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Abstract. Nevanlinna showed that for two nonconstant meromorphic functions on the
complex plane, if they have the same inverse images counting multiplicities for four distinct
values, then they coincide up to a Mébius transformation, and if they have the same inverse im-
ages for five distinct values, then they coincide. Fujimoto and Smiley extended Nevanlinna’s
uniqueness theorems to the case of meromorphic mappings of several complex variables into
the complex projective space for hyperplanes. Recently, Motivated by Ru Min and Stoll’s ac-
complishment of the second main theorem for moving targets, Li Baogin and Shirosaki proved
some uniqueness theorems of entire functiorseweral complex variables and meromorphic
functions in one complex variable, respectively, for moving targets. Using the technigues of
value distribution theory in several compleariables, we prove some uniqueness theorems
of meromorphic mappings of several complex variables into the complex projective space for
moving targets.

1. Introduction. Using the second maintheorem of value distribution theory, Nevan-
linna [9] proved the following unigueness theorems of meromorphic functions.

THEOREM 1.A (Nevanlinna [9]). Let f andg be two nonconstant meromorphic func-
tions on the complex plan@. If there are four distinct values; € P1(C) (= CU {o0}),
i =1,...,4, suchthatf(z) — a; and g (z) — a; have the same zeros counting multiplicities
for eachi, then f andg coincide up to a Mdbius transformation.

THEOREM 1.B (Nevanlinna [9]). Let f andg be two nonconstant meromorphic func-
tions on the complex plan@. If there are five distinct values; € P1(C) (= CU {o0}),
i=1,...,5, suchthatf(z) — a; andg(z) — a; have the same zeros regardless of multiplic-
ities for eachi, thenf = g¢.

Since then, there have been a number of papers (e.g., Fujimoto [1, 3], Gunderson [4],
Ji [5], Li [8], Shirosaki [14] and Smiley [15]) working towards this kind of problems. In
particular, Gunderson [4] gave a clever example to explain that for two nonconstant mero-
morphic functionsf, g on the complex plane, if (z) — a; andg (z) — a; have the same zeros
regardless of multiplicities for four distinct values € P1(C),i = 1,...,4, thenf need
not be a Mobius transformation gf. This means that the assumption “counting multiplic-
ities" of Theorem 1.A cannot simply be relaxed. Using the techniques of value distribution
theory in several complex variables, Fujimoto [1, 3] and Smiley [5] gave some extensions
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of Nevanlinna’s unigueness theorems to salveomplex variables and proved the following
unigueness theorems.

THEOREM 1.C (Fujimoto [1]). LetH;, 1 < i < 3N + 1, be3N + 1 hyperplanes
in PV(C) located in general positianand let f and g be two nonconstant meromorphic
mappings ofC" into PV (C) with f(C") ¢ H; and ¢(C") ¢ H; such thatv(f, H;) =
v(g, H;)forl <i < 3N+1, wherev(f, H;) andv(g, H;) denote the pull-back of the divisors
(H;) on PV (C) by f and g, respectively. Then there is a projective linear transformation
of PN(C) such thatL(f) = ¢.

THEOREM 1.D (Fujimoto [3] and Smiley [15]). LetH;, 1 <i <3N + 2, be3N +2
hyperplanes inP" (C) located in general positianand let f and ¢ be two linearly nonde-
generate meromorphic mappings 6f* into PV (C). Assume that

() f'H) =g M(H) forl<i <3N +2,
(i) dimf~Y(H;NHj)<n—-2forl<i<j<3N+2 and
(i) f() =g onUNS? f~1(H)).
Thenf = g.

Recently, motivated by the accomplishmentlod second main theorem of value distri-
bution theory for moving targets (e.g., Ru and Stoll [11, 12] and Steinmetz [16]), Li[8] and
Shirosaki [14] proved some unicity theorems for moving targets. However, Li [8] and Shi-
rosaki [14] only studied entire functions @ and meromorphic functions db\ respectively.
Inspired by the idea in Fujimoto [1] and Shirosaki [14], in this paper we shall give some types
of generalizations of Theorem 1.C and Theorem 1.D to the case of meromorphic mappings of
C" into PV (C) for moving targets by establishing a weak Cartan-type second main theorem
for moving targets.

