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TORIC VARIETIES WHOSE BLOW-UP AT A POINT IS FANO
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Abstract. We classify smooth toric Fano varieties of dimensionn ≥ 3 containing a
toric divisor isomorphic to the(n− 1)-dimensional projective space. As a consequence of this
classification, we show that any smooth complete toric varietyX of dimensionn ≥ 3 with a
fixed pointx ∈ X such that the blow-upBx(X) of X at x is Fano is isomorphic either to the
n-dimensional projective space or to the blow-up of then-dimensional projective space along
an invariant linear codimension two subspace. As expected, such results are proved using toric
Mori theory due to Reid.

Introduction. Smooth blow-ups and blow-downs between toric smooth Fano varieties
have been intensively studied; see [Bat82], [Bat99], [Oda88], [WWa82] and more recently
[Sat00] or [Cas01]. In this Note, we prove the following result using toric Mori theory (see
also the uncorrect exercise V.3.7.10 mentionned in [Kol99]): As usual,T denotes the big torus
acting on a toric variety; ifY is a smooth subvariety of a smooth varietyX, BY (X) denotes
the blow-up ofX alongY and a varietyX is called Fano if and only if−KX is ample.

THEOREM 1. Let X be a smooth and complete toric variety of dimension n ≥ 3.
Suppose there exists a T -fixed point x in X such that Bx(X) is Fano. Then either X � Pn and
x can be chosen arbitrary or X � BP n−2(Pn) and x must be chosen outside the exceptional
divisor.

Let us say that whenX is a toric surface with aT -fixed pointn in X such thatBn(X) is
Fano, thenX is isomorphic toP2 blown-up atm T -fixed points withm = 0, 1, 2 or 3 or to
P1 × P1. Recall also that smooth Fano toric varieties are classified in dimension less or equal
to 4 ([Bat82], [Bat99], [Oda88], [WWa82] and [Sat00]) together with smooth blow-ups and
blow-downs between them; in particular, Theorem 1 could be proved in dimension 3 and 4
just by looking at the classification.

In fact, we will obtain Theorem 1 as a consequence of the following result (which is
inspired by a private communication of J. Wiśniewski):

THEOREM 2. Let X be a smooth toric Fano variety of dimension n ≥ 3. Then, there
exists a toric divisor D of X isomorphic to Pn−1 with OP n−1(d) as normal bundle in X if and
only if one of the following situations occurs:

(i) X � Pn, d = 1 and D is a linear codimension one subspace of X,
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(ii) X � P(OP 1 ⊕ OP 1(1)⊕n−1) � BP n−2(Pn), d = 0 and D is a fiber of the projec-
tion on P1,

(iii) there exists an integer ν satisfying 0 ≤ ν ≤ n − 1 such that X is isomorphic
to P(OPn−1 ⊕ OP n−1(ν)) and D is either the divisor P(OPn−1) (and d = ν) or the divisor
P(OP n−1(ν)) (and d = −ν),

(iv) there exists an integer ν satisfying 0 ≤ ν ≤ n − 2 such that X is isomorphic
to the blow-up of P(OP n−1 ⊕ OP n−1(ν + 1)) along a linear Pn−2 contained in the divisor
P(OP n−1) and D is either the strict transform of the divisor P(OP n−1) (and d = ν) or the
strict transform of the divisor P(OP n−1(ν + 1)) (and d = −ν − 1).

Remark that the adjunction formula implies thatd ≥ 1 − n. As an immediate conse-
quence of Theorem 2,there are exactly 2n + 1 distinct smooth toric Fano varieties of dimen-
sion n ≥ 3 containing a toric divisor isomorphic to Pn−1.

1. Notation. We briefly review notation and very basic facts of toric geometry (see
[Ful93] or [Oda88] for details).

A toric variety X is defined by a fan∆ in a latticeN (the elements ofN are the one
parameter subgroups of the big torusT ). If X is smooth, any cone of∆ is simplicial, generated
by a family of lattice vectors which is part of a basis ofN . Any such cone〈e1, . . . , er 〉 defines
a smoothT -invariant subvariety of codimensionr which is the closure of aT -orbit. Recall
that on a toric varietyX, aT -invariant Cartier divisor is ample if and only if its intersection
with any toric curve ofX is strictly positive [Oda88].

The cone of effective curves modulo numerical equivalence (usually denoted by NE(X))
of a smooth projective toric variety is polyhedral generated by theT -invariant curves ofX
[Rei83]. AT -invariant extremal curveC of X is called Mori extremal if moreover−KX ·C >

0. Finally, if C is aT -invariant extremal curve with normal bundleNC/X = ⊕n−1
i=1 OP 1(ai)

generating an extremal rayR of NE(X), let

α = card{i ∈ [1, . . . , n − 1] | ai < 0} and β = card{i ∈ [1, . . . , n − 1] | ai ≤ 0} .

