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Abstract. Nevanlinna showed that for two nonconstant meromorphic functions on the
complex plane, if they have the same inverse images counting multiplicities for four distinct
values, then they coincide up to a Möbius transformation, and if they have the same inverse im-
ages for five distinct values, then they coincide. Fujimoto and Smiley extended Nevanlinna’s
uniqueness theorems to the case of meromorphic mappings of several complex variables into
the complex projective space for hyperplanes. Recently, Motivated by Ru Min and Stoll’s ac-
complishment of the second main theorem for moving targets, Li Baoqin and Shirosaki proved
some uniqueness theorems of entire functions inseveral complex variables and meromorphic
functions in one complex variable, respectively, for moving targets. Using the techniques of
value distribution theory in several complex variables, we prove some uniqueness theorems
of meromorphic mappings of several complex variables into the complex projective space for
moving targets.

1. Introduction. Using the second main theorem of value distribution theory, Nevan-
linna [9] proved the following uniqueness theorems of meromorphic functions.

THEOREM 1.A (Nevanlinna [9]). Letf andg be two nonconstant meromorphic func-
tions on the complex planeC. If there are four distinct valuesai ∈ P 1(C) (∼= C ∪ {∞}),
i = 1, . . . , 4, such thatf (z) − ai andg (z) − ai have the same zeros counting multiplicities
for eachi, thenf andg coincide up to a Möbius transformation.

THEOREM 1.B (Nevanlinna [9]). Letf andg be two nonconstant meromorphic func-
tions on the complex planeC. If there are five distinct valuesai ∈ P 1(C) (∼= C ∪ {∞}),
i = 1, . . . , 5, such thatf (z) − ai andg (z) − ai have the same zeros regardless of multiplic-
ities for eachi, thenf = g .

Since then, there have been a number of papers (e.g., Fujimoto [1, 3], Gunderson [4],
Ji [5], Li [8], Shirosaki [14] and Smiley [15]) working towards this kind of problems. In
particular, Gunderson [4] gave a clever example to explain that for two nonconstant mero-
morphic functionsf , g on the complex plane, iff (z) − ai andg (z) − ai have the same zeros
regardless of multiplicities for four distinct valuesai ∈ P 1(C), i = 1, . . . , 4, thenf need
not be a Möbius transformation ofg . This means that the assumption “counting multiplic-
ities" of Theorem 1.A cannot simply be relaxed. Using the techniques of value distribution
theory in several complex variables, Fujimoto [1, 3] and Smiley [5] gave some extensions
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of Nevanlinna’s uniqueness theorems to several complex variables and proved the following
uniqueness theorems.

THEOREM 1.C (Fujimoto [1]). Let Hi, 1 ≤ i ≤ 3N + 1, be 3N + 1 hyperplanes
in PN(C) located in general position, and letf and g be two nonconstant meromorphic
mappings ofCn into PN(C) with f (Cn) �⊂ Hi and g (Cn) �⊂ Hi such thatν(f,Hi) =
ν(g ,Hi) for 1 ≤ i ≤ 3N+1, whereν(f,Hi) andν(g ,Hi) denote the pull-back of the divisors
(Hi) onPN(C) byf andg , respectively. Then there is a projective linear transformationL

of PN(C) such thatL(f ) = g .

THEOREM 1.D (Fujimoto [3] and Smiley [15]). LetHi, 1 ≤ i ≤ 3N + 2, be3N + 2
hyperplanes inPN(C) located in general position, and letf andg be two linearly nonde-
generate meromorphic mappings ofCn into PN(C). Assume that

(i) f −1(Hi) = g −1(Hi) for 1 ≤ i ≤ 3N + 2,

(ii) dim f −1(Hi ∩ Hj) ≤ n − 2 for 1 ≤ i < j ≤ 3N + 2, and
(iii) f (z) = g (z) on

⋃3N+2
j=1 f −1(Hj).

Thenf = g .

