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Abstract. We present an extension of the well-known 3/2-stability criterion by Yorke
for two term functional differential equations. We prove the exact nature of the obtained sta-
bility region which coincides with the Yorke result in the special case when the decay term
is absent. Moreover, we reveal some interesting links existing between the Yorke conditions,
Halanay inequalities and differential equations with maxima, all of them essentially involving
the maximum functionals.

1. Introduction. It can be observed that several important approaches in the stability
theory of delay differential equations of the form

(1.1) x ′(t)+ ax(t)+ bf (t, xt) = 0 , t ∈ R , (xt (s) = x(t + s), s ∈ [−h,0]) ,
involve the maximum functional maxs∈[−h,0] φ(s) on the spaceC := C([−h,0],R) in an
essential and subtle way which sometimes is far away from the simple use of thesup-norm
relations like

(1.2) |f (t, xt )| ≤ ‖xt‖C = max|xt | .
To be more specific, we mention the Barnea’s method [2] and the following two remarkable
advances of the late sixties. The first one is the Halanay inequality and its various applications
(see [7] and Section 3 of the present paper), and the second one is a version by Yorke of the
3/2-stability criterion (see [24] and Section 2 below). For example, the 3/2 criterion says that
if f : R × C → R is continuous,a = 0,0< bh < 3/2, and the following Yorke condition

(1.3) minφ = − max(−φ) ≤ f (t, φ) ≤ maxφ

is satisfied, then the trivial solution of (1.1) is uniformly asymptotically stable. Moreover,
the constant 3/2 gives the exact upper bound forbh. Notice that the bifurcation character of
this number was already indicated by Myshkis [10] for linear delay differential equations. An
important contribution by Yorke was in the extension of the Myshkis criterion to nonlinear
systems for the nonlinearities that can be appropriately majorized by maximum functionals.

2000Mathematics Subject Classification. 34K20.
Key words and phrases. Functional differential equations, asymptotical stability, 3/2-type stability conditions.
A. Ivanov was supported in part by the Australian Research Council.
E. Liz was supported in part by D.G.E.S.I.C (Spain), project PB97-0552.
S. Trofimchuk was supported in part by FONDECYT (Chile), project 8990013 and by the Australian Research

Council.



278 A. IVANOV, E. LIZ AND S. TROFIMCHUK

On the other hand, by applying to (1.1) the method of the Halanay inequality

(1.4) x ′(t)+ ax(t)+ bmaxxt ≤ 0 ,

with its various generalizations, one can even more relax the Yorke condition (1.3), requiring
only (1.2) together with the following additional assumption introduced in [14]:

(1.5) |f (t, φ)− φ(0)| ≤ hmax|φ′| for any t ∈ R and φ ∈ C1[−h,0] .
As a result, the global exponential stability of the trivial solution always follows.

The Halanay and Yorke theorems were subjects of a number of subsequent studies and
improvements, so that it would be impossible to give here a complete list of corresponding
references. We list only several most relevant papers [5, 6, 9, 11, 13, 15, 22, 23] (some
additional relevant references can be found in [3, 8]) together with recent papers [14, 16, 19]
by the authors.

Both results mentioned above provide a strong indication that it is the differential equa-
tions with “maxima" (f (t, φ) = maxφ) rather than the linear ones (f (t, φ) = φ(−h)) that
represent natural comparison systems in the stability theory of quasilinear functional differ-
ential equations. Let us demonstrate this idea by using the simple equation

x ′ = −b max
s∈[t−1,t ] x(s) ,

which can be viewed as a comparison equation for (1.1), (1.3) witha = 0. By the Yorke
theorem, this equation is uniformly asymptotically stable if 0< b < 3/2. This fact by itself
does not have much interest, since one can easily prove (see [16]) that the above equation is
actually asymptotically stable for allb > 0. In Section 4 we point out a strong connection
between the number 3/2 and the nonhomogeneousT -periodic differential equation

(1.6) x ′ = −b max
s∈[t−1,t ]

x(s)+ f (t) .

In fact, a family of variational equations can beassociated with the periodic problem (1.6),
and the numberb = 3/2 is determined completely by thespectrum of this family. In par-
ticular, we will show that (1.6) has a globally exponentially stableT -periodic solution for
everyT -periodic forcing termf (t) if and only if b ∈ (0,3/2). We notice again that for the
corresponding linear equation

x ′ = −bx(t − 1)+ f (t) ,

the number 3/2 is not basic at all (the equation is asymptotically stable for 0< b < π/2).
Our paper reveals, for the first time we believe, this new aspect of the theory of equations
with maxima (see Section 4 for details and more references about this type of delay systems).
Moreover, now we are in a position to deduce a whole family ofexact Yorke type stability
criteria for more general systems (see Theorems 2.9 and 2.10 below).

