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Abstract. We give a result on strong unique continuation property for a certain elliptic
system of first order in the two dimensional space. Two coefficient matrices are normal and
commutative with each other. We assume, further, that their components are Hölder contin-
uous and have continuous first order derivatives except at one point. Without any regularity
assumptions on the eigenvalues, we can show the strong unique continuation property for a
class of such systems under certain quantitativeconditions on the first order derivatives. This
result gives an improvement of a work by G. N. Hile and M. H. Protter in a special case.

1. Introduction. In [4], Hile and Protter obtained an interesting result on unique con-
tinuation property for a class of elliptic systems in two independent variables. LetΩ be a
nonempty open connected subset ofR2. Without loss of generality, we may assume that it
contains the origin. They considered a system of the form

(1.1) |ux + N(x, y)uy | ≤ M|u|, (x, y) ∈ Ω ,

whereN is anm × m matrix with complex entries of classC1(Ω) andM is a constant.
They proved there, roughly speaking, that ifN is a normal elliptic matrix, any solution

of (1.1), satisfying

(1.2) lim
r→0

(exp(x2 + y2)−β/2)u(x, y) = 0 for all β > 0

vanishes inΩ (Theorem 2 in [4]).
Unfortunately, their assumption (1.2) that the solution must vanish of exponentially order

at the origin is too restrictive, at least, in a certain case. Indeed, we can show that if there exists
a non-real complex numberζ such that all the eigenvalues ofN(0, 0) are equal to eitherζ or
ζ , the functionu ∈ C1 that satisfies such systems and vanishes of infinite order at the origin
is identically zero. In addition, we can treat non bounded potentials.

We emphasis that there is no regularity assumptions on the eigenvalues ofN in our work
as well as in [4]. This prevents us to use a usual smooth diagonalization approach, employed
by Carleman [1] and Douglis [2]. To overcome these difficulties, we shall use a technique
developed in our early works for the Dirac or Maxwell equations ([3] and [5]).
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2. Statement of result. LetΩ be a nonempty open connected subset ofR2 containing
the origin. We defineΩ̇ = Ω\{0}. We denote byr the distance between(x, y) and the origin.
B1,κ(Ω) denotes the class of functionsf defined onΩ satisfying thatf is Hölder continuous
of orderκ

|f (X) − f (X′)| ≤ C|X − X′|κ for all X,X′ ∈ Ω ,

and it is continuously differentiable iṅΩ such that

lim
ρ→0

sup
0<r≤ρ

{r|fx(x, y)| + r|fy(x, y)|} = 0 .

We consider the system of differential operators

A(x, y)∂x + B(x, y)∂y ,

whereA and B arem × m normal matrices defined inΩ . Further, we assume that they
commute with each other, and eitherA or B is invertible at any point ofΩ . Thus, locally, it is
equivalent to the following system.

Lu = ∂xu + N(x, y)∂yu ,

whereN(x, y) is also anm × m normal matrix andu is a function onΩ with range inCm.
Throughout this paper, we shall assume the following properties (2.1), (2.2) and (2.3):

(2.1) N(x, y) ∈ B1,κ(Ω) .

(2.2) N∗N = NN∗ on Ω ,

whereN∗ is the conjugate transposed matrix ofN . Letλj , j = 1, 2, . . .m, be the eigenvalues
of N . Then there exists a positive numberδ such that

(2.3) |Imλj (x, y)| ≥ δ, j = 1, 2, . . .m

for all (x, y) ∈ Ω . We write them as

λj = µj + iνj , µj , µj ∈ R .

If all the eigenvalues ofN(0, 0) are simple, we can smoothly diagonalizeN(x, y) near
the origin. In this case, the equationLu = 0 is equivalent to a family of first order single
equations. On the other hand, ifN(0, 0) has multiple eigenvalues, there is no smooth diag-
onalization ofN(x, y) in general. In particular, we shall treat the case when there exists a
nonreal complex numberζ such that for eachj = 1, . . .m,

(2.4) λj (0, 0) = ζ or ζ .

Define the positive numberM0 as

(2.5) M2
0 = max

(x,y)∈S1
(x2 + (Imζ )−2(Reζx + y)2) ,

whereS1 denotes the unit sphere{(x, y) ∈ R2; x2 + y2 = 1}. We say thatu ∈ L2(Ω)

vanishes of infinite order at the origin if

lim
R→0

R−N

∫
r≤R

|u|2dxdy = 0 for all N > 0 .
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THEOREM 2.1. Suppose (2.1)–(2.4) . Let u ∈ H 1
loc(Ω; Cm) satisfy

(2.6) |Lu| ≤ K0|u|/r on Ω̇ .

