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Abstract. Consider the problem of time-periodic strong solutions of the Stokes and
Navier-Stokes system modelling viscous incompressible fluid flast or around a rotating
obstacle in Euclidean three-space. Introducing a rotating coordinate system attached to the
body, a linearization yields a system of partiafeli€ntial equations of second order involving
an angular derivativeot subordinate to the Laplacian. In this paper we find an explicit solution
for the linear whole space problem when the aXisotation is parallel to the velocity of the
fluid at infinity. For the analysis of this solution it -spaces, k ¢ < oo, we will use tools
from harmonic analysis and a special maximal operator reflecting paths of fluid particles past
or around the obstacle.

1. Introduction. In recent years the analysis of the Navier-Stokes equations and of
models of non-Newtonian fluids describing the flow around or past a rotating body has at-
tracted much attention. Here we consider the Navier-Stokes equations modelling viscous
flow eitherpast a rotating bodyk in Euclidean 3-spacB® with axis of rotationw = @es3 =
@(0,0, D)7, & # 0, and with velocityus, = kez # 0 at infinity oraround a rotating bodyk
which is moving in the direction of its axis of rotation. In each case a coordinate transform
and a linearization yield the system of partial differential equations

Uy — vAu + kdgu — (wAx)-Vu+wAu+Vp=f,

1.1
(1) divu=0

in a time-independent exterior domatih = R3\ K together with the initial-boundary condi-
tion

ux,t) =wAX —Uso, ux,0=ug, u—>0 as |x|] > oco.
Hereu = (u1, u2, u3)” andp denote the velocity and pressure of the fluid, regps a given
external force, and > 0 is the constant coefficient of viscosity. In the stationary case to
be analyzed in this paper, we are led to an elliptic equation in the sense of Agmon-Douglis-
Nirenberg in which the ternw A x) - Vu is not subordinate te-vAu in the exterior domain
£2. Note that a stationary solutiai, p) of (1.1) will lead to a time-periodic solution of the
original linearized problem.
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To be more precise, consider the Navier-Stokes equations
vt—vAv—i-von—i—Vq:f in £2@),t>0,
divv=0 in Q2@),t>0,
(1.2)
v(y,t)=wAy on 922(@),t>0,
v(y,1) > U Z0 as |y|—> o0
with an initial valuev(y, 0) = vo(y) andw = @e3 # 0 in the time-dependent exterior domain
22(1) = 0,(1)$2,
whereO,,(t) denotes the orthogonal matrix

coswt —sinot 0
O,(@) = | sinot coswt O
0 0 1

Then, introducing

(1.3) x=0lwy., ux.n=0lOw0.0-ux), px.H=q0(.1),

(u, p) will satisfy the modified Navier-Stokes system

ur —vAu+u-Vu + (0L (uwo) - Vu
—(@wAXx)-Vut+owoAu+Vp=Ff in 2 x (0, 00),

(1.4) diviu =0 in 2 x (0,00),
u(x, ) =wAx — 0 (Husw on 92 x (0, 00),
u(x,t) —> 0 as |x| - o0.

For details of the elementary calculation, see [9] whgn= 0; for us, # 0 the additional
termuce-Vyu(OL (1)y, 1) = (OF (t)us)-Viu will appear. Inthe case, || w, Sayuoo = kes,
to be considered heré),g (Duco = kez forallt > 0. Thus (1.4) will lead to the system

us —vAu +u-Vu + kosu
—(wAXx)-Vu+woAru+Vp=Ff in £,

(1.5) divu =0 in 2,
u=wAx—kes on 098,

u—0 as |x| — oo,

a stationary solution of which corresponds to a time-periodic solution of the original system

(1.2). However, ifu is not parallel to the axis of rotatiaf, the termO/ (1)u depends on

t. Therefore, in this paper, we will study the linearized and stationary version of (1.4) only

whenu, is parallel tow.

Finally, we may consider the problem of a rotating body with axis of rotaticemd
with an additional translational velocityus.. In this casef2(t) = 0, ()2 — ust and
v(y, 1) — 0as|y| - ooin (1.1). Then the transformation

x =0y +uset), ulx,t) =000y, 0, px,t)=q@,0
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again will lead to (1.4) (observer invariancgith the same fundamental difference between
the casefso || @ andus A w # 0.

The mathematical analysis of viscous flow {paisaround rotating obstacles started with
[1], where weak instationary solutions have been constructed in an even more general setting
allowing for time-dependent functiofns(t) andu..(¢). Decay results for this problem in the
whole space are discussed in [2]. Using semigroup theory, local mild and unique solutions
are constructed in [9], [10] whei,, = O; since the corresponding semigroup is strongly
continuous, bunot analytic, it is not clear whether the mild solution is a strong one. A
different approach in homogeneous Besov spaces is used in [13], where thatetm - Vu
has been replaced by the more general tevfw) - Vu with an arbitrary traceless33-matrix
M here a local classical and unique solution is found for nondecaying initial data. Several
linear and stationary auxiliary problems in the whole space and in exterior domains have
been analyzed in [11]; to some extent theuiés are generalized to the nonlinear case and
the problem including the terrw A x) - Vu in [12]. Several advanced priori estimates
of stationary and instationary solutions can be found in [7], including even non-Newtonian
fluids; in particularL?-estimates for (1.1) are establish@intwise estimates yielding decay
rates such af(x)| < ¢(1 + |x|)~! are obtained in [8] for the stationary nonlinear problem
whenus = 0. With regard to further developments, e.g., to the discussion of staldility,
estimates, 1< g < oo, are presented in [3] for the linéaed whole space problem (1.1)
whenus, = kes = 0. For the physical background and for applications to the free fall
of particles in fluids, see [7] and references therein. In [17] the time-dependent fundamental
solution (Green’s function)'(z, y; t) is calculated for the case, # 0, and several pointwise
estimates are given for— 0, t — oo and for small and large spatial datay.

