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Abstract. We show that a codimension-one minimal foliation with growth at most 2
of a complete Riemannian manifold with non-negative Ricci curvature is totally geodesic. We
present some foliated versions of the result given by Alencar and do Carmo, and of minimal
graphs by Miranda. Further, we simplify the proof of Meeks’ result concerning constant mean
curvature foliations of 3-dimensional Euclidean space.

1. Introduction. In [Me], Meeks proved that any codimension-one constant mean
curvature foliation on the three dimensional Euclidean space is totally geodesic. In the case
when the ambient manifold is compact, there have been known many results stating that min-
imal or constant mean curvature foliations are totally geodesic (see, e.g., [BKO], [O1], [Rh],
[Td]). However, if the ambient space is non-compact, then there are only a few results as-
serting this phenomina (cf. [Sol]). In this paper, we shall study this problem under some
additional assumptions. We first prove the following.

THEOREM 1. Let (M, g ,F) be a codimension-one minimal foliation of a complete
Riemannian manifold with non-negative Ricci curvature. If the growth gr(L) of a leaf L ∈ F
is not greater than 2, then L is totally geodesic. In particular, if gr(F) ≤ 2, then F is totally
geodesic, and (M, g ) is locally a Riemannian product of a leaf of F and an orbit of N, where
N is a unit vector field onM orthogonal to F .

In Theorem 1, we have the same conclusion, if we replace the assumption “(M, g ) being
with non-negative Ricci curvature” by weaker one “Ric(N,N) ≥ 0”.

Note that, Theorem 1 does not hold if we simply drop the growth condition. In fact, from
the counter examples to the Bernstein problem [BoDG], we can construct codimension-one
minimal foliations of the Euclidean spaceRn+1, for n ≥ 8, by translating minimal graphs.
In these examples, the growth of leaves are known to ben (see also [GT]). Thus, the growth
condition in Theorem 1 could be weakend until gr(F) ≤ 7. But, this is an open problem.

Next, relating to the growth condition ofF , we prove

THEOREM 2. Let (M, g ) be a connected oriented complete Riemannian manifold, and
F be a transversely oriented codimension-one foliation onM . If a leafL ∈ F is of polynomial
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growth, then it holds that

inf
x∈L{Ric(N,N)(x)+ |A|2(x)+N(h)(x)} ≤ 0 ,

whereN is a unit vector field onM orthogonal to F , Ric is the Ricci curvature of (M, g ), |A|2
is the square of the norm of the second fundamental form of F , and h is the mean curvature
function of F (see Section 2 for the definitions).

This result is, as is explained in Section 3, related to that of Alencar and do Carmo
[AdC1]. Using a similar technique, we can obtain a foliated version of Miranda’s result on
minimal graphs ([Mi]).

THEOREM 3. Let F be a codimension-one minimal foliation of the Euclidean space
Rn+1. If the growth of L ∈ F is at most k ∈ N, then

lim sup
r→∞

∫
B(r)

|A|2

rk−2 < ∞ .

These results and some corollaries are proved in Section 3.
Finally, in Section 4, we give a simple proof of the Meeks’ result mentioned at the be-

ginning of this section.
The author would like to thank the referees for many useful suggestions, which have

considerably improved the presentation of the paper.

2. Preliminaries. Let (M, g ,F) be a codimension-one foliation of a complete con-
nected Riemannian manifold(M, g ). As the results of this paper are valid when we lift
everything onto a finite covering space ofM, we may assume thatM andF are oriented
without loss of generality. Hence we can choose a unit vector fieldN onM perpendicular
to F everywhere onM so that the orientation ofM coincides with the one given byF and
N . Note that, as the dimension of the orthogonal complementF⊥ to F is one,F⊥ is always
integrable and the leaves ofF⊥ are the orbits ofN . For simplicity of our calculation, we set
dim(M) = n + 1. Thus dim(F) = n. Denote by∇ the Riemannian connection of(M, g ).
The curvature tensorR of (M, g ) is defined by

R(X, Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z

for X,Y,Z ∈ TM. Let {V1, V2, . . . , Vn+1} be a local orthonormal frame ofTM. The Ricci
curvature tensor Ric(X, Y ) of (M, g ) is defined by

Ric(X, Y ) =
n+1∑
i=1

〈R(Vi,X)Y, Vi 〉

for X,Y ∈ TM. Here〈X,Y 〉 meansg (X, Y ). A Riemannian manifold(M, g ) satisfying
Ric(X, Y ) ≥ 0 for allX,Y ∈ TM is said to be with non-negative Ricci curvature.
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Let L be a leaf of a foliationF . Choose a pointx ∈ L and defineB(r) = {y ∈
L | dL(x, y) ≤ r} for r > 0. HeredL(·, ·) means the distance function onL induced by
the Riemannian metricg |L of L from (M, g ). A leaf L is said to be of polynomial growth
if there are a positive integern and positive constantsa andb so that vol(B(r)) ≤ arn + b

for all r > 0. In this case, we write gr(L) ≤ n. If gr(L) ≤ n for all L ∈ F , then we write
gr(F) ≤ n.

