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Abstract. The range of random walks means the number of distinct sites visited at least
once by the random walk. In two-or-more-dimensional cases, we established the law of large
numbers for the range of simple symmetric random walks under the conditional probability
given the event that the last point is the origin. Moreover we studied the large deviations in the
upward direction and obtained similar results to the original random walk.

Introduction. For a random walk the range at timen implies the number of distinct
points entered by the random walk in the firstn steps. Dvoretzky and Erdős [4] have inves-
tigated the law of large numbers for the range of simple random walks on a two-or-more-
dimensional integer lattice. They supplied the asymptotic behavior of the expectation and the
variance of the range at timen of the simple random walk to show its weak law of large
numbers. They also proved the strong law of large numbers. However, the proof has a gap in
the two-dimensional case, which was finally filled by Jain and Pruitt [12] under more general
situation.

The condition that the random walk moves in one step to the nearest-neighbor points
with the same probability is not necessary. Indeed, the same conclusions as those obtained by
Dvoretzky and Erd̋os can be proved under weaker assumptions (cf. Jain and Pruitt [12, 15],
Spitzer [21]). The small deviation results were studied under some suitable assumptions. The
central limit theorems are given in [11, 13, 15, 16, 18], the law of the iterated logarithms are
given in [2, 14] and almost sure invariance principles are given in [2, 6]. Moreover, several
results concerning large deviations are supplied in [3, 7–9].

In this article we study the weak law of large numbers and the large deviations in the
upward direction for the range at time 2n of the simple random walk, under the conditional
probability given the event that the random walk returns to the origin at time 2n. One might
guess that this condition has no effect on the behavior of the range of two-dimensional random
walks because of recurrence, while it has much influence for transient random walks. How-
ever, the conclusion in this paper shows that the range of the pinned random walk behaves
just like the range of the original random walk.
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The continuous analog of the range of a pinned random walk is the volume of the
Wiener sausage for a Brownian bridge. The expectation of the volume of the pinned Wiener
sausage was obtained by van den Berg and Bolthausen [1] in the two-dimensional case, and
by McGillivray [20] in three-or-more-dimensional cases. They concluded that the leading
term of the expectation of the volume of the pinned Wiener sausage is the same as that of the
(non-pinned) Wiener sausage. However, the law of large numbers and large deviations are not
discussed.

1. Preliminaries and notation. By a random walk{Sn}∞n=0 on thed-dimensional
integer latticeZd , we mean a sequence of random variables defined asS0 = 0 andSn =
X1 + X2 + · · · + Xn, where{Xn}∞n=1 is a sequence of independent identically distributed
random variables with values inZd . The simple random walk means a random walk such
thatP [X1 = x] = 1/2d if x ∈ Zd is a unit vector and 0 otherwise. Throughout this paper
we consider thed-dimensional simple random walk. Letγd be the probability that a random
walk never returns to the starting point. It is well known thatγd is strictly positive ifd � 3
and equal to 0 otherwise.

Since it will be convenient to regard the random walk as a Markov chain, we will use
some terminology of general Markov chains. Forx ∈ Zd let Px[ · ] denote the probability
measures of events related to the random walk starting atx. Whenx = 0, we simply write
P [ · ] instead ofP0[ · ]. Forn � 0 andx, y ∈ Zd the notationpn(x, y) meansPx [Sn = y].
Note thatpn(x, y) = pn(0, y − x). There is a positive constantA such that

pn(0, x) � An−d/2(1.1)

for all x ∈ Zd andn � 1 (cf. Spitzer [21]). Forx ∈ Zd let τx be the first hitting time ofx;
that is,τx = inf{n � 1; Sn = x}. If there are no positive integers withSn = x, thenτx = ∞.
The taboo probabilities are defined by

pnz (x, y) = Px [Sn = y, τz � n] ,
pnzw(x, y) = Px [Sn = y, τz � n, τw � n] .

We will useun for pn(0,0) andfn for pn0(0,0). If n is odd, bothun andfn are equal

to 0. Forx ∈ Zd let |x| = |x1| + · · · + |xd | and‖x‖ =
√
x2

1 + · · · + x2
d , wherexj is the

j th component ofx. If {an}∞n=1, {bn}∞n=1 and {cn}∞n=1 are sequences of real numbers such
that cn > 0 for n � 1, thenan = bn + O[cn] means that(an − bn)/cn remains bounded;
an = bn + o[cn] means that(an − bn)/cn converges to zero asn → ∞; an ∼ cn means that
an/cn converges to one asn → ∞, respectively.

It is well known that uniformly inx ∈ Zd

pn(0, x) = 2

(
d

2πn

)d/2
exp

(
− d‖x‖2

2n

)
+O

[
1

n1+d/2

]
(1.2)
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if n + |x| is even (cf. Lawler [17]). This is called the local central limit theorem.
An immediate conclusion of (1.2) is that

u2n = κdn
−d/2 +O[n−1−d/2] ,(1.3)

whereκd = 2(d/4π)d/2, which then implies

1

u2n
= nd/2

κd
+O[nd/2−1] .(1.4)

In particular, 1/u2n is bounded by a constant multiple ofnd/2. Another useful formula is that

um =
m−1∑
k=1

fkum−k + fm .(1.5)

Let rn = P0[τ0 > n] for n � 1. It was proved in Dvoretzky and Erdős [4] that

rn =




π

logn
+O

[
log logn

log2 n

]
if d = 2 ,

γd +O[n1−d/2] if d � 3 ,

(1.6)

where logα x stands for(logx)α for real numbersα andx > 0.
Lastly, we give a classification of random walks. LetΣ be the support ofX1. If the

smallest subgroup ofZd generated byΣ coincides withZd , the random walk is called adapted
(aperiodic in the sense of Spitzer [21]) andd is called the dimension of the random walk. The
period of the random walk is defined to be the greatest common division of the set of positive
integersn such thatP [Sn = 0] is positive. The random walk is called aperiodic (strongly
aperiodic in the sense of Spitzer [21]) if its period is 1 and is called periodic otherwise. An
equivalent criterion for aperiodicity is that the smallest subgroup generated byx+Σ coincides
with Zd for anyx ∈ Zd (see Spitzer [21]). We note that the simple random walk onZd is
adapted andd-dimensional but periodic, since its period is two.

Throughout this paper,C1, C2, . . . , C24 will denote suitable positive real constants.

2. Main results. For a positive integern let

Rn = |{S1, S2, . . . , Sn}| ,
where|A| denotes the cardinality of a setA. We callRn the range at timen of the random
walk or the range of the random walk up to timen. The asymptotic behavior of the expectation
of Rn was obtained by Dvoretzky and Erdős [4]. Their result shows that

ERn =




πn

logn
+O

[
n log logn

log2 n

]
if d = 2 ,

γ3n+O[n1/2] if d = 3 ,

γ4n+O[logn] if d = 4 ,

γdn+ cd +O[n2−d/2] if d � 5 ,
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for some suitable positive constantcd . The problem is to obtain the explicit order of the
second term for dimension four or lower. In the three- and four-dimensional cases we can
give it, however there are no further results in the two-dimensional case.

PROPOSITION 2.1. If d = 3,

ERn = γ3n+ 25/2γ 2
3 κ3n

1/2 +O

[
n1/2

logδ n

]

for any given δ > 0 and if d = 4,

ERn = γ4n+ 2γ 2
4 κ4 logn+O[1] .