The main results of this paper are the following.

THEOREM 1.1. (1) Letl<g < oo, f € LI(R®3and g € W14 (R®) suchthat even
|(x1, x2)|g € L9(R%). Furthermore, let v > 0,k € Rand w = (0, 0, ®)7 e R3\{0}. Then the
linear problemin RS,

(1.6) —VAu+kdsu —(wAx)-Vu+woru+Vp=f, dvu=yg,
hasa solution (u, p) € W24(R%)3 x W4(R®) satisfying the a priori estimates
(1.7) IWV2ully + 1V pllg < c(llfllg + 1vVg + (@ Ax)g — kgeslly) ,

lkdzully + l(w A x) - Vu —w Aully

(1.8) k4
= C<1+ W) (1fllg +vVg + (@ A x)g — kgesllq)

with a constant ¢ > 0 independent of v, k and .

(2) In addition to the assumptions in (1) and given a solution (u, p) € W24 (R3)3 x
WL4(R3) of (1.6), suppose that f € L"(R%)3, g € WL (R3), |(x1, x2)|g € L"(R®), and let
(u1, p1) € W27 (R%)3 x WL (R®) be another solution of (1.6). Then p — p1 is constant and
u—uiequalsaes + Bo Ax,a, B eR.



132 R. FARWIG

COROLLARY 1.2. (1) Letl <g < 4, f € L4(R®>3 and g € W14 (R®) such that
|(x1, x2)|g € L9(R®), and let (u, p) € W24 (R%)3 x W4 (R3) bethe solution of (1.6). Then
there exists 8 € R such that

Vi —porx)e L' (RS forall r>1 Tet_ [3, }].
roq 43
Moreover,

IV — B AX)llr < CUIfllg + IvVg + (@ A x)g — kgeslly)
withaconstant C = C(v, k, w; r) > 0.
(2) In(1l)assumethatevenl < g < 2. Thenthereexist «, 8 € R such that
1 1 12
u—Bworx —aeze L*(R}® foral s>1, —e=— [—,—].
s q 23
Moreover,
lu — o Anx —aeslls < C(fllg + IvVg+ (@ Ax)g — kgesllq)
withaconstant C = C(v, k, w; s) > 0.

REMARK 1.3. (1) InTheorem 1.1 fiy¥ andg and let(u, k.o, Pv.k.r) denote a solu-
tion of (1.6) forv > 0,k # 0 andw = @e3, ® # 0. Furthermore, letg > 0, ko € R and
wo = @oes, o € R. Then

; 172, 3,3 ; 71, 3
Uy ko — Uvgkog,wp 1N w q(R )°, Dv.k.w = Pvg.kg.wp 1N w q(R )

weakly as(v, k, w) — (vo, ko, wo), Where(u,, ky,wo» Pvo.ko,wo) SOIVES (1.6) withyg replacing
v, ko replacingk andwo replacingw. This result extends to the case ff ¢ depending on
v, k, w such thatfy k.o = figko,wo @NAGy k0 = Gug.ko,wp IN SUItable weak topologies.
(2) Compared to the cage = 0 considered in [3], the results in Theorem 1.1 are
stronger. The uniqueness assertion does not allow for ajérm x2, —2x3)7, ¥y € R, asin
[3] due to the ternkdsu.
(3) In(1.6)itis not possible to estimate the termsA x) - Vu andw A u separately in
L7 unlessf andg satisfy an infinite set of compatibility conditions. The argument is based
on the simple identity

(wAXx)-Vu—wAu= J)Oe3(9)8g(053(9)u) ;

for more details see Remark 2.3, Proposition 2.4 in [3] whenO.

(4) The fundamental solution of (1.5) which will be computed “explicitly" in Section
2 below will not lead to a classical Calderon-Zygmund integral operator, when considering
Au in terms of f (andg). See Section 2 in [3] for more details wher= 0; in this case the
fundamental solution has a slightly simpler form.

(5) Itis not evident that for the solution of (1.6) both lower order termkdsu and
(w A x)-Vu —w A u can be estimated ih?-norms from the right-hand side. On the other
hand, it is remarkable that thepriori estimate (1.8) depends ak/\/viw))*. The proof
in Section 2 using Marcinkiewicz’ multiplier theorem implies that fpr= 2 the term
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C(1 + (k//viw])?) will suffice. Thus complex interpolation will slightly improve (1.8).
Finally, an explicit example will indicate that the ter@(1 + (k//viw])?) is optimal, see
the end of Section 2.

In this paper we use standard notation for Lebesgue spaces and Sobolev spaces, namely
L1(£2) and Wke(2),1 < ¢ < oo, for bounded and unbounded domaif?s C R3. To
control problems also in unbounded domains we need the s[pfgg{e?) of functions which
areL?-integrable on every compact subsetdfand homogeneous Sobolev spaces

Wha(2) = {u € L o(2)/Mi—1; 3%u € LI(2) forall « € N}, | =k},

whered® = 9;* - --- - 9, for a multi-indexa = (a1, ..., a,) € N} and1;_1 denotes the
set of all polynomials ofR" of degree< k — 1. The spacéV*4(£2) consists of equivalence
classes otlloc-functions being unique only up to elements fréfp_; and is equipped with

the nOfmZm:k 0%ully. SinceW*-4(£2) can be considered as a closed subspadg o)V

for someN = N(k,n) € N, it is reflexive and separable for evefye (1, o0). For more
details on these spaces see Chapter Il in [6], Chapter Il in [14] and also [4], [5]. However,
sometimes being less careful, we will considee W*4(£2) as a function (representative)
rather than an equivalence class of functions, ies, L%C(Q) such that®*v € L9(£2) for

every multi-indexx with |a| = k.