If K0 < (2M0)
−1 and u vanishes of infinite order at the origin, then u is identically zero in

Ω .

REMARK 2.1. Whenm = 1, Pan showed that the conclusion holds for any largeK0

(Lemma 7 in [6]).

To prove Theorem 2.1, we shall use two types of Carleman inequalities. Let

R(x, y) = {x2 + (Imζ )−2(−Reζx + y)2}1/2 .

First of all, we shall derive a Carleman inequality with some remainder terms.

THEOREM 2.2. For an arbitrary small positive number ε, there exists a positive con-
stant C such that

1

4

∫
R−2γ−2|u|2dxdy ≤(1 + ε)

∫
R−2γ |Lu|2dxdy

+ C(1 + ε−1)

∫
R−2γ+2κ |∂yu|dxdy

(2.7)

for any u(x, y) ∈ C1
0(Ω̇; Cm) and any γ ∈ N + 1/2 .

As a direct consequence of Theorem 2.2 and the ellipticity ofL, we have

THEOREM 2.3. Suppose that K0 < (2M0)
−1. If u satisfying (2.6) vanishes of infinite

order at the origin, then there exist positive constants B and C such that∫
0≤R(x,y)≤ρ

{|u|2 + |∂xu|2 + |∂yu|2}dxdy ≤ C exp(−Bρ−κ )

for any small positive ρ.

For the sake of Theorem 2.3, we have∫
R−3| logR| exp{γ (logR)2}{|u|2 + |ux |2 + |uy |2}dxdy < ∞ .

Thus, we can use another Carleman inequality with a stronger weight function.

THEOREM 2.4. For a sufficiently small Ω , we have

γ

∫
R−2| logR| exp{γ (logR)2}|u|2R−1dxdy ≤ C

∫
exp{γ (logR)2}|Lu|2R−1dxdy

for any u(x, y) ∈ C1
0(Ω̇; Cm) and any large positive γ .

Theorem 2.1 follows from Theorems 2.4 and 2.3 by the standard procedure.

3. Systems of operators with constant matrices. The proof of Theorem 2.2 is based
on a perturbation argument for systems of operators with constant coefficients. DefineN0 =
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N(0, 0). We consider

L0u = ux + N0uy .

Then the first result we will show is the Carleman estimate forL0.

THEOREM 3.1.
1

4

∫
R−2γ−2|u|2dxdy ≤

∫
R−2γ |L0u|2dxdy

for any u ∈ C0(Ω̇; Cm) and any γ ∈ N + 1/2.

PROOF. By the assumptions (2.2), (2.3) and (2.4), it follows that one can find a unitary
matrixU such that

(3.1) U−1N0U = ζ I ⊕ ζ̄ I ,

whereζ = λ1(0, 0) = µ + iν, µ, ν ∈ R satisfying|ν| = δ > 0. Then,U−1L0U is also a
diagonal operator with components

Λ+ = ∂x + (µ + iν)∂y or Λ− = ∂x + (µ − iν)∂y .

We make a change of variables:

(3.2) ξ = x, η = ν−1(−µx + y) .

The operatorsΛ andΛ̄ are transformed respectively into the following operators:

P+ = ∂ξ + i∂η and P− = ∂ξ − i∂η

In what follows, ˙̃
Ω denotes the image oḟΩ under the map (3.2).

LEMMA 3.2. Let ∗ be either + or −. Then,

(3.3)
1

4

∫
r−2γ−2|u|2dξdη ≤

∫
r−2γ |P∗u|2dξdη

for any u ∈ C1
0(

˙̃
Ω) and any γ ∈ N + 1/2.

PROOF. Introduce the polar coordinates(ξ, η) = rω, ω = (cosθ, sinθ) ∈ S1. Thus,

P+ = (ω1 + iω2)

(
∂r + i

1

r
∂θ

)
.

Making the change of variablesz = logr, we see that

r(ω1 − iω2)P+ = ∂z + i∂θ .

We use the Fourier series expansion ofu(z, ·) ∈ L2(S1):

(3.4) u(z, θ) =
∑
k∈Z

uk(z)e
ikθ ,

∫ 2π

0
|u(z, θ)|2dθ = 2π

∑
k∈Z

|uk(z)|2 .