If Var Rn = o[(ERn)2] is proved, we can obtain the weak law of large numbers with the
help of the Chebyshev inequality. Indeed, Dvoretzky and Erdős [4] showed that

VarRn =




O

[
n2 log logn

log3 n

]
if d = 2 ,

O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

One of our purposes in this paper is to establish the weak law of large numbers forR2n

for pinned simple random walks. Forn � 1 andy ∈ Zd such thatn+ |y| is even, let

Pn,y [ · ] = P [ · |Sn = y] .
For a random variableX we denote byEnX and Varn X the expectation and the variance of
X under the probability measureP2n,0, respectively. Namely,EnX meansE[X|S2n = 0] and
Varn X meansEn(X − EnX)

2. We can obtain the asymptotic behavior of the expectation of
R2n underP2n,0.

THEOREM 2.2. If d = 2,

EnR2n = 2πn

logn
+O

[
n log logn

log2 n

]
.(2.1)

If d = 3,

EnR2n = 2γ3n+O

[
n1/2

logδ n

]
(2.2)

for any δ > 0. If d = 4,

EnR2n = 2γ4n− 4γ 2
4 κ4 logn+O[1] .(2.3)

If d � 5,

EnR2n = 2γdn+O[1] .(2.4)
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It is remarkable that the second term ofEnR2n is small in comparison with that ofERn in
the three- and four-dimensional cases. Unfortunately, there are no further results concerning
the second term for other dimensional cases.

In order to show the weak law of large numbers forR2n underP2n,0, it suffices to calcu-
late the variance ofR2n.

THEOREM 2.3. We have

Varn R2n =




O

[
n2 log logn

log3 n

]
if d = 2 ,

O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

This theorem immediately leads to the following.

COROLLARY 2.4. We have

lim
n→∞P2n,0

[∣∣∣∣ logn

2n
R2n − π

∣∣∣∣ > ρn

(
log logn

logn

)1/2]
= 0 if d = 2 ,

lim
n→∞P2n,0

[∣∣∣∣R2n

2n
− γ3

∣∣∣∣ > ρnn
−1/4

]
= 0 if d = 3 ,

lim
n→∞P2n,0

[∣∣∣∣R2n

2n
− γ4

∣∣∣∣ > ρn

(
logn

n

)1/2]
= 0 if d = 4 ,

lim
n→∞P2n,0

[∣∣∣∣R2n

2n
− γd

∣∣∣∣ > ρnn
−1/2

]
= 0 if d � 5 ,

whenever the sequence {ρn}∞n=1 of real numbers satisfies that ρn → ∞ as n tends to infinity.

We remark that these asymptotic behaviors of VarRn were improved by Jain and Pruitt
[13, 15, 16]. For an adapted random walk they proved that there exists a positive constantσ

such that VarRn ∼ σ 2n if d � 4 andγd < 1, and that VarRn is asymptotically equal tonξ(n)
for some non-decreasing slowly varying functionξ if d = 3 andγd < 1. Moreover, they
showed that there exists a positive constant� such that VarRn ∼ �2n2/log4 n for the two-
dimensional random walk with zero mean and finite variance. However, we have no further
result for Varn R2n other than Theorem 2.3.

Another purpose of this paper is to show the large deviations forR2n underP2n,0 in
the upward direction. Hamana and Kesten [8] proved for a two-or-more-dimensional adapted
random walk that there exists

ψ(x) = − lim
n→∞

1

n
logP [Rn � xn]

for anyx ∈ R (butψ(x) may equal+∞) and thatψ has the following properties:
(1) ψ(x) = 0 for x � γd ;
(2) 0< ψ(x) < ∞ for γd < x � 1;
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(3) ψ(x) = ∞ for x > 1;
(4) ψ is continuous and convex on[0,1];
(5) ψ is strictly increasing on[γd,1].

For one-dimensional adapted random walks the same result was shown by Hamana and
Kesten [9] except for the convexity ofψ. It should be remarked that the definition ofRn is
|{S0, . . . , Sn−1}| in their paper, which is slightly different from that in this article.
However, we cannot find any difference in adopting either definition. Indeed,|{S0, . . . , Sn−1}|
is equal to|{Sn − S0, . . . , Sn − Sn−1}| and thus has the same distribution as|{S1, . . . , Sn}| by
considering the time reversed random walk or by relabelingXj asXn−j+1 for 1 � j � n. The
following theorem implies that the range of the pinned simple random walk satisfies the up-
ward large deviations and that the limiting function is the same as that of the original random
walk in two-or-more-dimensional cases.

THEOREM 2.5. If d � 2, then

ψ(x) = − lim
n→∞

1

2n
logP2n,0[R2n � 2xn] .(2.5)

It is not difficult to derive the following corollary from Theorem 2.5.

COROLLARY 2.6. Let {yn}∞n=1 be a sequence of points in Zd such that n+|yn| is even
and that |yn| = o[n]. If d � 2, then

ψ(x) = − lim
n→∞

1

n
logPn,yn[Rn � xn] .(2.6)

In the case thatx = 1, Hammersley [10] has already proved (2.5) and (2.6), and these
proofs are also supplied in Madras and Slade [19].

3. Proof of Proposition 2.1 and Theorem 2.2. For a calculation ofERn andEnR2n,
the estimate offn will play an important role. We first give an estimate offn for dimension 2
or higher. Ifd = 2, Jain and Pruitt [15] obtained that

fn ∼ 2π(detΞ)

n log2 n
(3.1)

for an aperiodic random walk with mean 0 and finite variance, whereΞ is the symmetric and
positive definite matrix such thatE(θ,X1)

2 = ‖Ξθ‖2 for θ ∈ R2 and( · , · ) is the standard
inner product onR2. We note that suchΞ is always defined for adapted random walks onZd

with mean 0 and finite variance, and a simple calculation shows that

Ξ = 1√
2

(
1 0
0 1

)
for the two-dimensional simple random walk.

Although the simple random walk is not aperiodic, we can apply (3.1) to obtain the
similar limiting behavior in the following fashion. Fork � 1, let

Yk = 1

2

(
1 −1
1 1

)
(X2k−1 + X2k) .
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Then{Yk}∞k=1 is a sequence of independent and identically distributed random variables taking
values inZ2. A new random walk{Zn}∞n=0, defined byZ0 = 0 andZn = Y1+· · ·+Yn, moves
onZ2 and is aperiodic. Note thatS2m = 0 is equivalent toZm = 0 for eachm � 1. Moreover,
it follows that

f2n = P [Zn = 0, Zk �= 0 for k = 1, . . . , n− 1]
sinceS2m−1 is never equal to 0 form � 1. In virtue of (3.1),f2n is asymptotically equal
to 2π(detΛ)/n log2 n, whereΛ is the symmetric and positive definite matrix such that
E(θ, Y1)

2 = ‖Λθ‖2 for θ ∈ R2. It is easy to show that detΛ = 1/2. Indeed, the equal-
ity Λ = Ξ tA follows from the identity

E(θ, Y1)
2 = E(θ,AX1)

2 = ‖Ξ tAθ‖2 ,

where

A = 1√
2

(
1 −1
1 1

)
.

Therefore, we have

f2n ∼ π

n log2 n
.(3.2)

The argument above only yields the leading term off2n; however, (3.2) will be used in deriv-
ing asymptotic behavior of the second term off2n in the two-dimensional case.

LEMMA 3.1. If d = 2, then

f2n = π

n log2 n
+O

[
log logn

n log3 n

]
.

