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Abstract. The classical Cohn-Vossen inequality states that for any complete 2-dimen-
sional Riemannian manifold the difference between the Euler characteristic and the normalized
total Gaussian curvature is always nonnegative. For complete open surfaces in Euclidean 3-
space this curvature defect can be interpreted in terms of the length of the curve “at infinity”.
The goal of this paper is to investigate higher dimensional analogues for open submanifolds
of Euclidean space with cone-like ends. This is based on the extrinsic Gauss-Bonnet formula
for compact submanifolds with boundary and its extension “to infinity”. It turns out that the
curvature defect can be positive, zero, or negative, depending on the shape of the ends “at infin-
ity”. We give an explicit example of a 4-dimensional hypersurface in Euclidean 5-space where
the curvature defect is negative, so that the direct analogue of the Cohn-Vossen inequality does
not hold. Furthermore we study the variational problem for the total curvature of hypersurfaces
where the ends are not fixed. It turns out that for open hypersurfaces with cone-like ends the
total curvature is stationary if and only if each end has vanishing Gauss-Kronecker curvature
in the sphere “at infinity”. For this case of stationary total curvature we prove a result on the
quantization of the total curvature.

1. Introduction and main results. The total curvature of Riemannian manifolds and
submanifolds has been a field of active research during the last 175 years, initiated by the
work of Gauss. For compact manifolds theGauss-Bonnet theorem is a milestone in differen-
tial geometry, in both an extrinsic and an intrinsic version. It states that a certain curvature
quantity of the interior of a compact manifoldplus another curvature quantity of the bound-
ary (including a discussion of angles if there are any) equals the Euler characteristic, up to a
constant depending only on the dimension. The intrinsic version for even-dimensional mani-
folds is nowadays often called theGauss-Bonnet-Chern theorem, after Chern [15], [16]. The
extrinsic version is closely related with the Hopf index theorem, with the mapping degree of
the Gauss map and with the study of critical points of height functions.

In the non-compact case Cohn-Vossen [18] investigated the total curvature of complete
open 2-manifolds. In this case the boundary term is missing, and therefore in general the same
equality between the total curvature and the Euler characteristic cannot hold. However, the
Cohn-Vossen inequality states that the missing boundary term is always nonnegative. Some
details on this Gauss-Bonnet difference term will be reviewed in Section 2.

For higher-dimensional open manifolds this missing boundary term is still much less
understood, neither extrinsically nor intrinsically. In any case one has to assume that the
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172 F. DILLEN AND W. KÜHNEL

manifold is of finite topology and that the curvature is globally absolutely integrable. Partial
results have been obtained by Portnoy [47], Walter [65], Rosenberg [50], Wintgen [70] under
certain additional assumptions. For the case of locally symmetric spaces a formula of Gauss-
Bonnet type was established, see [44].

For complete manifolds of bounded sectional curvature and finite volume the intrinsic
Gauss-Bonnet-Chern theorem still holds, by the work of Cheeger and Gromov [13]. However,
this assumption appears to be fairly restrictive in the case of hypersurfaces, because complete
hypersurfaces with cylindrical ends have infinite volume, and complete hypersurfaces with
finite volume tend to have unbounded sectional curvature at the ends, unless the ends are
somehow intrinsically flat, like a cusp over a torus.

If the given manifold is diffeomorphic to the interior of a compact manifold with bound-
ary, then the difference between the Euler characteristic and the total curvature can be ex-
pected to depend only on geometric quantities which are defined on this boundary. Intrinsi-
cally, theideal boundary in the sense of Gromov is a concept for defining such a boundary and
for studying its geometric properties, see [6]. However, this concept seems to be successful
mainly in the case of manifolds of nonpositive sectional curvature. Again, this would exclude
the case of hypersurfaces of Euclidean space. For 2-dimensional surfaces, the ideal boundary
is in fact a very successful concept in connection with the total curvature, see the discussion
in Section 2.

For hypersurfaces or submanifolds of Euclidean(n+1)-spaceEn+1 an extrinsic analogue
was investigated by Wintgen [70] by means of the set oflimit directions. By definition this set
is the part of the unitn-sphereSn ⊂ En+1 which appears as the geometric compactification of
M “at infinity”. If the submanifold behaves “asymptotically cone-like” at the ends (in a sense
to be specified below), then the ordinary Gauss-Bonnet theorem implies the following result:

MAIN THEOREM 1. If Mn ⊂ Em+1 is a complete n-dimensional submanifold with
finitely many cone-like ends in Euclidean (m + 1)-space, then the difference between the
Euler characteristic and the total curvature can be explicitly expressed as a sum of the even
higher total mean curvatures of the setM∞ ⊂ Sm “at infinity”, weighted with certain positive
constants:

cmχ(M)−
∫

⊥1
KdVcan =

∑
0≤2i≤n−1

cm

cm−n+2i cn−1−2i

∫
M∞

K2i dV∞ ,

where cj is the volume of the unit standard j -sphere.

For more details see Section 5 below. This expression allows a further discussion of the
validity of the Cohn-Vossen inequality. It turns out that there is a simple 4-dimensional ex-
ample in Euclidean 5-space where this inequality does not hold. Remarkably enough, for this
example the total curvature isstationary within the class of all submanifolds with cone-like
ends. In more generality the variation of the total curvature functional leads to the following:
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MAIN THEOREM 2. Let Mn ⊂ En+1 be a complete open hypersurface with finitely
many cone-like ends in Euclidean (n + 1)-space with n even. Then the gradient of the total
curvature functional is the Gauss-Kronecker curvature of the hypersurface “at infinity”.

For a proof see Theorem 6.7 and Corollary 6.9. Consequently, a formula of Gauss-
Bonnet type (i.e., constancy of the total curvature) holdsinfinitesimally if the Gauss-Kronecker
curvature of the hypersurface “at infinity” vanishes identically. In particular, this is the case if
the set “at infinity” is totally geodesic. This raises the question for a classification of compact
hypersurfaces in the standard unit sphere with vanishing Gauss-Kronecker curvature. One can
also ask for the possible values of the total curvature in the stationary case. There is a partial
result as follows:

MAIN THEOREM 3. Let M4 ⊂ E5 be a complete open hypersurface with finitely many
cone-like ends and with stationary total curvature. Assume that for each end the rank of the
shape operator in the sphere “at infinity” is constant. Then the normalized total curvature
takes values in the integers:

3

4π2

∫
M

KdV ∈ Z .

For a proof, see Theorem 7.6. Note that the analogous result holds for 2-dimensional
surfaces with stationary total curvature. Here we have(1/2π)

∫
M KdA ∈ Z. Even though the

total curvature functional can attain an interval of values, just by deforming the set at infinity
(e.g., ranging from one point to a great sphere), in the stationary case (at least in dimension
2 and 4) the total curvature functional ranges only in a discrete set of values, a kind of a
quantization of the total curvature.

CONJECTURE(Quantization of the total curvature).For any complete open hypersur-
face Mn ⊂ En+1 (n even) with cone-like ends and with stationary total curvature

∫
M KdV ,

the normalized total curvature (2/cn)
∫
M KdV is an integer.

A short announcement of the main results without proofs appeared in [19].

2. The Cohn-Vossen inequality, intrinsic and extrinsic. For a compact oriented
(and connected) Riemannian 2-manifold(M, g) with boundary∂M, the classical Gauss-
Bonnet theorem states the equation

2πχ(M)−
∫
M

KdA =
∫
∂M

κ(s)ds ,

whereκ denotes the geodesic curvature on the oriented boundary. In particular, if all boundary
curves are geodesics, we obtain

2πχ(M)−
∫
M

KdA = 0 ,

the same formula which holds for compact 2-manifolds without boundary.
In the case of non-compact 2-manifolds things are a little bit more complicated. First of

all, one should assume that(M, g) is complete because for non-complete metrics one cannot
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174 F. DILLEN AND W. KÜHNEL

expect general results on the total curvature. Secondly, the quantitiesχ(M) and
∫
M
KdA

need not be finite numbers. If we assume thatM is of finite topological type, thenM is
homeomorphic to a closed surfacẽM with a finite number of pointsp1, . . . , pk removed
(calledends), k ≥ 1. So, in particular,

χ(M) = χ(M̃)− k ≤ χ(M̃)− 1 ≤ 1 .

Finally, one has to assume that the Gauss curvatureK is absolutely integrable overM, that is,∫
M |K|dA < ∞. Then the following holds:

THEOREM 2.1 (Cohn-Vossen [18], Satz 6).If (M, g) is a complete Riemannian 2-
manifold of finite topological type and with absolutely integrable Gauss curvature K, then
the inequality

2πχ(M)−
∫
M

KdA ≥ 0

holds. In particular, we have
∫
M
KdA ≤ 2π if M is non-compact.