Then,

(∂z + i∂θ ) u(z, θ) =
∑
k∈Z

(∂z − k)uk(z)e
ikθ .
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Since ∫
r−2γ ′ |P+u|2dξdη =

∫
|ezP+u|2e−2γ ′zdzdθ

=
∫

|(∂z + i∂θ )u(z, θ)|2e−2γ ′zdzdθ ,

(3.5)

an integration by parts gives∫
r−2γ |P+u|2dξdη

=
∑
k∈Z

∫
|∂z(e

−γ zuk)|2dzdθ +
∑
k∈Z

∫
|(γ − k)e−γ zuk|2dzdθ .

(3.6)

We chooseγ ∈ N + 1/2. Then, from (3.4) and (3.6), we arrive at the inequality (3.3) with
γ ∈ N + 1/2. In the same way, we obtain the assertion forP−. �

As a result, we obtain the following

PROPOSITION 3.3. Let ∗ be either + or −. Then,

1

4

∫
R−2γ−2|u|2dxdy ≤

∫
R−2γ |Λ∗u|2dxdy

for any u(x, y) ∈ C1
0(Ω̇) and any γ ∈ N + 1/2 .

Theorem 3.1 is a direct consequence of Proposition 3.3. �

Now, we proceed to the proof of Theorem 2.2. We can write

L = L0 + L1 , L1 = Ñ∂y ,

whereÑ = N(x, y) − N(0, 0) has its entries satisfying

|Ñij (x, y)| ≤ Crκ,

because of their Hölder continuity. We use the inequality

(a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2.

This observation together with Theorem 3.1 leads to the Carleman inequality with a remainder
term in Theorem 2.2.

4. Proof of Theorem 2.3. Now, we turn to the proof of Theorem 2.3. We require the
following elliptic estimate.

LEMMA 4.1. There exists a positive constant C1 such that for any f ∈ C1
0(Ω; Cm),

(4.1)

∫
(|∂xf |2 + |∂yf |2)dxdy ≤ C1

∫
(|Lf |2 + |f |2)dxdy .

PROOF. This can be easily verified if we use a partition of unity to reduce the problem
for a finite number of constant matrices{N(xj , yj )}Nj=1 in the standard manner. �
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Let χ0 be a nonnegative smooth function whose support is compact and contained in
U ⊂ Ω such thatχ0(x, y) = 1 near the origin. Letu ∈ H 1

loc(Ω; Cm) satisfy (1.1). We
note that the inequality (4.1) holds whenf ∈ H 1

0 (Ω; Cm). If we apply (4.1) tof (x, y) =
R(x, y)−γ χ0(x, y)u(x, y), we see that there exists a positive constantK such that

(4.2) γ −2
∫

B(r0)

R−2γ |∇u|2dxdy ≤ Kγ −2
∫

U

R−2γ |Lu|2dxdy + K

∫
U

R−2γ−2|u|2dxdy

and

γ −2
∫

B(r0)

R−2γ+2κ |∂yu|2dxdy

≤ Kγ −2
∫

U

R−2γ+2κ |Lu|2dxdy + K

∫
U

R−2γ−2+2κ |u|2dxdy

(4.3)

with some small positive numberr0. Let χ(r) be a nonnegative function belonging to
C1

0((−∞, 2)) such thatχ(r) = 1 when 0� r < 1.
In what follows, forr > 0, let B̃(r) = {R(x, y) ≤ r}. We shall consider̃u(x, y) =

χ(Mγ 1/κR)u(x, y). Here,M is a large positive parameter, which will be determined later.
We observe that

x2 + ν−2(−µx + y)2 ≤ M2
0(x2 + y2) for all (x, y) ∈ R2 ,

and

|Lu(x, y)| ≤ K0M0|u(x, y)|/R(x, y) .