If d � 3, then for any δ > 0

f2n = γ 2
d κdn

−d/2 +O[n−d/2 log−δ n] .
PROOF. We can prove this lemma in an analogous manner to Theorem 4.1 in Jain and

Pruitt [15]. Note that

f2n =
∑
x �=0

∑
y �=0

pN0 (0, x)p
2n−2N
0 (x, y)pN0 (y,0)(3.3)

for integers 1 � N � n. We first consider the effect of replacingp2n−2N
0 (x, y) with

p2n−2N(x, y) in (3.3), for which the following equality will be useful:

p2m(x, y)− p2m
0 (x, y) = P [τ0 � 2m,S2m = y]

= P [τ0 � m,S2m = y] + P [m < τ0 � 2m,S2m = y] .(3.4)

We first consider the two-dimensional case. It follows from the second equality in (3.4)
that

0 � p2m(x, y)− p2m
0 (x, y) �

m∑
j=1

p
j

0(x,0)p
2m−j (0, y)+

2m−1∑
j=m

pj (x,0)p2m−j
0 (0, y)
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form � 1. Applying it to (3.3) yields∣∣∣∣f2n −
∑
x �=0

∑
y �=0

pN0 (0, x)p
2n−2N(x, y)pN0 (y,0)

∣∣∣∣(3.5)

�
n−N∑
j=1

∑
x �=0

∑
y �=0

pN0 (0, x)p
j

0(x,0)p
2n−2N−j (0, y)pN0 (y,0)(3.6)

+
2n−2N−1∑
j=n−N

∑
x �=0

∑
y �=0

pN0 (0, x)p
j (x,0)p2n−2N−j

0 (0, y)pN0 (y,0) .(3.7)

Taking the summation onx and applying (1.1), we see that (3.6) is bounded by

A

n−N∑
j=1

∑
y �=0

fN+j (2n− 2N − j)−1pN0 (y,0) .(3.8)

Sincepk0(0, z) = pkz (0, z) for k � 1 andz ∈ Zd , (3.8) is dominated by

A(n−N)−1rN

n−N∑
j=1

fN+j � C1

(n−N) logN

n∑
j=N+1

fj .

Substitutingi = 2n− 2N − j in the summation onj , we see that (3.7) is equal to

n−N∑
j=1

∑
x �=0

∑
y �=0

pN0 (0, x)p
2n−2N−i (x,0)pi0(0, y)p

N
0 (y,0) ,

which coincides with (3.6). Therefore, a bound of (3.5) is given by

C2

(n−N) logN

n∑
j=N+1

1

j log2 j
.(3.9)

Here we have applied (3.2). We takeN = �n/log3 n	, where�x	 means the longest integer
which is not grater thanx. Then (3.9) and also (3.5) are larger than or equal to a constant
multiple of

1

n logn

(
1

logN
− 1

logn

)
= O

[
log logn

n log3 n

]
.

We are now going to estimate (3.5) in the three-or-more-dimensional cases. Letδ > 0
be given and takeN = �n/logδ n	. By the first equality in (3.4), we obtain

0 � p2n−2N(x, y)− p2n−2N
0 (x, y) �

2n−2N∑
j=1

pj (x,0)p2n−2N−j (0, y) ,

which immediately implies that (3.5) is bounded by

2n−2N∑
j=1

uN+j u2n−N−j � A2
2n−2N∑
j=1

(N + j)−d/2(2n−N − j)−d/2 = O[N1−d ] ,
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which is, in particular, of ordern−d/2 log−δ n. Consequently, we obtain that

f2n =
∑
x �=0

∑
y �=0

pN0 (0, x)p
2n−2N(x, y)pN0 (y,0)+



O

[
log logn

n log3 n

]
if d = 2 .

O[n−d/2 log−δ n] if d � 3 .
(3.10)

It suffices to calculate the double sum in (3.10). It follows from (1.2) that

p2n−2N(x, y) = κd(n−N)−d/2 exp

{
−d‖y − x‖2

4(n−N)

}
+O[(n− N)−1−d/2]

= κd(n−N)−d/2 + (‖y − x‖2 + 1)×O[(n−N)−1−d/2] .
Since‖y − x‖2 � 2(‖y‖2 + ‖x‖2), we see that (3.10) is

κd(n−N)−d/2
∑
x �=0

∑
y �=0

pN0 (0, x)p
N
0 (y,0)+O[N(n−N)−1−d/2] ,(3.11)

where we have used ∑
z∈Z d

‖z‖2pN0 (0, z) �
∑
z∈Z d

‖z‖2pN(0, z) = N .

Since the effect of exchanging(n−N)−d/2 for n−d/2 is of orderN(n−N)−1−d/2, it is verified
that (3.11) is

κdn
−d/2r2

N +O[N(n− N)−1−d/2] .(3.12)

If d � 3, (1.6) implies that (3.12) and also (3.10) are

γ 2
d κdn

−d/2 +O[n−d/2 log−δ n] .
If d = 2, (1.6) implies that

rN = π

logN
+O

[
log logN

log2N

]
= π

logn
+O

[
log logn

log2 n

]
,

sinceN = �n/log3 n	. Therefore, (3.12) yields

π

n log2 n
+O

[
log logn

n log3 n

]
. �

For integers 1� j < n let

Znj =
{

1 if Sj �= Sα for all α ∈ {j + 1, . . . , n} ,

0 otherwise .

ThenRn can be written as

Rn = 1 +
n−1∑
j=1

Znj .

This identity is very useful in calculating the expectation and the variance ofRn.
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We first prove Proposition 2.1. Form � 1 we have

ER2m = 1 +
2m−1∑
j=1

r2m−j = 2γdm+ 1 − γd +
2m−1∑
j=1

∞∑
i=j+1

fi .

Sincefi = 0 if i is odd, the double sum in the right-hand side is equal to

2
m−1∑
k=3

∞∑
l=k+1

f2l +O[1] .

It follows from Lemma 3.1 that for anyδ > 0
∞∑

l=k+1

f2l = γ 2
d κd

∞∑
l=k+1

l−d/2 +O

[ ∞∑
l=k+1

l−d/2 log−δ l
]

= 2

d − 2
γ 2
d κdk

1−d/2 +O[k1−d/2 log−δ k]
(3.13)

if d � 3. It is easy to show that

m−1∑
k=3

k1−d/2 =
{

2m1/2 +O[1] if d = 3 ,

logm+O[1] if d = 4 ,

which immediately implies that

ER2m = 2γ3m+ 4γ 2
3 κ3m

1/2 +O

[ m∑
k=3

k−1/2 log−δ k
]

if d = 3 and that

ER2m = 2γ4m+ 2γ 2
4 κ4 logm+O

[ m∑
k=3

k−1 log−δ k
]

if d = 4. The error term in the four-dimensional case can be seen asO[1] by takingδ =
2. Estimating the error term in the three-dimensional case is also not difficult. LetM =
�m/log2δ m	. Then we obtain

m∑
k=3

1

k1/2 logδ k
� C3

M∑
k=3

1

k1/2 + 1

logδ M

m∑
k=M

1

k1/2 = O

[
m1/2

logδ m

]
.

SinceR2m � R2m+1 � R2m + 1, the asymptotic behavior ofER2m+1 is the same as that of
ER2m. Thus, we conclude that

ERn = γ3n+ 4γ 2
3 κ3(�n/2	)1/2 +O[n1/2/logδ n]

if d = 3 and that

ERn = γ4n+ 2γ 2
4 κ4 log�n/2	 +O[1]

if d = 4. This proves Proposition 2.1.
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We next prove Theorem 2.2. It suffices to calculate the expectation ofR2n restricted on
the event{S2n = 0}. Classifying the event by the arrival site at timej , we obtain forn � 1
that

E[R2n; S2n = 0] = u2n +
2n−1∑
j=1

∑
y �=0

pj (0, y)p2n−j
y (y,0)

by the Markov property. To calculate the second term of the right-hand side, we need the
following lemma.

