z7, w7) above satisfy the condition:

dx7 ANdy7+dzz ANdw7r —dH7 ANdt =dx Ady +dz ANdw —d(H + x) Adr.
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The Hamiltonian Hg in Ug. We obtain

where

2.2 4

1
Ho = = (2wg + 4ajtys + 160gy3 — daotxoys — 32018)69)@:,3 + txgyg + 2405x3yq

— 8(xoxg’yg + xgyg + doptzg + 32a8y9Z9 — 2tx9y9z9 — 4806(2)x9y§zg

+ 24a0x8y3z0 + 2x3y3z5wg + 160873 + 1woz3 + 8u3yeziwe — 16aoxoyozs
— 8agxgydziwe + 4x§y3z5 — 4x§vgze + Baoziwe — Axeyezawe + zgw}

+ 200ta1yg + 16agot1yg — talxgyg — 2401(2)a1x9yg + 12010011xgy§1 — 2a1xgyg
+ ta1zg + 24afa1yoze + 24001 xeysze + BarxEy§ze + Baper1 25

+ daoarr yoz3we — Aarxgyezs — 2u1xeyaziwg + 201z3we + dada?y?

— 4a0a%x9yg’ + a%xgyg + 40[00[%)1929 — Za%xgygzg + a%zé + taozg

+ 8adazygze — Batgaraxgydze + 2025 y3z9 + Batoaraz§ — Aaxeyezh

+ 2a2zgw9 + dagara2y9zg — 2a1a2x9ygzg + 2<xlot2zg29 + a%zg) ,

xo = {x(xy + @1)(x%y — 200z — xyz + a1x — @12)}/z, yo = —1/{x(xy + a1)},

z9=1/z, wg= —x2y — 72w — 01X — 027

The HamiltonianHg and coordinate systefo, yo, zo, wg) above satisfy the condition:

dxg ANdyg+dzgNdwg —dHoANdt =dx ANdy +dz ANdw —dH Adrt.

For the remaining cases= 2, 4, 8, each procedure is the same as above, provided the
variables and parametexsy, z, w, a1, a2 are replaced by the transformation

(X, y,z, wia1, 02) = (2, w, X,y @2, 01) .

Each Hamiltoniarf; for j = 2, 4, 8 is explicitly given as follows:

Hy = n(Hy), Hy=mn(H3), Hg =n(H7).

Collecting all the cases described in this section, we have obtained an expression of the
Hamiltonian of the system (1) for all the coordinate systems given in Theorem 1.5, which
proves Theorem 1.6.
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