The Fourier transform oR® of a function or distribution: is denoted byFu = i, i.e.,

formally

) = (271)73/2/3€7ix"5u(x)dx, £ RS,

R

The Fourier transform and its inverge ! will be needed in particular on Schwartz’s space
S(R®) of rapidly decreasing functions and on its dual sps@&®) of tempered distributions.
Furthermore D(£2) = C§°(£2), andD’(£2) denotes the set of all distributions sh. The
application of a distributiorf” on a test functiom (or of a functionall’ € X’ in a dual space
X’ of a given Banach spacé on an element € X) is denoted by(T, u). Giveng € (1, 00),
let W14 (£2) be the dual space o¥29'(2), ¢' = q/(g — 1).

Finally B,(y) = {x € R®; |x — y| < r}, r > 0, denotes a ball ifR* with respect to the
Euclidean nornj - |; moreover,3, = B,(0) andB¢ = R®\ B,. The vectory = (y1, y2) € R?
rotated throught-/2 is denoted by = (—y2, y1). If y = (y1, y2, y3) € R®, theny’ =
(y1, y2), andV’ = (31, 82) is the corresponding partial gradient BA. As usual,c denotes a
generic positive constant which may change its value from line to line.

2. Thewhole space problem. To solve the whole space problem (1.6), i.e.,
(2.1) —VAuU+kdzu — (@AX)-Vu+woAu+Vp=f, dvu=g in R,

we eliminate the pressure term. Applying div to (2,1y is seen to be a weak solution of the
equation

Ap =divf +vAg+ (wAx)-Vg—kdag,
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that is,
(2.2) (Vp, Vo) = (f, Vo) + (Wg + (@ A x)g, Vo) — k(g, 03¢p)

for all test functionsy € C3°(R3). By the assumptions of Theorem 1.1 the right-hand side
defines a functionak on W4’ (R®) satisfying the estimate

1E Ny -10R3) = 1fllg +1vVg+ (w AXx)g —kgesllg -

Since the operator A is well-known to be an isomorphism from -4 (R%) onto W14 (R3),
there exists a unique € W14 (R®) solving (2.2) and satisfying theepriori estimate

(2.3) IVpllg = 1 fllg +IvVg+ (@ Ax)g —kgeslq .
Thenu in (2.1) is a solution of the equation
(2.4) —VvAu 4+ kdsu —(wAx)-Vu+wAu=f—Vp.

A uniqueness argument below will prove that evenidi# g.
To find an explicit solution of (2.4) we omit the ter¥p and write f instead off — V p;
furthermore, we assunie > 0, divide by® and get that

k 1
(2.5) —iAu—i—fagu—(egAx)oVu—i—eg/\u:Tf.
w w w
Next introduce cylindrical coordinate®, 6, x3) € Ry x [0,27) x R, r =/x + x3, for
x = (x1, x2, x3)T and observe that
dou = (e3 A x)-Vu.

To apply the Fourier transfornf =" to (2.5) we use cylindrical coordinatés, ¢, &3) €

Ry x [0,27) x R, s =/€2 + £3, for& = (&1, &, £3)7 as well and note thalyu = d,4. Thus
u satisfies the equation

1 5 . . . R 1 .
— W&+ ik&3)it — Apit +e3 Nt == f,
w w
andi(p) = OZ (p)ii(s, ¢, &3) solves the problem
1 . . 1 ~
(2.6) ZVIE17 +ikE)D — 0,0 = =04 (@) f -

This inhomogeneous, linear ordinary differential equation of first order with respedhés
a unigue Z-periodic solution

1/é
1 — e—2n (VI [P+ikés) /@

2
n o ie2 - o
U(gﬂ) — /(; e (v[&] +1k§3)l‘/w062(¢ +t)f(0(33(t)é)dt,

whereé=(s, ¢, £3). Consequently,

1
_ o2 (v[EP+ikes) /@

N 2/ - 24ikés)t AT 7
@7 =7 /0 e~ VBT O T (1) f (00 (1)E)dt
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or, using the geometric series and the/@-periodicity of the map — 07 1) f(0,(D)E),
o . R
(2.8) i) = / e~ VR OT (1) (0, (18 d1
0

Since the terne’’*%s ¢ S'(R3) is the Fourier transform of the shift operatbr— f(- — ktes)
onS’(R%), we may also write

o0
(2.9) i) = / eVEPLOT (1) (F f (Ou(t)- — kteg))()dt .
0
Finally, note thae "¢/ is the Fourier transform of the heat kernel
1 2
_ —|x|¢/4vt
Eil0) = (4nvt)3/ze ’
yielding
o
(2.10) u(x) =/ E; % O (1) f(Ou(t)- — ktez)(x)dt .
0

The fundamental solution given by (2.10) coincides—up to the Helmholtz projection—with

[OOOF(z, y; t)dt, wherel'(z, y; t) denotes the time-dependent fundamental solution in [17].
To prove the a priori estimate (1.7) 8%x it suffices—due to the well-known estimate