The author would like to thank Professor Ngaiming Mok for his constant help and en-
couragement.

2. Preliminariesand our results. Let F(z) be a nonzero entire function @1'. For
a € C", setF(z) = Y oo Pu(z — a), where the ternP, (z) is either identically zero or a
homogeneous polynomial of degree The numbemg(a) = min{m; P,, # 0} is said to be
the zero-multiplicity ofF ata. Set|v®| := {z € C"; v(z) # O}

Forz = (z1,...,2x) € C" we setl|z|| = (|za]? + - - - + |z4|D Y2 Forr > 0, define

B(r)=1{zeC"; |zl <r} and S(r)={zeC" |zl =r}.
Letd = 3 4+ 8 andd® = (47r+/—1)~1(3 — ). We write
v(z) = (dd°|z|®" and o (z) = d°logliz||* A (dd®log||z[?)"~*

forz € C* —{0}.
Let f : C" — PN(C) be a meromorphic mapping. We take holomorphic functions

fo, fi, ..., fy onC" such thatly := {z € C"; fo(z) = fi(z) = --- = fn(z) =0} is
of dimension at most — 2 and f (z) = (fo(2), f1(2),..., fn(2) onC" — I in terms of
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homogeneous coordinates 8 (C). We call such a representatign= (fo, f1, ..., fv) @
reduced representation ¢f Since our notation is often independent of the choice of reduced
representations, we shall identifywith its reduced representations in this paper. S8t =
(Ifol2+ -+ + | fn 122, The order function of is given by

T¢(r) =/ log || fllo —/ log |l fllo .
S(r) S

A meromorphic mapping : C" — PY(C) is “small” with respect to the meromorphic
mappingf of C" into PV (C) if T,(r) = o(Tf(r)) asr — +oo. Leta = (ag, a1, ... ,an)
be a reduced representationaofWe define

1 1llal / 1l
= — [
msalr) /sm VG’ Ssw ST a
Njalr) = f log|(f, a)lo — / log|(f. a)lo .
S(r) S(D)

where(f, a) :== YN ;a; fi. Then

" n@)
Ny.a(r) 2/1 t2nfldt’

and

where
0
v @DQv (n=>2),
./|u?fa)m3(t) (o)
n(t) == ' o
Z e n=1).
lz|<t

For a postive integed, define

r ,[M]
n'™i(t)
N.%] (r) = /; ——dt,

t2n71
where
/ min(u%, @), Mlv (n>2).
[M] v INB®) -
n'(@) = 0
Z min{ve; o (2), M} n=1).
lz]<t

If Fisa meromorphic function 08" anda € C U {oo}, then we adopt the standard notation
formp(r,a), Nr(r,a) and etc. Thus we have

Nya(r) = Nga)(r, 0)

for two meromorphic mappingg, a of C" into PN (C). If (f,a) # 0, then the first main
theorem for moving targets in value distribution theory (see Ru and Stoll [11, 12]) states

Tr(r)+T,(r) =mypa(r) + Npa(r)
forr > 1.
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Foranyg > N+1, letay, ..., a, beq “small” meromorphic mappings @&”" into PV (C)
with reduced representations = (a0, a1,...,a;8), j = 1,...,q. We say thaty, ...,
aq are located in general position if forany<l jo < j1 < --- < jy < ¢, defa;;) # 0. Let
My, be the field (oveC) of all meromorphic functions og”. Let%({ai}?zl) C M, be the
smallest subfield ove€ which containsC and alla i /a;; with a;; # 0, where 1< j < ¢
and 0< k,l < N. Define@({ai}?zl) C ., by the smallest subfield ov€& which contains
all h € ., with h* € %({a;}1_,) for some positive integetr. Then, for anys € @({ai}?zl),
it is easy to checll, (r) = O(}.]_; T,;(r)) = o(T¢(r)) asr — +oo. Furthermore we call
that f is not linearly degenerate ovéf({a;}7_,) (ﬁi({ai}?:l)) if fo, f1, ..., fy are linearly
independent ove? ({a;}7_,) (@({ai}f:l) respectively).