In the present paper we establish various sufficient conditions for the global exponential
stability of the zero solution for equations like (1.1). Moreover, we present explicit conver-
gence estimates in the case of such stability. We point out a sharp and sometimes exact nature
of the obtained results. Finally, a basic feature of the paper is in a special emphasis we put
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on the links existing between the following three objects: the Yorke type equations (1.1),
(1.3), the Halanay inequality (1.4) with its generalizations, and the differential equations with
maxima

(1.7) x ′(t)+ ax(t)+ bmaxxt = f (t) .

The paper is organized as follows. In Section 2 we present our main stability results
(Theorems 2.4 and 2.6 with corollaries), whose proof can be found in Sections 5–7. Section 3
deals with the Halanay-type inequalities, while Section 4 is devoted to equations with maxima
of the form (1.7). The results of the third and fourth Sections are of crucial importance in the
proof of Theorems 2.9 and 2.10.

2. Stability criteria. The main results of this section concern questions like the fol-
lowing one: for what values of the nonnegative parametersa = ‖a(t)‖∞ andb = ‖b(t)‖∞
the functional differential equation

(2.1) x ′(t)+ a(t)x(t)+ b(t)x(t − h) = 0 , t, x ∈ R ,

with nonnegative coefficienta(t) is uniformly asymptotically stable? In some cases it is pos-
sible to get a satisfactory answer by comparing the nonautonomous equation with the corre-
sponding linear autonomous equation obtained by replacing the coefficients by their limiting
values. This is precisely the case whenb(t) ≤ 0, as the following result proved in [4] shows:

PROPOSITION 2.1. Assume that (2.1) with bounded a, b ∈ C(R,R), b(t) ≤ 0 is
uniformly asymptotically stable. Then, for any bounded continuous c(t) such that |c(t)| ≤
−b(t), the equation x ′(t) + a(t)x(t) + c(t)x(t − h) = 0 is also uniformly asymptotically
stable.

Whenb(t) ≥ 0, this comparison principle does not apply. This fact was first pointed out
by A. Myshkis fora = 0, h = 1. He also showed that the “limit" value of‖b(t)‖∞ is 3/2,
which is less thanπ/2 suggested by the analysis of the corresponding autonomous equation
(see [8, 10]). Therefore, in general, the analog of Proposition 2.1 is not valid for the case
b(t) ≥ c(t) ≥ 0. A different approach is needed, and we present it below. Our methods allow
us to describe the exact stability domains in the parameter space in several important cases.

Our main results concern the stability of the functional differential equation

(2.2) x ′(t)+ g (t, x(t))+ b(t)f (t, xt) = 0 , t ∈ R , (xt (s) = x(t + s), s ∈ [−h,0]) ,
wherext ∈ C = C[−h,0] with h > 0 andb ∈ L∞(R,R+). In many situations modeled by
(2.2), the coefficientb(t) subject to 0≤ b(t) ≤ b can be viewed, for instance, as a control
implied by an external observer, while the internal structure of the system is described by
some ‘hidden’ continuous functionalsg (t, x), f (t, ϕ).

We will also assume that only the upper boundb = ess supt∈R b(t) is known and that the
continuous and ‘almost linear’ functionalf (t, ϕ) satisfies the Yorke condition (1.3). Regard-
ing the nonlinearityg (t, x), we will consider the following sequence of hypotheses:

(a) x · g (t, x) > 0 for all x �= 0;
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(b) g : R2 → R is a Carathéodory function, and the equationx ′ + g (t, x) = h(t) has
a unique (local) solution for every initial value problem and for every locally integrableh(t);

(c)
∫ +∞
t0

b(s)ds = ∞ or
∫ +∞
t0

|g (s, h(s))|ds = ∞ for eacht0 and for every continuous
functionh : [t0,+∞) → R such that inft≥t0 |h(t)| > 0.
We will also use the following condition implying(c):

(d) There existµ > 0 andq ∈ (0,1) such that

inf
t∈R

∫ t+µ

t

[M−1g (s, h(s)) + qb(s)]ds > 1 − q

for everyM > 0 and for every continuous functionh : R → R such thath(t) ≥ qM. The
same condition holds if we takeg 1(t, x) = −g (t,−x) instead ofg (t, x).