There are more subtle versions for the case thatM is not of finite topological type (in this
case we can formally defineχ(M) = −∞) and that

∫
M KdA attains a value in the extended

real numbers[−∞,+∞]. Here the statement is that the Cohn-Vossen inequality still holds.
In particular,χ(M) = −∞ implies

∫
M
KdA = −∞, see [34] and [8]. Under the additional

assumptionK > 0 the inequality implies thatχ(M) > 0, and henceM is homeomorphic to
R2 unless it is compact. This was independently observed by Cohn-Vossen [18] and by Stoker
[61] for surfaces in Euclidean 3-space.

Furthermore, there are a number of additional conditions under which the Gauss-Bonnet
equality 2πχ(M)− ∫

M
KdA = 0 continues to hold in the non-compact case.

THEOREM 2.2. Under the general assumptions of Theorem 2.1above, any of the fol-
lowing conditions implies the Gauss-Bonnet equality:

(1) (Cohn-Vossen [18, Satz 7])(M, g) has no end of the type “proper chalice” (german:
“eigentlicher Kelch”).

(2) (Huber [34, Thm. 12])(M, g) is of finite total area
∫
M
dA.

(3) (Huber [34, Thm. 11])For every end there is a sequence of closed curves around it
converging to the end such that the length of the curves is uniformly bounded.

(4) (Wintgen [70])The metric g is induced from a proper immersion f : M → E3 with
finitely many limit directions. The set of limit directions is defined as the set of all possible
limits

lim
n→∞

f (xn)

‖f (xn)‖ ,
where xn is any sequence in M converging to one particular end.

From the Gauss-Bonnet formula it seems to be obvious that the curvature defect 2πχ(M)−∫
M KdA can be calculated or at least controlled by the geodesic curvature of the boundary

curves in an exhaustion

M1 ⊂ M2 ⊂ M3 ⊂ · · · ⊂ M
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of the given surfaceM by compact surfacesMi with boundary. However, it took a surprisingly
long time until this curvature defect was well understood.

If a neighborhood of each end is isometric to an open part of a cone with line element
ds2 = dr2 + cr ·ds2

1 (wherec is a constant andds2
1 is the line element of the unit circle), then

the contribution of such an end to the curvature defect is nothing but 2πc, in particular, it is 2π
if the end is planar. By passing to the limit, the same holds if the metric is asymptotically cone-
like at each end or, in the extrinsic setting, if the surface is asymptotically cone-like itself.
More specific results in that direction were obtained for minimal surfaces inE3 because the
end of each minimal surface is asymptoticallyplanar. For embedded and complete minimal
surfaces with finite total curvatureOsserman [45] showed the equation

2πχ(M)−
∫
M

KdA = 2πk ,

wherek is the number of ends, see also [38] for the case of immersed minimal surfaces and
“multiplicities” at the ends. This result was generalized by White [68] to the case of complete
surfaces inEn such that the norm of the second fundamental form is square integrable. Note
that this norm square equalsκ2

1 + κ2
2 = −2κ1κ2 = −2K for minimal surfaces.

For an arbitrary complete surface inE3 the asymptotic behavior of the metric near the
ends was used by Rosenberg [49] for obtaining a short proof of the Cohn-Vossen inequality.
The curvature defect was further studied by Shiohama. He obtained the following result:

THEOREM 2.3 ([56]). Let (M, g) be a complete 2-dimensional Riemannian manifold
of finite topology and finite total curvature. Then

2πχ(M)−
∫
M

KdA = lim
t→∞

L(t)

t
= lim
t→∞

2A(t)

t2
,

where L(t) denotes the length of the geodesic distance circle in distance t and A(t) denotes
the area of the geodesic disc with radius t . The center point of the disc is arbitrary.

For special cases of Shiohama’s result compare the preceding papers [30, 26, 24]. Again
the Cohn-Vossen inequality follows from Shiohama’s theorem because length and area are
nonnegative quantities.

Wintgen [70] suggested that the curvature defect of a complete and properly immersed
surface in Euclidean 3-space is the length of the setM∞ of the so-calledlimit directions
limn→∞ f (xn)/‖f (xn)‖. He conjectured that one can always assign a finite length to this set
if the total curvature is finite. Unfortunately, this is not true in general, not even if the norm
of the second fundamental form is square integrable, a stronger assumption. White [68] gave
the following example: Take the surface which over the(x, y)-plane is parameterized as the
graph of the functionz = x sin(log log(1+√

x2 + y2)). Here the set of limit directions covers
an open part of the unit 2-sphere.

Intrinsically, one can relate the curvature defect with the so-calledideal boundary in the
sense of [6]. The following theorem was obtained by Shioya [58, 59], compare [42, 72]:
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176 F. DILLEN AND W. KÜHNEL

THEOREM 2.4. For the curvature defect of a complete Riemannian 2-manifoldM with
finitely many ends E1, . . . , Ek and finite total curvature the following formula holds:

2πχ(M)−
∫
M

KdA =
k∑
i=1

li ,

where li denotes the length of the ideal boundary associated to the end Ei .

Again the Cohn-Vossen inequality is a corollary because a length is always nonnegative.
Yim [72] interpreted this nonnegativity in terms of the convexity of the ideal boundary of the
surface at infinity. More information on Section 2 can be found in [73].

3. The extrinsic Gauss-Bonnet theorem. For investigating higher dimensional ana-
logues of the classical Gauss-Bonnet formula for 2-manifolds, one can first look at the in-
tegrated extrinsic curvature of a compact hypersurface. Here an appropriate curvature is the
Gauss-Kronecker curvature K = Kn which is defined as the determinant of the shape oper-
ator, wheren is the dimension of the manifold. In the even-dimensional case this curvature
is independent of the unit normal, while in the odd-dimensional case its sign depends on the
unit normal. It is well-known thatK is intrinsic if n is even. For the history of the following
theorem compare [29].

NOTATION. The constantcn denotes the volume of the standard unitn-sphere. This
can be expressed in terms of the Gamma function as follows:cn−1 = 2πn/2/Γ (n/2). The
symboldV denotes the volume element of a submanifold, sometimes in the formdVM for
specifying the manifold on which it is defined.

THEOREM 3.1 (Gauss-Bonnet-Hopf [31], [32], Satz VI).Let Mn ⊂ En+1 be an em-
bedded compact hypersurface such that M is the boundary of its interior Mint ⊂ En+1, and
let K denote the Gauss-Kronecker curvature of M with respect to the inner normal (pointing
to Mint). Then the following hold:

(i)
∫
M KdVM = cn · χ(Mint).

(ii) If n is even, then χ(M) = 2χ(Mint) and, consequently,
∫
M
KdVM = (cn/2) ·

χ(M). Moreover, this equality holds for arbitrary immersions f : M → En+1 of a compact
orientable n-manifold, even if M is not the boundary of any (n+ 1)-manifold.

Hopf called the type of hypersurfaces in (i)Jordan hypersurfaces. The essential differ-
ence between even and odd dimensions is that for odd dimensions the total curvature is not
a topological invariant of the hypersurface, whereas for even dimensions the Gauss-Bonnet
equation (ii) holds independently of the nature (or even the existence) of an interiorMint. In
the non-orientable case in (ii) one can pass to the 2-sheeted orientable covering. (i) can be
extended to the case of immersionsf : Mint → En+1 if Mint is a given(n + 1)-manifold
with boundary. As a matter of fact (already mentioned in [32]), for odd dimensions the total
curvature does depend on the choice ofMint, i.e., on the choice of the embedding.
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EXAMPLE 3.2. LetS1 ⊂ E2 ⊂ E4 be the standard unit circle and(S1)ε its ε-tube in
Euclidean 4-space. Similarly, letS2 ⊂ E3 ⊂ E4 be the standard unit sphere and(S2)ε its ε-
tube in Euclidean 4-space. Then(S1)ε and(S2)ε are both diffeomorphic toS1×S2. However,
the total Gauss-Kronecker curvature is zero in the first case and positive in the second case,
according toχ((S1)≤ε) = χ(S1) = 0 andχ((S2)≤ε) = χ(S2) = 2.

Nevertheless, we have the following folklore result:

PROPOSITION 3.3. Within the class of all immersions f : Mn → En+1 of a fixed com-
pact manifoldM, the total Gauss-Kronecker curvature

∫
M KdVM depends only on the regular

homotopy class of f .

This follows from the variational formula for the total curvature, see Section 5. The
gradient of the curvature functional

∫
M KdV is identically zero. Of course, Proposition 3.3

is interesting only for oddn. In this case it reduces the problem of determining all possible
values for the total curvature to determining all regular homotopy classes of immersions to-
gether with examples in each class for which the total curvature can be calculated. See [74] for
interesting results. In the case of planar curves Proposition 3.3 is well-known by the Whitney-
Graustein theorem because(1/2π)

∫
c
κds of a closed curvec equals the rotation index ofc.

The theorem on turning tangents (the “Hopf Umlaufsatz”) can be regarded as the special case
n = 1 in Theorem 3.1 (i).