Then, toric Mori theory, due to Reid [Rei83], says that the contraction ofR defines a map
ϕR : X → Y , which is birational if and only ifα 	= 0. In that case, its exceptional locusA(R)

in X is (n − α)-dimensional,B(R) = ϕR(A(R)) is (β − α)-dimensional and the restriction
of ϕR to A(R) is a flat morphism, with fibers isomorphic to weighted projective spaces. If
α = 0, ϕR : X → Y is a smoothPn−β -fibration andY is smooth and projective.

2. Fano varieties with a divisor isomorphic to a projective space. In this section,
we prove Theorem 2.

2.1. Mori contraction onX. In this subsection,X is a smooth toric Fano variety of
dimensionn ≥ 3 containing a toric divisorD isomorphic toPn−1 andND/X = OP n−1(d).
Let [lD] ∈ NE(X) be the class in NE(X) of a line lD contained inD (this class does not
depend on the choice of the line).
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PROPOSITION 1. Suppose there exists a Mori extremal curve ω transverse to D such
that [ω] ∈ NE(X) does not belong to the ray generated by [lD]. Denote by ϕ[ω] the Mori
contraction defined by ω. Then

(i) either ν := |d| satisfies 0 ≤ ν ≤ n − 1, X � P(OP n−1 ⊕ OP n−1(ν)) and ϕ[ω] :
X → Pn−1 is the natural fibration, or

(ii) there exists a smooth toric Fano variety X′ with a T -invariant smooth divisor D′
such that

(D′, ND′/X′) � (Pn−1,OP n−1(d + 1)) ,

ϕ[ω] : X → X′ is the blow-up of X′ along a toric subvariety Y � Pn−2 contained in D′ and
D is the strict transform of D′.

In Case (ii), we get a new smooth toric Fano varietyX′ containing a toric divisorD′
isomorphic toPn−1. This motivates the following definition.

DEFINITION. When the situation (ii) of Proposition 1 occurs, we say that the pair
(X,D) can be simplified.

PROOF OFPROPOSITION1. Let

Nω/X =
n−1⊕

i=1

OP 1(ai)

be the normal bundle ofω in X and as in the previous section:

α = card{i ∈ [1, . . . , n − 1] | ai < 0} and β = card{i ∈ [1, . . . , n − 1] | ai ≤ 0} .

Since[ω] ∈ NE(X) does not belong to the ray generated by[lD], eachai is less or equal to
zero. Therefore, since−KX · ω = 2 + ∑n−1

i=1 ai > 0, there are only two possibilities:
(i) everyai = 0; thereforeα = 0, β = n − 1 and the Mori contractionϕ[ω] : X → Z

is a P1-fibration onZ. SinceD � Pn−1 is a section of this fibration (by the transver-
sality assumption,D · ω = 1), we getZ � Pn−1 and, if ν := |d|, X is isomorphic to
P(OP n−1 ⊕ OP n−1(ν)) which is Fano if and only if 0≤ ν ≤ n − 1, or

(ii) there is exacly one of theai ’s equal to−1 and each other equal to 0. Therefore
α = 1, β = n − 1 andϕ[ω] : X → X′ is a smooth blow-down on a smooth codimension
two center. Denote byE ⊂ X the exceptional divisor ofϕ[ω]. SinceD · ω = 1, the center
of the blow-up is isomorphic toE ∩ D, i.e., isomorphic toPn−2. Therefore, sinceND/X =
OP n−1(d), the center of the blow-upϕ[ω] in X′ is isomorphic toPn−2 with normal bundle
OP n−2(d + 1) ⊕ OP n−2(1). ThereforeX′ is Fano by Lemma 1 below (recall thatd ≥ 1 − n).
Moreover,D′ := ϕ[ω](D) is aT -invariant smooth divisor containing the center of the blow-up
ϕ[ω] and satisfying(D′, ND′/X′) � (Pn−1,OP n−1(d + 1)). �

LEMMA 1. Let X be a smooth toric variety of dimension n. Suppose there exists a
T -invariant subvariety Y isomorphic to Pn−2 with normal bundle OP n−2(a)⊕OPn−2(b) such
that BY (X) is Fano. Then X is Fano if and only if n − 1 + a + b > 0.
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PROOF. SinceBY (X) is Fano,−KX has strictly positive intersection with any curve
not contained inY , and ifC is a line contained inY , then−KX · C = n − 1 + a + b. �

Let us end this part by the following lemma, which says that Case (ii) in Proposition 1
can not occur twice consecutively:

LEMMA 2. With the previous notation, assume that the pair (X,D) can be simplified,

and let ϕ[ω] : X → X′ be the corresponding codimension two smooth blow-down as in
Propositio 1 (ii). Then, the pair (X′, ϕ[ω](D)) can not be simplified.