LEMMA 3.2. For n � 1 and m � 2 we have

∑
y∈Zd\{0}

pn(0, y)pmy (y,0) = un+m −
m∑
k=1

fkun+m−k .

PROOF. It can be shown by the Markov property that fory �= 0 andm � 2

pm(y,0) = pmy (y,0)+
m−1∑
k=1

fkp
m−k(y,0) .

Thus, we have

∑
y �=0

pn(0, y)pmy (y,0) =
∑
y �=0

pn(0, y)pm(y,0)−
m−1∑
k=1

∑
y �=0

fkp
n(0, y)pm−k(y,0)

= un+m − unum −
m−1∑
k=1

fkun+m−k + un

m−1∑
k=1

fkum−k .

Then the lemma follows by applying (1.5) to the last summation on the right-hand side of this
identity. �

It is immediate from Lemma 3.2 thatE[R2n; S2n = 0] is equal to

2nu2n −
2n−2∑
j=1

2n−j∑
l=1

flu2n−l = 2nu2n − 2
n−1∑
j=1

n−j∑
l=1

f2lu2(n−l) .

Here we note thatp1(y,0) = p1
y(y,0), which is equal to 0 ify = 0, and that bothfm and

um are valid only whenm is even. Changing the order of summations, the double sum on the
right-hand side yields

n−1∑
l=1

(n− l)f2lu2(n−l) ,(3.14)

which can be expressed by (1.5) as

n(u2n − f2n)−
n−1∑
l=1

lf2lu2(n−l) .



340 Y. HAMANA

Substitutingh = n− l in the summation onl, (3.14) yields

2
n−1∑
h=1

hu2hf2(n−h) .(3.15)

Therefore, we obtainE[R2n; S2n = 0] in the following two forms:

E[R2n; S2n = 0] =




2
n−1∑
l=1

lf2lu2(n−l) + 2nf2n ,

2nu2n − 2
n−1∑
h=1

hu2hf2(n−h) .
(3.16)

The first is useful in the two-dimensional case and the latter in the three-or-more-dimensional
cases.

We now consider the five-or-more-dimensional cases. It suffices to calculate (3.15).
LetN = �n/2	. Then (3.15) is equal to

2
N−1∑
h=1

hu2hf2(n−h) + 2
n−1∑
h=N

(hu2h − nu2n)f2(n−h) + 2nu2n

n−1∑
h=N

f2(n−h) .(3.17)

By (1.1), the first term of (3.17) is less than or equal to

2A2
N−1∑
h=1

h1−d/2(n− h)−d/2 � C4(n−N)−d/2
n∑
h=1

h1−d/2 ,

which is of ordern−d/2 if d � 5. It follows from (1.3) that for 1� h < n

hu2h − nu2n = κd(h
1−d/2 − n1−d/2)+O[h−d/2] .(3.18)

The mean value theorem implies that

|hu2h − nu2n| � C5(n− h)h−d/2 ,(3.19)

from which the absolute value of the second term of (3.17) is bounded by a constant multiple
of

n−1∑
h=N

h−d/2(n− h)1−d/2 � N−d/2
n−1∑
h=1

(n− h)1−d/2 ,

which has the same bound as the first term of (3.17). The third term of (3.17) yields

2nu2n{1 − P [τ0 > n−N]} = 2nu2n{1 − γd +O[n1−d/2]} ,
where (1.6) has been applied. Consequently, we obtain (2.4) from (1.4).

We next consider the three- and four-dimensional cases. By the second formula of (3.16),
we obtain

EnR2n = 2n

{
1 −

n−1∑
h=1

f2(n−h)
}

− 2

u2n

n−1∑
h=1

(hu2h − nu2n)f2(n−h) .(3.20)
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It follows from (3.19) that ifd � 3,

∣∣∣∣
n−1∑
h=1

(hu2h − nu2n)f2(n−h)
∣∣∣∣ � C6

n−1∑
h=1

h−d/2(n− h)1−d/2 = O[n1−d/2] .

Applying (1.4) and (3.18) to the second term of the right-hand side of (3.20), we obtain

−2nd/2
n−1∑
h=1

(h1−d/2 − n1−d/2)f2(n−h) +O

[
nd/2

n−1∑
h=1

h−d/2(n− h)−d/2
]

+O[1] ,

which means that ifd � 3,

EnR2n = 2γdn+ 2n
∞∑
h=n

f2h − 2nd/2
n−1∑
h=1

(h1−d/2 − n1−d/2)f2(n−h) +O[1] .(3.21)

It follows from (3.13) that the second term of the right-hand side of (3.21) yields

4γ 2
3 κ3n

1/2 +O[n1/2 log−δ n](3.22)

if d � 3 and is bounded ifd = 4. Thus, it suffices to estimate

n−1∑
h=1

(h1−d/2 − n1−d/2)f2(n−h) .(3.23)

In virtue of Lemma 3.1, ifd = 4, (3.23) yields

γ 2
4 κ4

n

n−1∑
h=1

1

h(n− h)
+O

[
1

n

n−2∑
h=1

1

h(n− h) log2(n− h)

]
.(3.24)

Recall thatN = �n/2	. The summation in the second term of (3.24) is bounded by

1

(n−N) log2(n− N)

N∑
h=1

1

h
+ 1

N

n−2∑
h=N

1

(n− h) log2(n− h)
,

which is of order 1/n. The summation in the first term of (3.24) gives

1

n

n−1∑
h=1

(
1

h
+ 1

n− h

)
= 2 logn

n
+O

[
1

n

]
.

Therefore, ifd = 4, (3.23) yields

2γ 2
4 κ4 logn

n2
+O

[
1

n2

]
,

which immediately implies (2.3).
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By Lemma 3.1 again, (3.23) in the three-dimensional case is given by

γ 2
3 κ3√
n

n−1∑
h=1

1√
h(n− h)(

√
h+ √

n)
(3.25)

+O

[
1√
n

n−2∑
h=1

1√
h(n− h)(

√
h+ √

n) logδ(n− h)

]
(3.26)

for anyδ > 0. Here we have used the identity that

1√
h

− 1√
n

= n− h√
nh(

√
n+ √

h)
.

The summation in (3.26) is bounded by

C7√
n

n−2∑
h=1

1√
h(n− h) logδ(n− h)

.

Dividing the summation into two cases;h � �n/log2δ n	 andh > �n/log2δ n	, we see that it
is of ordern/logδ n. Hence, (3.26) isO[n1/2/logδ n]. For 0< x < 1 let

f (x) = 1√
x(1 − x)(1 + √

x)
.

Then (3.25) is expressed as

γ 2
3 κ3

n2

n−1∑
h=1

f

(
h

n

)
.

Note that the basic property of Riemannian integral implies that

lim
n→∞

1

n

n−1∑
h=1

f

(
h

n

)
=

∫ 1

0
f (x) dx = 2 .

Although this is not enough to complete the proof of (2.2), we can improve this limiting
behavior by a standard argument of approximating a summation to an integral. Indeed, a
simple calculation shows that

1

n

n−1∑
h=1

f

(
h

n

)
=

∫ 1−1/n

1/n
f (x) dx +O

[
1√
n

]
= 2 +O

[
1√
n

]
,

which implies that (3.25) is equal to

2γ 2
3 κ3

n
+O

[
1

n3/2

]
.

Therefore, the third term of the right-hand side of (3.21) yields

−4γ 2
3 κ3n

1/2 +O

[
n1/2

logδ n

]
.