Suppose thaR(r) and S(r) are two positive functions for > 0. “R(r) < S@)||”
(“R(r) = S()|") mean thatrR(r) < S(r) (R(r) = S(r) respectively) for all large outside
a set of finite Lebesgue measure. Assume fhand{a;}}_;, ¢ = N + 1, are meromorphic
mappings ofC" into PV (C) such tha{a; }l‘.f’:1 are in general position and “small” with respect
to f. If f is not linearly degenerate ovéf({a,»};’:l), then the second main theorem for
moving targets in value distribution theory (see Ru and Stoll [11, 12] and Shirosaki [13]) can

be described as, for any> 0,

q
(@—N=1=&Tp(r) <Y Npa;(r) +o(Tr ().
Jj=1
Let .# be the field (ovelC) of all meromorphic functions o€ and f a nonconstant
meromorphic function oi€. Definel'y := {h € A; Tp(r) = o(T¢(r)) (r — +00)}.
Shirosaki [14] proved the following results.

THEOREM 2.A (Shirosaki [14]). Let f, g be two nonconstant meromorphic functions
on C such thatf (z) — a;(z) and g (z) — a;(z) have the same zeros of the same multiplicities
for four distincta; € I'y U {oco}, i = 1,...,4. Thenthere exisA, B, C, D € I'y such that

_Af+B
Cf+D

9

with AD — BC # 0.

THEOREM 2.B (Shirosaki [14]). Let f, g be two nonconstant meromorphic functions
on C such thatf (z) — a;(z) and g (z) — a;(z) have the same zeros of the same multiplicities
for five distincty; € I'y U{oo}, i =1,...,5. Thenf = g.

REMARK. Ye[18]claimed an extension of Theorem 2.A for meromorphic mappings of
C" into P™(C) for moving targets. Roughly speaking, Ye [18] claimed the following result:
For any two meromorphic mappings@f into P (C) sharing 2m + 1) “small” mappings in
a certain sense, then there is a nonzero bilinear function vanishing on these two meromorphic
mappings. But there are some mistakes in Ye's proof, e.g., the bottom line (which is a key
step in his proof) of p. 526 in Ye [18] seems incorrect (note: counting multiplicities there) for
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m > 1 and the conclusion (13) in Ye [18] is not proved in the case;gf = 0 (note: the
assumption of Lemma 3.3 in Ye [18] is not satisfied in this case).

Using the idea in Fujimoto [1] and Shirosaki [14], we shall prove the following results.

THEOREM 2.1. Letf, g : C* — P"(C) be two nonconstant meromorphic mappings
and Iet{ai}?i’fl be“small’ (with respect tof) meromorphic mappings &" into PV (C) in
general position such that is not linearly degenerate OV@?({ai}?]:Vfl). Assume that

() (f,a;) and (g, a;) have the same zeros of the same multiplicitieslfox i <
3N +1,

(i) dim{z € C"; (f(2),ai(2) = (f(2).aj(z)) =0} <n—-2forl<i < j <
3N +1, and

(i) f@)=g@onUNHzeC (f(2).a;()) =0}

Then there exists aiV +1) x (N +1) matrix L with elements inZ ({a;}>" ;') anddet(L) # 0
such that

Jo(@) 90(2)
f1(2) g1()
L(z) : = : )
In(@) gn(@)
where(fo, f1,..., fn) and(gg, g1, ... , g ) are some reduced representationsfodind g,

respectively.

THEOREM 2.2. Letf, g : C* — PY(C) be two nonconstant meromorphic mappings
and Iet{ai}?i’fz be“small’ (with respect tof) meromorphic mappings @” into PV (C) in
general position such that is not linearly degenerate ové?({a,»}?]:"fz). Assume that

() (f,a;) and (g, a;) have the same zeros of the same multiplicitiesifox i <
3N + 2,

(i) dim{z € C"; (f(2),ai(2) = (f(2).aj(z)) =0} <n—-2forl<i < j <
3N + 2, and

(i) () =g onlU*z e C" (f(2),a;(z) =0}

Thenf = g.