19;0;ully < cllAully foralll < i, j <n,1 < g < oo—to considerAu only. Given

f e S(R33, by (2.9)

— %, d
—vAu(€) =viE[Za) =/0 Yo (§) O (N F f (O (1)- —ktes)(é)Tt

RN k d
= fo wt(s)0£,u(t)ff(0w/v(r>-—;m)@){,

where 1
b = (277)3/2|§|2e*'5'2 and ;(§) = J(Vi&) for 1>0

are the Fourier transforms of a functigne S(R®) and ofy; (x) = 1~3/2y (x/\/1), t > 0,
respectively. Next we decompo:ie by choosing a cut-off functioy € C3°(1/2,2) such
that0< ¥ < 1 andZ?i,oo;z(szr) = 1 forallr > 0. Then letg; (&) = x(27/|§]),
yielding x; € S(R®) with

suppg; C AR 27 = (g e R® 2 < g < 2
Finally, definey’/ € S(R%) by

Yl = @2r)™32y;xy or equivalently ¥/ =g;-4, jeZ,
yieldingy = .17 __ /. Usingy/, we define the operator

j=—00

x© k d
(2.12) Tj f(x) = fo W % 0L, (1) f(Oup(t): — ;tes)(x)Tt-

Now we have to prove that the ser@j’;_oo T; converges in the operator norm topology on
L9(R3)3.
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LEMMA 2.1. Thefunction W,j € Z,t > 0, hasthe following properties:

(1) suppy! C ALV 27t D).

2) I¥/ |1 < c272iland |/ (x)| < 272 hy 2y (x) for all x € R®, where h(x) =
A+ x1%72, hy(x) = t732h(x//7) and ¢ > 0is a constant independent of j € Z and of
x € R3.

PROOF. See lLemma3.1in[3]. m]

LEMMA 2.2, For j € Zlet M denote the maximal operator

i k dt
(2.12) Migx) = sup AR Igl)(Og/v(t)x + 3”3’)7 :
r>0JA,
where A, = [r/16, 16r]. Thenfor g € (2, co) the operator T; satisfies the estimate
(2.13) 1T flly < 27 7NM I 01 g

with a constant ¢ > O independent of j € Z. Theterm || M || (,/2) denotes the operator norm
of the sublinear operator M ; on L@/ (R%)3, the dual of L1/2(R3)3.

PrROOF. To estimatg|7; f ||, we use the Littlewood-Paley decompositionfff, i.e.,
IT; f1l4 will be replaced by the equivaleiit/-norm

o0 1/2
(2.14) H( /O s T,;f(-)|2”i—s>

whereg € S(R%), g(x) = s ¥2p(x//s) for s > 0,¢s(&) = ¢(«/s/&]) and wherej e
C5°(1/2,2) satisfies 0< ¢ < 1 andf0 @(s)%(ds/s) = 1/2, see | §8.23 in [16]. Thus there
exists 0< g € L/?"(R®) with ||gll,/2y = 1 such that

— = . Zﬂd
= 39(X) los * T f (x)] X
R 0 N

9

q

R d
I F12~ | | e Ty FORE
0 S

q/2

*© d
= / ( / s * T,-f(x>|zg<x>dx)—s.
0 R3 Ky

By (2.11) and the radial symmetry @f and Ofl//tj

R ; k d
s % T f(x) =/0 Og/v(t)gos * I//t'l * [f(Ow/v(t) . _;teg)i| (x) 7t

(2.15) o

=/ 0£/U(t)(§0s * 1//;j * f)<0w/u(t)x - Et%)—,
ACs, ) v 4
since

gsx ! =0 unless t e A(s, j) := [22/ 7%, 227 t4] .
Note thath(S’j)(dt/t) = log 28 for every j € Z ands > 0. Thus the inequality of Cauchy-
Schwarz, the associativity of convolutions, the inequality

Wi s (s % NP < 1] 11 * s % FID()
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and Lemma 2.1 imply that

2 dt

Iy * T;f(x)I2§c/
(2.16) A1)

j k dt
=¢j / (thjl * @y * f|2)<0w/v(t)x - —teg)— ,
A(s, ) 1% t

wherec; = c2-2/1. Consequently, by (2.15) and (2.16)

2 * j 2 k dt ds
”Tlf”q =¢j [ | * |os % f17| Owpv(D)x — —te3z | g(x)dx——
0 Jae.p /R v tos

°° ' k dt ds
=cj / / / [ | s * flz(x)g<0$/,,(t)x + —te3>dx——
0 Jai,j) JR3 v t s
> ~ k \dtds
= Cj/ / s * flz(y)/ i | * g(Og/v(t)y + —te3>——dy
R®Jo AGs, j) v t s

00 d
<cj s * flz(y)—s Mgy,
R3 0 S

where also the identitys |I//1}j| *xv(0)h(x)dx = [q3 v(y)|w,j| * h(y)dy has been used. Now,
by Hoélder’s inequality
© ds
/ los * FIPO—|  IMjglig2r
0 s q/2

and the Littlewood-Paley decomposition pf cf. (2.14) forT; f, completes the proof. O

i k
(1//11 * (g * f))(ow/v(t)x - ;t€3>

1T £12 < c27 2]

LEMMA 2.3. The maximal operator M, cf. (2.12), satisfies on LP(R®3,1 < p <
00, the operator norm estimate

IMjll, <272Vl jez,
where c = ¢(p) isindependent of j € Z.