Thus, combining Theorem 2.2 with (4.2) and (4.3), we see that

β

∫
R−2γ−2|ũ|2dxdy + γ −2N−1

∫
R−2γ |∇ũ|2dxdy

≤K

∫
R−2γ+2κ(|∇ũ|2 + R−2|ũ|2)dxdy

+ CM2γ 2/κ

∫
M−1γ −1/κ≤R≤2M−1γ −1/κ

R−2γ |u|2dxdy ,

(4.4)

whereβ is the positive number satisfying

β2 = 1

4
−

{
(1 + ε)(K0M0)

2 + γ −2K

N

}
− K

N

which is positive by our assumption and by takingN andε−1 to be large enough.
ChooseM such thatKM−2κ < 1/(2N). Then it holds that

KR2κ <
1

Nγ 2 and M2γ 2/κR2 ≤ 4
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if 0 ≤ R ≤ 2M−1γ −1/κ . It follows that

β

2

∫
B̃(1/(2Mγ 1/κ ))

R−2γ−2|u|2dxdy + (2γ 2N)−1
∫

B̃(1/(2Mγ 1/κ ))

R−2γ |∇u|2dxdy

≤ C

∫
U\B̃(1/(Mγ 1/κ ))

R−2γ−2{|u|2 + |∇u|2}dxdy ,

(4.5)

if U is an arbitrary sufficiently small neighborhood of the origin. Here, we have used the
inequality

R2κ ≤ β/2 if (x, y) ∈ U.

From the inequality (4.5), we conclude that

(2Mγ 1/κ)2γ+2
∫

B̃(1/(2Mγ 1/κ ))

{|u|2 + (2γ 2N)−1|∇u|2}dxdy

≤ C(Mγ 1/κ)2γ+2
∫

U\B̃(1/(Mγ 1/κ ))

{|u|2 + |∇u|2}dxdy .

(4.6)

As a result, we have∫
B̃(1/(2Mγ 1/κ ))

{|u|2 + (2γ 2N)−1|∇u|2}dxdy ≤ C2−2γ−2
∫

U

{|u|2 + |∇u|2}dxdy

for any large positiveγ ∈ N + 1/2. This leads to the desired conclusion of Theorem 2.3.

5. Proof of Theorem 2.4. As in the proof of Lemma 3.1, we can find a unitary trans-
formation and a change of variables (3.2) such that

L = ∂x + N∂y , N(0, 0) = iI ⊕ (−i)I

and

|Lu| ≤ K0M0|u|/r .

We see thatL is written in the polar coordinates as

(ω1 + Nω2)∂r + r−1(−ω2 + Nω1)∂θ .

We multiply the above operator by the cofactorcoJ of J = (ω1 + Nω2) from its left. It holds
that

coJL = detJ∂r + 1

r
G(r, ω)∂θ ,

where

G = coJ (−ω2 + ω1N) .

LEMMA 5.1. G is also a normal matrix with eigenvalues κj satisfying

|Im κj | ≥ δ′, j = 1, . . . ,m .

PROOF. Let r ≥ 0 andω ∈ S1 satisfyrω ∈ Ω . Then, there exists an orthogonal matrix
T such that

N = T −1DT , D = diag(λ1, . . . , λm) .
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Furtheremore,
coJ = (detJ )T −1(ω1I + ω2D)T

and

−ω2 + ω1N = T −1(−ω2I + ω1D)T ,

so thatT GT −1 is a diagonal matrix with componets given by

κj = detJ (ω1 + ω2λj )
−1(−ω2 + ω1λj ).

�

Let ϕ = γ (log
√

x2 + y2)2/2, eϕu = v, L̃ = (detJ )−1 coJL and

eϕL̃u = Lϕv .

Then, we see that

Lϕv = {∂r − ϕ′}v + 1

r
(detJ )−1G∂θv .

Let S = (detJ )−1(G + G∗)/2 andQ = (detJ )−1(G − G∗)/(2i). We have to consider∫
|Lϕv|2r−1dxdy

=
∫ ∣∣∣∣∂rv + 1

r
S∂θ v + 1

2r
(∂θS)v

∣∣∣∣
2

r−1dxdy

+
∫ ∣∣∣∣−ϕ′v + i

r
Q∂θv − 1

2r
(∂θS)v

∣∣∣∣
2

r−1dxdy

+ 2Re
∫ (

∂rv + 1

r
S∂θv + 1

2r
(∂θS)v,−ϕ′v + i

r
Q∂θv − 1

2r
(∂θS)v

)
r−1dxdy .

(5.1)

By an integration by parts, it follows that

2Re
∫ (

1

r
S∂θ v + 1

2r
(∂θS)v, ϕ′(r)v

)
r−1dxdy = 0(5.2)

and

2Re
∫ (

∂rv,−ϕ′v
)
r−1dxdy =

∫
ϕ′′|v|2r−1dxdy .(5.3)

We shall use the relation

|∇v|2 = |∂rv|2 + 1

r2 |∂θv|2 .

