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Abstract. The range of random walks means the number of distinct sites visited at least
once by the random walk. In two-or-more-dimensional cases, we established the law of large
numbers for the range of simple symmetrindam walks under the conditional probability
given the event that the last point is the origin. Moreover we studied the large deviations in the
upward direction and obtained similar results to the original random walk.

Introduction. For a random walk the range at timeimplies the number of distinct
points entered by the random walk in the fitssteps. Dvoretzky and Eéd [4] have inves-
tigated the law of large numbers for the range of simple random walks on a two-or-more-
dimensional integer lattice. They supplied the asymptotic behavior of the expectation and the
variance of the range at time of the simple random walk to show its weak law of large
numbers. They also proved the strong law of large numbers. However, the proof has a gap in
the two-dimensional case, which was finally filled by Jain and Pruitt [12] under more general
situation.

The condition that the random walk moves in one step to the nearest-neighbor points
with the same probability is not necessary. Indeed, the same conclusions as those obtained by
Dvoretzky and Erds can be proved under weaker assumptions (cf. Jain and Pruitt [12, 15],
Spitzer [21]). The small deviation results were studied under some suitable assumptions. The
central limit theorems are given in [11, 13, 15, 16, 18], the law of the iterated logarithms are
given in [2, 14] and almost sure invariance principles are given in [2, 6]. Moreover, several
results concerning large deviations are supplied in [3, 7-9].

In this article we study the weak law of large numbers and the large deviations in the
upward direction for the range at time &f the simple random walk, under the conditional
probability given the event that the random walk returns to the origin at timé&2e might
guess that this condition has no effect on the behavior of the range of two-dimensional random
walks because of recurrence, while it has mudtuence for transient random walks. How-
ever, the conclusion in this paper shows that the range of the pinned random walk behaves
just like the range of the original random walk.
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The continuous analog of the range of a pinned random walk is the volume of the
Wiener sausage for a Brownian bridge. The expectation of the volume of the pinned Wiener
sausage was obtained by van den Berg and Bolthausen [1] in the two-dimensional case, and
by McGillivray [20] in three-or-more-dimensional cases. They concluded that the leading
term of the expectation of the volume of the pinned Wiener sausage is the same as that of the
(non-pinned) Wiener sausage. However, the law of large numbers and large deviations are not
discussed.

1. Preliminaries and notation. By a random walk{S,}>°, on thed-dimensional
integer latticeZ?, we mean a sequence of random variables definegshas 0 andsS, =
X1+ X2+ -+ + X, Where{X,} 7 ; is a sequence of independent identically distributed
random variables with values ia?. The simple random walk means a random walk such
that P[X1 = x] = 1/2d if x € Z% is a unit vector and 0 otherwise. Throughout this paper
we consider the-dimensional simple random walk. Lej be the probability that a random
walk never returns to the starting point. It is well known thatis strictly positive ifd = 3
and equal to O otherwise.

Since it will be convenient to regard the random walk as a Markov chain, we will use
some terminology of general Markov chains. Roe Z¢ let P,[ -] denote the probability
measures of events related to the random walk starting henx = 0, we simply write
P[-]instead ofPo[-]. Forn = 0 andx, y € Z¢ the notationp™(x, y) meansP,[S, = y].
Note thatp” (x, y) = p"(0, y — x). There is a positive constadtsuch that

(1.1) p"(0,x) < An~9/?

forall x € Z¢ andn > 1 (cf. Spitzer [21]). For € Z< let 7, be the first hitting time of;;
thatis,zy = inf{n = 1, S, = x}. If there are no positive integers wiffy = x, thent, = co.
The taboo probabilities are defined by

P?(M V) =P S, =y, 1, 2n],
p?w(xa ) =FP[Si=y, 1 Z n, Ty Zn]

We will useu, for p"(0,0) and f, for p;(0, 0). If n is odd, bothu, and f, are equal
to 0. Forx € Z9 let |x| = |x1| + --- + |xq| and ||x| = xf+---+x§, wherex; is the
jth component ofe. If {a,}7°,, {bs};2, and{c,}>>, are sequences of real numbers such
thatc, > 0 forn = 1, thena, = b, + O[c,] means thata, — b,)/c, remains bounded;
an = b, + o[c,] means thata, — b,)/c, converges to zero as— oo; a, ~ ¢, means that
an/c, converges to one as— oo, respectively.

It is well known that uniformly inx € Z¢

dj2 2
" [ d _dlx|
(1.2 p" 0, x) = 2(—27m) exp( »

1
+ 0| s
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if n 4+ |x| is even (cf. Lawler [17]). This is called the local central limit theorem.
An immediate conclusion of (1.2) is that

(1.3) Uz, = iqn~ 4?2 4 0[n~174/?],

wherexy = 2(d /47)?/?, which then implies
1 dj/2
(1.4) — =1 4 om¥*Y.
U, Kd

In particular, Yuy, is bounded by a constant multiple ot/2. Another useful formula is that

m—1
(1.5) Umnm = Z Settm—k + fin -
k=1
Letr, = Po[to > n] forn = 1. It was proved in Dvoretzky and Ed [4] that
logl
il [0929”} it d=2,
(1.6) r, = {logn log? n
Ya + O[nt=4/2) if >3,

where lod x stands forlogx)* for real numbers andx > 0.

Lastly, we give a classification of random walks. Lgtbe the support of(;. If the
smallest subgroup & generated by coincides withiz¢, the random walk is called adapted
(aperiodic in the sense of Spitzer [21]) ahds called the dimension of the random walk. The
period of the random walk is defined to be the greatest common division of the set of positive
integersn such thatP[S, = 0] is positive. The random walk is called aperiodic (strongly
aperiodic in the sense of Spitzer [21]) if its period is 1 and is called periodic otherwise. An
equivalent criterion for aperiodicity is that the smallest subgroup generated Bycoincides
with Z¢ for anyx e Z¢ (see Spitzer [21]). We note that the simple random wallZ6ris
adapted and-dimensional but periodic, since its period is two.

Throughout this papet;1, Co, . .., C24 Will denote suitable positive real constants.

2. Mainresults. For a positive integet let
Rn = |{S17 SZ: cey Sn}l ’

where|A| denotes the cardinality of a sat We call R,, the range at time of the random
walk or the range of the random walk up to timeThe asymptotic behavior of the expectation
of R, was obtained by Dvoretzky and Krsl[4]. Their result shows that

log |
ke +0[M} it d=2,
logn log”n
ER, = { yan + 0[n1/?] if d=3,
yan + Ollogn] if d=4,

yan +cqg+ 0[n%=42  if d =5,
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for some suitable positive constant. The problem is to obtain the explicit order of the
second term for dimension four or lower. In the three- and four-dimensional cases we can
give it, however there are no further results in the two-dimensional case.