PrROOF. By Lemma 2.1 together with the trivial inequality,-2 (x) < cho-2/i (x) for

all jeZte Ay =[s/16,16s],s > 0, andx € R3, wherec > 0is independent of, 7, s and
'xl

. k dt
./\/ljg(x) < 221 SUphp-2ji */ lg] <00T)/v(t)x + ;t63>7
Ag

s>0

. 1 k
< 272! suph, * sup= |g|(0$/u(t)x + —teg)dt.
%

r>0 s>095 JAs

Next we will use the classical Hardy-Littlewood maximal operatdron L?(R®) defined by

Mg(x) :=su
e SV ST

lg()Idy
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and a “helical” maximal operator

1 w k
Mhelg (0, x3) := Sup- lgI{ & — —t,x3+ —t )dt
s>09 JAs v v

for functionsg depending or(0, x3) which are 2r-periodic in6. Since 0< h € LYR® is
radially symmetric and strictly decreasing,

Suph, * u(x) < cMu(x),

r>0

cf. 11 82.1in [16]. Hence

M;g(x) < 272 M(Mheigr (-, N (),
whereg, (0, x3) = g(r, 0, x3) = g(x) is considered as a function éf x3 only, and
(2.17) IMglly < 2727 Mheigr (- )l Lo )

due to theL”-continuity of M. To estimateMpgg; (-, -) in LP(R3), fix r > 0 and use the
2 -periodicity of g with respect t@ to get that

2
/R/O |Mhe|gr(9a x3)|pd6’dX3

Lk
“ Lt Lo

wherey, ¢(y3) = |g-1(0 — (w/k)y3, ¥3). Thus a variant of the Hardy-Littlewood maximal
operator orR! applied toy, ¢(-) yields a constant > 0 independent of, § and ofk/v such

that
2 2
/ / | Mhelgr (6, x3)|Pdfdx3 < ¢ / / |Vr0(x3)|" dx3d6
RJO 0 R

2
=c/ /\g,(e,x3)|”dx3de.
0 R

Now a further integration with respect to the measute r € (0, 00), proves thd.”-estimate

p
dfdx3

T I SR R

p
dfdxs,

(2.18) | Mheigr (-, )||LP(R3) C||g||Lp(R3)
Combining (2.17) and (2.18) completes the proof. a

PROOF OFTHEOREM1.1 (1). By Lemma 2.2 and Lemma 2.3 the operdfpr see
(2.11), satisfies the estimate

ITjfllg < 272N fll,, jeZ, feSRY,
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for ¢ € (2, 00) and with a constant = c(g) > 0. HenceT = Zj‘;_oo T; converges in the

operator norm o7 (R3)3 and||Tflly <cllfllq,i.e., foreveryf e S(R%3the equation (2.4)
with p = 0 has a solution € S'(R%)3 N W24 (R3)3 satisfying the inequality
(2.19) WV2ully < clvaully < cliflly, [ e SR
To prove an analogous inequality fésu we use a representation bdsu induced by (2.7),
i.e., using

K=k/o, v =v/@ and D) =1— e 20k +ike)
we have
ik'es [
D(§) Jo
for f € S(R%)3. Choose a cut-off function € C5°(B1(0)) with n(§) = 1 for& € By/2(0)

and recall the effect of the multiplicative teremi’5s in (2.7) through (2.9). Thus we may
write

(2.20) kogu(€) = VRSN OT (1) f(0us (D)1

(2.21) kdgu(£) = mo(€)Io(§) + m1(&)1(€)
where, using), (§) = n(v/V'&),

ik'E3ny (§) K 1—ny(&)
2.22 = ——, = Er—
(2.22) mo(£) o m (&) 7 D®
and

2
Io(x) = /0 E[ % OeTs(t)f(Oeg(t)- — k'te3)(x)dr

2
Lx) =V / 03E, % OL (1) f(Ouy (1) — K'1e3) (x)d1 ,
0
where E/(-) denotes the heat kernel with replacingv. Since |E/||l1 = 1, [33E,(x)| <
(c/VVE[(x/2) and| f (O (t)- — K'te3)ll, = || f1Ip, Young's inequality yields
(2.23) Ilollg <27l flly and [illg <clfllg,

wherec > 0isindependent df, » andv. Furthermore, an elementary, but lengthy calculation
will show thatmg, m1 satisfy the following pointwise estimates

k/ 4 k4
2.24 max max sup|é* Dg¢m ; <cl|l =c|l4+ 5—
@24 Iy me e i @) —C( +<ﬁ)) C( +v2|w|2)
with a constant > 0 independent of, w andk; herea € Ng runs through the set of all
multi-indicesa € {0, 1}3.
The proof of (2.24) forn; is immediate, since:1(£) = 0 unless)’|£]% > 1/2 yielding
a uniform pointwise lower bound of the denominafdg); hence, e.g.,

_ K& WV ; 2T o e —2n( [Pk Es)
&303m1(§) = «/7(_ 0 (3377)(\/1)_5)—(1—771/(«5))D(S)Z(ZU E3+ik))e s > ,
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and consequently,

|&§303m1(§)] < C<\]/(;_, + (%)2> < C<1+ (%>2> .