Let {E1, E2, . . . , En} be a local orthonormal frame ofF . The mean curvature function
h of F is defined by

h =
〈 n∑
i=1

∇EiEi,N
〉
.

Set |A|2 = ∑n
i,j=1〈∇EiN,Ej 〉2. Note that|A|2 on a leafL ∈ F is the square norm of

the second fundamental form ofL. As the vector field∇NN is everywhere tangent toF ,
we define, on each leafL ∈ F , the one-formθ dual to ∇NN by θ(E) = 〈∇NN,E〉
for E ∈ T L. By summing up〈R(N,Ei)Ei,N〉 for i = 1,2, . . . , n and noticing that∑n
i,j=1〈∇EiN,Ej 〉〈Ei,∇NEj 〉 = 0, since〈∇EiN,Ej 〉 being symmetric ini and j , but

〈Ei,∇NEj 〉 being skew-symmetric ini andj , we have the following (see [O2] for a proof,
cf. [BKO], [O1] and [Ra]).

PROPOSITION 1. Under the above notations, we have

Ric(N,N) + |A|2 + N(h)+ |θ |2 = divL(∇NN) ,
where divL(∇NN) is the divergence of the vector field ∇NN on L with respect to (L, g |L).

We say that a codimension-one foliationF is a constant mean curvature foliation if the
mean curvature functionh of F is constant on each leaf ofF . If h ≡ 0 onM, then each leaf
of F is a minimal hypersurface of(M, g ), andF is called a minimal foliation. If|A|2 ≡ 0 on
M, then each leaf ofF is totally geodesic, andF is called a totally geodesic foliation.

PROPOSITION 2. Let F be a codimension-one constant mean curvature foliation with
the mean curvature function h. Denote by dL the differentiation along a leaf L ∈ F . Then it
holds that dLN(h) = N(h)θ . In particular, if N(h) �= 0 at a point x ∈ L, then N(h) > 0 or
N(h) < 0 everywhere on L. Furthermore, on the saturated set where N(h) �= 0, the vector
field N/N(h) preserves F .

PROOF. To provedLN(h) = N(h)θ , we have only to show thatEN(h) = N(h)θ(E)

for E ∈ T L. Note thatE(h) = 0 for E ∈ T L. Thus, it follows thatEN(h) = EN(h) −
NE(h) = [E,N](h) = 〈[E,N], N〉N(h) = N(h)θ(E). In particular, ifN(h) = 0 atx ∈ L,
then, on any curvec(t) ⊂ L starting fromx = c(0), we have an ordinary differential equation
of the first order

dN(h)

dt
(c(t)) = N(h)(c(t))θ(c′(t)) .

It is well-known that ifN(h)(c(0)) = 0, thenN(h)(c(t)) ≡ 0.
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For the last statement, we have only to prove〈[E,N/N(h)], N〉 = 0 for E ∈ F (cf.
[O3]). Indeed, this follows from the fact that〈[E,N/N(h)], N〉 = 〈∇E(N/N(h)),N〉 −
〈∇N/N(h)E,N〉 = E(1/N(h))+ θ(E)/N(h) = (−EN(h)+ θ(E)N(h))/N(h)2 = 0.

A leafL of a constant mean curvature foliationF with h|L �= 0 is said to be stable if

V ′′
f (0) =

∫
L

{|df |2 − f 2(Ric(N,N) + |A|2)} ≥ 0 ,

wheref is any function having compact support onL with
∫
L f = 0 (see [BdC], [BdCE]). In

this paper, we omit the volume elements in integrations, because no confusion will be made.
For a minimal leafL, the definition of the stability ofL is given by the same inequality as
above without the condition

∫
L
f = 0 onf (cf. [L], [O2]).

PROPOSITION 3. Let (M, g ,F) be a codimension-one constant mean curvature fo-
liation of a complete Riemannian manifold. If N(h) ≥ 0 on L ∈ F , then L is stable. In
particular, every leaf of a codimension-one minimal foliation is stable.