Combining this with (3.22), we obtain (2.2).
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Finally, we prove (2.1). It follows from (3.2) (or Lemma 3.1) and (3.16) that

E[R2n; S2n = 0] = 2
n−1∑
l=2

lf2lu2(n−l) +O

[
1

log2 n

]
.(3.27)

Applying Lemma 3.1 to the leading term of (3.27) yields

2π
n−1∑
l=2

u2(n−l)
log2 l

,(3.28)

while the error term is of order
n−1∑
l=2

u2(n−l) log logl

log3 l
� A log logn

n−1∑
l=2

1

(n− l) log3 l
.(3.29)

LetM = �n/log2 n	. Then the summation in the right-hand side of (3.29) is dominated by

M∑
l=2

1

(n− l) log3 l
+

n−1∑
l=M

1

(n− l) log3 l
� C8M

n−M
+ C9 logn

log3M
,

both terms of which are of order 1/log2 n. Hence, the right-hand side of (3.29) is bounded by
a constant multiple of log logn/log2 n. By (1.3), the leading term of (3.28) yields

2
n−1∑
l=2

1

(n− l) log2 l
,(3.30)

and the error term of (3.28) is of order

n−1∑
l=2

1

(n− l)2 log2 l
.

We see, in the same way as for (3.29), that this summation isO[1/ log2 n]. To obtain the
upper bound of (3.30), we useM = �n/log2 n	 again. The contribution for 2� l < M in
(3.30) is negligible, since

M−1∑
l=2

1

(n− l) log2 l
� C10M

n−M
= O

[
1

log2 n

]
.

Hence, we concentrate on the summation over[M,n− 1] to get

n−1∑
l=M

1

(n− l) log2 l
� 1

log2M

n−1∑
l=1

1

n− l
= logn

log2M
+O

[
1

log2 n

]
.

Since

1

logM
− 1

logn
= O

[
log logn

log2 n

]
,
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the right-hand side yields

1

logn
+O

[
log logn

log2 n

]
.

The lower bound of (3.30) can be easily obtained. Indeed, it is not less than

2

log2 n

n−1∑
l=1

1

n− l
− 1

(n− 1) log2 n
� 2

logn
+O

[
1

n log2 n

]
.

Therefore, (3.27) implies that

EnR2n = 2

u2n logn
+O

[
log logn

u2n log2 n

]
.

With the help of (1.4), we now conclude (2.1).

4. Proof of Theorem 2.3. In order to prove Theorem 2.3, we need the following two
formulas concerning taboo probabilities. A simple calculation shows that form � 2 and
x, y, z ∈ Zd such thatx �= y andx �= z,

pmxy(x, z) = pmy (x, z)−
m−1∑
k=1

pkxy(x, x)p
m−k
y (x, z) ,(4.1)

pmxy(x, x) = pmx (x, x)−
m−1∑
k=1

pkxy(x, y)p
m−k
x (y, x) .(4.2)

Here (4.1) can be obtained by classifying the event{Sm = z, τy � m} by the value ofτx , and
(4.2) by classifying{τx = m} by the value ofτy .

LEMMA 4.1. For n � 2 we have

2n−2∑
i=1

2n−1∑
j=i+1

En[Z2n
i Z

2n
j ](4.3)

= 1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y �=0

pi(0, y)p2n−i
y (y,0)(4.4)

− 1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j−1∑
l=1

flu2n−l(4.5)

+ 1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j−1∑
l=1

2n−i−l∑
h=1

flfhu2n−l−h +




O

[
n2

log3 n

]
if d = 2 ,

O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

(4.6)
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PROOF. By the Markov property, (4.3) yields

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y,z �=0
z �=y

pi(0, y)pj−iy (y, z)p
2n−j
yz (z,0) ,

which is equal to

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y,z �=0
z �=y

pi(0, y)pj−iy (y, z)p
2n−j
y (z,0)(4.7)

− 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j−1∑
l=1

∑
y,z �=0
z �=y

pi(0, y)pj−iy (y, z)plyz(z, z)p
2n−j−l
y (z,0)(4.8)

by applying (4.1). Regarding the summation onz over Zd \ {0, y} in (4.7) as the sum over
Zd \ {y} minus that over{0}, we obtain

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y �=0

pi(0, y)p2n−i
y (y,0)− 1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y �=0

pi(0, y)pj−iy (y,0)p2n−j
y (0,0) .

Note that the first term is the same as (4.4), and the absolute value of the second term is not
larger than

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

uju2n−j = 1

u2n

2n−1∑
j=2

juju2n−j ,

where, by (1.1) and (1.4), the right-hand side is of order

nd/2
2n−1∑
j=2

j1−d/2(2n− j)−d/2 �
{
C11n logn if d = 2 ,

C12n if d � 3 .

Applying (4.2), we see that (4.8) yields

− 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j−1∑
l=1

∑
y �=0

pi(0, y)flp
2n−i−l
y (y,0)(4.9)

+ 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j−1∑
l=1

∑
y �=0

pi(0, y)pj−iy (y,0)flp
2n−j−l
y (0,0)(4.10)

+ 1

u2n

2n−4∑
i=1

2n−3∑
j=i+1

2n−j−1∑
l=1

l−1∑
h=1

∑
y,z �=0
z �=y

pi(0, y)pj−iy (y, z)(4.11)

× phyz(z, y)p
l−h
z (y, z)p

2n−j−l
y (z,0) .
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Then Lemma 3.2 implies that (4.9) gives (4.5) and (4.6). Also, (4.10) can be easily estimated
from (1.5). Indeed, (4.10) is not larger than

1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j−1∑
l=1

ujflu2n−j−l � 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

uju2n−j .

A bound of the right-hand side has been calculated, and thus (4.10) is of ordern logn if d = 2
and of ordern if d � 3.

The estimate of (4.11) is more complicated. We first accomplish it whend � 3. Chang-
ing the order of summations onl andh, we see that (4.11) is bounded by

1

u2n

2n−4∑
i=1

2n−3∑
j=i+1

2n−j−2∑
h=1

2n−j−1∑
l=h+1

∑
y,z∈Zd

pi(0, y)pj−i (y, z)ph(z, y)pl−h(y, z)p2n−j−l (z,0) .

Regarding the summations onj , l andz as those onj − i, l − h andz − y, respectively, for
fixed i, h andy, we see that

1

u2n

2n−4∑
i=1

2n−i−3∑
j=1

2n−i−j−2∑
h=1

2n−i−j−h−1∑
l=1

∑
y,z∈Zd

pi(0, y)pj (0, z)

× ph(z,0)pl(0, z)p2n−i−j−h−l (z,−y) .

We now take summations ony andi in this order, and then apply (1.1). Then (4.11) is not
larger than

A2

u2n

2n−4∑
j=1

2n−j−3∑
h=1

2n−j−h−2∑
l=1

∑
z∈Zd

pj (0, z)ph(z,0)l−d/2(2n− j − h− l)1−d/2 ,

which is bounded by a constant multiple of

1

u2n

2n−4∑
j=1

2n−j−3∑
h=1

(2n− j − h)1−d/2(j + h)−d/2 .

Substitutingk = j + h in the sum onh, we see that this is less than or equal to

1

u2n

2n−4∑
j=1

2n−3∑
k=j+1

(2n− k)1−d/2k−d/2 = 1

u2n

2n−4∑
k=1

(2n− k)1−d/2k1−d/2 .