Concerningng note thaing(¢) = 0 unless’|£|? < 1. However, sincé’&; may take arbitrary
values, the denominatdp needs a more careful analysis. For egch R® there exists an
n € Zsuch thaik’és — n| < 1/2, yielding due to Taylor's expansion of-1e~*

D(E) ~ 2n(V > +i(K'E3 — n)).
If n=0,i.e.|k'é&3] <1/2,then

mo®)] < c— K&
[V'|§% + ik'&3]
If n £ 0 and|k’é3 — n| < 1/4, then
lik'&3] |k'&3] K K \?

ar3v4 (L =c Nne|2 — ¢ / =c ’
[V'|&]% +i(k'§3 — n) V'|§] V'E3 N
since|k’é3| > 3/4. Finally, if 1/4 < |k'é3 — n| < 1/2 andn # 0, then |D| has a uniform
positive lower bound and

Imo(§)| < ¢

I

v

Imo(§)| < clk'gs| < ¢

)
/

sincev’&2 < 1. Summarizing, we get that

k/ 2
(2.25) Imolloo < c(1+ ( f) )
However, the derivativésdzmo(£) yields a term
o ik'gs QVE2 + iK Egpe 2O EPHKES)

D(§)?

which can be estimated by the fourth order terth + (k'/+/v')%). Since the application of
the derivatives;91 andé»d, does not require further powersigf/+/v', the inequality (2.24)
is proved.

Now, Marcinkiewicz’ multiplier theorem [15] and (2.21) through (2.24) yield for every
q € (1, 0c0) theapriori estimate

k* 3,3
(2.26) kd3ully < C<1+ W)Ilfllq, feSR)7,

with a constant > 0 independent of, k, v andw.
To extend (2.19) and (2.26) to arbitrafye L4 (R%)3, g > 2, and to get a vector field
u € L (R®3with V2u, d3u € L9(R®) solving

Lu:= —vAu+kdu — (wAx)-Vu+wAu=f,
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choose a sequencg;) c S(R%?3 such thatf; — fin L1(R}3 asj — oco. Let(u)) C
Llloc(R3)3 denote the corresponding solutionsl/of; = f; satisfying

(2.27) sgp(nuvzujnq + |Ikdsujll4) < 0o.
J

Now there are constant vectars di;, dz; € R® such that

(Oruj — dyj)dx = / (Oouj —doj)dx = / (uj— (cj+dijx1+dajxz))dx =0.
By B By

Then Poincaré’s inequality and thepriori estimate (2.27) imply that for ath € N

SlJﬂllVZ(Mj —r)llg 1103 —r)llg + lu; —rjllLas,)) < Cnm
j

for some constar@,, > 0; herer; denotes the linear polynomiaj(x) = c; +d1jx1+d2jx2.
Using concepts of weak convergence amdnpact embeddings, we find a subsequence—

again denoted by ; — r;)—andii € L (R®)3 such that

(2.28) IV2uj = rj) = VZillg + 183(u; — rj) — d3itly — 0,

uj—r;j—u inLY(By,) foral meN
asj — oo. Inparticular,L(u; —r;) — Lu in the sense of distributions, and sinte; = f;,
alsoLr; — Lii— fin D'(R%)2. Since the space of linear polynomidlg and alsal (I73) C
113 are finite-dimensional,r; — Lr for somer € I13 asj — co. Hence, withu = ii + r,
we getthatLu = f and by (2.28) that

k4
(2.29) WwV2ully < cllfllg.  Ilkdzully < C<1+ W)Hf”q

wheng > 2.
To prove (2.29) also fog € (1, 2), we use a standard duality argument. The adjdift
of T is given by

o0 k \d
T*g(x)zfo (w,>|<Ow/v(t)g)(OZ/v(t)x—i-;te?,) L oge SRYS.

t
Checking the proofs of Lemmata 2.2 and 2.3, we easily sed|hat|l,, < cllgll, in the dual
spaceL? (R%)3. Thus|Tf|, < clfl, forallg € (1,2) andf € S(R®)3. Since (2.26) has
been proved for aly € (1, o0), we get (2.29) foy € (1,2), f € L4(R%?3 and a solutiom of
Lu=f.

The remaining casg = 2 can be proved by complex interpolation or by Plancherel’s
Theorem.

Now the proof of part (1) is complete (except for the equation:div g, see below).O

PrROOF OFTHEOREM 1.1 (2). To prove this uniqueness and regularity assertion it suf-
fices to consider a solutiof, p) € S'(R%)* of (1.6) whenf = 0 undg = 0. Then it has to
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be shown that equals a linear polynomiales + Bw A x for suitablex, 8 € R and thatp is
constant. In Fourier space (1.6) yields the equations

VIE20 + ikEzit — (0 NE) - Vell + o ANl +iEp =0, iE-4=0,
and henceg&|?p = 0. Thus supp C {0} andp is a polynomial. Sinc& p is assumed to be
contained inL?(R%)?3 + L"(R®)3 for 1 < ¢, r < oo, p must be constant. To analydewe

introduce cylindrical coordinates, ¢, £3) for & and leto(p) := 0€T3(<p)12(s, @, £3) as before.
Sincep = podo, wherepg € C andsp denotes Dirac’s-distribution,

1 A
(2.30) ZIER + ikén)d — 9,0 = —L280  in SRS,

w w
cf. (2.6). Now consider an arbitrary test functigne Cgo(R3\{0})3, and let

4
Vo(s. 0. £3) 1= e~ VIERHK E) / SV EPHKEN (5 of Ea)dg)

—0o0
wherev' = v/@, k' = k/@. Obviously,yo € C3(R3\{0H3 and(v'&|2 +ik'E3) Yo + dp 0 =
¥. Consequently,
(0, v) = (0, (VI§|% + ik'E3 + 8,)Y0) = ((V/|E]? + ikEz — 9,)D, o) = O
due to (2.30) and since supp C R3\{0}. Hence supp C {0} and also supp C {0},
implying thatu is a polynomial. Since by assumpti®ifx are contained il (R®) + L (R%),
V24 = 0 andu is a linear polynomial, say;(x) = a + Bx with a € R® and a real 3x 3-

matrix B = (b;j)1<;, j<3. Then an elementary calculation will show that= ae3, @ € R, and
B;; = 0 exceptforBp1 = —B1o = B € R. Henceu(x) = aez + fow A x. O