REMARK. The assumption (ii) of Theorem 2.1 and Theorem 2.2 can be replaced by
the following condition:{z € C"; (f(2),ai(2)) = (f(2),a;(z)) = 0} (i # j) are at most
(n—1)-dimensional analytic sets such that the counting functions for theif)-dimensional
analytic components are “small” with respectfio Thus Theorem 2.A and Theorem 2.B are
special cases of Theorem 2.1 and Theorem 2.2 whenV = 1, respectively.

Now we shall present an outline of our proof of the main results. By Cartan’s second
main theorem with truncated counting function for hyperplanes (e.g., see (6.2) in Fujimoto
[2], (3.B.40) in p. 169 of Kobayashi [6] or (5.6) of Vitter [17]), we easily obtain Theorem
1.D (e.g., see Fujimoto [3] and Smiley [15]). Since the Cartan-type second main theorem for
moving targets is not proved yet even in the case e N = 1 (cf. Li [8] and Shirosaki
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[14]) and it seems impossible to domin jﬁfz Nya; (1) by N(T¢(r) + Ty(r)) for N > 1

under the assumption of Theorem 2.2, we do not know whether Theorem 2.2 in the case of
N > 1 can be derived from the second main theorem for moving targets (see Ru and Stoll
[11, 12] and Shirosaki [13]) by Smiley’s argument in [15]. Thus in this paper we mainly
follow the technique of Fujimoto [1] and Shirosaki [14], and our idea here is heavily based
on the framework of Borel's Lemma. We first extend the classical Borel’'s lemma to the case
of moving targets. But the second main theorem for moving targets (see Ru and Stoll [11, 12]
and Shirosaki [13]) seems to be not sufficient for us to prove that our case is suitable to the
generalized Borel's lemma. In order to ovem® the difficulty, we establish a weak Cartan-
type second main theorem for moving targets which can be used to prove that our object
satisfies the assumption of the generalized Borel's lemma. Finally, we use a combinatorial
conclusion to finish our proof.

The extension of Theorem 1.D to the case @iving targets is conjectured as follows:

CONJECTURE 2.C. Letf, g : C" — PN(C) be two nonconstant meromorphic map-
pings and let {ai}?i"fz be “small’ (with respect tof) meromorphic mappings &” into
PN (C) in general position such thaf and g are not linearly degenerate ov@({ai}?’:"fz).
Assume that

() (f,a;) and (g, a;) have the same zeros regardless of multiplicities¥ox i <
3N + 2,

(i) dim{z € C"; (f(2),ai(@) = (f(@),aj(x) =0 <n-2forl <i < j<
3N +2,and

(i) f@)=g@onUNHzeC" (f(2).a;()) =0}

Thenf = g.

REMARK. Ifalla; ( =1,...,3N + 2) are constants, then Conjecture 2.C is nothing
but Theorem 1.D.

3. Somelemmas. To prove our results, we need some preparations.GLbe a tor-
sion free abelian group amdl = (ay, ... , a4) ag-tuple of elements; in G. Letg > r >
s > 1. We say that thg-tuple A have the propertyK; ;) if any r elementsyyy, . .. , ai
in A satisfy the condition that for any given, ... ,i; (1 < i1 < --- < iy < r), there
exist ji,...,js 1 < j1 < -+ < js < r)with {i1,...,is} # {j1,...,Js} such that
Ai(iy) * - AlGis) = Qjy) "~ U s)-

PrRoPOSITION 3.1 (Fujimoto [1]). Let G be a torsion free abelian group and =

(a1, ... ,aq) ag-tuple of elements; in G. If A has the property P, ) for somer, s with
g > r >s > 1 thenthere existy, ..., iz—r42Withl <i; < --- < iy_r42 < ¢ such that
iy = Aip =+ = Qig_, -