It follows from (1.4) that (4.11) isO[n3/2] if d = 3,O[n logn] if d = 4 andO[n] if d � 5.
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We next estimate (4.11) in the two-dimensional case. Similarly to higher-dimensional
cases, (4.11) is bounded by

1

u2n

2n−4∑
i=1

2n−i−3∑
j=1

2n−i−j−2∑
h=1

2n−i−j−h−1∑
l=1

∑
y,z �=0

pi(0, y)pj0(0, z)

× phz (z,0)p
l
z(0, z)p

2n−i−j−h−l (z,−y)

� A

u2n

2n−4∑
j=1

2n−j−3∑
h=1

2n−j−h−2∑
l=1

∑
z �=0

p
j
0(0, z)p

h
z (z,0)p

l
z(0, z) .

To estimate the summation in the right-hand side, the following inequality given in Jain
and Pruitt [15] will be useful:

m∑
k=1

pkz (0, z)r
α
m−k =

m∑
k=1

pk0(0, z)r
α
m−k �

m∑
k=1

pk(0, z)rα+1
m−k

for z �= 0. The first equality has been obtained from the fact that

pm0 (0, z) = pmz (0, z)

form � 1 andz ∈ Zd . Applying this inequality three times in the above, we accordingly have
that (4.11) is not larger than

A

u2n

2n−2∑
j=1

2n−j−1∑
h=1

2n−j−h∑
l=1

∑
z �=0

pj (0, z)ph(z,0)pl(0, z)r3
2n−j−h−l .

We divide the summation into the following two parts: (i)j + h + l is less than or equal
to 2n − α; (ii) j + h + l is larger than 2n − α, whereα = �2n/log4 n	. Sincer3

2n−j−h−l is

bounded byr3
α if j+h+ l � 2n−α, the asymptotic behavior (1.6) shows that the contribution

for case (i) is not larger than

C13n

log3 n

2n∑
j=1

2n∑
h=1

2n∑
l=1

∑
z

pj (0, z)ph(z,0)pl(0, z) .(4.12)

Applying the same argument used in Jain and Pruitt [15] or Lemma 4.4 in Hamana [5], the
summation is of ordern. Thus, (4.12) isO[n2/log3 n]. The contribution for case (ii) does not
exceed a constant multiple of

n
∑

1�j,h,l�2n
2n−α<j+h+l�2n

(j + h)−1l−1 � C15n logn
∑

1�j,h�2n
2n−α<j+h�2n

(j + h)−1

� C15n logn
2n∑

k=2n−α

k∑
j=1

{j + (k − j)}−1 ,

which isO[n2/log3 n]. Therefore, (4.11) isO[n2/log3 n] if d = 2. �
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We first prove Theorem 2.3 in the three-or-more-dimensional cases. If 1� i < j �
2n− 1, then

EnZ
2n
i EnZ

2n
j = 1

u2
2n

∑
y �=0

pi(0, y)p2n−i
y (y,0)

∑
z �=0

pj (0, z)p2n−j
z (z,0) .(4.13)

If j � 2n− 2, we can apply Lemma 3.2 to the sum onz, obtaining that (4.13) is

1

u2n

∑
y �=0

pi(0, y)p2n−i
y (y,0)− 1

u2
2n

∑
y �=0

pi(0, y)p2n−i
y (y,0)

2n−j∑
l=1

flu2n−l .

If j = 2n− 1, the right-hand side of (4.13) yields

1

u2n

∑
y �=0

pi(0, y)p2n−i
y (y,0) .

Therefore, the summation of (4.13) over 1� i < j � 2n− 1 is equal to

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

∑
y �=0

pi(0, y)p2n−i
y (y,0)

− 1

u2
2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j∑
l=1

∑
y �=0

pi(0, y)p2n−i
y (y,0)flu2n−l .

The first term is the same as (4.4). It follows from Lemma 3.2 again that the second term is a
sum of

− 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j∑
l=1

flu2n−l(4.14)

and

1

u2
2n

2n−3∑
i=1

2n−2∑
j=i+1

2n−j∑
l=1

2n−i∑
h=1

flfhu2n−lu2n−h .

The difference between (4.5) and (4.14) is

1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

f2n−i−j ui+j � 1

u2n

2n−3∑
i=1

2n−2∑
j=i+1

u2n−juj ,

which is of ordern if d � 3.
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For random variablesX and Y , let Covn(X, Y ) be En[(X − EnX)(Y − EnY )].
These calculations show that

2n−2∑
i=1

2n−1∑
j=i+1

Covn(Z2n
i , Z

2n
j )(4.15)

= 1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j−1∑
l=1

2n−i−l∑
h=1

flfhu2n−l−h(4.16)

− 1

u2
2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j∑
l=1

2n−i∑
h=1

flfhu2n−lu2n−h +



O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

(4.17)

Since|u2n−l−h− u2n−h| � C16l(2n− l− h)−1−d/2, which is derived from (1.3) and the
mean value theorem, the contribution of replacingu2n−l−h with u2n−h in (4.16) is dominated
by a constant multiple of

nd/2
2n−3∑
i=1

2n−i−2∑
l=1

2n−i−l∑
h=1

(2n− i − l)l1−d/2h−d/2(2n− l − h)−1−d/2 ,

which is not larger than

nd/2
2n−2∑
i=1

2n−i−1∑
l=1

2n−i−l∑
h=1

l1−d/2h−d/2(2n− l − h)−d/2

+ nd/2
2n−2∑
i=1

2n−i−1∑
l=1

2n−i−l∑
h=1

l1−d/2h1−d/2(2n− l − h)−1−d/2 ,

since 2n− i − l � (2n− l − h)+ h. Taking summations oni andl in this order, we see that
the first term is bounded by

nd/2
2n−2∑
h=1

h−d/2 ×



C17 if d = 3 ,
C18 log(2n− h)

2n− h
if d = 4 ,

C19(2n− h)1−d/2 if d � 5 ,

which is of ordern3/2 if d = 3, n logn if d = 4 andn if d � 5. In a similar way, a bound of
the second term is given by

C20n
d/2

2n−2∑
l=1

l1−d/2(2n− l)1−d/2 =



O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

Therefore, the leading term of (4.16) yields

1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j−1∑
l=1

2n−i−l∑
h=1

flfhu2n−h .(4.18)
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We also calculate the contribution of exchangingu2n−l for u2n in (4.17). Note that
|u2n−l − u2n| � C21l(2n− l)−1−d/2. Applying (1.5) to the sum onh, we have that

1

u2
2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j∑
l=1

2n−i∑
h=1

flfhu2n−h |u2n−l − u2n|

� 1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j∑
l=1

fl |u2n−l − u2n|

� C22n
d/2

2n−2∑
i=1

2n−i−1∑
j=1

2n−i−j∑
l=1

l1−d/2(2n− l)−1−d/2 .

Taking summations oni andj , we see that the right-hand side is dominated by

C22n
d/2

2n−2∑
l=1

l1−d/2(2n− l)1−d/2 =



O[n3/2] if d = 3 ,

O[n logn] if d = 4 ,

O[n] if d � 5 .

Hence, the leading term of (4.17) yields

− 1

u2n

2n−3∑
i=1

2n−i−2∑
j=1

2n−i−j∑
l=1

2n−i∑
h=1

flfhu2n−h .(4.19)

Noting that the summands of (4.18) and (4.19) are the same and that the range of summations
in (4.19) includes that in (4.18), we see that the sum of (4.18) and (4.19) is negative. Since
the sum of Varn Z2n

j onj over[1,2n− 1] is not larger thann, the leading term of Varn R2n is
(4.15). This completes a proof of Theorem 2.3 for the three-or-more-dimensional cases.