In the case of submanifolds of higher codimensions one has to regard the so-called
Lipschitz-Killing curvature, which is defined as the determinant of the shape operatorAξ

in direction of a specific unit normalξ (for the background compare [40])

〈Aξ(X), Y 〉 = 〈∇XY, ξ〉 .
Therefore integrating the curvature requires the space of all unit normals at all points

⊥1 (M) = {(p, ξ) | p ∈ M, ‖ξ‖ = 1, ξ ⊥ TpM} ,
which is nothing but the total space of the unit normal bundle of an embedding or immersion.
For a submanifoldMn ⊂ Em+1, ⊥1 (M) can be regarded as a submanifold of the tangent
bundle ofEm+1, or as a submanifold ofM × Em+1. This space⊥1 (M) carries a canonical
orientation (induced by the outer normal) which is compatible with the orientation of the
ambient space, and it carries a so-calledcanonical volume form dVcan which is induced from
this orientation, see [21]. Locally we havedVcan = dVM ∧ dVSm−n. Note that the manifold
⊥1 is orientable even for immersions of non-orientable manifolds. An orientation of⊥1 is
obtained by the choice of either of the following:

(p, ξ) → ξ (theouter normal) ,

(p, ξ) → −ξ (theinner normal) .

REMARK 3.4. In the sequel,K or Kn denotes the Lipschitz-Killing curvature, where
n indicates the dimension of the manifold on which it is defined. More precisely, we use the
symbolK(ξ) orKn(ξ) for the Lipschitz-Killing curvature in the direction of a unit normalξ .

� �



178 F. DILLEN AND W. KÜHNEL

THEOREM 3.5 ([1, 20]). Let Mn ⊂ Em+1 be an embedded compact submanifold with-
out boundary (or an immersion of M), and let K denote the Lipschitz-Killing curvature,
defined on the unit normal bundle ⊥1 (M). Then the Gauss-Bonnet formula holds in the
following form: ∫

⊥1(M)

KdVcan = cm · χ(M) .
Moreover, if m is even, we have χ(⊥1 (M)) = 2χ(M).

Note that by a linear standard embeddingEm+1 → Em+2 one can always make the
dimension of the ambient space an even number. Ifn is odd, then by the obvious equation
K(−ξ) = (−1)nK(ξ) the total Lipschitz-Killing curvature is pointwise zero, and hence the
equation above becomes trivial. On the other hand, it leads to a geometric interpretation for
the equationχ(M) = 0 for odd-dimensional manifoldsM, if one uses the fact that every
manifold can be embedded somehow into some Euclidean space.

A “modern” proof reduces Theorem 3.5 to the Hopf index theorem for nondegenerate
height functions, see [21, p. 28]. Nevertheless,it is kind of interesting that independently Al-
lendoerfer and Fenchel proved this at about the same time and by essentially the same method,
namely, by the method of tubes, thus by reducing it to the Gauss-Bonnet-Hopf theorem. We
briefly sketch this proof, for later use in Theorem 3.7.

PROOF. For an embedding or immersionf : Mn → Em+1 of a compact manifoldM
and for sufficiently smallε > 0 theε-tube defines an embedding or immersionfε : ⊥1→
Em+1 by

fε(p, ξ) = f (p)+ εξ .

If Mn ⊂ Em+1 is an embedded or immersed manifold, then the Gauss-Bonnet-Hopf theorem
3.1 for the tubeMε (or fε) and for the inner unit normal states that∫

⊥1(M)

KmdVε = cm · χ(M) ,
becauseMε is the boundary of the solid (embedded of immersed)ε-tubeM≤ε which has
the same Euler characteristic asM itself. Here we use the fact that the Gauss-Bonnet-Hopf
theorem remains valid for immersions of the manifoldN bounding the givenM. Furthermore,
from the additivity of the Euler characteristic we obtain the relation

χ(⊥1) = χ(Sm−n) · χ(M) ,
which for evenm leads to

χ(⊥1) = 2χ(M)

becauseχ(M) = 0 if n is odd. Therefore the proof of the Allendoerfer-Fenchel theorem is
completed by the equation ∫

⊥1
KmdVε =

∫
⊥1
KndVcan,

which holds for embeddings and immersions and for an arbitrary dimension and codimension
by the following pointwise observation.

� �



TOTAL CURVATURE OF COMPLETE SUBMANIFOLDS OF EUCLIDEAN SPACE 179

If κ1(ξ), . . . , κn(ξ) denote the principal curvatures ofM at p in directionξ , then the
principal curvatures ofMε at (p, ξ) in direction−ξ are

−κ1(ξ)

1 − εκ1(ξ)
, . . . ,

−κn(ξ)
1 − εκn(ξ)

,
1

ε
, . . . ,

1

ε︸ ︷︷ ︸
m−n

.

The volume formsdVε anddVcan on⊥1 are related by the equation

dVε =
n∏
i=1

(1 − εκi(ξ))ε
m−ndVcan,

and henceKmdVε = (−1)nKndVcan. However, for oddn, the integral
∫
⊥1 KndVcan vanishes

pointwise, and thus we have ∫
⊥1
KmdVε =

∫
⊥1
KndVcan

in any case. �

In order to extend the extrinsic Gauss-Bonnet theorem to compact submanifolds with
boundary, one has to find an appropriate analogue for the right hand side boundary term in
the classical formula

2πχ(M)−
∫
M

KdA =
∫
∂M

κ(s)ds .

In any case we have to distinguish betweeninner points p ∈ M \ ∂M andboundary points
p ∈ ∂M. In the interior the curvature will be defined as above, i.e., at a pointp ∈ M \ ∂M
we consider the curvature

K(p) =
∫
ξ∈⊥1

p

Kn(ξ)dVSm−n

and the total Lipschitz-Killing curvature∫
p∈M\∂M

K(p)dVM =
∫

⊥1(M\∂M)
KndVcan.

At the boundary it is quite natural to consider only theouter unit normals and to integrate
only over the set

⊥1+ (∂M) = {(p, ξ) | p ∈ ∂M, ‖ξ‖ = 1, ξ ⊥ Tp∂M, 〈ξ, νout〉 ≥ 0} ,
whereνout denotes the uniqueouter unit normal vector, which is tangent toM, which is
perpendicular to∂M and which points away fromM. Hence(p, ξ) ∈⊥1+ (∂M) if and only if
ξ has a nonpositive inner product with the tangentċ(0) of any smooth curvec : [0,1) → M

with c(0) = p ∈ ∂M.

DEFINITION 3.6 (unit normal space, total curvature). For a compact submanifold
Mn ⊂ Em+1 with boundary∂M we define theunit normal space N1 by

N1 =⊥1 (M) ∪ ⊥1+ (∂M) .
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180 F. DILLEN AND W. KÜHNEL

It carries a canonical volume formdVcan as in the case of a submanifold without boundary.
Then thetotal curvature of M is defined as the sum of the total curvatures of the two parts
from ⊥1 (M \ ∂M) and from⊥1+ (∂M):

TC(M, ∂M) :=
∫
N1
KdVcan =

∫
ξ∈⊥1(M\∂M)

Kn(ξ)dVcan+
∫
ξ∈⊥1+(∂M)

Kn−1(−ξ)dVcan.

The signs are chosen in view of the Gauss-Bonnet-Hopf theorem 3.1 for the interior of the
tubeMε = {p + εξ | (p, ξ) ∈ N1}, where we have to take the inner normal along the
boundary. The analogous definition applies to immersionsf : (M, ∂M) → Em+1 with the
tubefε(p, ξ) = f (p)+ εξ .

With this definition the Allendoerfer-Fenchel tube argument can be carried over to the
case of compact submanifolds with boundary (and immersions of such) as follows.

THEOREM 3.7. For a compact submanifold Mn ⊂ Em+1 with boundary ∂M (or an
immersion of M) the Gauss-Bonnet formula holds as follows:

TC(M, ∂M) = cm · χ(M) .
Moreover, if m is even, then we have χ(N1) = 2χ(M).

PROOF. The key observation is the equation

TC(M, ∂M) =
∫
Mε

KmdVε

for sufficiently smallε > 0, whereKm is taken with respect to the inner normal of the tube
Mε. Then in the second step we obtain∫

Mε

KmdVε = cm · χ(M≤ε) = cm · χ(M)
from the Gauss-Bonnet-Hopf theorem 3.1. Finally, we need the equation

χ(N1) = (1 + (−1)m)χ(M) ,

which we obtain as follows: From the additivity of the Euler characteristic we get

χ(N1) = χ(M)
(
1 + (−1)m−n) − χ(∂M)(−1)m−n .

For evenm this leads toχ(N1) = 2χ(M).
For the first step TC(M, ∂M) = ∫

Mε
KmdVε, we use the formulae for the tube above.

For any(p, ξ) ∈⊥1 (M \ ∂M) we have the same situation as in the proof of Theorem
3.5 above. If(p, ξ) ∈⊥1 (∂M), then we similarly have

Km(−ξ)dVε = (−1)n−1Kn−1(ξ)dVcan = Kn−1(−ξ)dVcan.