PROOF. By contradiction, suppose(X′, ϕ[ω](D)) can be simplified and denote byϕ[ω′] :
X′ → X′′ the corresponding smooth codimension two blow-down. The exceptional divisor
E′ ⊂ X′ of ϕ[ω′] intersectsD′ := ϕ[ω](D) along aPn−2 which itself meets the centerZ of
ϕ[ω] (since twoPn−2 contained in aPn−1 must intersect). LetC be the fiber ofϕ[ω′] con-
taining a given point ofE′ ∩ D′ ∩ Z. Then the strict transform ofC in X is a curve with
normal bundle inX equals toO⊕n−2

P 1 ⊕ OP 1(−2), and hence with zero intersection on−KX,
a contradiction, sinceX is Fano. �

2.2. Proof of Theorem 2. As before,X is a smooth toric Fano variety of dimension
n ≥ 3 containing a toric divisorD isomorphic toPn−1 andND/X = OP n−1(d). Let [lD] ∈
NE(X) be the class in NE(X) of a line contained inD.

PROPOSITION 2. Suppose that d ≥ 0 and [lD] spans an extremal ray of NE(X). Then
(i) either d = 0 and X � P1 × Pn−1 or X � P(OP 1 ⊕ OP 1(1)⊕n−1), or
(ii) d = 1 and X � Pn.

PROOF. If lD is a line contained inD, then

NlD/X = OP 1(1)⊕n−2 ⊕ OP 1(d) .

If d = 0, then the Mori contractionϕ[lD] is a smoothPn−1-fibration onP1, thereforeX is
isomorphic toP(

⊕n
i=1 OP 1(ai)), which is Fano if and only ifX � P1 × Pn−1 or X �

P(OP 1 ⊕ OP 1(1)⊕n−1). If d > 0, the Mori contractionϕ[lD] mapsX to a point, therefore
X � Pn andd = 1. �

Now, we are ready to prove Theorem 2: LetX be a smooth toric Fano variety of dimen-
sionn ≥ 3. Suppose there exists a toric divisorD of X isomorphic toPn−1, and letOPn−1(d)

be its normal bundle inX. Let also[lD] ∈ NE(X) be the class in NE(X) of a line contained
in D.

• First case: Suppose that eitherd < 0 ord ≥ 0 and[lD] does not span an extremal ray
in NE(X). SinceD is effective, there exists a Mori extremal curveω transverse toD such that
[ω] ∈ NE(X) does not belong to the ray generated by[lD]. Therefore Proposition 1 applies:
X � P(OP n−1 ⊕ OP n−1(|d|)) (and 0< |d| ≤ n − 1) or the pair(X,D) can be simplified.

• Second case: d ≥ 0 and[lD] spans an extremal ray of NE(X). Then apply Proposi-
tion 2.

As a result, eitherX satisfies one of the conclusions (i), (ii) or (iii) of Theorem 2, or the
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pair (X,D) can be simplified. In the latter case, letϕ[ω] : X → X′ be the corresponding
codimension two smooth blow-down as in Proposition 1 (ii). Then, since the pair(X′,D′)
can not be simplified by Lemma 2, applying the same process to the Fano varietyX′ with
D′ = ϕ[ω](D) and d ′ = d + 1, X′ itself must satisfy one of the conclusions (i), (ii) or
(iii) of Theorem 2. In caseX′ is isomorphic toPn, we get thatX � P(OP 1 ⊕ OP 1(1)⊕n−1).
Moreover,X′ can not be isomorphic toP(OP 1⊕OP 1(1)⊕n−1), because assuming the contrary,
(X,D) could be simplified twice, a contradiction with Lemma 2. Finally, supposeX′ �
P(OP n−1 ⊕ OP n−1(|d + 1|)). SinceX′ is Fano, we get 0≤ |d + 1| ≤ n − 1, which together
with the inequalityd ≥ 1 − n shows thatX satisfies conclusion (iv) of Theorem 2. �

3. Proof of Theorem 1. Let X be a smooth toric complete variety of dimensionn ≥
3. Suppose in the sequel that there exists aT -fixed pointx in X such thatBx(X) is Fano (it is
well-known thatX is therefore also Fano). HenceBx(X) is a Fano variety containing a toric
divisor (the exceptional divisor of the blow-upπ : Bx(X) → X) isomorphic toPn−1 with
normal bundleOP n−1(−1). Applying Theorem 2 toBx(X) with d = −1 gives that either

• Bx(X) � P(OP n−1 ⊕ OP n−1(−1)) thereforeX � Pn, or
• Bx(X) is isomorphic to the blow-up ofP(OP n−1 ⊕ OPn−1) = P1 × Pn−1 along a

Pn−2 contained in a fiber of the projectionP1 × Pn−1 → P1. Therefore,X � P(OP 1 ⊕
OP 1(1)⊕n−1) � BP n−2(Pn) and x is outside the exceptional divisor of the blow-up
BP n−2(Pn) → Pn. �
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