PROOF. By Proposition 1, it follows that

f 2(Ric(N,N) + |A|2) = f 2divL(∇NN)− f 2|θ |2 − f 2N(h)

= −∇NN(f 2)− f 2|θ |2 − f 2N(h)+ divL(f
2∇NN) .

Thus, we have

V ′′
f (0) =

∫
L

{|df |2 + 2f∇NN(f )+ f 2|θ |2 + f 2N(h)}

=
∫
L

|df + f θ |2 +
∫
L

f 2N(h) .

If N(h) ≥ 0 onL, thenV ′′
f (0) ≥ 0, that is,L is stable.

Note that the condition
∫
L
f = 0 is not used here. Thus, ifF is minimal, then, as

N(h) ≡ 0, it follows thatV ′′
f (0) = ∫

L
|df + f θ |2 ≥ 0, that is,L is stable.

3. Proofs and corollaries.
PROOF OFTHEOREM 1. LetL be a leaf ofF . By assumption, Proposition 1 becomes

Ric(N,N)+ |A|2 + |θ |2 = divL(∇NN) .
If L is compact, by integrating this formula overL , we have∫

L

{Ric(N,N) + |A|2 + |θ |2} = 0 .

As each term of the integrand is non-negative, it follows that|A|2 = 0, and henceL is totally
geodesic.

Now assume thatL is a non-compact leaf with the growth gr(L) ≤ 2. Fix x ∈ L. Then,
by definition,

vol(B(r)) ≤ ar2 + b (r ≥ 0) ,
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for some positive constantsa andb, whereB(r) = {y ∈ L| dL(x, y) ≤ r}. Setf (r) =∫
B(r) |θ |2 andV (r) = vol(B(r)). It is known thatf (r) andV (r) are locally Lipschitz, and

thus a.e. differentiable (cf. [CY]). By integrating the equation

Ric(N,N) + |A|2 + |θ |2 = divL(∇NN)
overB(r), we obtain∫

B(r)

{Ric(N,N) + |A|2 + |θ |2} =
∫
B(r)

divL(∇NN) =
∫
∂B(r)

θ(ν) ,

whereν is the outward unit normal vector to∂B(r). As Ric(N,N) ≥ 0 and|A|2 ≥ 0, we
have ∫

B(r)

|θ |2 ≤
∫
∂B(r)

|θ | ≤
√∫

∂B(r)

1

√∫
∂B(r)

|θ |2 .

It follows that

f (r)2 ≤ f ′(r)V ′(r),
becausef ′(r) = ∫

∂B(r)
|θ |2 andV ′(r) = ∫

∂B(r)
1.

Assumeθ(x) �= 0. Thenf (r) > 0 for r > 0. AsV ′(r) > 0, we have

1

V ′(r)
≤ f ′(r)
f (r)2

=
(

− 1

f (r)

)′
.

Integrating this on[r, R] with 0< r < R, we get∫ R

r

1

V ′(r)
dr ≤ 1

f (r)
− 1

f (R)
.

The inequality

(∫ R

r

dr

)2

=
(∫ R

r

√
V ′(r)

√
1

V ′(r)
dr

)2

≤
(∫ R

r

V ′(r)dr
)(∫ R

r

1

V ′(r)
dr

)

implies
(R − r)2

V (R)− V (r)
≤
∫ R

r

1

V ′(r)
dr .

It follows that
(R − r)2

V (R)− V (r)
≤ 1

f (r)
− 1

f (R)
.

LettingR = 2r, we have

r2

4ar2 + b
≤ r2

V (2r)
≤ r2

V (2r)− V (r)
≤ 1

f (r)
− 1

f (2r)
.

If f (r) is bounded above, then, sincef ′(r) ≥ 0, the above inequality implies that

0<
1

8a
≤ r2

4ar2 + b
≤ 1

f (r)
− 1

f (2r)
→ 0 (asr → ∞) ,
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which is a contradiction. Iff (r) tends to the infinity asr → ∞, then we also have

0<
1

8a
≤ r2

4ar2 + b
≤ 1

f (r)
− 1

f (2r)
→ 0 (asr → ∞) ,

which is a contradiction, too. Therefore we havef (r) ≡ 0, that is,∇NN ≡ 0 onL. This fact
together with Proposition 1 implies thatL is totally geodesic.

If gr(F) ≤ 2, then, by the above argument,F is totally geodesic and∇NN ≡ 0 onM.
Thus(M, g ) is locally a Riemannian product of a leaf ofF and an orbit ofN . This completes
the proof.