Again, for oddn, the integral
∫
(⊥1)p

KndVSm−n vanishes pointwise at any interior pointp ∈
M \ ∂M, and we obtain∫

Mε

KmdVε =
∫
ξ∈⊥1(M\∂M)

Kn(ξ)dVcan+
∫
ξ∈⊥1+(∂M)

Kn−1(−ξ)dVcan(3.1)
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= 1

2

∫
ξ∈⊥1+(∂M)

(Kn−1(−ξ)+Kn−1(ξ))dVcan = 1

2

∫
ξ∈⊥1(∂M)

Kn−1dVcan.(3.2) �

For an intrinsic version of Theorem 3.7 see [2, 53].

COROLLARY 3.8. (i) If n is odd, then we have χ(∂M) = 2χ(M) and, consequently,

TC(M, ∂M) = 1

2

∫
⊥1(∂M)

Kn−1dVcan = cm

2
χ(∂M) = cmχ(M) .

Therefore, in this case Theorem 3.7is equivalent to the statement of the Gauss-Bonnet theorem
3.5 for the boundary ∂M .

(ii) We have

TAC(M, ∂M) = TAC(M \ ∂M)+ 1

2
TAC(∂M) ,

where TAC denotes the total absolute curvature defined as the integral over the absolute value
of the Lipschitz-Killing curvature.

The formula in (ii) is useful for studying tight immersions, i.e., such immersions for
which the TAC attains its minimum value, see [7]. The problem of minimum total absolute
curvature was investigated [17], compare [11]. Tightness for complete non-compact subman-
ifolds was studied in [28].

By Definition 3.6 and by Theorem 3.7 the Gauss-Bonnet difference term

cmχ(M)−
∫

⊥1(M\∂M)
KndVcan

can be expressed as the integral ofKn−1 over the set of outer unit normals at∂M. Obviously,
any ξ̃ ∈ (⊥1+)p can be uniquely written as

ξ̃ = cosϕ · νout + sinϕ · ξ ,
where 0≤ ϕ ≤ π/2 andξ is a unit normal vector toM atp ∈ ∂M. Vice versa, any suchξ
leads to ãξ in (⊥1+)p for anyϕ with 0 ≤ ϕ ≤ π/2. This enables us to compute this integral
by Fubini’s theorem, pointwise evaluated for the normal sphereSm−n on the one hand and
half the normal sphereSm−n+1 on the other hand.

In view of an exhaustion of a noncompact manifold by compact manifolds with bound-
ary, the Gauss-Bonnet defectcmχ(M) − ∫

⊥1(M\∂M) KndVcan is closely related to this “outer
curvature” of the “ideal boundary” in the sphere at infinity. For this purpose we first formulate
the following theorem for submanifolds in the unit ball which can be regarded as a model for
the Euclidean space after compactification by a unit sphere at “infinity”.

THEOREM 3.9 (Gauss-Bonnet theorem for submanifolds in the closed unit ball).Let
(Mn, ∂Mn) ⊂ (Bm+1, Sm) be a compact submanifold which is orthogonal at the bound-
ary, i.e., the outer normal νout of M at each boundary point coincides with the outer normal
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of Sm. Then for the Gauss-Bonnet defect the equation

cmχ(M)−
∫

⊥1(M\∂M)
KdVcan =

∑
0≤2i≤n−1

cm

cm−n+2icn−1−2i

∫
⊥1(∂M)

K2idVcan

holds, where Kj denotes the j th elementary symmetric function of the eigenvalues of the
shape operator of the embedding ∂M → Sm.

The right hand side was called theouter curvature in [27]. The total curvatures

Kj =
∫

⊥1
KjdVcan

themselves play an important role in integral geometry and differential geometry, see [52]. In
particular they are intrinsic invariants ifj is even, see [36] and Section 4.

PROOF. At each boundary pointp ∈ ∂M we compute the boundary term as follows:∫
ξ̃∈(⊥1+)p

Kn−1(−ξ̃ )dVSm−n+1 =
∫
ξ∈⊥1

p,0≤ϕ≤π/2
Kn−1(sinϕ · ξ − cosϕ · νout)dVSm−n+1

=
∫

⊥1
p

∫ π/2

0
det(sinϕ · Aξ − cosϕ ·Aνout)dVSm−n ∧ sinm−n ϕdϕ

=
∫

⊥1
p

∫ π/2

0
sinm−1 ϕ det(Aξ + cotϕ · Id)dVSm−n ∧ dϕ

=
∫

⊥1
p

∫ π/2

0
sinm−1 ϕ

n−1∑
j=0

Kj(ξ) cotn−1−j ϕdVSm−n ∧ dϕ

=
n−1∑
j=0

∫ π/2

0
sinm−n+j ϕ cosn−1−j ϕdϕ

∫
ξ∈⊥1

p

Kj (ξ)dVSm−n .

Note that in our case the shape operatorAξ of ∂M in the ambient Euclidean space coin-
cides with the shape operator of∂M in Sm and thatAνout is nothing but the negative identity,
namely, the shape operator ofSm ⊂ Em+1. The last integral vanishes for oddj , and so we
obtain the sum over all evenj = 2i. The proof is completed by the equation

∫ π/2

0
sinm−n+j ϕ cosn−1−j ϕdϕ = cm

cm−n+j cn−1−j
. �

The key observation for this proof has been used for similar problems, e.g., for the study
of tubes, see [67]. For the casen = m the statement of Theorem 3.9 can be found in [27].

COROLLARY 3.10 (Special cases). (1)For a compact surface (M2, ∂M2) ⊂ (B3, S2)

of this type we have

4πχ(M)− 2
∫
M

KdVM = 2 · length(∂M) .
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(2) For a compact hypersurface (M4, ∂M4) ⊂ (B5, S4) of this type we have

8

3
π2χ(M)− 2

∫
M

K4dVM = 1

3

∫
∂M

(S − 2)dV∂M,

where S denotes the scalar curvature of ∂M4 .

PROOF. From the formula in Theorem 3.9 we obtain

c2χ(M)− TC(M \ ∂M) = c2

c0c1

∫
∂M

2K0dV∂M = 2
∫
∂M

dV∂M

in the case (i). For (ii) we have

8

3
π2χ(M)−

∫
⊥1(M)

K4dVcan = 8

3
π2

∫
∂M

( 2

4π2
+ 2K2

8π2

)
dV∂M

= 1

3

∫
∂M

(4 + 2K2)dV∂M = 1

3

∫
∂M

(S − 2)dV∂M ,

whereS = 6 + 2K2 is the scalar curvature of∂M. �

If n is odd then in Theorem 3.9 the contribution ofM \ ∂M is zero, and for the boundary
we can express the total outer curvature in twodifferent ways. This leads to the following

COROLLARY 3.11 (Integral formulae for total curvatures inSm). Let Nn−1 ⊂ Sm be
an even-dimensional compact submanifold. Then

cm

2
χ(N) =

∑
0≤2i≤n−1

cm

cm−n+2i cn−1−2i

∫
⊥1(N)

K2idVcan,

where K2i denotes the 2ith elementary symmetric function of the eigenvalues of the shape
operator of N ⊂ Sm.

This equation is often called the Allendoerfer-Weil formula in the sphere, although it is
not explicitly given in [2]. It can be found in [36, p. 248], and for hypersurfaces it is stated in
[62, p. 261] together with a differential topological proof.

In the case wheren = m = 3 the equation in Corollary 3.11 is nothing but the integral
of the classical Gauss equationK = 1 + K2, whereK denotes the inner Gaussian curvature
andK2 the extrinsic determinant of the shape operator. Hence the extrinsic “total curvature
defect” 2πχ(N)− ∫

N K2dVN becomes strictly positive.
Forn = m = 5 this equation takes the form

4

3
π2χ(N)−

∫
N

K4dVN = 1

6

∫
N

(S − 6)dVN ,

whereS denotes the scalar curvature ofN4. Hence the integral mean value 6 for the scalar
curvature is the critical value which determines the extrinsic “total curvature defect”. Compare
the critical value 2 in the 3-dimensional case in Corollary 3.10.

PROOF OF3.11. It is sufficient to consider the case that two congruent copies ofN are
the common boundary of an immersed cylinderÑ = N × [0,1] in the ballBm+1, which is
orthogonal at the two boundaries. Then the total curvature of the interior part vanishes, and
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the assertion follows directly from Theorem 3.9, since each of the two boundary components
contributes the same value. �

4. The pointwise intrinsic nature of the total curvature. It is known that the
Lipschitz-Killing curvature of an even-dimensional submanifold is an intrinsic quantity when
integrated over the unit normal bundle at a pointp, see [67], [52]. The same holds for the
even total curvatures, see [36], [14]. In this section we give an independent and elementary
proof for the fact that the even total curvatures∫

⊥1
p

K2i (ξ)dξ

indeed are intrinsic invariants. In particular, this applies to the Lipschitz-Killing curvature of
even-dimensional submanifolds. We give a detailed proof for the latter case which is based
on a formula for the Laplacian of the determinant. The general case is proved similarly, we
will only sketch it.