ProPOSITION 2.1. Ifd =3,
n1/2
ER, = y3n + 25/23/32/c3n1/2 + 0|:_5 i|
log’ n
for anygivens > Oandifd = 4,
ER, = ysn + 2yf/<4logn + O[1].

If Var R, = o[(ER,)?] is proved, we can obtain the weak law of large numbers with the
help of the Chebyshev inequality. Indeed, Dvoretzky andEifd] showed that

0 I:nzloglogni| fd—2
log®n
VarR, = { 0[n%?] if d=23,
O[nlogn] if d=4,
Oln] if d>5.

One of our purposes in this paper is to establish the weak law of large numbes, for
for pinned simple random walks. Foer> 1 andy € Z¢ such thai + |y| is even, let

Piz,y[']ZP['|Sn=y]-

For a random variabl& we denote by, X and Vay, X the expectation and the variance of
X under the probability measu, o, respectively. NamelyE, X meansE[X|S2, = 0] and
Var, X meansE, (X — E, X)2. We can obtain the asymptotic behavior of the expectation of
R, under Py, o.

THEOREM 2.2. Ifd =2,

2 loglo
2.1) EnRop = 2% 4 0[" 9 g"]
logn log=n
Ifd =3,
n1/2
(2.2) EnRo, = 2y3n + 0[ - }
log’ n
foranys > 0. If d = 4,
(2.3) E,Ro, = 2yan — dyZkslogn + O[1].

Ifd > 5,

(24) Ey,Ro, = 2Vdn + O[1].
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Itis remarkable that the second termi)fRy,, is small in comparison with that & R,, in
the three- and four-dimensional cases. Unfortunately, there are no further results concerning
the second term for other dimensional cases.

In order to show the weak law of large numbers R, underP»;, o, it suffices to calcu-
late the variance oRy,.

THEOREM 2.3. Wehave

0[ 2'09'09"} ifd=2,
log® n

Var, Ro, = { 0[n%?] ifd=3,

O[nlogn] ifd=4,

Oln] if d >5.

This theorem immediately leads to the following.

COROLLARY 2.4. Wehave

) [ logn log logn 12 .
n|L>moo Pzn)o_ TRZH — | > )On( |Ogn =0 if d= 2,
. [| Ry —1/4 ;
lim P2, 0 — y3| > pun =0 if d=3,
n—00 L 2n
. [| R lo 2 ,
lim P20 2”—7/4 >)On( gn) }:o if d=4,
n— 00 L 2n n
: i Roy —1/2 .
lim P2, 0 = Yd| > palt =0 if d>5,
n—00 L 2n

whenever the sequence {p, };- ; of real numbers satisfies that p, — oo asn tendsto infinity.

We remark that these asymptotic behaviors of Riamwere improved by Jain and Pruitt
[13, 15, 16]. For an adapted random walk they proved that there exists a positive censtant
such that Var, ~ o2n if d > 4 andy,; < 1, and that VaRr,, is asymptotically equal to& (n)
for some non-decreasing slowly varying functionf d = 3 andy,; < 1. Moreover, they
showed that there exists a positive constasuch that Var, ~ o02r2/log* n for the two-
dimensional random walk with zero mean andtéirvariance. However, we have no further
result for Vay, Ry, other than Theorem 2.3.

Another purpose of this paper is to show the large deviationRfgrunder Py, ¢ in
the upward direction. Hamana and Kesten [8] proved for a two-or-more-dimensional adapted
random walk that there exists

. 1
¥(x) = — lim =log P[R, = xn]
n—-oon

foranyx € R (buty (x) may equah-oo) and that)s has the following properties:
(1) ¥(x) =0forx = ya;
(2) O<y(x) <oofory; <x <1,
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B) v(x)=ocoforx > 1;

(4) + is continuous and convex @A, 1];

(5) v is strictly increasing offiyy, 1].
For one-dimensional adapted random walks the same result was shown by Hamana and
Kesten [9] except for the convexity @f. It should be remarked that the definition Bf is
{So, ..., Sp—1}| in their paper, which is slightly different from that in this article.
However, we cannot find any difference in adopting either definition. Indégd.,. . ., S,—1}|
is equal tg{S, — So, ..., S, — Sy,—1}| and thus has the same distribution &, .. ., S, }| by
considering the time reversed random walk or by relabetingsX, ;41 for1 < j < n. The
following theorem implies that the range of the pinned simple random walk satisfies the up-
ward large deviations and that the limiting function is the same as that of the original random
walk in two-or-more-dimensional cases.

THEOREM 2.5. Ifd = 2,then

1
(2.5) Y(x) = — lim —log P2, 0[R2, = 2xn].
n—o00 2n
It is not difficult to derive the following corollary from Theorem 2.5.

COROLLARY 2.6. Let{y,};2, beasequenceof pointsin Z4 suchthat n + |y, | iseven
andthat |y,| = o[n]. Ifd = 2,then

1
(2.6) Y(x) =—Ilim —log P, ,[R, = xn].
n—-oon

In the case that = 1, Hammersley [10] has already proved (2.5) and (2.6), and these
proofs are also supplied in Madras and Slade [19].

3. Proof of Proposition 2.1 and Theorem 2.2. For a calculation of: R, andE,, R2,,,
the estimate off,, will play an important role. We first give an estimate gffor dimension 2
or higher. Ifd = 2, Jain and Pruitt [15] obtained that

_ 2n(det®)

nlog?n
for an aperiodic random walk with mean 0 and finite variance, wleigthe symmetric and
positive definite matrix such tha (6, X1)? = ||£6|? for 6 € R? and(-, -) is the standard

inner product orR?. We note that sucl is always defined for adapted random walkszZsh
with mean 0 and finite variance, and a simple calculation shows that

s_L(1o
ST 2\0 1

for the two-dimensional simple random walk.
Although the simple random walk is not aperiodic, we can apply (3.1) to obtain the
similar limiting behavior in the following fashion. Far= 1, let

(3.1 Ja

1/1 -1
Y = > (1 1> (Xor—1+ Xox) -
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Then{Y;};2 , is a sequence of independent and identically distributed random variables taking
valuesinZ2. A new random walkZz,}>° ,, defined byZo = 0 andZ, = Y1+---+Y,, moves
onZZ2and is aperiodic. Note thap,, = 0 is equivalentt,, = 0 for eachn > 1. Moreover,

it follows that

fon=P[Z,=0,Z; #0 for k=1,...,n — 1]

sinceSy,—1 is never equal to 0 fom = 1. In virtue of (3.1), f2, is asymptotically equal
to 2r(detA)/nlog?n, where A is the symmetric and positive definite matrix such that
E(9,Y1)? = ||A0||2 for & € R2. Itis easy to show that det = 1/2. Indeed, the equal-
ity A = & A follows from the identity

E@©,Y1)? = E(0, AX1)? = |5 402,

]

T

where

Therefore, we have

(3.2 fon ~

nlog?n’
The argument above only yields the leading ternfgf however, (3.2) will be used in deriv-
ing asymptotic behavior of the second termfgf in the two-dimensional case.