Recently, motivated by the accomplishment of the second main theorem of value distri-
bution theory for moving targets (e.g., Ru and Stoll [11, 12] and Steinmetz [16]), Li [8] and
Shirosaki [14] proved some unicity theorems for moving targets. However, Li [8] and Shi-
rosaki [14] only studied entire functions onCn and meromorphic functions onC, respectively.
Inspired by the idea in Fujimoto [1] and Shirosaki [14], in this paper we shall give some types
of generalizations of Theorem 1.C and Theorem 1.D to the case of meromorphic mappings of
Cn into PN(C) for moving targets by establishing a weak Cartan-type second main theorem
for moving targets.

The author would like to thank Professor Ngaiming Mok for his constant help and en-
couragement.

2. Preliminaries and our results. Let F(z) be a nonzero entire function onCn. For
a ∈ Cn, setF(z) = ∑∞

m=0 Pm(z − a), where the termPm(z) is either identically zero or a
homogeneous polynomial of degreem. The numberν0

F (a) := min{m; Pm �= 0} is said to be

the zero-multiplicity ofF ata. Set|ν0
F | := {z ∈ Cn; ν0

F (z) �= 0}.
For z = (z1, . . . , zn) ∈ Cn we set‖z‖ = (|z1|2 + · · · + |zn|2)1/2. Forr > 0, define

B(r) = {z ∈ Cn; ‖z‖ < r} and S(r) = {z ∈ Cn; ‖z‖ = r} .

Let d = ∂ + ∂̄ anddc = (4π
√−1)−1(∂ − ∂̄). We write

v(z) = (ddc‖z‖2)n−1 and σ(z) = dc log‖z‖2 ∧ (ddc log‖z‖2)n−1

for z ∈ Cn − {0}.
Let f : Cn → PN(C) be a meromorphic mapping. We take holomorphic functions

f0, f1, . . . , fN on Cn such thatIf := {z ∈ Cn; f0(z) = f1(z) = · · · = fN(z) = 0} is
of dimension at mostn − 2 andf (z) = (f0(z), f1(z), . . . , fN (z)) on Cn − If in terms of
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homogeneous coordinates onPN(C). We call such a representationf = (f0, f1, . . . , fN ) a
reduced representation off . Since our notation is often independent of the choice of reduced
representations, we shall identifyf with its reduced representations in this paper. Set‖f ‖ =
(|f0|2 + · · · + |fN |2)1/2. The order function off is given by

Tf (r) =
∫

S(r)

log‖f ‖σ −
∫

S(1)

log‖f ‖σ .

A meromorphic mappinga : Cn → PN(C) is “small” with respect to the meromorphic
mappingf of Cn into PN(C) if Ta(r) = o(Tf (r)) asr → +∞. Let a = (a0, a1, . . . , aN)

be a reduced representation ofa. We define

mf,a(r) =
∫

S(r)

log
‖f ‖‖a‖
|(f, a)| σ −

∫
S(1)

log
‖f ‖‖a‖
|(f, a)| σ

and

Nf,a(r) =
∫

S(r)

log |(f, a)|σ −
∫

S(1)

log |(f, a)|σ ,

where(f, a) := ∑N
i=0 aifi . Then

Nf,a(r) =
∫ r

1

n(t)

t2n−1
dt,

where

n(t) :=




∫
|ν0

(f,a)
|∩B(t)

ν0
(f,a)(z)v (n ≥ 2) ,

∑
|z|≤t

ν0
(f,a)(z) (n = 1) .

For a postive integerM, define

N
[M]
f,a (r) =

∫ r

1

n[M](t)
t2n−1

dt ,

where

n[M](t) :=




∫
|ν0

(f,a)
|∩B(t)

min{ν0
(f,a)(z),M}v (n ≥ 2) ,

∑
|z|≤t

min{ν0
(f,a)(z),M} (n = 1) .