4.1. The Lipschitz-Killing curvature. LetM2n be a submanifold inEm+1 = E2n+k
and letp ∈ M. Let ⊥1

p be the unit sphere in the normal space atp. Let ω be the volume
element ofM atp, and let{e1, . . . , e2n} be an orthonormal basis ofTpM. We define a function

f :⊥1
p→ R : ξ → ω(Aξ e1, . . . , Aξe2n) .

Note thatf (ξ) = detAξ . For ξ ∈⊥1
p, let {ξ1, . . . , ξk−1} be an orthonormal basis ofTξ ⊥1

p.
Puttingξ = ξk, we obtain an orthonormal basis{ξ1, . . . , ξk−1, ξk} of the normal space atp.
If � denotes the ordinary Laplacian of⊥1

p, then we have

�f (ξ) =
k−1∑
α=1

d2

dt2

∣∣∣∣
t=0

f (cost · ξ + sint · ξα) .

Then, by a straightforward computation, it follows that

�f (ξ) =
k−1∑
α=1

(
(−2n)f (ξ)+

∑
i �=j

ω(Aξe1, . . . , Aξα ei, . . . , Aξα ej , . . . , Aξ e2n)

)

= (−2n)(k − 1) detAξ +
∑
i �=j

k−1∑
α=1

ω(Aξ e1, . . . , Aξαei, . . . , Aξαej , . . . , Aξe2n)

= ((−2n)(k − 1)− 2n(2n− 1)) detAξ

+
∑
i �=j

k∑
α=1

ω(Aξ e1, . . . , Aξαei, . . . , Aξαej , . . . , Aξ e2n)

= (−2n)(k + 2n− 2) detAξ +
∑
i �=j

k∑
α=1

ω(Aξe1, . . . , Aξαei , . . . , Aξα ej , . . . , Aξ e2n) .
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If we denote

fij (ξ) =
k∑
α=1

ω(Aξe1, . . . , Aξα ei, . . . , Aξα ej , . . . , Aξ e2n) ,

then similarly we can compute

�fij (ξ) = (−2(n− 1))(k + 2(n− 1)− 2)fij

+
∑
α,β

∑
r �=s

ω(Aξe1, . . . , Aξβ er , . . . , Aξαei , . . . , Aξαej , . . . , Aξβ es, . . . , Aξ e2n) .

If we continue this procedure and integrate over⊥1
p, we obtain∫

⊥1
p

detAξdξ = 1

(2n)(k + 2n− 2)

1

2(n− 1)(k + 2(n− 1)− 2)
· · · 1

2k
H(p)ck−1 ,

where

H(p) =
∑
τ∈σ2n

k∑
α1,...,αn=1

(sgnτ )ω(Aξα1
eτ(1), Aξα1

eτ(2), . . . , Aξαn eτ(2n−1), Aξαn eτ(2n)) ,

which does not depend on the choice of an orthonormal basis, the first sum ranging over all
permutations of 2n elements. From the equation

cm = c2n+k−1 = c2n+k−3
c1

2n+ k − 2
= (c1)

n

(2n+ k − 2)(2n+ k − 4) · · · k ck−1,

we obtain that ∫
⊥1
p

detAξdξ = 1

2nn!
cm

2nπn
H(p) .

Since

2nn!(2π)n = c2n

2
(2n)! ,

we can write this as
1

cm

∫
⊥1
p

detAξdξ = 2

c2n(2n)!H(p) .(4.1)

We still have to prove that the right hand side of(4.1) is of intrinsic nature. Introducing the
usual notationhαij = 〈

Aξαei, ej
〉
, we compute that

H(p) =
∑

τ,η∈σ2n

k∑
α1,...,αn=1

(sgnτ )(sgnη)hα1
τ (1)η(1)h

α1
τ (2)η(2) · · · hαnτ(2n−1)η(2n−1)h

αn
τ(2n)η(2n) .

This can be rewritten as

H(p) = 1

2n
∑

τ,η∈σ2n

k∑
α1,...,αn=1

(sgnτ )(sgnη)(hα1
τ (1)η(1)h

α1
τ (2)η(2) − h

α1
τ (2)η(1)h

α1
τ (1)η(2)) · · ·

(h
αn
τ(2n−1)η(2n−1)h

αn
τ(2n)η(2n) − h

αn
τ(2n)η(2n−1)h

αn
τ(2n−1)η(2n)) ,
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which, using the Gauss equation, amounts to

H(p) = 1

(−2)n
∑

τ,η∈σ2n

(sgnτ )(sgnη)Rτ(1)τ (2)η(1)η(2) · · ·Rτ(2n−1)τ (2n)η(2n−1)η(2n) .

It is now clear thatH is an intrinsic invariant. Up to scaling, it is the usual Gauss-Bonnet
integrand. If we put

G(p) =
∑

τ,η∈σ2n

(sgnτ )(sgnη)Rτ(1)τ (2)η(1)η(2) · · ·Rτ(2n−1)τ (2n)η(2n−1)η(2n) ,(4.2)

then

H(p) = 1

(−2)n
G(p) .

Hence we have proved the following theorem.

THEOREM 4.1. Let M2n be a submanifold in Em+1 and let p ∈ M . Then

1

cm

∫
⊥1
p

detAξdξ = 2

c2n(2n)!(−2)n
G(p) ,

where G is given by (4.2).

In particular, for surfaces this gives the following

COROLLARY 4.2. Let M2 be a surface in Em+1 and let p ∈ M . Then

1

cm

∫
⊥1
p

detAξdξ = 1

2π
K(p) ,

where K is the Gauss curvature of M2.

Looking at the proof of Theorem 4.1, we may notice that almost the same proof holds
for submanifolds of Riemannian manifolds of constant sectional curvature, obtaining in this
way the following theorem.

THEOREM 4.3. Let M2n be a submanifold in a real space form Nm+1(c) and let p ∈
M . Then

1

cm

∫
⊥1
p

detAξdξ = 2

c2n(2n)!(−2)n
Gc(p) ,

where Gc is given by

Gc(p) =
∑

τ,η∈σ2n

(sgnτ )(sgnη)(Rτ(1)τ (2)η(1)η(2) − c) · · · (Rτ(2n−1)τ (2n)η(2n−1)η(2n) − c).

(4.3)

For surfaces this again becomes the following:

THEOREM 4.4. Let M2 be a surface in a real space form Nm+1(c) and let p ∈ M .
Then

1

cm

∫
⊥1
p

detAξdξ = 1

2π
(K(p)− c) .
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If nowM2n is compact and oriented, then integrating (4.1) and using Theorem (3.5), we
obtain that ∫

M

G(p)dM = c2n(2n)!(−1)n2n−1χ(M) .

From the Nash embedding theorem one obtains the following corollary.

THEOREM 4.5 (Gauss-Bonnet-Chern).Let M2n be a compact oriented Riemannian
manifold, then ∫

M

G(p)dM = c2n(2n)!(−1)n2n−1χ(M) .

For an intrinsic proof compare [15] or [69, Sect.2.7].

4.2. The even elementary symmetric functions. LetMn be a submanifold inEm+1 =
En+k and letp ∈ M. Let⊥1

p be the unit sphere in the normal space atp. Letω be the volume
element ofM atp, and let{e1, . . . , en} be an orthonormal basis ofTpM. Let l be any integer
such that 1≤ 2l ≤ n. If ξ ∈⊥1

p, then

K2l(ξ) =
∑

i1<···<i2l
ω(e1, . . . , Aξ ei1, . . . , Aξ ei2l , . . . , en) .

Using the same method as above, we obtain∫
⊥1
p

K2l (ξ)dξ = 2c2l+k−1

c2l(2l)! H2l(p) ,(4.4)

where

H2l(p) =
∑

i1<···<i2l

∑
τ∈σ2l

k∑
α1,...,αl=1

(sgnτ )ω(e1, . . . , Aξα1
eiτ(1) , . . . , Aξα1

eiτ(2) , . . . ,

Aξαl eiτ (2l−1) , . . . , Aξαl eiτ (2l) , . . . , en) .

With the same notation as above we obtain

H2l(p) =
∑

i1<···<i2l

∑
τ,η∈σ2l

k∑
α1,...,αl=1

(sgnτ )(sgnη)hα1
iτ (1)iη(1)

h
α1
iτ (2)iη(2)

· · · hαliτ (2l−1)iη(2l−1)
h
αl
iτ (2l)iη(2l)

,

which, using the Gauss equation, can be written as

H2l(p) = 1

(−2)l
∑

i1<···<i2l

∑
τ,η∈σ2l

(sgnτ )(sgnη)Riτ(1)iτ (2)iη(1)iη(2) · · ·Riτ(2l−1)iτ (2l)iη(2l−1)iη(2l) .

It is now clear thatH2l is an intrinsic invariant. If we introduce

G2l(p) =
∑

i1<···<i2l

∑
τ,η∈σ2l

(sgnτ )(sgnη)Riτ(1)iτ (2)iη(1)iη(2) · · ·Riτ(2l−1)iτ (2l)iη(2l−1)iη(2l) ,(4.5)

then

H2l(p) = 1

(−2)l
G2l (p) .