LEMMA 3.1. Ifd = 2,then

f2n =

Ifd = 3,thenfor any§ > 0

T log Iogn}
+ 0 .
nlog?n [n log® n

fon = ydedn—d/Z +0[n~4? |Og_5 nj.

PROOF  We can prove this lemma in an analogous manner to Theorem 4.1 in Jain and
Pruitt [15]. Note that

(3-3) S =2 Py ©.x)pg" N x, y)pY (3, 0)
x#0y#0

for integers 1< N < n. We first consider the effect of replacirﬁ
p?'=2N (x, y) in (3.3), for which the following equality will be useful:

n=2N (y y) with

PP (x,y) — p&"(x, y) = Plwo < 2m, Som = y]

(3.4)
= Plto =m, So = yl+ Plm < 10 < 2m, Sop = y].

We first consider the two-dimensional case. It follows from the second equality in (3.4)
that
m i 2m—1 )
0= p™(x,y) = p" (. 1) = ) pg(x.0p”" T 0. + Y p/(x.0p" ' (0.)

j=1 j=m
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form 2 1. Applying it to (3.3) yields

35 |fa =YD o ©.x)p” N (x, y)pg (v, 0)
x7#0y#0
n—N ) ‘
(3.6) <Y D> pd 0. phx, 0)p? N0, y)pg (v, 0)
j=1x#0y#0
2n—2N-1 . )
(3.7) + > Y o np . opy 0P (7.0)

j=n—N x#0y#0
Taking the summation on and applying (1.1), we see that (3.6) is bounded by

n—N
(3.8) AY D fvri@n—2N - ) pg (3. 0).
J=1y#0
Sincep§ (0, z) = pX(0,z) fork = 1 andz € ¢, (3.8) is dominated by
n—N Cl n
A(n—N)t e ;.
(1= N)Thrw Y v W) logN 2
j=1 J=N+1
Substituting = 2n — 2N — j in the summation orj, we see that (3.7) is equal to
n—N
YD p6 (0,x)p? PN (x, 0) pp(0, ) pg (v, 0)
Jj=1 x#0y#0
which coincides with (3.6). Therefore, a bound of (3.5) is given by
C2 . 1
(3.9) — —.
(n — N)log N j:;rl jlog? j

Here we have applied (3.2). We take= [n/log® 2|, where|x | means the longest integer
which is not grater than. Then (3.9) and also (3.5) are larger than or equal to a constant

multiple of
1 1 1\ 0 log logn
nlogn\logN logn) [ nlog3n |’

We are now going to estimate (3.5) in the three-or-more-dimensional cases.>Lét
be given and tak&/ = |n/log’ n]. By the first equality in (3.4), we obtain

2n—2N
0 P N, —pd N, £ Y P 0pP VO, ),
j=1
which immediately implies that (3.5) is bounded by

2n—2N 2n—2N
D unijuz-n-j S A2 Y (N + )P = N = 2= 0INT),
j=1 j=1
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which is, in particular, of ordet—4/2log=% n. Consequently, we obtain that

337

[Ioglogn} it J— 2
(3.10) fan=»_ Y Py (0.x)p* 2N (x.y)p) 3.0+ { "L nlogn o
x£0y£0 O[n=2log=n] if d > 3.

It suffices to calculate the double sum in (3.10). It follows from (1.2) that
dlly — x|
4(n — N)
= ka(n = N)™ 2+ (Iy = x”+ 1) x Ol(n — N) =42,

PP @, y) = kan = N)"U/? exp{— } +0ln — N) /2

Sincelly — x |12 < 2(]ly|I2 + ||Ix]|?), we see that (3.10) is
(B11)  ka(n— N3N " pg (0, x)pg (v, 0) + OIN(n — N) 14/,
x#0y#0
where we have used
D o 1zPpd 0,2 £ ) 1z1PpN 0, ) = N

zeZd zez4d

Since the effect of exchangirig— N) /2 for n=4/2 is of orderN (n — N)~1~4/2 it is verified

that (3.11) is

(3.12) kan~ %12 4 O[N(n — N)~174/2]

If d 2 3, (1.6) implies that (3.12) and also (3.10) are
ydedn—d/z +0[n~4? |Og_‘S n.

If d =2, (1.6) implies that

b1 loglogN T loglogn
= 0} 5 = 0 5
logN log® N logn log®n

rn

sinceN = |n/log®n]|. Therefore, (3.12) yields

T [Iog Iogn}
] .
nlog?n nlog®n

For integers I j < n let

n_ 1 if S #Syforallae{j+1,...,n},
7710 otherwise.

ThenR, can be written as

n—1
Ry =1+ 27".
j=1

This identity is very useful in calculating the expectation and the varian®g .of
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We first prove Proposition 2.1. Fer = 1 we have

2m—1 2m—1 oo
ERpp=1+ Y romj=2yam+1—va+ Y Y fi-
j=1 Jj=1i=j+1

Sincef; = 0 if i is odd, the double sum in the right-hand side is equal to

m—1 oo

2) > fatolnl.

k=3 I=k+1
It follows from Lemma 3.1 that for ang§ > 0

oo (@] o0
Y fa=vika Y, TP+ 0[ > l"/zlog‘sl}

(313) I1=k+1 I1=k+1 I=k+1

=~ zydzlcdkl_d/z—i- O[kY4210g7% k]

if d > 3. Itis easy to show that

lgkl_d/z_ 2m*? 4 0[1] if d=3,
P " llogm+0[1] if d=4,

which immediately implies that

m
ERay = 2yam + dy2iam®? + 0 [Z k~Y?log™? k}
k=3
if d = 3 and that

m
ER2y = 2yam + 2)/42/c4 logm + OI:Z k~tlog™® k:|
k=3
if d = 4. The error term in the four-dimensional case can be sean[&kby takings =
2. Estimating the error term in the three-dimensional case is also not difficultMLet
|m /log® m|. Then we obtain

m M m 1/2
1 1 1 1 m
> gt = L g 7= o)
=3 9 P 9 M Zn g
SinceR2,; £ Roy+1 S Roy + 1, the asymptotic behavior df Ry,+-1 is the same as that of
E Ry,,. Thus, we conclude that

ER, = yan + 4y2k3(ln/2))Y% + 0[n*/?/lod’ n)
if d = 3 and that
ERy = yan + 2yZkslogln/2] + O[1]
if d = 4. This proves Proposition 2.1.
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We next prove Theorem 2.2. It suffices to calculate the expectati@a,ofestricted on
the eventS,, = 0}. Classifying the event by the arrival site at tipewe obtain form = 1
that
2n-1 ,
E[Ron: Son =0l = uzu + »_ 3 p/ (0, y)p¥ 7 (3.0)
Jj=1 y#0
by the Markov property. To calculate the second term of the right-hand side, we need the
following lemma.