REMARK 2.2. It should be noted that(d) is satisfied if inft∈R
∫ t+µ
t b(s)ds > 0 for

someµ > 0 (see a dynamical interpretation of this inequality in [19]). Also, within our
approach, conditions like ess supt∈R h

−1
∫ t+h
t b(s)ds ≤ b can be considered in place of ess

supt∈R b(t) ≤ b.

Before presenting the last two hypotheses, we have to introduce several notations. Let
b = ‖b‖∞ ≥ h−1 andζ ∈ R be fixed. Then, by(a), for the solutionx(t) of

(2.3) x ′(t) = −g (t, x(t))− bx(t − h), t ≥ ζ, and x(s) = −M < 0 , s ≤ ζ ,

we can findα ∈ [ζ, ζ + h] such that i)x(t) < 0 on[ζ, α); ii) x(α) = 0, x ′(α) = bM > 0;
iii) x(t) > 0 for all t ∈ I = (α, β) ⊆ (α, α+h), whereβ is assumed to be the maximal num-
ber having this property. Definer0(ζ,M) = maxt∈I x(t). Next, since the functiong 1(t, x) =
−g (t,−x) retains all stated above properties ofg (t, x), we can find the corresponding func-
tion r1(ζ,M) in an analogous way. Finally, setr(ζ,M) = max{r0(ζ,M), r1(ζ,M)}.

Now, we are able to state our last two assumptions:
(e) bh ≤ q < 1 orbh ≥ 1 andM−1r(ζ,M) ≤ q < 1 for someq and allM > 0, ζ ∈ R.
(f) bh ≤ 1 orbh > 1 andM−1r(ζ,M) ≤ 1 for allM > 0, ζ ∈ R.

REMARK 2.3. If both (d) and (e) hold with differentq and q ′, then they are also
satisfied with the sameq ′′ = max{q, q ′} ∈ (0,1). It is sufficient to prove this remark only
for (d), the case(e) being obvious. We note first that the inequality in(d) holds also for every
continuous functionh : R → R such thath(t) ≥ q ′′M ≥ qM. Then replacingq by the
q ′′ ≥ q in the same inequality, we will decrease the right-hand side, while the left hand side
of the expression will be increased.

Now we are in a position to state the main theorems of the paper.

THEOREM 2.4. Assume (1.3) and the hypotheses (a), (b), (c), (f). Then, for every
solution x : [τ − h,∞) → R of (2.2)one has

(2.4) |x(t)| ≤ max
s∈[τ−h,τ+2h] |x(s)| for all t ≥ τ .
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COROLLARY 2.5. Under the conditions of Theorem 2.4, the zero solution of (2.2) is
uniformly stable and

(2.5) ‖xt‖C ≤ exp(3bhe−1)‖xs‖C , t ≥ s .

Replacing(c), (f) by stronger assumptions(d), (e), we obtain the exponential stability:

THEOREM 2.6. Assume (1.3) and the hypotheses (a), (b), (d), (e). Then, for every
solution x : [τ − h,∞) → R of (2.2)one has

(2.6) |x(t)| ≤ q max
s∈[τ−h,τ+3h+µ]

|x(s)| for all t ≥ τ + 3h+ µ .

We can write (2.6) in a more usual form by introducing the constant

γ = − ln q

µ+ 4h
> 0 .

COROLLARY 2.7. Under the assumptions of Theorem 2.6 the inequalities (2.4) and
(2.6)are satisfied together with

(2.7) ‖xt‖C ≤ 1

q
exp(3bhe−1)‖xs‖C exp(−γ (t − s)) , t ≥ s .

Therefore, the zero solution of (2.2) is globally exponentially and uniformly stable.

Consider the important particular case when the functiong (t, x) is continuous and lo-
cally Lipschitz inx and satisfies the inequalities

(2.8) 0 ≤ ax2 ≤ g (t, x)x ≤ cx2 for all (t, x) ∈ R2

for some fixed 0< a < c (for example, one can think here of the caseg (t, x) = a(t, x)x

with a ≤ a(t, x) ≤ c, t ∈ R).
Notice that in this case(a), (b), (c), (d) hold in an obvious way and we only need to

check either condition(e) or condition(f). A direct calculation (see Section 7 for details)
shows that

r(ζ,M) ≤ M
b

a

{(
1 + b

c

)
e−cξ+ch − b

c

}
,

where

ξ = h+ 1

c − a
ln

(b + c)/(c − a)

(b + c)/(c− a)− e−ah(1 + c/b)a/c
.