PROOF OFCOROLLARY 1.2 (1). SinceVZu, dzu € Li(R%, 1< q < 4, there exists a
unique real 3< 3-matrix B = (b;;) j<3 such that

1<i,
1 1 11
(2.31) Vu—Bx)e L'(R®® forall r>1 —e=— [—, —} ,
roq 4 3
see Theorem 2.3 in [4] or Chapter VII.4 in [6]. Moreover, div= L4 (R®) by assumption
and divu — trB € L"(R®), yielding trB = 0. Analogously, the assumptidhu € L7 (R%)3
implies that the coefficient1s, b23, and b33 vanish. Concerningz the inequality (1.8)
shows that-x201u3 + x19ou3 € L1 (R®), yielding
1 c
m(—xth% + x102u3) € LY(B7) ;
on the other hand¥'uz — (bs1, ba2)! € L (B$)?. Hence
1
x|
which is possible if and only ib31 = b32 = 0. Summarizing the previous results, we conclude
from (2.31) the existence of constatsy, § € R such that

()5
X1 —X2 X1

(—x2b31 + x1b32) € L(B]) + L"(By),
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satisfiesvy’ € L"(R%®forall r > 1, 1/r = 1/q — [1/4, 1/3] . Furthermore, by (1.8)

1 , , 1
——(—x201u" + x102u’) + —
| x| | x|

2 2
“) =) e ()= )
—X2 ] \x1 X1 lx| \—x2
L’(_xz) = 0.
X1
Cael. 1< g < 12/7. In this case; defined by ¥r = 1/q — 1/4 satisfies

1 <r < 3. Hence theresulv’v’ € L’(B{)4 and Theorem 115.1 in [6] yield the existence of
a vector,, € R? such that

L'u = (—uz,u1)” € LY(B%)?.

Note that

but that

4 .
% e L7 (BS)2.

|x]

Thus

25 ( x 1
LW — 0 =) = %(ij) - m(_;) + mu;; e LI(BS)2 + L7 (BS)?,
proving thaty = § = 0 andv., = 0. Consequentlyy = u — fw A x with § = B/& satisfies
Vv e L"(R?9.

Case2. 127 < q < 4. If g < 3, definer > 1 by 1/r = 1/q — 1/3, yielding
r > 4; however, if3< q < 4, let1/r = 1/q — 1/4, yieldingr > 12 Hencer > 3 and
v e W (R3?2 ¢ c%¥(R%)2, wherea = 1 — 3/r > 0. Then, by Lemma 2.4 below,

loc
/ /

) e L' (R32,

x|
wherev; € R? is well-defined. Arguing as in Case 1, we get that
2 26 1
L/(u/ _ (U/ _ U6)) — _y<X2) . _( X1 ) + —Uél c Lq(Bf)Z—i- Lr(Bi)Z.
x| \x1 lx| \—x2 |x]
AIthough(1/|x|)v6l € Lr(Bi)z, we may conclude that = § = 0. Consequentlyy =
u — Bw A x with B = B/é satisfiesvv € L" (R3)°.
(2). By Theorem 2.3 in [4] there existse R® such that
1 1 12
v=u—aecL*R% for all s>1,—e——|:—,—j| ;
s q 2 3
here we assume for simplicity thate R from part (1) vanishes, yieldingv € L"(R®)? for
allr >1,1/r =1/q — [1/4,1/3]. Let
Lu' == —(—x201u + x100u") + Wt = —dou’ + u't
Sincelv’ = —dgv' +v't = Lu’ —a'*, we get from an integration with respectic [0, 27 ]
that
1 27 2 L
27a’™ = / Lu'do — / v7de € L1(R®? + L*(R®?.
0 0
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Hencea’ = 0. m]

LEMMA 2.4, Letr > nandv € WL (R"). To be more precise, choose v € L, (R")
such that Vv € L"(R")". Then vg = v(0) is well-defined and

v — vol”
/defc [Vv|"dx .

|x]” R

PrROOF. Sincer > n, v € Clt’g‘, a = 1— n/r, and there exists a constant> 0

independent of > 0 such thatv(x) — vo| < c|x|“||Vv| .5, for allx € B; . Then, for all
O<ée <R < o0,

— r 1
/ lv—vl / v — vol" div <i)dx
Br\B. x| n—r Jpp\B, [x|”

r X
=— / (v —vo)|v — vo|r72Vv - ——dx
Bg\B: x|

n—r

Rl—r Sl—r
—+ / v —vo|"do — / lv —vo|"do.
n-—r 9Bg n—r 9B,

Sincen — r < 0, we omit the integral oA Bz and get from the Hdlder continuity @fx) and
from Holder’s inequality that

v —vo|"
[ oy,
Br\B.  |XI

r lv — vol” 1/r . 1/r .
< 4rdx [Vv|"dx +C||VU||Lr(Bg)~
r—n\Jpnp |xl Br\Be '

Ase — 0 andR — oo, we get the assertion with the constant (r/(r — n))". O

PROOF OFREMARK 1.3 (1). For(v,k, @) € (R} x RxR)letL, x . denote the oper-
ator

Ly o, p) =(—vAu +kdzu — (wAx)-Vu+wAu-+ Vp,divu).