LEMMA 3.2. Forn = 1andm = 2 we have

m
Y PO 0 =t — Y fittnimk
yeZa\{0} k=1

PROOF. It can be shown by the Markov property that jog 0 andm = 2

m—1
Py, 0) =Py, 0+ Y fip" M, 0).
k=1

Thus, we have

m—1
D PO =Y PO, )p" (3.0 = > Y fir"(0,y)p" (y,0)
y#0 y#0 k=1 y#0

m—1 m—1

= Up+m — UnUpm — Z fk”n+m—k + up Z Sewm— -
k=1 k=1

Then the lemma follows by applying (1.5) to the last summation on the right-hand side of this

identity. O
Itis immediate from Lemma 3.2 tha&t[ R2,; S2, = 0] is equal to
2n—22n—j n—1n—j
2nuzy — Y fittzaor = 2nuz, =2y " fauzn-i-
j=1 i=1 j=11=1

Here we note thap'(y, 0) = p(y,0), which is equal to 0 ify = 0, and that botly;, and
u,, are valid only whemn is even. Changing the order of summations, the double sum on the
right-hand side yields

n—1

(3.14) Z(" — D) fauzm-ry,

=1
which can be expressed by (1.5) as
n—1

n(uan — fon) — ZleIMZ(nfl) .

=1



340 Y. HAMANA

Substitutingh = n — [ in the summation oh, (3.14) yields

n—1
(3.15) 22 huzn fo(n—n) -
h=1
Therefore, we obtailf[ R2,; S2, = 0] in the following two forms:
n—1
2 " lfatam-iy + 2nfon »
(3.16) E[Ry; S2,=01={ =
2nuzy — 2 hugn fan—n) -
h=1

The first is useful in the two-dimensional case and the latter in the three-or-more-dimensional
cases.

We now consider the five-or-more-dimensabrtases. It suffices to calculate (3.15).
Let N = [n/2]. Then (3.15) is equal to

N-1 n—1 n—1
(3.17) 2> huan fon—ny +2 Y (hugn — nuza) fa—ny + 2nu20 Y fom-n) -
h=1 h=N h=N

By (1.1), the first term of (3.17) is less than or equal to

2A2]§hl—d/2(n — )42 < Ca(n — NY2 i pi=d/2.
h=1 h=1
which is of ordem—4/2if d > 5. It follows from (1.3) thatfor 1< h < n
(3.18) huoy, — nuo, = kg(h*~4% — =42y 4 o[n=4/?].
The mean value theorem implies that
(3.19) |huzy — nuz,| < Cs(n — Wk ™/,

from which the absolute value of the seconan®f (3.17) is bounded by a constant multiple
of

n—1 n—1
Z h—d/Z(n _ h)l—d/Z § N—d/2 Z(n _ h)l—d/Z’
h=N h=1
which has the same bound as the first term of (3.17). The third term of (3.17) yields

2nus,{1 — Plto > n — N1} = 2nuz,{1— yq + O[n*~%/?]},

where (1.6) has been applied. Consequently, we obtain (2.4) from (1.4).
We next consider the three- and four-dimensional cases. By the second formula of (3.16),
we obtain

n—1 n—1
2
(3.20) E,Ro, = 2n{1 - hE_l f2(n—h)} . hE_l(huzh — nu2y) fam—n) -
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It follows from (3.19) that ifd > 3,

n—1 n—1
> (hugy — nuzy) fan-ny| < Co Y h™2(n — W% = 0[n*~/7].
h=1 h=1

Applying (1.4) and (3.18) to the second term of the right-hand side of (3.20), we obtain

n—1 n—1
_an/Z Z(hlfd/Z _ nlid/z)fZ(n—h) + O[Hd/ZZhd/z(n _ h)d/Z] + 0[1],
h=1 h=1

which means that il = 3,

n—1
(3:21)  EuRp, = 2mn+2n2f2h — 202N (W12 — ) oy + OLA].
h=n h=1

It follows from (3.13) that the second term of the right-hand side of (3.21) yields
(3.22) 4yZiant’2 + 0[nY2log™ n]

if 4 2 3 and is bounded i# = 4. Thus, it suffices to estimate

n—1
(3.23) DW= oy

In virtue of Lemma 3.1, it = 4, (3.23) yields

n—1 n—2

2
Yaka 1 |:1 1 :|
3.24 o~ 2 : '
e29 " ; h(n —h) " i3 hn = hylog*(n — h)

Recall thatV = |n/2]. The summation in the second term of (3.24) is bounded by

L iz 12
(n — N)log?(n — N = h N et n—h)log n—nh)’

which is of order ¥n. The summation in the first term of (3.24) gives

1 1, 1\ _2logn i
ni=\h n—h T oon nl

Therefore, ifd = 4, (3.23) yields

2y2kal0 1
Mw[—z]

n2

which immediately implies (2.3).
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By Lemma 3.1 again, (3.23) in the three-dimensional case is given by
n—1

(3.25) V5Ks 3 !
' V= VR =h)(Vh + /n)
n—2 1
(3.26) [ }
th(n— m)(Wh + /n)log (n — h)
foranyé > 0. Here we have used the identity that
1 1 n—nh

N NI TN N
The summation in (3.26) is bounded by
n—2

Z «/h(n — |Og (n—h)

Dividing the summation into two cases;< |n/log? n| andh > |n/log? n], we see that it
is of ordern /log’ n. Hence, (3.26) i©)[nY/2/log’ n]. For0< x < 1 let

1
T = = na+ v

Then (3.25) is expressed as

2 n—1
V3K3 h
2 Z f<_> :
n =1 n
Note that the basic property of Riemannian integral implies that

,1"_>moo;Zf() /f(x)dx_Z

Although this is not enough toomplete the proof of (2.2), we can improve this limiting
behavior by a standard argument of appneaiing a summation to an integral. Indeed, a
simple calculation shows that

() = [ s o] L] =2 o L]
nh:l n) 1/n e ﬁ B ﬁ ’
which implies that (3.25) is equal to

2y2 1
J/3'<3+0[—]

n n3/2

Therefore, the third term of the right-hand side of (3.21) yields

w12
—4)/32/c3nl/2 + 0 |:|Og(3 nj| .