PrROPOSITION 3.2 (Ye [18]). Suppose thédig, A1, ... , h, (m > 1) are nowhere van-

ishing entire functions o&" andby, b1, ... , b, are nonzero meromorphic functions &4
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with
Tp (r) = o(T(r)) + O(1)||
asr > +oofork =0,1,...,m, whereT (r) :== Y }'_o Tj, (r). Assume that
boho + bih1 + -+ + byhy, = 1.
Thenboho, b1h1, ... , byh,, are linearly dependent oves.
REMARK. The assumption in Proposition 3.2 need not imply that:q, ... , h, are

linearly dependent ovet (cf. Lemma 6.1.20 in Noguchi and Ochiai [10] and Theorem 3.3
in Shirosaki [14]). For example, l€to(z), h1(z2), h2(z)) == (1, ¢, 1€ and(bo(z), b1(z),
b2(2)) := (1, —e%, 1) for z € C. Then the assumption in Proposition 3.2 is satisfied. But
ho, h1, hp are not linearly dependent over

PROPOSITION 3.3. Suppose thakg, h1, ... , h, (m > 2) are nowhere vanishing en-
tire functions orC” andbo, b1, ... , by, are nonzero meromorphic functions 64 with

Toi b (r) = o(Th,,, (r)) + O] O=i<j=m)

asr — +oofor0 <r,s,t <mwithr # s,5 # t,t # r, whereh,s; := (hy, hg, hy) is a
holomorphic mapping o into P2(C). Assume that

boho + bih1 + -+ - + byhy = 0.
Then there exists a decomposition of indices
{0,1,... m}=LUDbLU.--U

such that

(i) everyl; contains at least two indices

(ity fori,j e I, bih;/bjh; is constant

(i) foriel,andj e I, (p #q), b;hi/bjh; is not constantand

(iv) foreveryly, Y ;c; bjhj =0.

REMARK. Clearly, ifn = 1 andby, k = 0,1, ..., m, are constants, then Proposition
3.3 is nothing but the classical Borel Lemma (cf. Theorem 1.1 in p. 186 of Lang [7] and
Corollary 6.1.25 of Noguchi and Ochiai [10]).

The proof of Proposition 3.3 is similar to that of Corollary 6.1.25 of Noguchi and Ochiai
[10]. In fact, by Proposition 3.2 we can easily get Proposition 3.3. So we omit the proof here.
The following weak Cartan-type second malireorem for moving targets is crucial to

proving our main results in this paper.

ProrPoOsSITION 3.4. Assume thay and{ai}?zl (g = N + 1) are meromorphic map-
pings ofC" into PV (C) such that{a,»};’:l are in general position antismall” with respect to
f. If fisnotlinearly degenerate ov@({ai}?zl), then for anye > 0, there exists a positive
integerM such that

q
(@ =N—=1=aTs(r) < Y NP () + 0TIl
j=1
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PrROOE Letf = (fo, f1,..., fn) @anda; = (aj0, a1, . . . , a;y) be reduced represen-
tations of f anda;, respectively. Lep be a positive integer. Le¥ (p) be the vector space
generated ovet by

Pijk
aji . . .
{ ]_[ <i) . aix # 0 andp;j; non-negative integers with
k<N

1<i<q,0<j k=< dik
Z Pijk = P} :
1<i<q,0<jk<N
ThenZ(p) C Z(p + 1). Thus we can take a badis, bo, ... , b} of Z(p + 1) such that
{b1, b2, ..., bs}is abasis ofZ(p), wheres = dim_Z(p) andr = dim Z(p + 1).

(i) if n =1, then we have (see (12) in Shirosaki [13])

q
s(q—N—=DTs(@r) <s ZNf,aj(r) = Nw (@ 0) + (N +L0(t —)Tr(r) +o(Trr)Il,
j=1
whereW := Wronskib1 fo, ... ,b1fn,b2f0, ... . bafN,... ,bifo,... b fn). By (4) in
Shirosaki [13] we have

a q
$ Y Npa () = Nw(0) < 5 3 NEa 0 + 0T ().
j:l j=l

Therefore

q
t
(g —N—=DTp() = 3 NG + (v + 1)(; - 1) Ty (r) + o(Ty ().
j=1
Since liminf,_.» t/s = 1, we have Proposition 3.4 in the case:of 1.