If F is a meromorphic function onCn anda ∈ C ∪ {∞}, then we adopt the standard notation
for mF (r, a), NF (r, a) and etc. Thus we have

Nf,a(r) = N(f,a)(r, 0)

for two meromorphic mappingsf , a of Cn into PN(C). If (f, a) �≡ 0, then the first main
theorem for moving targets in value distribution theory (see Ru and Stoll [11, 12]) states

Tf (r) + Ta(r) = mf,a(r) + Nf,a(r)

for r > 1.
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For anyq ≥ N+1, leta1, . . . , aq beq “small” meromorphic mappings ofCn intoPN(C)

with reduced representationsaj = (aj0, aj1, . . . , ajN ), j = 1, . . . , q. We say thata1, . . . ,
aq are located in general position if for any 1≤ j0 < j1 < · · · < jN ≤ q, det(ajkl) �≡ 0. Let
Mn be the field (overC) of all meromorphic functions onCn. Let R({ai}qi=1) ⊂ Mn be the
smallest subfield overC which containsC and allajk/ajl with ajl �≡ 0, where 1≤ j ≤ q

and 0≤ k, l ≤ N . DefineR̃({ai}qi=1) ⊂ Mn by the smallest subfield overC which contains
all h ∈ Mn with hk ∈ R({ai}qi=1) for some positive integerk. Then, for anyh ∈ R̃({ai}qi=1),
it is easy to checkTh(r) = O(

∑q
i=1 Tai (r)) = o(Tf (r)) asr → +∞. Furthermore we call

thatf is not linearly degenerate overR({ai}qi=1) (R̃({ai}qi=1)) if f0, f1, . . . , fN are linearly
independent overR({ai}qi=1) (R̃({ai}qi=1) respectively).

Suppose thatR(r) andS(r) are two positive functions forr > 0. “R(r) ≤ S(r)||”
(“R(r) = S(r)||”) mean thatR(r) ≤ S(r) (R(r) = S(r) respectively) for all larger outside
a set of finite Lebesgue measure. Assume thatf and{ai}qi=1, q ≥ N + 1, are meromorphic
mappings ofCn into PN(C) such that{ai}qi=1 are in general position and “small” with respect
to f . If f is not linearly degenerate overR({ai}qi=1), then the second main theorem for
moving targets in value distribution theory (see Ru and Stoll [11, 12] and Shirosaki [13]) can
be described as, for anyε > 0,

(q − N − 1 − ε)Tf (r) ≤
q∑

j=1

Nf,aj (r) + o(Tf (r))|| .

Let M be the field (overC ) of all meromorphic functions onC andf a nonconstant
meromorphic function onC. DefineΓf := {h ∈ M ; Th(r) = o(Tf (r)) (r → +∞)}.
Shirosaki [14] proved the following results.

THEOREM 2.A (Shirosaki [14]). Let f, g be two nonconstant meromorphic functions
on C such thatf (z) − ai(z) andg (z) − ai(z) have the same zeros of the same multiplicities
for four distinctai ∈ Γf ∪ {∞}, i = 1, . . . , 4. Then there existA,B,C,D ∈ Γf such that

g = Af + B

Cf + D

with AD − BC �≡ 0.

THEOREM 2.B (Shirosaki [14]). Let f, g be two nonconstant meromorphic functions
on C such thatf (z) − ai(z) andg (z) − ai(z) have the same zeros of the same multiplicities
for five distinctai ∈ Γf ∪ {∞}, i = 1, . . . , 5. Thenf = g .

REMARK. Ye [18] claimed an extension of Theorem 2.A for meromorphic mappings of
Cn into Pm(C) for moving targets. Roughly speaking, Ye [18] claimed the following result:
For any two meromorphic mappings ofCn into Pm(C) sharing 2(m+1) “small” mappings in
a certain sense, then there is a nonzero bilinear function vanishing on these two meromorphic
mappings. But there are some mistakes in Ye’s proof, e.g., the bottom line (which is a key
step in his proof) of p. 526 in Ye [18] seems incorrect (note: counting multiplicities there) for
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m > 1 and the conclusion (13) in Ye [18] is not proved in the case ofcjoj1 = 0 (note: the
assumption of Lemma 3.3 in Ye [18] is not satisfied in this case).