Combining this with (3.22), we obtain (2.2).
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Finally, we prove (2.1). It follows from (3.2) (or Lemma 3.1) and (3.16) that

n—1
1

(3.27) E[R2,; S2n = 0] = Zzlleuszl) + 0[ 5 } :

= log°n
Applying Lemma 3.1 to the leading term of (3.27) yields

n—1 U2(n—1)
3.28 2y S
(3.28) ; log? !
while the error term is of order

n—1 n—1
U2(n—I) log log! 1

3.29 ———— = = < Aloglogn _—
(3.29) ; log/ = Al0giod ; (n— 1 log3!

Let M = |n/log? n|. Then the summation in the right-hand side of (3.29) is dominated by

M n—1

1 1 CgM Cologn
Z(n—l)log3l+2(n—l)log3l M log®M ’
=2 =M

A

both terms of which are of order/tbg? n. Hence, the right-hand side of (3.29) is bounded by
a constant multiple of log log/log? n. By (1.3), the leading term of (3.28) yields

n—1

1
3.30 2 ———,
(3:30) ; (n —1)log?1
and the error term of (3.28) is of order
n—1

Z 1

= (n— D2log?l

We see, in the same way as for (3.29), that this summati@[is log? n]. To obtain the
upper bound of (3.30), we use = [n/log?n| again. The contribution for X [ < M in
(3.30) is negligible, since

M-1

Z 1 < CioM :0[ 1 :|
= (n—1) log?l ~“n—M log?n

Hence, we concentrate on the summation ¢wérn — 1] to get

n—1 n—1
1 1 1 lo 1
Z 7 S Z = gn +0[ 2 }
S (m=Dlog?l ~ log"M =/ n—1 log-M log=n
Since
1 1 log logn
_ =0
logM logn log? n
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the right-hand side yields

1 [Iog Iogn}
0 .
logn log?n

The lower bound of (3.30) can be easily obtained. Indeed, it is not less than

2 n—1

1 1 2 1
2 Z - 2 + 0[ 2 i| :
logn = n—1 (n—1)log°n ~ logn nlog®n
Therefore, (3.27) implies that

1\

E,Rop, =

2 [ loglogn }
o ———|.
2nlogn Uz, 10g? n
With the help of (1.4), we now conclude (2.1).

4. Proof of Theorem 2.3. In order to prove Theorem 2.3, we need the following two

formulas concerning taboo probabilities. A simple calculation shows thaifax 2 and
x, v,z € Z% such thate # y andx # z,

m—1

(4.1) PG, 2) = pi(x.2) = Y ph (e i (x, 2)
m—1

4.2) pg,(x, x) = pl(x,x) — Z pl;y(x, y)p)'?fk(y, x).

Here (4.1) can be obtained by classifying the evépt= z, 7, = m} by the value of,, and
(4.2) by classifyingt, = m} by the value ofr,.
LEMMA 4.1. Forn = 2wehave
2n—2 2n—1
4.3) Y > EJzZ'z7
i=1 j=i+1
-2 2n-1

(4.4) =— Z DY PO »pY Ty, 0)

u
2n i=1 j=i+1y#0
2n—32n—i—22n—i—j—1

(4.5) ——Z > Z fizn—1

i=1 j=1

2
n .
O[ } if d=2,
2n—32n—i—22n—i—j—12n—i—I

(4.6) +g >y Z Z fifuion—i1-n +  0[n®?] if d=3,
=1 j=1 Olnlogn] ifd=4,
[n] if d>5.
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PrROOF. By the Markov property, (4.3) yields
-2 2n—1

- T Y s v oo,

i=1 j=i+1y,z#0
F#y

which is equal to
-2 2n—1

@7 = Z S>3 PO 6o 0

u
2 21 j=igly,£0
z#y

2n—-3 2n—-2 2n—j-1

(4.8) - Z Yo S Ponpi el op. oy T @0

u
2 GT1 j=idl =1 y,2£0
z#y

by applying (4.1). Regarding the summationpoverZ? \ {0, y} in (4.7) as the sum over
Z9\ {y} minus that ovef0}, we obtain

2n—2 2n—1 1 2n—-2 2n—1 . o )
— Z Y Y P0G 0-— Y > S P 0.mpl T (3.0py 0.0
i—1 j=i+1y£0 “2n 131 5120

Note that the first term is the same as (4.4), and the absolute value of the second term is not
larger than

2n—2 2n-1 2n—
—Z Zu]uzn]— Z Jujuzn—j,
i=1 j=i+1 j=2
where, by (1.1) and (1.4), the right-hand side is of order
2n—1
1 Cinlogn if d =2,
d/2 1-d/2(o d/2 <
! ;2—;] (@ =7 {Clzn if d>3.

Applying (4.2), we see that (4.8) yields

213 2n—2 2n—j—1

(4.9) - Z Yo Y Ponair? .0

=1 j=i+1 I=1 y#0
12n32n22n]l

(4.10) DI MDD AR ‘3.0 £ipy 0. 0)
i=1 j=i+1 [=1 y#0
1 2n—4 2n—3 2n—j—-11-1
(4.11) +o— Yo S Poypi T2
i=1 j=i+1 [=1 h=1y,z#0

2Fy

2 -1
x ph @ Py pd T

(z,0).
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Then Lemma 3.2 implies that (4.9) gives (4.5) and (4.6). Also, (4.10) can be easily estimated
from (1.5). Indeed, (4.10) is not larger than

2n—3 2n—2 2n—j—1 2n—3 2n—

LYY e B Y wa

i=1 j=i+1 I=1 Uon 134 j=i+1
A bound of the right-hand side has been calculated, and thus (4.10) is ofdadpr if d = 2
and of ordem if d = 3.

The estimate of (4.11) is more complicated. We first accomplish it wher3. Chang-
ing the order of summations drandh, we see that (4.11) is bounded by

2n—3 2n—j—22n—j—-1

2n—
% Z Z Z S > POy 3" @ T 6 op? T 2 0).
i=1j

= I=h+1 y zezd

Regarding the summations gn/ andz as those oy — i, I — h andz — y, respectively, for
fixedi, h andy, we see that

=

,Z,

j=1

—j—
Z Z p'(0.)p! (0, 2)

y.,zeZ4

0
x pM(z,0)p' (0, 2) p? = =i (z, —y).