Hence we have proved the following theorem.
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THEOREM 4.6. Let Mn be a submanifold in Em+1, and let p ∈ M and l an integer
such that 1< 2l ≤ n. Then,

1

c2l+m−n

∫
⊥1
p

K2l(ξ)dξ = 2

c2l(2l)!(−2)l
G2l(p) ,(4.6)

where G2l is given by (4.5)

Similarly, this carries over to the case of submanifolds in real space forms as follows.

THEOREM 4.7. LetMn be a submanifold in a real space formNm+1(c), and let p ∈ M
and l an integer such that 1< 2l ≤ n. Then

1

c2l+m−n

∫
⊥1
p

K2l(ξ)dξ = 2

c2l(2l)!(−2)l
G2l,c(p) ,

where G2l,c is given by

G2l,c(p)=
∑

i1<···<i2l

∑
τ,η∈σ2l

(sgnτ )(sgnη)(Riτ(1)iτ (2)iη(1)iη(2) − c)· · ·(Riτ(2l−1)iτ (2l)iη(2l−1)iη(2l)−c) .

5. Limit directions of complete open submanifolds and submanifolds with cone-
like ends. It was the idea of Wintgen [70] to study the total curvature and total absolute
curvature of complete open submanifolds inEm+1 by means of limit directions. A unit vector
e ∈ Sm is called alimit direction if there is a sequence(pn)n∈N of points inM converging to
one particular end such that

e = lim
n→∞

pn

‖pn‖ .
The set of all limit directions ofM is denoted byM∞. One of Wintgen’s results states that
the Gauss-Bonnet theorem ∫

⊥1
KdVcan = cmχ(M)

holds ifM is even-dimensional, ifK is absolutely integrable and if there are only finitely
many limit directions. Especially, this setM∞ of limit directions inSm provides an extrinsic
analogue of the ideal boundary, provided thatM∞ has a reasonable structure, e.g., as a smooth
submanifold of lower dimension.

DEFINITION 5.1 (Conical end). LetM∞ ⊂ Sm(1) be a compact(n − 1)-dimensional
submanifold. Then for fixedp ∈ Em+1 the setC(M∞) := {p+t ·x | x ∈ M∞, t ≥ 0} ⊂ Em+1

is called the (simple)cone over M∞ with apex p. An n-dimensional complete submanifold
M of Em+1 with finitely many ends is said to haveconical ends if for a certain radiusR > 0
the setM \Bm+1(R) consists only of the union of open subsets of cones, where the apex may
vary from one end to another. In this case,M \Bm+1(R) is the union of open subsets of cones
over the components ofM∞, each counted with multiplicity.
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PROPOSITION 5.2. For a complete submanifold Mn ⊂ Em+1 with conical ends the
Gauss-Bonnet defect equals the total outer curvature of M∞ ⊂ Sm, where one has to sum up
over the set of ends separately:

cmχ(M)−
∫

⊥1(M)

KdVcan =
∑

0≤2i≤n−1

cm

cm−n+2icn−1−2i
K2i (M∞) ,

where Kj (M∞) = ∫
⊥1(M∞) Kj dVcandenotes the total j th curvature of the setM∞ ( for each

end separately), regarded as a submanifold of the unit sphere.

First of all, the total curvature converges, since the curvature is zero on the cones, i.e.,
outside a compact set. If the apex of each coneis the origin, the assertion follows from
Theorem 3.9 because the total curvature is scale invariant (thus we can assumeR = 1) and
because the various cones have vanishingcurvature, i.e., the total curvature ofM equals the
total curvature ofM ∩ Bm+1(1). If an apex is not the origin, then we can use the fact that by
the Gauss-Bonnet formula the total curvature is invariant under changes in a compact part and
that it is also invariant under translations of the cones. This implies that the total curvature
and the right hand side of the equation in 5.2 behaves like in the case where each apex is the
origin.

For this argument it is not necessary that the ends are exactly cones. We have the same
geometric phenomenon if the ends are (asymptotically) cone-like in a sense to be made more
precise below. Recall that the following characteristic property of a coneC over a manifold
with apex 0: All the intersections withSm(R) are homothetic to one another, tangent and
normal spaces at corresponding points are parallel to each other, and at each point the outer
normal ofC ∩ Bm+1 coincides with the position vector (up to scaling).

DEFINITION 5.3 (Cone-like end). An endE of a complete submanifoldMn ⊂ Em+1

with associated componentME∞ in the set of limit directions is said to be(asymptotically)
cone-like if the following conditions are satisfied:

(1) There is a pointq such that for sufficiently largeR the intersectionE ∩ Sm(R; q)
is an(n− 1)-dimensional submanifold of the sphere of radiusR aroundq, and

lim
R→∞

1

R
(E ∩ Sm(R; q)) = ME∞

in theC2-topology. This property is actually independent of the choice ofq, so that we may
assume thatq is the origin 0.

(2) For everyε there is a numberR0 such that for eachR > R0 the angle between
outer unit normal of the submanifoldE ∩ Bm+1(R; 0) at any pointp ∈ E, ‖p‖ = R, and the
position vectorp is at mostε.

THEOREM 5.4. For a complete submanifold Mn ⊂ Em+1 with finitely many cone-like
ends the Gauss-Bonnet defect is given by the same formula for M∞ ⊂ Sm as in Proposition
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5.2:
cmχ(M)−

∫
⊥1
KdVcan =

∑
0≤2i≤n−1

cm

cm−n+2i cn−1−2i
K2i (M∞) .(5.1)

If we divide the equation (5.1) bycm, we see from Theorem 4.1 that the left hand side of
(5.1) is intrinsic forM, and from Theorem 4.7 we obtain that the right hand side is intrinsic
forM∞. The right hand side was called thetotal outer curvature in [27].

PROOF. The proof follows from the extrinsic Gauss-Bonnet formula 3.9 and Proposi-
tion 5.2 above. For sufficiently largeR the subspaces

MR := M ∩ Bm+1(R; 0)

are diffeomorphic to one another. We would like to apply Theorem 3.9 toMR but this is
not literally possible since it is not orthogonal at the boundary inSm(R; 0). However, by
Definition 5.3 the tangent and normal space ofMR converges to the tangent and normal space
ofM∞, and in the limit the orthogonality is satisfied. This implies that Theorem 3.9 holds for
MR in the limitR → ∞. Because of scale invariance the total curvature of the interior ofMR

converges to the total curvature ofM for R → ∞. By Definition 5.3 the total outer curvature
ofMR converges to the total outer curvature ofM∞. Thus the formula in Proposition 5.2 can
be applied. As an appropriate geometric picture, we can think ofM as sitting in the unit ball
with the same boundary behavior as in Theorem 3.9, together with a cone over the boundary
to infinity. This cone has vanishing Lipschitz-Killing curvature and thus does not contribute
to the total curvature. Note, however, that forR → ∞ the “sequence”(1/R)MR does not
converge to a smooth submanifold but rather to a cone overM∞. For 2-dimensional surfaces
this is also intrinsically true, see [42]. �

COROLLARY 5.5. (1) If in addition all curvatures K2i of M∞ are nonnegative, then
the Cohn-Vossen inequality holds.

(2) If in addition for each end ME∞ is totally geodesic in Sm, then we have

χ(M)− 1

cm

∫
⊥1
KdV = k ,

where k denotes the number of ends.

COROLLARY 5.6. For a 2-dimensional open surface M2 ⊂ Em+1 with cone-like ends
we have

cmχ(M)−
∫

⊥1
K2dVcan = cm

2π
length(M∞) ≥ 0 .(5.2)

From Corollary 4.2 we the obtain the following.

COROLLARY 5.7. For a 2-dimensional open surfaceM2 ⊂ E3 with cone-like ends the
Gauss-Bonnet defect equals the total length of M∞ ⊂ S2 (counted with multiplicity, i.e., for
each end separately) :

2πχ(M)−
∫
M

KdA = length(M∞) ≥ 0 ,

� �



TOTAL CURVATURE OF COMPLETE SUBMANIFOLDS OF EUCLIDEAN SPACE 191

where K is the Gauss curvature. This implies the Cohn-Vossen inequality.

COROLLARY 5.8 ([27]). For an open hypersurface M4 ⊂ E5 with cone-like ends the
Gauss-Bonnet defect is

4

3
π2χ(M)−

∫
M

K4dVM = 1

6

∫
M∞
(S − 2)dVM∞ ,

where the integral has to be taken for each end separately.

The proof follows directly from Theorem 5.4 and Corollary 3.10.

COROLLARY 5.9. For a 4-dimensional complete open hypersurface with cone-like ends
the Gauss-Bonnet equality holds if and only if the average (= integral mean) of the scalar cur-
vature of the ideal boundary in S4 is 2. The Cohn-Vossen inequality remains valid if and only
if this average is greater than or equal to 2.