Using the idea in Fujimoto [1] and Shirosaki [14], we shall prove the following results.

THEOREM 2.1. Letf, g : Cn → PN(C) be two nonconstant meromorphic mappings,

and let{ai}3N+1
i=1 be“small” (with respect tof ) meromorphic mappings ofCn into PN(C) in

general position such thatf is not linearly degenerate overR({ai}3N+1
i=1 ). Assume that

(i) (f, ai) and (g , ai) have the same zeros of the same multiplicities for1 ≤ i ≤
3N + 1,

(ii) dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤
3N + 1, and

(iii) f (z) = g (z) on
⋃3N+1

j=1 {z ∈ Cn; (f (z), aj (z)) = 0}.
Then there exists an(N+1)×(N+1) matrixL with elements iñR({ai}3N+1

i=1 ) anddet(L) �≡ 0
such that

L(z)




f0(z)

f1(z)
...

fN(z)


 =




g 0(z)

g 1(z)
...

g N(z)


 ,

where(f0, f1, . . . , fN ) and(g 0, g 1, . . . , g N) are some reduced representations off andg ,

respectively.

THEOREM 2.2. Letf, g : Cn → PN(C) be two nonconstant meromorphic mappings,

and let{ai}3N+2
i=1 be“small” (with respect tof ) meromorphic mappings ofCn into PN(C) in

general position such thatf is not linearly degenerate over̃R({ai}3N+2
i=1 ). Assume that

(i) (f, ai) and (g , ai) have the same zeros of the same multiplicities for1 ≤ i ≤
3N + 2,

(ii) dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤
3N + 2, and

(iii) f (z) = g (z) on
⋃3N+2

j=1 {z ∈ Cn; (f (z), aj (z)) = 0}.
Thenf = g .

REMARK. The assumption (ii) of Theorem 2.1 and Theorem 2.2 can be replaced by
the following condition:{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} (i �= j ) are at most
(n−1)-dimensional analytic sets such that the counting functions for their(n−1)-dimensional
analytic components are “small” with respect tof . Thus Theorem 2.A and Theorem 2.B are
special cases of Theorem 2.1 and Theorem 2.2 whenn = N = 1, respectively.

Now we shall present an outline of our proof of the main results. By Cartan’s second
main theorem with truncated counting function for hyperplanes (e.g., see (6.2) in Fujimoto
[2], (3.B.40) in p. 169 of Kobayashi [6] or (5.6) of Vitter [17]), we easily obtain Theorem
1.D (e.g., see Fujimoto [3] and Smiley [15]). Since the Cartan-type second main theorem for
moving targets is not proved yet even in the case ofn = N = 1 (cf. Li [8] and Shirosaki
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[14]) and it seems impossible to dominate
∑3N+2

j=1 Nf,aj (r) by N(Tf (r) + Tg (r)) for N > 1
under the assumption of Theorem 2.2, we do not know whether Theorem 2.2 in the case of
N > 1 can be derived from the second main theorem for moving targets (see Ru and Stoll
[11, 12] and Shirosaki [13]) by Smiley’s argument in [15]. Thus in this paper we mainly
follow the technique of Fujimoto [1] and Shirosaki [14], and our idea here is heavily based
on the framework of Borel’s Lemma. We first extend the classical Borel’s lemma to the case
of moving targets. But the second main theorem for moving targets (see Ru and Stoll [11, 12]
and Shirosaki [13]) seems to be not sufficient for us to prove that our case is suitable to the
generalized Borel’s lemma. In order to overcome the difficulty, we establish a weak Cartan-
type second main theorem for moving targets which can be used to prove that our object
satisfies the assumption of the generalized Borel’s lemma. Finally, we use a combinatorial
conclusion to finish our proof.

The extension of Theorem 1.D to the case of moving targets is conjectured as follows:

CONJECTURE 2.C. Let f, g : Cn → PN(C) be two nonconstant meromorphic map-
pings, and let {ai}3N+2

i=1 be “small” (with respect tof ) meromorphic mappings ofCn into

PN(C) in general position such thatf andg are not linearly degenerate overR({ai}3N+2
i=1 ).