The remainder of this section is devoted to the estimate of Varn R2n in the two-dimen-
sional case. The proof for higher-dimensional cases is not applicable, since we cannot prove
in this case that the contributions from the replacement ofu2n−l−h with u2n−h in (4.6) and
u2n−l with u2n in (4.7) are negligible. Thus, we proceed as follows. Theorem 2.2 implies that
if d = 2,

(EnR2n)
2 = 4π2n2

log2 n
+O

[
n2 log logn

log3 n

]
.

Forn � 2 we have that

EnR
2
2n = 1 + 3

2n−1∑
j=1

EnZ
2n
j + 2

2n−2∑
i=1

2n−1∑
j=i+1

En[Z2n
i Z

2n
j ] .

Since the second term of the right-hand side is not larger than 6n, it is sufficient to show that
if d = 2,

2n−2∑
i=1

2n−1∑
j=i+1

En[Z2n
i Z

2n
j ] = 2π2n2

log2 n
+O

[
n2 log logn

log3 n

]
.(4.20)
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Note that the left-hand side of (4.20) is the same as (4.3).
From now on, we are going to improve Lemma 4.1. It follows from Lemma 3.2 that (4.4)

is equal to

1

u2n

2n−2∑
i=1

2n−1∑
j=i+1

(
u2n −

2n−i∑
l=1

flu2n−l
)

=
2n−2∑
i=1

(2n− i − 1)− 1

u2n

2n−2∑
i=1

2n−i∑
l=1

(2n− i − 1)flu2n−l .

The first term of the right-hand side is(n− 1)(2n− 1) and the second term is

− 4

u2n

n−1∑
i=1

n−i∑
l=1

(n− i)f2lu2(n−l) + 1

u2n

n−1∑
i=1

n−i∑
l=1

f2lu2(n−l) .(4.21)

Changing the order of summations in the first term of (4.21) yields

− 2

u2n

n−1∑
l=1

(n+ l − 1)(n− l)f2lu2(n−l) .

By (1.5), the second term of (4.21) is not larger thann. Hence, it follows that (4.4) is equal to

(n− 1)(2n− 1)− 2

u2n

n−2∑
l=1

(n+ l − 1)(n− l)f2lu2(n−l) +O[n] ,

since(n − 1)f2n−2u2/u2n = O[n/log2 n] which follows from (1.4) and (3.2). Taking sum-
mations onj andi in this order, (4.5) yields

− 1

2u2n

2n−3∑
l=1

(2n− l − 2)(2n− l − 1)flu2n−l

= − 2

u2n

n−2∑
l=1

(n− l − 1)(n− l)f2lu2(n−l) + 1

u2n

n−2∑
l=1

(n− l − 1)f2lu2(n−l) .

Since each summand in the second term of the right-hand side is bounded byAf2l, the sum
of (4.4) and (4.5) is equal to

(n− 1)(2n− 1)− 4(n− 1)

u2n

n−2∑
l=1

(n− l)f2lu2(n−l) +O[n] .

The calculation of (4.6) is similar to (4.4) and (4.5). Taking the summation onj in (4.6) yields

1

u2n

n−2∑
l=1

2n−2l−2∑
i=1

2n−2l−i∑
h=1

(2n− 2l − i − 1)f2lfhu2n−2l−h

= 4

u2n

n−2∑
l=1

n−l−1∑
i=1

n−l−i∑
h=1

(n− l − i)f2lf2hu2(n−l−h) +O[n] .
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The first term of the right-hand side is

2

u2n

n−2∑
l=1

n−l−1∑
h=1

(n− l + h− 1)(n− l − h)f2lf2hu2(n−l−h)

= 2(n− 1)

u2n

n−2∑
l=1

n−l−1∑
h=1

(n− l − h)f2lf2hu2(n−l−h)(4.22)

+ 2

u2n

n−2∑
l=1

n−l−1∑
h=1

h(n− l − h)f2lf2hu2(n−l−h)(4.23)

− 2

u2n

n−2∑
l=1

n−l−1∑
h=1

l(n− l − h)f2lf2hu2(n−l−h) .(4.24)

Exchanging the role ofl andh in the double sum in (4.23), we see that the sum in (4.23) is
the same as that in (4.24), and thus (4.23) cancel out (4.24). Then the leading term of (4.6) is
(4.22) and its remaining term isO[n]. It is obvious that (4.22) is equal to

2(n− 1)

u2n

n−2∑
l=1

n−l−1∑
h=1

(n− l)f2lf2hu2(n−l−h) − 2(n− 1)

u2n

n−2∑
l=1

n−l−1∑
h=1

hf2lf2hu2(n−l−h) .

Applying h = n− (n− h) to the second term, we see that (4.22) is

4(n− 1)

u2n

n−2∑
l=1

n−l−1∑
h=1

(n− l)f2lf2hu2(n−l−h) − 2n(n− 1)

u2n

n−2∑
l=1

n−l−1∑
h=1

f2lf2hu2(n−l−h) .

Therefore, we obtain by (1.5) that the sum of (4.4), (4.5) and (4.6) is given by

−4(n− 1)

u2n

n−2∑
l=1

(n− l)f2lf2(n−l) + 2n(n− 1)

u2n
f2n

+ 2n(n− 1)

u2n
f2(n−1)u2 + 2n(n− 1)

u2n

n−2∑
l=1

f2lf2(n−l) +O[n] .

This implies that ifd = 2, (4.3) yields

−4(n− 1)

u2n

n−1∑
l=1

(n− l)f2lf2(n−l) + 2n(n− 1)f2n

u2n
+ 2n(n− 1)

u2n

n−1∑
l=1

f2lf2(n−l)+O
[
n2

log3 n

]
,

where we have used thatu2 = f2 and that(n − 1)f2(n−1)f2 = O[1/log2 n]. Substituting
h = n− l in the sum of the first term, we get

n−1∑
l=1

(n− l)f2lf2(n−l) =
n−1∑
h=1

hf2(n−h)f2h ,
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which implies that

n

n−1∑
l=1

f2lf2(n−l) = 2
n−1∑
l=1

(n− l)f2lf2(n−l) .

Hence, we see that ifd = 2, the leading term of (4.3) is 2n(n− 1)f2n/u2n and the remaining
term of (4.3) is of ordern2/log3 n. Since

f2n

u2n
= π2

log2 n
+O

[
log logn

log3 n

]
by (1.4) and Lemma 3.1, we accordingly obtain (4.20). This completes a proof of Theo-
rem 2.3.

5. Large deviations in the upward direction. We give a proof of Theorem 2.5 and
its corollary in this section. It is obvious thatP2n,0[R2n � 2xn] is equal to 0 forx > 1 and is
equal to 1 forx � 0. Moreover, the assertion of Theorem 2.5 is already established ifx = 1.
Hence, it suffices to prove (2.5) for 0< x < 1. It follows from (1.3) that

ψ(x) � lim inf
n→∞ − 1

2n
logP2n,0[R2n � 2xn] .

Therefore, we concentrate on proving that

lim sup
n→∞

− 1

2n
logP2n,0[R2n � 2xn] � ψ(x)

for 0< x < 1, which is equivalent to

lim sup
n→∞

− 1

2n
logP [R2n � 2xn, S2n = 0] � ψ(x) .(5.1)

For simplicity we writeφ(x) for the left-hand side of (5.1).
The argument in Lemma 1 in Hamana and Kesten [8] is applicable. Let{X′

n}∞n=0 be
an independent copy of{Xn}∞n=0. We define a new random walk{S′

n}∞n=0 moving onZd by
S′

0 = 0 andS′
n = X′

1 + · · · +X′
n for n � 1. Then{S′

n}∞n=0 is also the simple random walk on
Zd which is independent of{Sn}∞n=0. LetR′

n denote the range at timen of the random walk
{S′
n}∞n=0. For integersp, q � 0 we consider the random walk{T p,qn }∞n=0 defined by

T
p,q
n =

{
Sn if 0 � n � p + q ,

Sp+q + S′
n−p−q if n � p + q + 1 .