Under the assumption of nonnegative sectional curvature the validity of the Cohn-Vossen
inequality was established in [65] for hypersurfaces and in [39] for codimension two. By a
theorem of Sacksteder [51] and Wu [71], sucha hypersurface is necessarily convex. Then
the total curvature ranges between 0 andcm/2, just as in the classical case for surfaces with
positive Gauss curvature in Theorem 2.1.

Note that the value 2 for the scalar curvature has a special meaning by the following gap
theorem: It is known that a compact hypersurface ofS4(1) with constant mean curvature and
constant scalar curvature can satisfyS ≤ 2 only if it is a member of Cartan’s isoparametric
family of hypersurface withS = 0, see [4], [12]. The other examples with constant mean
curvature and constant scalar curvature are the round 3-spheres and the productsS1(r) ×
S2(

√
1 − r2), the latter ones satisfyS > 2 and limr→0 S = 2, compare Corollary 5.12 below.

COROLLARY 5.10. The Cohn-Vossen inequality does not hold in general for complete
open 4-dimensional hypersurfaces in Euclidean 5-space.

This can be seen from the following key example with vanishing scalar curvature at
infinity. It is mentioned in [10] that certain examples have been constructed, and in [47] an
example is intrinsically given, where the end involves a flat(2n − 1)-torus. The following
example seems to be quite simple.

EXAMPLE 5.11 (Key Example: Cone over Cartan’s hypersurface). Letx : RP 2 → S4

be the Veronese surface. The family of tubes around it defines an isoparametric family [11,
pp. 296–299], in particular, the tube with radiusπ/2 is Cartan’s minimal isoparametric hy-
persurface with principal curvatures

√
3,0,−√

3, and hence

K1 = 0,K2 = −3, S = 6 + 2K2 = 0 .

However, one hasS = 0 for each member in the whole isoparametric family. Furthermore,
note that in this special case the tube with radiusπ/6 coincides with Cartan’s isoparametric
hypersurface, so that the entire 4-sphere decomposes into the two(π/6)-tubes as disc bundles
over the Veronese surface and its antipodal copy. Let nowX ⊂ S4 be a solid open tube around
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the Veronese surface with radiusπ/6, bounded by Cartan’s isoparametric hypersurface. We
define an embeddingF : X → R5 locally by

F(s, t, p) := ϕ(t)(cos(ψ(t)) · x(p)+ sin(ψ(t)) · (coss · ξ(p)+ sins · η(p))) ,
wheres, t ≥ 0, p ∈ RP 2. Hereξ, η denote orthogonal unit normal vector fields tox, and
ϕ,ψ are smooth real functions as follows: An even function

ϕ : [0,∞) → [0,∞)

such thatϕ(0) > 0, ϕ′(0) = 0, ϕ′ > 0 otherwise,ϕ(t) = t + 1 − π/6 for t ≥ π/6, and an
odd function

ψ : [0,∞) → [0, π/6]
such thatψ(0) = 0, ψ ′(0) = 1, ψ ′(t) > 0 for t < π/6, ψ(t) = π/6 for t ≥ π/6. Then
F(s,0, p) = ϕ(0) · x(p) is a scaled copy of the Veronese surface andF(s, π/6, p) describes
Cartan’s hypersurface. This is true even thoughξ, η are defined only locally. In different
local charts the various definitions fit together. Fort ≥ π/6 the mappingF describes a cone
over Cartan’s hypersurface, and henceF (or rather its imageF(X)) has one conical end. The
correspondingX∞ is Cartan’s hypersurface itself with vanishing scalar curvature and non-
vanishing volume. This implies that the Gauss-Bonnet defect is strictly negative, according to
Corollary 5.9.

COROLLARY 5.12. The (strict) Cohn-Vossen inequality holds for 4-dimensional hy-
persurfaces with cone-like ends if each end is of the type “cone over a round sphere S3(r)”
or “cone over a Clifford torus S1(r)× S2(

√
1 − r2)”.

PROOF. If the end is of typeS3(r),0 < r ≤ 1, then the scalar curvature isS = 6r−2;
the volume element isr3dVS3(1), and so the Gauss-Bonnet defect of this end turns out to be

1

3

∫
S3
(6r−2 − 2)r3dVS3 = 2

3
π2r(6 − 2r2) > 0 .

For r = 1 we obtain the value 8π2/3 = c4, compare Corollary 5.5 above. In the limitr → 0
we obtain a vanishing Gauss-Bonnet defect, in accordance with [70].

If the end is of the type of the Clifford torus with 0< r < 1, then we haveS = 2/(1−r2),
the volume element isr(1 − r2)dVS1(1) ∧ dVS2(1), and so the Gauss-Bonnet defect is

1

3

∫
S1×S2

( 2

1 − r2 − 2
)
r(1 − r2)dVS1 ∧ dVS2 = 16

3
π2r3 > 0 .

The case of spherically-symmetric ends was also discussed in [47, p. 329]. �

6. The variational problem for the total curvature. The variational problem for
various curvature functionals has been studied during many years. One of the important results
is certainly the theorem of Hilbert stating that intrinsically the gradient of the total scalar
curvature functional (the Hilbert-Einstein functional) within the class of Riemannian metrics
on a given manifoldM is nothing but the Einstein tensor(S/2)g − Ric, see [9, Sect. 4C]. The
gradient of the area functional within a family of metricsgt = g + t · h is known to be half
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of the trace ofh. In the classical case of surfaces in Euclidean 3-space or the 3-sphere this
gradient is nothing but the mean curvature of the surface. This had tremendous influence to
differential geometry and analysis, and the stationary surfaces (calledminimal surfaces) have
permanently been a field of intensive and extensive research. The variation of the extrinsic
higher mean curvature functionals

K i (M) =
∫
M

Ki dVM

was studied much later. As in Theorem 3.9, hereKi denotes thei th elementary symmetric
function of the eigenvalues of the shape operatorA of a hypersurface. The normalization
is chosen such that the characteristic polynomial is det(A + λ · Id) = ∑

i Kiλ
n−i if M is

n-dimensional. In terms of the principal curvaturesκi one hasKi = ∑
j1<···<ji κj1κj2 · · · κji .

THEOREM 6.1 (K. Voss [63], compare [46, 48]).For any hypersurface in Euclidean
space the gradient of the ith curvature functional K i = ∫

KidV is the function −(i+1)Ki+1.

COROLLARY 6.2. The Hilbert-Einstein functional for a hypersurface in En+1 is sta-
tionary within the class of hypersurfaces if and only if K3 ≡ 0.

REMARK 6.3. By a result of Fialkow [25] any Einstein hypersurfaces in Euclidean
space is either totally umbilical or developable. In particular, it has constant sectional curva-
ture in any case.

REMARK 6.4. Forn = 3 this conditionK3 = 0 just means that the rank of the shape
operator is at most 2. For anyn ≥ 4 there are non-developable examples of complete hyper-
surfaces satisfyingK3 = 0 as follows: If a planar curve with curvatureκ rotates in(n + 1)-
space, then the principal curvatures areκ and a certainλ of multiplicity n− 1. Then

K3 =
(
n− 1

3

)
λ3 +

(
n− 1

2

)
κλ2 =

(
n− 1

2

)
λ2

(
n− 3

3
λ+ κ

)
.

Hence we haveK3 = 0 if the quotientλ/κ equals the constant−3/(n − 3). Such curves
have been investigated and explicitly determined by Hopf in [33] for the study of rotational
surfaces with a linear relation between the two principal curvatures. The resulting surfaces
and hypersurfaces are complete and analytic.

THEOREM 6.5 (Reilly [48], compare [64]).For a hypersurface in the unit n-sphere the
gradient of the curvature functional K i = ∫

KidV is the function −(i+1)Ki+1+(n−i)Ki−1.

If we compare this to the Hilbert-Einstein functional, we obtain the following: Since the
scalar curvatureS is the sum of all sectional curvaturesKij (i �= j ), the Gauss equation

Kij = 1 + κiκj

leads to

S = n(n− 1)+
∑
i �=j

κiκj = n(n− 1)K0 + 2K2 .
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Hence the gradient of the total scalar curvature functional is

n(n− 1)(−K1)+ 2(−3K3 + (n− 2)K1) = −6K3 + (−n2 + 3n− 4)K1.

COROLLARY 6.6. The Hilbert-Einstein functional for a hypersurface in Sn(1) is sta-
tionary within the class of hypersurfaces if and only if 3K3 + (

(
n−1

2

) + 1)K1 ≡ 0.

One example satisfying this equation is Cartan’s isoparametric hypersurface inS4, see
the key example 5.11.

THEOREM 6.7. For even n the gradient of the total outer curvature functional (= the
right hand side in Theorem 3.9) of a hypersurface in Sn is the negative Gauss-Kronecker
curvature −Kn−1 of this hypersurface.