For a positve scalar functionf (x, y) defined inΩ̇, we shall use the notationu(x, y) =
o(f (x, y)) if a scalar functionu(x, y) defined inΩ satisfies

lim
ρ→0

sup
0<r≤ρ

∣∣∣∣ u(x, y)

f (x, y)

∣∣∣∣ = 0 .

SinceQS = SQ at each point ofΩ and

|∇Q| + |∇S| = o(1/r) ,
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the relations (5.2) and (5.3) imply that

2Re
∫ (

∂rv + 1

r
S∂θ v + 1

2r
(∂θS)v,−ϕ′v + i

r
Q∂θv − 1

2r
(∂θS)v

)
r−1dxdy

≥
∫

ϕ′′|v|2r−1dxdy −
∫

o(r−1)(r−1|v||∂rv| + r−1|v||r−1vθ |)r−1dxdy .

(5.4)

Therefore, we conclude that for anyε > 0, there exists a neighborhoodU of the origin such
that

∫
ϕ′′|v|2r−1dxdy ≤C

∫
|Lϕv|2r−1dxdy

+ ε

∫
(r−1|v||∂rv| + r−1|v||r−1vθ |)r−1dxdy

(5.5)

for everyv ∈ C1
0(U). Note that

ϕ′′ = −γ r−2 logr + γ r−2

and there exists a positive constantC such that∫
{r−1|v||vr | + r−2|v||vθ |}r−1dxdy

≤
∫

|r−1v|
∣∣∣∣(∂r + r−1)v + 1

r
S∂θv + 1

2r
(∂θS)v

∣∣∣∣ r−1dxdy

+ C

{∫
|r−1v||r−1∂θv|r−1dxdy +

∫
r−2|v|2r−1dxdy

}
(5.6)

and ∫
|r−1v||r−1∂θv|r−1dxdy

≤ C

{
γ

∫
r−2| logr||v|2r−1dxdy + γ −1

∫
| logr|−1|∇v|2r−1dxdy

}
.

On the other hand, puttingv = eϕu into (4.1), we obtain that

γ −1
∫

| logr|−1|∇v|2r−1dxdy

≤ C

∫
e2ϕ|L̃u|2r−1dxdy + Cγ

∫
r−2| logr|e2ϕ |u|2r−1dxdy

(5.7)

because

Lϕv = eϕL̃u + O(ϕ′)u , ϕ′ = γ r−1 logr .

We shall use ∫
r−2|v|2r−1dxdy =

∫
o(1)r−2| logr||v|2r−1dxdy .

From (5.5), (5.6) and (5.7), we obtain the desired estimate in Theorem 2.4 ifΩ is sufficiently
small.
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6. Proof of Theorem 2.1. Let V (r) = {(x, y); R(x, y) ≤ r} for eachr > 0.
Suppose thatσ > 0 is sufficiently small so that Theorem 2.4 holds forΩ = V (σ). Let
u ∈ H 1

loc(V (σ ); Cm) satisfy (2.6), and letχ ∈ C∞
0 (Ω), 0 ≤ χ ≤ 1 be a cut-off function

such thatχ(x, y) = 1 if R(x, y) ≤ σ/3 andχ = 0 if R(x, y) ≥ σ/2. By taking a limiting
procedure, in view of Theorem 2.3, we can apply Theorem 2.4 toũ = χ(x, y)u(x, y). Let
ϕ(x, y) = γ | logR(x, y)|2/2. It holds that there exists a positive constantC such that

γ

∫
R−3| logR|e2ϕ|ũ|2dxdy ≤ C

∫
e2ϕ|Lũ|2R−1dxdy ,

∫
Ω

e2ϕ|[L,χ]u|2R−1dxdy ≤ C

∫
Ω\V (σ/3)

e2ϕ|u|2R−1dxdy .

Thus,

γ

∫
V (σ/4)

e2ϕ|R|−3| log |R|| |u|2dxdy ≤ C′
∫

Ω\V (σ/3)

e2ϕ|u|2R−1dxdy .

Since(logr)2 is a strictly decreasing function, we have

γ (κ/4)−3| logσ/4|
∫
V (σ/4)

|u|2dxdy ≤ C′′eγ {(log(σ/3))2−(log(σ/4))2} .

Thus, lettingγ → ∞, we conclude thatu = 0 in V (σ/4) .This completes the proof of
Theorem 2.1.
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