(i) if n > 1, we only need a little modification iW, and the proof of (i) can be carried
over to the case of > 1 (see Proposition 4.3 and Proposition 4.10 in Fujimoto [2] or Lemma
3.2 in Ye [18] for references). So we omit the proof here. The proof of Proposition 3.4 is
finished.

4. Proof of mainresults. Let f, g : C" — PY(C) be two nonconstant meromorphic

mappings with reduced representatiohs= (fo, f1,..., fv) andg = (90, 91--- > 9N)>
respectively. Le(aj}fi’fz be 2V + 2 “small” (with respect tof') meromorphic mappings of
C" into PV (C) in general position with reduced representatiops= (ajo, a1, - .. ,a;n),

j=1,...,2N + 2, such thatf is not linearly degenerate ovﬁ({ai}fﬁ’fz). Assume that

() (f,a;) and(g, a;) have the same zeros of the same multiplicities fox i <
2N + 2,
(i) dim{z € C"; (f(2),ai(2)) = (f(2),aj(z)) =0 <n—-2forl<i <<
2N + 2, and
(i) f2)=g@onl*HzeC" (f(2),aj(z) =0}
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Defineh; := (f,a;)/(g,a;),i =1,...,2N + 2. Then eaclk; is a nowhere vanishing
entire function orC”. Although eachh; is dependent on the choice of reduced representions
of f andg, the ratioh,/hy, = (f,ap)/(g,ap) - (g,aq)/(f, aq) is uniquely determined in-
dependent of any choice of reduced representions, af, a, anda,. By the definition we
have

N N

D ainfi—hi Y aigy=0 (=1....2N+2).

k=0 k=0
Therefore

det(ao, ... ,ain, aioh;, ... ,aiyhi; 1<i<2N+2)=0.
Let .# be the set of all combinations= (i1, ... ,iyt1) With1l <i; < -+ <iyy1 <
2N + 2 ofindices 12,... ,2N + 2. Foranyl = (i1, ... ,iy+1) € 7, define
(I} :={ix, ... ,i~n+1}, hpi=hip---hiy,

and

A= (_1)(N+l)(N+2)/2+i1+...+iN+1 de(ai,l; l1<r<N+1,0<[<N)
x detaj;; 1<s <N+10<I<N),

whereJ = (j1,..., jn+1) € Z suchtha{/} U {J} ={1,2,...,2N + 2}. Then we have
> Ah; =0,
le s
whereA; # 0 by {g;} being in general position andl; /A € %({ai}fﬁ’fz) by the definition
of Z({a;}) foranyl, J € 7.
Sincef(z) = g(z) on U?Zfz{z eC"; (f(@),aj(z)) =0}and

dim{z € C"; (f(2),ai(2)) = (f(2),a(z2)) =0} <n—2
forl<i < j<2N +2,we have
hp(2)/he(2) =1

forz e U?Z;Zq;j:l{z € C"; (f(2),aj(z)) = 0} outside an analytic set of dimensien: —2

and then, for distinct, J € .#, we have

Nig/ny (r. 1) = Yo N .
kU ={1IN{J}
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For distinct/, J, K € .7, seth;jx := (hy, hy, hg) a holomorphic mapping o€” into
P2(C). Then, by Theorem (5.2.29) in Noguchi and Ochiai [10], we have

3T,k 0 = Tnyyny ) + Thyyig @) + Thgyn, (1) + O (D)
> Npyny D)+ Niyjng D) + Ny, r, D) + O (D)
> D N+ Y N o)

k(1YL )—(1)N(J) k(YUK ) —{(JIN(K)
+ > N}i{k ")+ 0@Q)
k(K YOI —(K)N{T)
2N+2
YN+ o
k=1
1 2N+2
- > NMey + o
k=1

v

v

v

%(N +1—e)T¢(r) —o(Tf(r)l|

v

Nl
Nrol.
M

wheree (0 < ¢ < 1/2) and M are given by Proposition 3.4 (note: it is easy to check
(U —A{NN{I D VATUK = {JIN{KD UKV —{KIN{I)° ={1,... ,2N+2}
here). Thus

TAP/AQ(r) IO(T}”!K(}’))” (r_> +OO)

foranyP,Q,1,J,K € S with P # Q,1 # J,J # K andK # I. Therefore, for any
I € ., by Proposition 3.3 there exists € .# with I £ J such thatd;h; = cA hy fora
nonzero constant Soh;/hy = cA;/A; € Z({ai}2N ).