Consider any sequence;, k;, ®;) C R} x R x Rsuch that(v;, k;, ;) — (vo, ko, o) €
RY x Rx Rasj — oco. Givenf e LI(R}andg € W4 (R®) with |(x1, x2)|g € LI(R®),
let (uj, pj) € W24(R%3 x WL4(R®) denote a solution of the equatidn («, p;) = (f, 9)
whereL; = Ly, k; ;- If kj = 0 and/orw; = 0, we refer to [3] or to classical results for the
Oseen or Stokes system®d [4, 5, 6, 14]. Thus we get theepriori estimate

IV2ujllg + IV pilly < CUF g + Igllyrage, + 161, x2)gllg)

with a constanC independent of € N, i.e., the sequenda, p;) is bounded in the reflexive
spacevifz"f(R3)3 x W14 (R3). Hence there exists a subsequencéugf p;)—again denoted
by (u;, pj)—and a paiu, p) € W24(R%3 x W14 (R®) such that; — u in W24 (R%?3and
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p; — pin W4 (R® asj — oco. Furthermore, we find polynomials € 173 and constants
m; € Rsuch that

uj—rj—uin Wl’q(Bm) , pj—mi— pin L9(B,)

forallm € N, cf. (2.27) through (2.28). Then, in the sense of distributions,
Lj(uj —TIj,pj— 7'[]') — LvO,kO)wo(u, p) asj — oo.

ThusL;(rj,m;) — (f,9) — Lug.kowo(, p) In the sense of distributions. Since the se-
quence(L;(r;, ;)) runs in the finite-dimensional spadé’, we conclude that f, g) —
Lug kom0, p) € LI(R®* N 117 and consequently thaty, koo, p) = (f, g). Given any
other weakly convergent subsequencé&qf p;) with weak limit (i, p), it is straightforward
to see thaii = u in W24(R%3 andp = p in W4 (R®). Henceu, ;.. converges weakly
t0 Uy ko,wo- FUrthermore, the proof may easily be exded to weakly convergent right-hand
sides(fv k.w, 9v.k.0) With limit (£, g). O

PROOF OF THEEQUATION divu = ¢ IN (1.6). The solution(u, p) constructed so far
satisfies (2.2) and (2.4). Applying div to (2.4), we get that divu — g solves the equation

—VAV+kdzv — (@A Xx)-Vo=0 in RS,
The arguments of the proof of uniqueness in Theorem 1.1(2) imply that
v = const,
sinceVv € L4(R%)3. Analogously, a solution € W24 (R%)3 of (2.4) is uniquely determined
up to the affine termres + B A x 4y (x1, x2, 0)7, wherew, 8, ¥ € R. Note thaty = 0in the
proof of Theorem 1.1(2), where div= 0 has been used. Here diis uniquely determined
up to div(y (x1, x2, 0)7) = 2. Hence
v=divu—¢g=0,
when replacing by u — y (x1, x2, 0)7 for a suitable constant € R. |

REMARK 1.3 (5). Finally, we discuss the terafl + (k/+/viw])?*) in the a priori
estimate (1.8). Fog = 2 the properties of the multiplien1, see (2.22), and the estimate
(2.25) prove that (1.8) holds with(1 + (k/+/v|w|)?).

Under the additional assumption tl'@g(t)f(ow(t)x) and consequently also its Fourier
transformoaT) (t)f(ow(z)s) arer-independent, the formula (2.20) simplifies to

ik'&3 A
V/|E12 + ik/éaf@) '

Hence, in this special case, by Marcinkiewicz’ multiplier theordiitizu|, < c|l fll4.1 <
q < oo, with a constant > 0 independent of, k andw.

A final example will show that even in the?-case the constantin (1.8) needs the term

k2/(v|wl). We start with a functiory = (f’, 0) € L2(R®)3 such that in Fourier space

kdgu(£) =

R /L’ 0 i
~f’<s)={§l e
_s/

, T<@<2m,
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whenv'|€]2 < 1/4 but f/(¢) = 0 whenv'||2 > 1/4, wherey is the angular part of in
cylindrical coordinates. Note that is solenoidal in the weak sense; hence the presgure
satisfying (2.2) vanishes (when= 0) andf = f — Vp. Then (2.20) and an elementary
integration imply thatforO< ¢ < 7

oy p ik/‘i:?) Nel2y i1/ l
koau (8) = F(E)——22 1 — 2e~ (@—@)(VIEI*+ik'E3)
W (©) = &) ( ’ L

For fixedk andv, choosgw| > 0 sufficiently small and considér= (&', &3) such that

_ T VEPHik'E) )

w w Vw w
< == < —,
k‘_4kk2_2k

yielding [k'&3 — 1] < vw/(4k?) ~ V|E> < 1/4 and|V'|§|? + ik'E3] ~ |K'&] ~ 1, but
VE12 +i(k'&3 — 1)| ~ v'|E]2. Hence, for thesé e R3 satisfyingy’|£]2 ~ va/k?

E1-2] <2 and &
k|~ 2 3

2
\kdzu’ (§)] ~ | /() EELEwT T |f/<s)|v,é|2 ~ |f/<s>|f—w.
This rough estimate and Plancherel’s theorem show that
k2
Ilkdzu'll2 ~ —I1f"ll2. U
vw
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