PROOF. If δ denotes the gradient, then we haveδK i = −(i + 1)Ki+1 + (n − i)Ki−1

by Theorem 6.5 above. Ifn is even, this implies

δ

( ∑
0≤2i≤n−1

cn

c2icn−1−2i
K2i

)

=
∑

0≤2i≤n−2

cn

c2icn−1−2i
(−(2i + 1)K2i+1 + (n− 2i)K2i−1)

= − cn

cn−2c1
(n− 1)Kn−1

+
∑

0≤2i≤n−4

cn

(
n− 2i − 2

c2i+2cn−3−2i
− 2i + 1

c2icn−1−2i

)
K2i+1 = −Kn−1 .

In the last step we used the equation

(j − 1)cj = c1cj−2 ,

which holds for arbitraryj . �

REMARK 6.8. If n is odd, then the same calculation shows that the gradient vanishes
identically becausethe leading termKn vanishes on the(n− 1)-dimensional boundary. This
is not surprising, since we know from Corollary 3.8 that in this case the total curvature is
constant, namely, the Euler characteristic.

COROLLARY 6.9. The total curvature
∫
M
KndV of an even-dimensional open hyper-

surface M ⊂ En+1 with cone-like ends is stationary (within the class of such hypersurfaces
having cone-like ends) if and only if each component of M∞ has vanishing Gauss-Kronecker
curvature in the sphere “at infinity” or, equivalently, if it has one vanishing principal curva-
ture at each point.

This follows from Theorem 6.7 and Theorem 5.4 because the gradient of 2
∫
M
KndV is

the functionKn−1 onM∞. Note that forn = 2 the Gauss-Kronecker curvature ofM∞ is noth-
ing but the geodesic curvature of the boundary curve. Thus in the stationary 2-dimensional
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case we have the same behavior as in Osserman’s formula for minimal surfaces: The Gauss-
Bonnet defect equals 2π times the number of ends. Note that the total curvature is stationary
for the key example 5.11. Corollary 6.9 raises the question what we can say about compact
hypersurfaces of even-dimensional spheres with vanishing Gauss-Kronecker curvature.

7. Hypersurfaces of Sn+1 with vanishing Gauss-Kronecker curvature, and the
quantization of the total curvature. It seems that not too much is known about compact
hypersurfaces of the standard sphere with vanishing Gauss-Kronecker curvature. The case of
constant intermediate curvatureKi is treated in [66] but the case ofKn = 0 is excluded there.
In [23, Theorem 2] the following is shown: If the nullity indexν(x) of the second fundamen-
tal form at any pointx is always greater than a certain invariantνn, then the submanifold is
totally geodesic. Since in our case we assumeν(x) ≥ 1, we obtain this conclusion ifνn = 0.
For certain even values it is shown that indeed one hasνn = 0. In particular, this holds ifn is
a power of 2. However, in our case the variational problem in Section 6 is only interesting for
oddn.

In this section we examine the situation in particular forn = 3.

DEFINITION 7.1 (Tube of radiusπ/2). LetΣ : Nk → Sn+1(1), k < n, be an isometric
immersion and let⊥1 (N) be the unit normal bundle. Then thetube of radius π/2 overΣ is
defined as (the image of)

x : ⊥1 (N) → Sn+1(1) : (p, ξ) → ξ .

LEMMA 7.2. The tube of radius π/2 is an immersion if for each normal vector toN the
shape operator of Σ is nondegenerate. If the tube is an immersion, then its Gauss-Kronecker
curvature vanishes identically.

PROOF. Locally ⊥1 N is the product ofNk andSn−k(1). If p ∈ N andξ is a unit
normal toN at p, then the tangent space to⊥1 (N) at (p, ξ) can be identified withTpN ×
TξS

n−k(1). Let v ∈ TpN andX ∈ TξSn−k(1), then

x∗(v) = −Σ∗(Aξ (v))+ ∇⊥
v ξ ,

where∇⊥ is the normal connection ofΣ andAξ is the shape operator ofΣ with respect toξ ,
and

x∗(X) = X .

Thereforex is an immersion if and only if for eachξ the shape operatorAξ is nondegenerate.
It also follows that

N(p, ξ) := −Σ(p)
is a unit normal vector tox at (p, ξ), the minus sign being taken to obtain the outer normal.
LetA denote the shape operator ofx with respect toN . Then

x∗(Av) = Σ∗(v)

and
x∗(AX) = 0 .
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Therefore we conclude that detA = 0, and so every tube of radiusπ/2 has vanishing Gauss-
Kronecker curvature. �

Moreover, we have

x∗(Av) = Σ∗(v) = Σ∗(AξA−1
ξ v)

= −x∗(A−1
ξ v)+ ∇⊥

A−1
ξ v
ξ

= −x∗(A−1
ξ v)+ x∗(∇⊥

A−1
ξ v
ξ) ,

and hence

A(v) = −A−1
ξ v + ∇⊥

A−1
ξ v
ξ .

This equation implies that thek-th elementary symmetric function ofA is given by

Kk = (−1)k(detAξ)−1 .

LEMMA 7.3. The volume element dV of the tube x of radius π/2 satisfies

dV = (detAξ)dVcan

at each point (p, ξ).

PROOF. Letω be the volume element ofRn+2. Then, writingvj for vectors tangent to
N andXj for vectors tangent toSn−k(1),

(dV )(v1, . . . , vk,X1, . . . , Xn−k)
= ω(x(p),N(p, ξ), x∗v1, . . . , x∗vk, x∗X1, . . . , x∗Xn−k)
= ω(ξ,−Σ(p),−Σ∗Aξv1, . . . ,−Σ∗Aξvk,X1, . . . , Xn−k)
= ω(Σ(p),Σ∗Aξv1, . . . ,Σ∗Aξvk, ξ,X1, . . . , Xn−k)
= (detAξ)(dVcan)(v1, . . . , vk,X1, . . . , Xn−k) ,

which proves the assertion. �

Let us now study the special case of a 3-dimensional hypersurface of the 4-sphere.

THEOREM 7.4. Let M3 be a compact hypersurface of S4(1) with vanishing Gauss-
Kronecker curvature. Assume that the rank of the shape operator is constant. Then

1

8π2

∫
M

(S − 2)dV ∈ Z .

PROOF. If M3 is totally geodesic, thenS = 6, volM = 2π2 and the proof is finished.
From [22] it follows that the rank of the shape operator cannot be 1, so that we can assume that
the rank is 2. ThenM3 is a tube over an immersed surfaceN and we can apply the formulas
obtained above. The Gauss equation forM implies that the scalar curvature ofM is given by
S = 6 + 2K2, so that

(S − 2)dV = 4dV + 2K2dV = 4(1/K2)dVcan+ 2dVcan.
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Under the assumptions we know thatK2 is nowhere zero. Letε be the sign ofK2. Then
∫
M

(S − 2)dV = 4
∫

⊥1(N)

(1/K2)dVcan+ 2
∫

⊥1(N)

dVcan

= 4
∫

⊥1(N)

detAξdVcan+ 4πε volN

= 4ε
∫
N

π(K − 1)dN + 4πε volN

= 8π2εχ(N) ,

where we have used Theorem 4.4 and the ordinary Gauss-Bonnet theorem forN . �

REMARK 7.5. Under the assumptions of the theorem above the topology of the 3-
dimensional hypersurface is essentially unique: Either it is totally geodesic and thus an equa-
torial 3-sphere or it must be diffeomorphic to Cartan’s isoparametric hypersurface, according
to [37]. However, the geometry is quite flexible in this case. One can slightly perturb the
Veronese surface and then consider the tube around it of radiusπ/2.

Finally we return to the investigation of thetotal curvature of complete hypersurfaces
of Euclidean space. If we combine the previoustheorem with Corollary 3.10, we obtain the
following result.

THEOREM 7.6 (Quantization of the total curvature).LetM4 be a complete open hyper-
surface of E5 with finitely many cone-like ends and with stationary total curvature. Assume
that for each end the rank of the shape operator in the sphere “at infinity” is constant. Then
the normalized total curvature takes values in the integers:

3

4π2

∫
M

K4dV ∈ Z .

This theorem can be considered as a kind of quantization of the total curvature for hyper-
surfaces with cone-like ends, under the additional condition that the total curvature is station-
ary (or, equivalently, that the Gauss-Kronecker curvature at infinity vanishes) and a condition
on the rank of the shape operator, which we conjecture to be superfluous. This conjecture is
formulated at the end of Section 1.

We remark that the conjecture holds forn = 2. Indeed, in that case each end is a great cir-
cle, such that the length ofM∞ is a multiple of 2π . Corollary 5.7 implies that(1/2π)

∫
M
KdV

is an integer.

QUESTIONS. 1. One of the open questions is whether or not every compact hyper-
surface in the sphere with vanishing Gauss-Kronecker curvature is aπ/2-tube around some
other submanifold. If yes, then this would provide a strategy for proving the conjecture on the
quantization of the total curvature.

2. Since the Gauss-Bonnet difference term can be expressed by intrinsic curvaturesK2i

ofM∞ according to Theorem 5.4, the question arises whether this difference can be described
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purely intrinsically in the original manifoldM. For 4-dimensional complete Riemannian man-
ifolds one would have to introduce a volume and an appropriate version of a scalar curvature
of the ideal boundary “at infinity”.
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