Let s* be the abelian multiplication group of all nowhere vanishing entire functions
onC". Define.Z c * by the smallest subgroup which contains gl #* with f*
Z{a;}_,) for some positive integer. So we havex’* N Z({a;}}_;) C T C @({ai}f’zl).
Then the multiplication grou := 2#*/.7 is a torsion free abelian group, and thduple
of elements inG represented byhy, ... , hy) has the propertyPoyi2 y+1) by the above
argument. Defing; ~ f; if fi/f; € @({ai}?zl) for f;, fj € 2*. Then by Proposition 3.1
we have proved the following proposition.

PROPOSITION 4.1. Letf, g : C" — PN (C) be two nonconstant meromorphic map-
pings and Iet{ai}?’:1 (g = 2N + 2) beq “small’ (with respect tof ) meromorphic mappings
of C" into PV (C) in general position such that is not linearly degenerate ové?({a,»}f.’:l).
Assume that

() (f,a;) and(g, a;) have the same zeros of the same multiplicitiedferi < ¢,

(i) dim{z € C"; (f(2),ai(2) = (f(2),a;j(z)) =0} <n—-2forl<i<j<gq,

and
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(i) f(@)=g@ onUi_1{z € C" (f(2),a;(z) =0}
Given the reduced representationsfofy, a;, defineh; (z) := (f,a;)/(g,a;) forl <i <gq.
Then there exisl, 1 <k <g — 2N, withl <i; < --- < iz_oy < g such thath;, ~ h;, ~
~h

In order to prove Theorems 2.1 and 2.2, we define

iq72N .

aio ai EE ain
azo azi e azn
A=
AIN+1D0  A(N+DL AN HLN
and
h1 O 0
0 ho 0
H = .

0 0 -+ hyta

PROOF OFTHEOREM 2.1. Since; = 3N+1, by Proposition 4.1 and a suitable change
of the reduced representations, without loss of generality, we may agsume... , hyt1 €
Z({a;)>N ). Then

Jo 90
S 91
A . =HA .
N gn

This immediately implies Theorem 2.1.

PROOF OFTHEOREM 2.2. Since; = 3N+2, by Proposition 4.1 and a suitable change
of the reduced representations, without loss of generality, we may agsume... , hyi2 €
Z({a;}2NF%). Then

fo 90
fi g1
) =HA )
SN gn
and
fo 90
g1
(A(N+2)0; - - - » AN+2)N) : = hy2(a(N+2)0s - - - » AN+2)N)

SN gn
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Therefore
fo fo
f1 1 f1
(A(N42)0s - - - » AN+2)N) : = hni2(aN+2)0, - .- aN+2)N)AT"H A :
SN fn
Since is not linearly degenerate ovét({a;}>";"?), we have
(@N$2)05 - -+ » AN+2)N) = hn+2(a(N+2)0, - - - > av+2N) A TH A
Thus
h1— hyso 0 . 0
1 0 hy—hy+2 -+ 0
(@w+2)0 -+ > aN+2N) A : : . : =0.
0 0 ©o hyy1—hyt2
Let
aio aig - ain
azo az - asn
(@N+2)0, - - s aN+2)N) = (bo, ... , by)
aA(N+1)0 AN+DL1 0 A(N+DN
Since{a,-}f\’:ﬁ2 is in general position, we havg %= 0 (i = 0,..., N). These mean that

hi =hny2,i=1,...,N+1. Sof = g. The proof of Theorem 2.2 is finished.
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