We now take summations gnand; in this order, and then apply (1.1). Then (4.11) is not
larger than

N
L
IN
S
d
b
Q’
\
:-
I\)

A

uzn Z P (0, 2)p" (2, 0017220 — j —h —1)17/2,
Uzn =

—j—
Z Z @n — j— WY+ )72,

Substitutingk = j + & in the sum ok, we see that this is less than or equal to

2n—4 20-3 2n—4
1 Z S @n— a2 2 Z(Z” jy-d/2l-dj2.
j=1 k=j+1 Uon 13

It follows from (1.4) that (4.11) i) [n%/?] if d = 3, O[nlogn] if d = 4 andO|[n] if d > 5.
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We next estimate (4.11) in the two-dimensional case. Similarly to higher-dimensional
cases, (4.11) is bounded by

2n—42n—i—32n—i—j—22n—i—j—h—1

_Z Z Z Z ZP(Oy)po(Oz)

i=1 j=1 v,27#0
x pi(z,00pL(0, 2)p?" 7Tz, —y)

2n—42n—j—32n—j—h

o > Z Zl’o(o 2)pi(z,0pL0,2).
Uan 1 h=1

j =1  z#0

To estimate the summation in the right-hand side, the following inequality given in Jain
and Pruitt [15] will be useful:

sz O, 2)re_, = Zpo(o ore_, < Zp O, 2)r*ts

for z # 0. The first equallty has been obtained from the fact that
po(0,2) = p7'(0,2)

form > 1andz € Z¢. Applying this inequality three times in the above, we accordingly have
that (4.11) is not Iarger than

Z_) Z Z pr(o 2p" @ 0P 0.5,

h=1 =1 z#0

A

We divide the summation into the following two parts: {iH- 4 + [ is less than or equal
to 2n — «; (i) j + h + L is larger than  — o, wherea = |2n/log*n]. Slncean _n1 s

bounded bya if j+h+1 < 2n—a, the asymptotic behavior (1.6) shows that the contrlbutlon
for case (i) is not larger than

2n 2n

(4.12) G ZZZZPJ(O 99" 0p(0.2).

log”, —1h=1i=1 z

Applying the same argument used in Jain and Pruitt [15] or Lemma 4.4 in Hamana [5], the
summation is of ordet. Thus, (4.12) igD[n?/log® n]. The contribution for case (ii) does not
exceed a constant multiple of

n Z G+ N < i logn Z (j +hm)t

1<j,h,01<2n 1<j,h<2n
2n—a<j+h+1<2n 2n—a<j+h<2n
2n k
. oy —1
<Cisnlogn Y Y {4k =yt
k=2n—a j=1

which is O[n?2/log®n]. Therefore, (4.11) i®[n?/log® n] if d = 2. O
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We first prove Theorem 2.3 in the three-or-more-dimensional cases=lIfil< j <
2n — 1, then

1 . . , o i
(413)  EZPEZY =) P Oypy T (0.0 ) p/(0.0)p" T 2.0).
Uan y20 20

If j < 2n— 2, we can apply Lemma 3.2 to the sumgmobtaining that (4.13) is

2n—j
— E POVR TG0 =3 PO T (3,0 ) fitzs.
)#0 2n y=+0 =1

If j =2n — 1, the right-hand side of (4.13) yields

—Zp ©, )% (y,0).
Hon y#0

Therefore, the summation of (4.13) overli < j < 2n — 1is equal to

2n—2 2n—1

Z > PO, 9)p7 (3,0
i=1 j=i+1y#0

2n—3 2n—2 2n—j

LY S S Y50 wp (3,0 fiuz

ul
211111!+1l1)7£0

The first term is the same as (4.4). It follows from Lemma 3.2 again that the second term is a
sum of

1 2n—3 2n—2 2n—j
(4.14) -=> frtan—1
T S )
and
2n—3 2n—2 2n—j 2n—i

% > Ji fnu2n—iuzn—p .

Uan i=1 j=i+1 I=1 h=1

The difference between (4.5) and (4.14) is

2n—32n—i-2 1 2n—3 2n—
—Z D Soimjin) = — Zm i s
i=1 j=1 U2n i=1 j=i+1

which is of ordem if d = 3.
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For random variablesx and Y, let Coy,(X,Y) be E,[(X — E,X)(Y — E,Y)].
These calculations show that

2n—-2 2n-1
(4.15) > )" Cov, (22", z%")
i=1 j=i+1
1 2n—32n—i—-22n—i—j—12n—i—I
(418) =—>" > fifattzn—1-n
| =1 h=1
| 21=32n=i=22ni—j2n-i 0[n®? if d=3,
(4.17) - > fi fattzn—iuzn—n + { Onlogn] if d =4,
A Oln] if d>5.

Since|uzn—_j—p — uzn—n| < Cr6l(2n — 1 — h)~179/2 which is derived from (1.3) and the
mean value theorem, the contribution of replaaiag;_, with u,_5 in (4.16) is dominated
by a constant multiple of

—32n—i—22n—i—I

WZXQ Z Z @n —i — DI d2n — | — p)714/2,

which is not Iarger than
—22n—i—12n—i—I

d/ZZ Z Z [1-d/2p=d/20y _ | _ py=d/2
=1 k=1

i=1

—22n—i—12n—i—I
+ nd/2 Z Z Z j1-d/2p1- d/2(2n h)flfd/Z,
i=1 I[=1
sincez—i—1< (2n—1—h)+h. Taklng summations ohand! in this order, we see that
the first term is bounded by
C17 if d=3,
= Ciglog(2n — h)
2N pmdf2 22T 5 T it d=4
" Z 2n—h ’

Cro2n —h)1=4/2 if ¢ >5,

which is of ordem®? if d = 3,nlogn if d = 4 andn if d > 5. In a similar way, a bound of
the second term is given by

2n-2 o[n%? if d=3,
Coon/? Z 1720 —1)¥=4/2 = L O[nlogn] if d =4,
=1 O[n] if d=5.

Therefore, the leading term of (4.16) yields
2n—32n—i—22n—i—j—12n—i—I

(4.18) —Z > Z Z i fatizn—n -

i=1 j=1



350 Y. HAMANA

We also calculate the contribution of exchangimg_; for us, in (4.17). Note that
[Uzn_1 — uz,| < Ca1l(2n — 1)~174/2, Applying (1.5) to the sum oh, we have that
2n—32n—i—22n—i—j 2n—i

—Z Z Z Zfz ht2n—h |U2n—1 — Uzn|

u3, i=1 j=1 =1
2n—32n—i—22n—i—j
é Z Z Z fi luzn—1 — uzn|
i=1 j=1 =1
2n—22n—i—12n—i—j

<C22nd/22 Z Z 1141200y _ [y=1-d/2

i=1 j=1 =1
Taking summations ohand j, we see that the right-hand side is dominated by
on_2 om®? if d=3,
Coon/? Z 17=4122n —1)¥=42 = L O[nlogn] if d =4,
=1 O[n] if d>5.