Assume that
(i) (f, ai) and (g , ai) have the same zeros regardless of multiplicities for1 ≤ i ≤

3N + 2,
(ii) dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤

3N + 2, and
(iii) f (z) = g (z) on

⋃3N+2
j=1 {z ∈ Cn; (f (z), aj (z)) = 0}.

Thenf = g .

REMARK. If all ai (i = 1, . . . , 3N + 2) are constants, then Conjecture 2.C is nothing
but Theorem 1.D.

3. Some lemmas. To prove our results, we need some preparations. LetG be a tor-
sion free abelian group andA = (a1, . . . , aq) a q-tuple of elementsai in G. Let q ≥ r >

s > 1. We say that theq-tupleA have the property (Pr,s) if any r elementsal(1), . . . , al(r)

in A satisfy the condition that for any giveni1, . . . , is (1 ≤ i1 < · · · < is ≤ r), there
exist j1, . . . , js (1 ≤ j1 < · · · < js ≤ r) with {i1, . . . , is} �= {j1, . . . , js} such that
al(i1) · · · al(is) = al(j1) · · · al(js).

PROPOSITION 3.1 (Fujimoto [1]). Let G be a torsion free abelian group andA =
(a1, . . . , aq) a q-tuple of elementsai in G. If A has the property(Pr,s) for somer, s with
q ≥ r > s > 1, then there existi1, . . . , iq−r+2 with 1 ≤ i1 < · · · < iq−r+2 ≤ q such that
ai1 = ai2 = · · · = aiq−r+2.

PROPOSITION 3.2 (Ye [18]). Suppose thath0, h1, . . . , hm (m ≥ 1) are nowhere van-
ishing entire functions onCn andb0, b1, . . . , bm are nonzero meromorphic functions onCn
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with
Tbk (r) = o(T (r)) + O(1)||

asr → +∞ for k = 0, 1, . . . ,m, whereT (r) := ∑m
k=0 Thk (r). Assume that

b0h0 + b1h1 + · · · + bmhm = 1 .

Thenb0h0, b1h1, . . . , bmhm are linearly dependent overC.

REMARK. The assumption in Proposition 3.2 need not imply thath0, h1, . . . , hm are
linearly dependent overC (cf. Lemma 6.1.20 in Noguchi and Ochiai [10] and Theorem 3.3
in Shirosaki [14]). For example, let(h0(z), h1(z), h2(z)) := (1, eez

, ez+ez
) and(b0(z), b1(z),

b2(z)) := (1,−ez, 1) for z ∈ C. Then the assumption in Proposition 3.2 is satisfied. But
h0, h1, h2 are not linearly dependent overC.

PROPOSITION 3.3. Suppose thath0, h1, . . . , hm (m ≥ 2) are nowhere vanishing en-
tire functions onCn andb0, b1, . . . , bm are nonzero meromorphic functions onCn with

Tbi/bj (r) = o(Thrst (r)) + O(1)|| (0 ≤ i < j ≤ m)

as r → +∞ for 0 ≤ r, s, t ≤ m with r �= s, s �= t, t �= r, wherehrst := (hr , hs, ht ) is a
holomorphic mapping ofCn into P 2(C). Assume that

b0h0 + b1h1 + · · · + bmhm = 0 .

Then there exists a decomposition of indices

{0, 1, . . . ,m} = I1 ∪ I2 ∪ · · · ∪ Il

such that
(i) everyIk contains at least two indices,
(ii) for i, j ∈ Ik, bihi/bjhj is constant,
(iii) for i ∈ Ip andj ∈ Iq (p �= q), bihi/bjhj is not constant, and
(iv) for everyIk,

∑
j∈Ik

bjhj = 0.

REMARK. Clearly, if n = 1 andbk, k = 0, 1, . . . ,m, are constants, then Proposition
3.3 is nothing but the classical Borel Lemma (cf. Theorem 1.1 in p. 186 of Lang [7] and
Corollary 6.1.25 of Noguchi and Ochiai [10]).