PROOF OFTHEOREM 2. Fix x ∈ L and setB(r) = {y ∈ L | dL(x, y) ≤ r} for r ≥ 0.
DefineV (r) = vol(B(r)) andφ(r) = ∫

B(r) |θ |2. As was explained in the proof of Theorem
1, the functionsV (r) andφ(r) are locally Lipschitz, and thus a.e. differentiable. Note that if
∇NN ≡ 0 onL, then, by Proposition 1, we have Ric(N,N) + |A|2 + N(h) ≡ 0. Thus, we
may assume∇NN �= 0 atx ∈ L.

SinceL is of polynimial growth, there are a positive integerk ∈ N and positive constants
a andb so thatV (r) ≤ ark + b for all r ≥ 0. We take suchk ∈ N to be the smallest
integer with this property, that, is, ifl < k is a positive integer, andα, β are any positive
constants, then there is a monotone increasing sequence{ri}∞i=1 so thatri → ∞ asi → ∞
andαrli + β ≤ V (ri) for all i.

Assuming that infx∈L{Ric(N,N)(x) + |A|2(x) + N(h)(x)} ≥ c > 0, we shall derive a
contradiction. By this assumption and Proposition 1, it follows that

c + |θ |2 ≤ divL(∇NN) .
Integrating this inequality overB(r), we have

cV (r)+ φ(r) ≤
∫
∂B(r)

|θ | ≤
√∫

∂B(r)

1

√∫
∂B(r)

|θ |2 .

As V ′(r) = ∫
∂B(r)

1> 0 andφ′(r) = ∫
∂B(r)

|θ |2, we have

(cV (r)+ φ(r))2 ≤ V ′(r)φ′(r) ≤ V ′(r)(cV ′(r)+ φ′(r)) .
A similar argument as in the proof of Theorem 1 shows that

(R − r)2

V (R)− V (r)
≤ 1

cV (r)+ φ(r)
− 1

cV (R)+ φ(R)
(0< r < R) .

Thus, by takingR = 2r, we get

r2

V (2r)
≤ r2

V (2r)− V (r)
≤ 1

cV (r)+ φ(r)
<

1

cV (r)
.

As V (r) ≤ ark + b, it follows thatV (2r) ≤ a2krk + b. Therefore, we have

cr2V (r) ≤ a2krk + b ,

which implies that
V (r) ≤ αrk−2 + β
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for some positive constantsα andβ. But this contradicts the assumption onk. This completes
the proof of Theorem 2.

As a corollary, by noticing thath2 ≤ n|A|2, we have

COROLLARY 1. Let M, F and L be as in Theorem 2. Assume that the leaf L is of
constant mean curvature h and N(h) ≥ 0 on L. Then we have

inf
x∈L

(
Ric(N,N)(x)+ h2(x)

n

)
≤ 0 .

Note that, as is proved in Proposition 3, the conditionN(h) ≥ 0 implies the strong
stability of a leaf of constant mean curvature. This corollary is related to the result of Alencar
and do Carmo [AdC1], where the growth condition is a little bit stronger than ours (see also
[AdC2]).

Let F be a constant mean curvature foliation. Then, as pointed out in Proposition
2, N(h) ≡ 0 or N(h) never vanishes onL. Thus, we have the following corollaries for
codimension-one constant mean curvature foliations of polynomial growth.

COROLLARY 2. Let (M, g ,F) be as in Theorem 2. Assume that (M, g ) is with non-
negative Ricci curvature and that F is a constant mean curvature foliation of polynomial
growth. If N(h) > 0 on L ∈ F , then

inf
x∈LN(h)(x) = 0 and inf

x∈L |A|2(x) = 0 .

By noticing again thath2 ≤ n|A|2, we have

COROLLARY 3. Let (M, g ,F) be as in Corollary 2. If N(h) ≥ 0 on a leaf L ∈ F ,
then h = 0, that is, L is a minimal hypersurface.

In [M], Miranda proved that

lim
r→∞

∫
B(r)

|A|2

rn−2 < ∞

for a minimal graphf : Rn → Rn+1 (see also [dCP]). Theorem 3 is a foliated version of this
result, because the growth of a minimal graphf : Rn → Rn+1 is known to ben (see [GT]).
However, the growth of leaves of minimal foliations ofRn+1 is not known, in general.