Hence, the leading term of (4.17) yields
2n—32n—i—22n—i—j 2n—i
(4.19) - Z . D D fifwuzn.
i=1 j=1 =1 h=1
Noting that the summands of (4.18) and (4.19) are the same and that the range of summations
in (4.19) includes that in (4.18), we see that the sum of (4.18) and (4.19) is negative. Since
the sum of Vay ij.” onj over[l, 2n — 1] is not larger tham, the leading term of VarRry, is
(4.15). This completes a proof of Theorem 2.3 for the three-or-more-dimensional cases.
The remainder of this section is devoted to the estimate of Rar in the two-dimen-
sional case. The proof for higher-dimensiboases is not applicable, since we cannot prove
in this case that the contributions from the replacement>pf;_;, with u2,—; in (4.6) and
uz,—; With up, in (4.7) are negligible. Thus, we proceed as follows. Theorem 2.2 implies that
ifd =2,

(EnRan)? = 4”22'12 + 0[—”2 'Ogslog"} .
log®n log®n
Forn = 2 we have that
2n—1 2n—-2 2n—1
E.R5, =143 E,Z+2% > E 2277
j=1 i=1 j=i+1

Since the second term of the right-hand side is not larger thait & sufficient to show that
ifd =2,

2n—2 2n—1 2 2
(4.20) 3o Elz?z¥ = 2 [

nzloglogn}
i=1 j=i+1 g n

log®n
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Note that the left-hand side of (4.20) is the same as (4.3).
From now on, we are going to improve Lemma 4.1. It follows from Lemma 3.2 that (4.4)
is equal to

1 22 2nl< 2n—i
— Z MZn_ZflMZn—l)
U2n i=1 j=i+l =
—22n—i
= Z(Zn—l—l)—— Z > @n—i—1) fiuz.
1 1=

The first term of the nght—hand side(s — 1)(2n — 1) and the second term is

n—1n—i n—1n—i
(4.21) ——ZZ(n—l)fzmzm z)+—22fzzuz(n -
71 0=1 571 0=1

Changing the order of summations in the first term of (4.21) yields
n—1

2
__< Z(n +1—D(n—1) fauzpn-i) -

u
2"11

By (1.5), the second term of (4.21) is not larger thamience, it follows that (4.4) is equal to
2 n—2
(=D -1 -~ Y +1 =1 — 1) fauzn— + Olnl,
=1
since(n — 1) fa,_ou2/u2, = O[n/log?n] which follows from (1.4) and (3.2). Taking sum-
mations onj and: in this order, (4.5) yields

] 23
- do@n—1-2)2n—1-1) fruz.
2u, =
n—2 n—2
2 1
=—— Y (1 —1=D(n =D fauzp-n+-— Y (n—1=1) fauzui-
o 121 o 21

Since each summand in the second term of the right-hand side is boundgf;bthe sum
of (4.4) and (4.5) is equal to

4n — 1) 3
(= > (n =) fauzm-y + Olnl.

2n
=1
The calculation of (4.6) is similar to (4.4) and (4.5). Taking the summatiopiorf4.6) yields
n—22n—21—-22n-21—i

—Z > Z (2n =20 =i = 1) fa fauzn—21-
=1 i=1

I-1n—1—i

n—2n—
—_Z Z Z(n_l_l)fZIthUZ(n I—ny + Oln].
=1

u
2n im1  h=1

n—-1)2n-1 —




352 Y. HAMANA

The first term of the right-hand side is

2 n—2n—I-1
JZ D n—l+h =D —1—h)fafmuanin
=1 h=1
—2n—1-1
2n —1) %
(4.22) = Y0 (=1 —h) fafantiam-i-n
U121 =
2 n—2n—I-1
(4.23) + =" > hn—1—h) fa fantiam-i-n
2012 b=
9 = 2n—-1-1
(4.24) == > M=l =) fafmuan-in -
o 121 =

Exchanging the role aof and# in the double sum in (4.23), we see that the sum in (4.23) is
the same as that in (4.24), and thus (4.23) cancel out (4.24). Then the leading term of (4.6) is
(4.22) and its remaining term 8[xn]. It is obvious that (4.22) is equal to

2(n — 1)n 2n—1-1 2(n — 1)11 2n—1-1
Z Z (n = 1) fa fanuzm—1-ny — Z Z hifar fonu2(n—1-hn) -
o121 = o121 b=

Applying h = n — (n — h) to the second term, we see that (4.22) is

2n—I1-1 n—2n—-1-1
4in— 1) — 2n(n —1)
E E (n =1 fa fonuo0—1-ny — E E Sar fonu2(0—i—n) -
U 934 =1 Y 93 2

Therefore, we obtain by (1.5) that the sum of (4.4), (4.5) and (4.6) is given by

4(n
Uzn

2
Z(n—l)fzzfz(n n+ n(n2 )on

=1 1

2n(n — 1) 2n(n — 1) «
+ —— fo—pl2 + —— Z 21 fot—1y + Oln].
Uzn Uzn =1

This implies that it = 2, (4.3) yields

-1 2 n?
Z(n—z)fm(n b+ ("m)fz” ”(” Zfzzfzm 1)+0[ }

=1 log®

4(n

Uzn

where we have used thap = f> and that(n — 1) fo(,—1) f2 = 0[1/|ngn]. Substituting
h = n — [ in the sum of the first term, we get

n—1 n—1
Y =D fafow-ty = Y hfow-n fon
=1 h=1
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which implies that

n—1 n—1
n Y fafonn =2 (n =1 fafaniy-
=1 =1

Hence, we see thatdif = 2, the leading term of (4.3) isi2n — 1) f2, /u2, and the remaining
term of (4.3) is of orden?/log®n. Since

fon w2 [Iog Iogn}

uzn  logen log®n

by (1.4) and Lemma 3.1, we accordingly oltg#.20). This completes a proof of Theo-
rem 2.3.

5. Largedeviationsin the upward direction. We give a proof of Theorem 2.5 and
its corollary in this section. It is obvious th&b,, o[ R2, = 2xn] is equal to O forr > 1 and is
equal to 1 forx £ 0. Moreover, the assertion of Theorem 2.5 is already establisheé ifl.
Hence, it suffices to prove (2.5) for® x < 1. It follows from (1.3) that

o 1
¥ (x) < liminf —— log Py, 0[R2, = 2xn].
n—00 2n ’
Therefore, we concentrate on proving that

1
lim sup—-— log Pos,0[R2: = 2xn] < ¥(x)

n— oo

for 0 < x < 1, which is equivalent to

1
(5.1) lim sup—2— log P[R2, 2 2xn, S2, = 0] < ¢ (x).
n

n— oo
For simplicity we writeg (x) for the left-hand side of (5.1).

The argument in Lemma 1 in Hamana and Kesten [8] is applicable {Xgf>° , be
an independent copy ¢, }>° ;. We define a new random walk;, }°° , moving onZ? by
So =0ands;, = X7 +---+ X, forn = 1. Then{s,}° ; is also the simple random walk on
Z4 which is independent dfS,,}°° ;. Let R, denote the range at timeof the random walk
{8/}°°,. For integeryp, ¢ = 0 we consider the random wafl;/”?}>° ; defined by

{sn fo<n<p+gq,

Sp+q+S;l_p_q if n=p+qg+1.