The proof of Proposition 3.3 is similar to that of Corollary 6.1.25 of Noguchi and Ochiai
[10]. In fact, by Proposition 3.2 we can easily get Proposition 3.3. So we omit the proof here.

The following weak Cartan-type second maintheorem for moving targets is crucial to
proving our main results in this paper.

PROPOSITION 3.4. Assume thatf and {ai}qi=1 (q ≥ N + 1) are meromorphic map-
pings ofCn into PN(C) such that{ai}qi=1 are in general position and“small” with respect to
f . If f is not linearly degenerate overR({ai}qi=1), then, for anyε > 0, there exists a positive
integerM such that

(q − N − 1 − ε)Tf (r) ≤
q∑

j=1

N
[M]
f,aj

(r) + o(Tf (r))|| .
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PROOF. Let f = (f0, f1, . . . , fN) andai = (ai0, ai1, . . . , aiN ) be reduced represen-
tations off andai , respectively. Letp be a positive integer. LetL (p) be the vector space
generated overC by{ ∏

1≤i≤q,0≤j,k≤N

(
aij

aik

)pijk

; aik �≡ 0 andpijk non-negative integers with

∑
1≤i≤q,0≤j,k≤N

pijk = p

}
.

ThenL (p) ⊂ L (p + 1). Thus we can take a basis{b1, b2, . . . , bt } of L (p + 1) such that
{b1, b2, . . . , bs} is a basis ofL (p), wheres = dimL (p) andt = dimL (p + 1).

(i) if n = 1, then we have (see (12) in Shirosaki [13])

s(q − N − 1)Tf (r) ≤ s

q∑
j=1

Nf,aj (r) − NW (r, 0) + (N + 1)(t − s)Tf (r) + o(Tf (r))|| ,

whereW := Wronski(b1f0, . . . , b1fN, b2f0, . . . , b2fN , . . . , btf0, . . . , btfN). By (4) in
Shirosaki [13] we have

s

q∑
j=1

Nf,aj (r) − NW (r, 0) ≤ s

q∑
j=1

N
[(N+1)t ]
f,aj

(r) + o(Tf (r)) .

Therefore

(q − N − 1)Tf (r) ≤
q∑

j=1

N
[(N+1)t ]
f,aj

(r) + (N + 1)

(
t

s
− 1

)
Tf (r) + o(Tf (r))|| .

Since lim infp→∞ t/s = 1, we have Proposition 3.4 in the case ofn = 1.
(ii) if n > 1, we only need a little modification inW , and the proof of (i) can be carried

over to the case ofn > 1 (see Proposition 4.3 and Proposition 4.10 in Fujimoto [2] or Lemma
3.2 in Ye [18] for references). So we omit the proof here. The proof of Proposition 3.4 is
finished.

4. Proof of main results. Letf, g : Cn → PN(C) be two nonconstant meromorphic
mappings with reduced representationsf = (f0, f1, . . . , fN ) andg = (g 0, g 1, . . . , g N),
respectively. Let{aj }2N+2

j=1 be 2N + 2 “small” (with respect tof ) meromorphic mappings of

Cn into PN(C) in general position with reduced representationsaj = (aj0, aj1, . . . , ajN ),
j = 1, . . . , 2N + 2, such thatf is not linearly degenerate overR({ai}2N+2

i=1 ). Assume that
(i) (f, ai) and (g , ai) have the same zeros of the same multiplicities for 1≤ i ≤

2N + 2,
(ii) dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤

2N + 2, and
(iii) f (z) = g (z) on

⋃2N+2
j=1 {z ∈ Cn; (f (z), aj (z)) = 0}.
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Definehi := (f, ai)/(g , ai), i = 1, . . . , 2N + 2. Then eachhi is a nowhere vanishing
entire function onCn. Although eachhi is dependent on the choice of reduced representions
of f andg , the ratiohp/hq = (f, ap)/(g , ap) · (g , aq)/(f, aq) is uniquely determined in-
dependent of any choice of reduced representions off , g , ap andaq . By the definition we
have

N∑
k=0

aikfk − hi

N∑
k=0

aikg k = 0 (i = 1, . . . , 2N + 2) .