PROOF OFTHEOREM 3. It follows from Proposition 1 and the assumption that

(∗) |A|2 + |θ |2 = divL(∇NN) .
If |θ | ≡ 0 on L, then |A| ≡ 0 on L and there is nothing to prove. Thus we may as-
sume that∇NN �= 0 at x ∈ L. SetB(r) = {y ∈ L | dL(x, y) ≤ r}, V (r) = vol(B(r)),
ψ(r) = ∫

B(r) |A|2 andφ(r) = ∫
B(r) |θ |2. As was explained in the proof of Theorem 1, the
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functionsV (r), ψ(r) andφ(r) are locally Lipschitz, and thus, a.e. differentiable. Integrating
the formula(∗) overB(r) and proceed as in the proofs of Theorems 1 and 2, we get

(ψ(r) + φ(r))2 ≤
∫
∂B(r)

|θ | ≤ V ′(r)φ′(r) ≤ V ′(r)(ψ ′(r)+ φ′(r)) ,

from which it follows that, for 0< r < R,

(R − r)2

V (R)− V (r)
≤ 1

ψ(r)+ φ(r)
− 1

ψ(R) + φ(R)
.

Thus, by takingR = 2r, we get

r2

V (2r)
≤ r2

V (2r)− V (r)
≤ 1

ψ(r)+ φ(r)
≤ 1

ψ(r)
.

Therefore, by the growth conditionV (r) ≤ ark + b, we have∫
B(r)

|A|2

rk−2 = r2ψ(r)

rk
≤ a2krk + b

rk
< ∞ .

This completes the proof of Theorem 3.

Finally, we mention a generalization of Theorem 3. As the proof proceeds entirely in the
same way as that for Theorem 3, we omit it.

THEOREM 4. Let F be a codimension-one minimal foliation of a complete Riemann-
ian manifold (M, g ) with non-negative Ricci curvature. If the growth of L ∈ F is at most
k ∈ N , then

lim sup
r→∞

∫
B(r)

|A|2

rk−2
< ∞ .

4. A concluding remark. In this section, we give a simple proof of the following
result of Meeks.

THEOREM M1 (Meeks [Me]). Suppose that F is a C2-foliation of R3 such that each
leaf of F is a surface of constant mean curvature. Then F consists entirely of parallel planes.

In [Me], the main part of the proof is showing the simply-connectedness of the leaves.
Then, by Theorem 1 in [Me] (see Theorem M2 below), we obtain the desired conclusion. To
show that each leaf is simply connected, he used rather complicated results and arguments.
Here, we show the simply-connectedness of the leaves by an easy and a standard argument in
foliation theory. For the sake of convenience, we give a complete proof of the above theorem,
though the first part of the proof is similar to the one by Meeks.

PROOF. Let F be a constant mean curvature foliation ofR3. By Proposition 3 and a
result of Silveira [Sil],L is a plane ifN(h) ≥ 0. Thus, the setW = {x ∈ R3 | N(h) ≥ 0} is a
union of parallel planes inR3.
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LetD be the set of pointsx with N(h)(x) < 0. By considering each connected compo-
nent if necessary, we may assume that the setD is diffeomorphic toR3, sinceD = R3 \W .
By Proposition 2, the vector fieldN/N(h) preservesF |D. It is known that ifK ⊂ D is com-
pact, then, for sufficiently smallε > 0, there is a flowφt , t ∈ (−ε, ε), generatingN/N(h) on
a neighborhood ofK. By this fact, ifa(s), s ∈ [0,1], is a curve orthogonal toF |D and,b(t),
t ∈ [0,1], is a curve on a leafL ∈ F |D with a(0) = b(0), then there is a continuous map
f : [0,1] × [0,1] → D so thatf (0, t) = b(t) for t ∈ [0,1], f (s,0) = a(t) for s ∈ [0,1],
{f (s, t) | s ∈ [0,1]} ⊥ F |D and{f (s, t) | t ∈ [0,1]} is contained in a leaf ofF |D. Thus,
a standard argument in foliation theory (cf. Kashiwabara [K]) implies that the lift ofF |D to
the universal covering space ofD is a product foliation. SinceD is simply connected,F |D
itself is a product foliation. Therefore,F |D ≡ L×R for some leafL ∈ F |D. AsD is simply
connected,L is also simply connected. Finally, as the mean curvature functionh of F satisfies
dh �= 0 onD, each connected component ofh−1(a) (a ∈ R) is a proper hypersurface. This
means that each leafL is proper inR3.

Therefore, in order to complete the proof, we have only to use the following Meeks’
result in [Me].

THEOREM M2 (Meeks [Me]). IfM is a properly embedded surface in R3 with nonzero
constant mean curvature, thenM is not homeomorphic to a closed surface with a single point
removed.
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