Tnpsq —

Clearly,{T;"?}>° ; has the same distribution &S,,}°° ,, and the definition of 7,7}, im-
mediately shows that

TP T N Z T Ty o

p.q
2p+2q I

=Ry +R,—Nyy
for eachp, ¢ = 0, where

Npg = {81 Spy NV {Spig + 51, o Spag + SH) -
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Thus, N, , counts the number of points which are visited during the time intdfval] by
the random walK S, }7° , and also visited durinfl, p] by the random walKs; }>° ; shifted

by Sp+q .
For a positive integet let M = [n%/@*D7] andm = n — 2dM. Here[x] denotes the
smallest integer which is not less thanPut

d
AM={weZd;w=Zk.,'ej,0§kj§M,j=1,2,...,d},
=1

wheree; is the unit vector irz? of which thejth element is one for each< j < 4. For any
w € Ay leth(w) = ki1+- - -+kg if w =kie1+- - -+kgey. Itis obvious that 2 h(w) < dM.
Letx be a real number such thatdx < 1 ande > 0 are given. Sincé is continuous, we
can choosé € (0, 1 — x) such that

(5.3) Yx +8) <yx) +e.
Moreover, we can take a positive integgrsuch that
xnS (x+8)m—M
foranyn 2 ng. Therefore, we obtain with the help of (5.2) that for eaclke Ay,

P[R2m+2n(w) = 2xX1, Somt2n(w) = O]
> PIT" ™ Tk M 2 20 + §m — 2M, Ty = 0]
> P[Ry 2 (x +8)m, Ry Z (x + 8)m, Nuphw) < 2M., Sy + Sm+hwy = 01
Forw € Ay let
Nopnw) = [{S1, ... S} N {Sm +w+ 8L, ... Su+w—+ S}

On the even{S,+nw) — S» = w}, we have thaiV, (w) coincides withN,, »u). Then it
follows that
P[Rom+2nw) Z 2x1, Somy2n(w) = 0]
Z P[Ry Z (x +8)m, R, = (x +8)m, Nyy(w) < 2M ,
Sm+h(w) - Sn1 =w, Sr/n+h(w) - SI/’l’l = —w, Sm + SI/’l’l == 0] .

The event{Sy+nw) — Sm = w, ,’n+h(w) — S, = —w} in the last probability depends only on

the X; andX} withm +1 < j < m + h, and is therefore independent of the other events.
For simplicity we will use; for 1/2d. Note that

P[Smthwy = Sm =W, Spinwy — S = —w] = {P[Smrnqw) — Sm = wl}? = ¢ 2
Therefore, we obtain for > ng andw € Ay that
P[Rom42n(w) = 2x1, Somt-2n(w) = O]

> (W PR, > (x + 8)m, R, = (x + 8)m, Ny(w) £ 2M, Sy + S, = 0] .

m =
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To apply the argument by Hamana and Kesten, the left-hand side must have an upper bound
which is independent ab. Indeed, it follows from the monotonicity at,, with respect to:
that

P[Ry, 2 2xn, Son = 0]
2 P[Rom+2nw) = 2xn, Somi2nw) = 0, S2, = 0]

2 gzn_zm_Zh(w)P[RZm+2h(w) 2 2xn, S2m+2h(w) =0l

where we have applied the trivial inequality thRtSy, = 0] > ¢?* for eachk > 1. Conse-
quently, we obtain for = ng andw € Ay, that

P[R2, 2 2xn, S, = 0]
> ¢YM PR, > (x +8)m, R, = (x + 8)m, Ny(w) < 2M, Sy, + S, = 0]
Since this inequality holds for alb € Ay, and the left-hand side is independentuafthe
same argument used to derive (3.11) in the proof of Lemma 1 in [8] leads to the following
inequality:
P[R2, 2 2xn, S, = 0]

(5.4) 1
2 SCMMPIRy 2 (x+ 8)m. Ry, 2 (x+8)m. Sy + S, = 0]

m =

The calculation is left to the reader (see (2.9) and (2.10) in [8]).
We consider the effect to remove the evési, + S, = 0} from the probability in the
right-hand side of (5.4). Applying the Schwarz inequality,

2
{P[Ry 2 (x +&)m])? = { Z P[Ry 2 (x +8)m, Sy, =Y]}
IyISm

< Cogm? Y (PIRp 2 (x + 8)m, Sy = y1i°.
IyISm
By symmetricity of simple random walks, each summand in the last summatigmscequal
to
P[Ry 2 (x +8)m, Sy = yIP[R,, 2 (x +8)m, S, = =]
=P[Ry Z (x +8)m, Ry, Z (x +8)m, S = 3, S, = =),
which implies that

(5.5) W{P[Rm 2 (x +6)m]}

S PRy 2 (x +8)m, R, 2 (x +8)m, Sy + S, = 0].
It follows from (5.4) and (5.5) that for = ng

Coqg %M

P[R2y = 2xn, Spu = 0] 2 ——

S PIRu—2am 2 (x +8)(n — 2dM)])?.



356 Y. HAMANA

SinceM = [n%/@+D7], we can conclude that(x) < ¥ (x + 8). In virtue of (5.3), we have
that¢ (x) < ¥ (x) + ¢ for any givens > 0, which immediately leads to (5.1). This completes
a proof of Theorem 2.5.

The remainder of this section is devoted to showing Corollary 2.6. Similarly to
Theorem 2.5, it suffices to prove (2.6) for0x < 1. Let{y,}>>; be a sequence of points in
Z¢ satisfying that: + |y,| is even and thalty,| = o[n]. For simplicity we writeL for |y,].
Since

P[Sy = yul = kgn~4/2e7oM 4 O[n=174/2]

which follows from (1.2), it suffices to prove that

1
¥(x) 2 limsup—=Ilog P[R, = xn, Sy = yn]
n

n—od
for 0 < x < 1. Recall that has been chosen satisfying (5.3) for any given 0. Moreover,
sinceL = o[n], there is an integet; = 1 such thaix + §)(n — L) > xn for anyn > nj.
Therefore, we see that far> nq

P[R, Z xn, Sy = yn]
2 P[R,—L Z (x —{—3)(71 - L)s Sn—1 = 07 Sp— Sn—L = .Vn]
> ¢EPRy-L 2 (x +8)(n— L), Sy =0].

It follows from Theorem 2.5 that

1
lim sup—— log P[Ry Z xn, Sy = yul S Y(x +6).

n—oo

This completes the proof by (5.3).
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