Therefore

det(ai0, . . . , aiN , ai0hi, . . . , aiNhi; 1 ≤ i ≤ 2N + 2) = 0 .

Let I be the set of all combinationsI = (i1, . . . , iN+1) with 1 ≤ i1 < · · · < iN+1 ≤
2N + 2 of indices 1, 2, . . . , 2N + 2. For anyI = (i1, . . . , iN+1) ∈ I , define

{I } := {i1, . . . , iN+1} , hI := hi1 · · ·hiN+1

and

AI := (−1)(N+1)(N+2)/2+i1+···+iN+1 det(air l; 1 ≤ r ≤ N + 1, 0 ≤ l ≤ N)

× det(ajs l; 1 ≤ s ≤ N + 1, 0 ≤ l ≤ N) ,

whereJ = (j1, . . . , jN+1) ∈ I such that{I } ∪ {J } = {1, 2, . . . , 2N + 2}. Then we have

∑
I∈I

AIhI = 0 ,

whereAI �≡ 0 by {ai} being in general position andAI/AJ ∈ R({ai}2N+2
i=1 ) by the definition

of R({ai}) for anyI, J ∈ I .
Sincef (z) = g (z) on

⋃2N+2
j=1 {z ∈ Cn; (f (z), aj (z)) = 0} and

dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2

for 1 ≤ i < j ≤ 2N + 2, we have

hp(z)/hq(z) = 1

for z ∈ ⋃2N+2
j �=p,q;j=1{z ∈ Cn; (f (z), aj (z)) = 0} outside an analytic set of dimension≤ n−2

and then, for distinctI, J ∈ I , we have

NhI /hJ (r, 1) ≥
∑

k �∈{I }∪{J }−{I }∩{J }
N

[1]
f,ak

(r) .
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For distinctI, J,K ∈ I , sethIJK := (hI , hJ , hK) a holomorphic mapping ofCn into
P 2(C). Then, by Theorem (5.2.29) in Noguchi and Ochiai [10], we have

3ThIJK (r) ≥ ThI /hJ (r) + ThJ /hK (r) + ThK/hI (r) + O(1)

≥ NhI /hJ (r, 1) + NhJ /hK (r, 1) + NhK/hI (r, 1) + O(1)

≥
∑

k �∈{I }∪{J }−{I }∩{J }
N

[1]
f,ak

(r) +
∑

k �∈{J }∪{K}−{J }∩{K}
N

[1]
f,ak

(r)

+
∑

k �∈{K}∪{I }−{K}∩{I }
N

[1]
f,ak

(r) + O(1)

≥
2N+2∑
k=1

N
[1]
f,ak

(r) + O(1)

≥ 1

M

2N+2∑
k=1

N
[M]
f,ak

(r) + O(1)

≥ 1

M
(N + 1 − ε)Tf (r) − o(Tf (r))||

≥ N

M
Tf (r)|| ,

whereε (0 < ε < 1/2) and M are given by Proposition 3.4 (note: it is easy to check
({I }∪{J }−{I }∩{J })c∪({J }∪{K}−{J }∩{K})c∪({K}∪{I }−{K}∩{I })c = {1, . . . , 2N+2}
here). Thus

TAP /AQ(r) = o(ThIJK (r))|| (r → +∞)

for anyP,Q, I, J,K ∈ I with P �= Q, I �= J , J �= K andK �= I . Therefore, for any
I ∈ I , by Proposition 3.3 there existsJ ∈ I with I �= J such thatAIhI = cAJ hJ for a
nonzero constantc. SohI /hJ = cAJ /AI ∈ R({ai}2N+2

i=1 ).
Let H ∗ be the abelian multiplication group of all nowhere vanishing entire functions

on Cn. DefineT ⊂ H ∗ by the smallest subgroup which contains allf ∈ H ∗ with f k ∈
R({ai}qi=1) for some positive integerk. So we haveH ∗ ∩ R({ai}qi=1) ⊂ T ⊂ R̃({ai}qi=1).
Then the multiplication groupG := H ∗/T is a torsion free abelian group, and theq-tuple
of elements inG represented by(h1, . . . , hq) has the property(P2N+2,N+1) by the above
argument. Definefi ∼ fj if fi/fj ∈ R̃({ai}qi=1) for fi, fj ∈ H ∗. Then by Proposition 3.1
we have proved the following proposition.