Clearly,{T p,qn }∞n=0 has the same distribution as{Sn}∞n=0, and the definition of{T p,qn }∞n=0 im-
mediately shows that

|{T p,q1 , . . . , T
p,q

2p+2q}| � |{T p,q1 , . . . , T
p,q
p } ∪ {T p,qp+q+1, . . . , T

p,q

2p+q}|
= Rp + R′

p − Np,q
(5.2)

for eachp, q � 0, where

Np,q = |{S1, . . . , Sp} ∩ {Sp+q + S′
1, . . . , Sp+q + S′

p}| .
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Thus,Np,q counts the number of points which are visited during the time interval[1, p] by
the random walk{Sn}∞n=0, and also visited during[1, p] by the random walk{S′

n}∞n=0 shifted
by Sp+q .

For a positive integern letM = 
n2/(d+1)� andm = n − 2dM. Here
x� denotes the
smallest integer which is not less thanx. Put

ΛM =
{
w ∈ Zd ;w =

d∑
j=1

kjej ,0 � kj � M, j = 1,2, . . . , d

}
,

whereej is the unit vector inZd of which thej th element is one for each 1� j � d. For any
w ∈ ΛM leth(w) = k1+· · ·+kd if w = k1e1+· · ·+kded . It is obvious that 0� h(w) � dM.
Let x be a real number such that 0< x < 1 andε > 0 are given. Sinceψ is continuous, we
can chooseδ ∈ (0,1 − x) such that

ψ(x + δ) < ψ(x)+ ε .(5.3)

Moreover, we can take a positive integern0 such that

xn � (x + δ)m−M

for anyn � n0. Therefore, we obtain with the help of (5.2) that for eachw ∈ ΛM
P [R2m+2h(w) � 2xn, S2m+2h(w) = 0]

� P [|{T m,h(w)1 , . . . , T
m,h(w)
2m+2h(w)}| � 2(x + δ)m− 2M,T m,h(w)2m+2h(w) = 0]

� P [Rm � (x + δ)m, R̃m � (x + δ)m,Nm,h(w) � 2M,Sm+h(w) + S̃m+h(w) = 0] .
Forw ∈ ΛM let

Nm(w) = |{S1, . . . , Sm} ∩ {Sm + w + S′
1, . . . , Sm +w + S′

m}| .
On the event{Sm+h(w) − Sm = w}, we have thatNm(w) coincides withNm,h(w). Then it
follows that

P [R2m+2h(w) � 2xn, S2m+2h(w) = 0]
� P [Rm � (x + δ)m,R′

m � (x + δ)m,Nm(w) � 2M ,

Sm+h(w) − Sm = w, S′
m+h(w) − S′

m = −w, Sm + S′
m = 0] .

The event{Sm+h(w) − Sm = w, S′
m+h(w) − S′

m = −w} in the last probability depends only on
theXj andX′

j with m + 1 � j � m + h, and is therefore independent of the other events.
For simplicity we will useζ for 1/2d. Note that

P [Sm+h(w) − Sm = w, S′
m+h(w) − S′

m = −w] = {P [Sm+h(w) − Sm = w]}2 � ζ 2h(w) .

Therefore, we obtain forn � n0 andw ∈ ΛM that

P [R2m+2h(w) � 2xn, S2m+2h(w) = 0]
� ζ 2h(w)P [Rm � (x + δ)m,R′

m � (x + δ)m,Nm(w) � 2M,Sm + S′
m = 0] .
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To apply the argument by Hamana and Kesten, the left-hand side must have an upper bound
which is independent ofw. Indeed, it follows from the monotonicity ofRn with respect ton
that

P [R2n � 2xn, S2n = 0]
� P [R2m+2h(w) � 2xn, S2m+2h(w) = 0, S2n = 0]
� ζ 2n−2m−2h(w)P [R2m+2h(w) � 2xn, S2m+2h(w) = 0] ,

where we have applied the trivial inequality thatP [S2k = 0] � ζ 2k for eachk � 1. Conse-
quently, we obtain forn � n0 andw ∈ ΛM that

P [R2n � 2xn, S2n = 0]
� ζ 4dMP [Rm � (x + δ)m,R′

m � (x + δ)m,Nm(w) � 2M,Sm + S′
m = 0] .

Since this inequality holds for allw ∈ ΛM and the left-hand side is independent ofw, the
same argument used to derive (3.11) in the proof of Lemma 1 in [8] leads to the following
inequality:

P [R2n � 2xn, S2n = 0]
� 1

2
ζ 4dMP [Rm � (x + δ)m,R′

m � (x + δ)m, Sm + S′
m = 0] .(5.4)

The calculation is left to the reader (see (2.9) and (2.10) in [8]).
We consider the effect to remove the event{Sm + S′

m = 0} from the probability in the
right-hand side of (5.4). Applying the Schwarz inequality,

{P [Rm � (x + δ)m]}2 =
{ ∑

|y|�m
P [Rm � (x + δ)m, Sm = y]

}2

� C23m
d

∑
|y|�m

{P [Rm � (x + δ)m, Sm = y]}2 .

By symmetricity of simple random walks, each summand in the last summation ony is equal
to

P [Rm � (x + δ)m, Sm = y]P [R′
m � (x + δ)m, S′

m = −y]
= P [Rn � (x + δ)m,R′

m � (x + δ)m, Sm = y, S′
m = −y] ,

which implies that

1

C23md
{P [Rm � (x + δ)m]}2

� P [Rm � (x + δ)m,R′
m � (x + δ)m, Sm + S′

m = 0] .
(5.5)

It follows from (5.4) and (5.5) that forn � n0

P [R2n � 2xn, S2n = 0] � C24ζ
4dM

nd
{P [Rn−2dM � (x + δ)(n− 2dM)]}2 .
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SinceM = 
n2/(d+1)�, we can conclude thatφ(x) � ψ(x + δ). In virtue of (5.3), we have
thatφ(x) � ψ(x)+ ε for any givenε > 0, which immediately leads to (5.1). This completes
a proof of Theorem 2.5.

The remainder of this section is devoted to showing Corollary 2.6. Similarly to
Theorem 2.5, it suffices to prove (2.6) for 0< x < 1. Let{yn}∞n=1 be a sequence of points in
Zd satisfying thatn + |yn| is even and that|yn| = o[n]. For simplicity we writeL for |yn|.
Since

P [Sn = yn] = κdn
−d/2e−o[n] +O[n−1−d/2] ,

which follows from (1.2), it suffices to prove that

ψ(x) � lim sup
n→∞

−1

n
logP [Rn � xn, Sn = yn]

for 0< x < 1. Recall thatδ has been chosen satisfying (5.3) for any givenε > 0. Moreover,
sinceL = o[n], there is an integern1 � 1 such that(x + δ)(n − L) > xn for anyn > n1.
Therefore, we see that forn > n1

P [Rn � xn, Sn = yn]
� P [Rn−L � (x + δ)(n− L), Sn−L = 0, Sn − Sn−L = yn]
� ζLP [Rn−L � (x + δ)(n− L), Sn−L = 0] .

It follows from Theorem 2.5 that

lim sup
n→∞

−1

n
logP [Rn � xn, Sn = yn] � ψ(x + δ) .

This completes the proof by (5.3).
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