PROPOSITION 4.1. Let f, g : Cn → PN(C) be two nonconstant meromorphic map-
pings, and let{ai}qi=1 (q ≥ 2N + 2) beq “small” (with respect tof ) meromorphic mappings
of Cn into PN(C) in general position such thatf is not linearly degenerate overR({ai}qi=1).
Assume that

(i) (f, ai) and(g , ai) have the same zeros of the same multiplicities for1 ≤ i ≤ q,

(ii) dim{z ∈ Cn; (f (z), ai(z)) = (f (z), aj (z)) = 0} ≤ n − 2 for 1 ≤ i < j ≤ q,

and
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(iii) f (z) = g (z) on
⋃q

j=1{z ∈ Cn; (f (z), aj (z)) = 0}.
Given the reduced representations off, g , ai, definehi(z) := (f, ai)/(g , ai) for 1 ≤ i ≤ q.
Then there existik, 1 ≤ k ≤ q − 2N, with 1 ≤ i1 < · · · < iq−2N ≤ q such thathi1 ∼ hi2 ∼
· · · ∼ hiq−2N

.

In order to prove Theorems 2.1 and 2.2, we define

A :=




a10 a11 · · · a1N

a20 a21 · · · a2N

...
...

. . .
...

a(N+1)0 a(N+1)1 · · · a(N+1)N




and

H :=




h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...

0 0 · · · hN+1


 .

PROOF OFTHEOREM 2.1. Sinceq = 3N+1, by Proposition 4.1 and a suitable change
of the reduced representations, without loss of generality, we may assumeh1, h2, . . . , hN+1 ∈
R̃({ai}3N+1

i=1 ). Then

A




f0
f1
...

fN


 = HA




g 0
g 1
...

g N


 .

This immediately implies Theorem 2.1.

PROOF OFTHEOREM 2.2. Sinceq = 3N+2, by Proposition 4.1 and a suitable change
of the reduced representations, without loss of generality, we may assumeh1, h2, . . . , hN+2 ∈
R̃({ai}3N+2

i=1 ). Then

A




f0
f1
...

fN


 = HA




g 0
g 1
...

g N




and

(a(N+2)0, . . . , a(N+2)N)




f0
f1
...

fN


 = hN+2(a(N+2)0, . . . , a(N+2)N)




g 0
g 1
...

g N


 .
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Therefore

(a(N+2)0, . . . , a(N+2)N)




f0
f1
...

fN


 = hN+2(a(N+2)0, . . . , a(N+2)N )A−1H−1A




f0
f1
...

fN


 .

Sincef is not linearly degenerate over̃R({ai}3N+2
i=1 ), we have

(a(N+2)0, . . . , a(N+2)N) = hN+2(a(N+2)0, . . . , a(N+2)N )A−1H−1A .

Thus

(a(N+2)0, . . . , a(N+2)N)A−1




h1 − hN+2 0 · · · 0
0 h2 − hN+2 · · · 0
...

...
. . .

...

0 0 · · · hN+1 − hN+2


 = 0 .

Let

(a(N+2)0, . . . , a(N+2)N) = (b0, . . . , bN)




a10 a11 · · · a1N

a20 a21 · · · a2N

...
...

. . .
...

a(N+1)0 a(N+1)1 · · · a(N+1)N


 .

Since{ai}N+2
i=1 is in general position, we havebi �≡ 0 (i = 0, . . . , N). These mean that

hi = hN+2, i = 1, . . . , N + 1. Sof = g . The proof of Theorem 2.2 is finished.
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