Therefore, we have the following result:

COROLLARY 2.8. Assume that function g (t, x) is continuous and locally Lipschitz in
x and satisfies inequalities (2.8) together with

bh ≤ 1 or[
1< bh and

1

c− a
ln
(b + c)/(c− a)− e−ah(1 + c/b)a/c

(b + c)/(c − a)
≤ 1

c
ln
ac + b2

bc + b2

]
(2.9)

for some fixed 0 < a < c. Then the zero solution of (2.2) is uniformly stable for every
0 ≤ b(t) ≤ b and every continuous functional f (t, ϕ) satisfying (1.3). Moreover, it is
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uniformly exponentially stable if the sign of the strict inequality < in (2.9) is replaced by ≤,
and the non-strict inequalities ≤ are replaced by <.

Obviously,g (t, x) = ax whena = c. In this case (2.2) becomes

(2.10) x ′(t)+ ax(t)+ b(t)f (t, xt ) = 0 , t ∈ R ,

and the inequality (2.9) takes the following “limit" form:

(2.11)
a

b
exp(−ah) ≥ ln

(
1 + a/b

1 + a2/b2

)
, a > 0 , b > 0 .

The following two theorems show to what extent this sufficient condition is sharp.

THEOREM 2.9. Let a > 0, b > 0. Then the zero solution of (2.10) is globally ex-
ponentially uniformly stable for every continuous functional f (t, ϕ) satisfying (1.3) and for
every 0 ≤ b(t) ≤ b if and only if the point (a, b) belongs to the domain D ⊂ R2 given by

(2.12)
a

b
exp(−ah) > ln

(
1 + a/b

1 + a2/b2

)
, a > 0 , b > 0 .

In the limit case, when the point(a, b) belongs to the boundary∂D of the domainD of
asymptotic stability, we still have the uniform stability:

THEOREM 2.10. Let a > 0, b > 0. Then the zero solution of (2.10) is uniformly
stable for every continuous functional f (t, ϕ) satisfying (1.3) and for every 0 ≤ b(t) ≤ b if
and only if the point (a, b) belongs to the domain D ∪ ∂D given by (2.11). Moreover, every
solution x : [τ − h,+∞) → R of (2.10)satisfies inequality (2.4).

The sufficiency part of these two theorems is a consequence of Corollary 2.8, while the
necessity will be proved in Section 4.

REMARK 2.11. Considering the case of general (not necessarily positive)b(t) and
applying the Halanay inequality (see Section 3), we will also show that the necessary and
sufficient condition for the zero solution of (2.10) to be globally exponentially uniformly
stable [resp. uniformly stable] for every continuous functionalf (t, ϕ) satisfying (1.3) and for
every|b(t)| ≤ b is |b| < a [resp.|b| ≤ a].

Theorems 2.9 and 2.10 give an immediate extension of the 3/2-stability criterion by
Yorke [24]. In fact, by indicating the exact stability domain we obtain a family of the 3/2-
type stability conditions. Ifa > 0, the correspondingexact upper boundba for ‖b(t)‖∞ can
be found from (2.12). Moreover, the Yorke theorem corresponds to the limit caseb0 = 3/2.
Indeed, the inequality 0< b < 3/2 is the limit form of (2.12) asa → 0+, so that the closure
of D intersected with the axisa = 0 gives the Yorke stability interval[0,3/2].

Finally, we note that the Grossman report [5] contains a proof of the sufficiency of (2.11)
for the uniform stability as well as the corresponding result for the uniform asymptotic stabil-
ity in (2.10). The result was partially announced in [8], however, it was never published and
remained hardly accessible and largely unknown. The sharp nature of the condition (2.11)
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was not established. This exactness is a new and essential aspect in the statements of Theo-
rems 2.9 and 2.10. Grossman also constructed an example showing that in the casebh > 1,
(2.2) can lose its stability even under the assumptions(a), (b), (c) and (1.3). Thus, with some
reservations, we can say that the conditions(e) and(f) are necessary to ensure the stability.

3. Halanay inequalities. The inequalities (1.3) suggest that the scalar equation with
maxima (1.7), or the Halanay inequality (1.4), can be considered as the comparison systems
for (2.10).

We begin this section by recalling the original result of Halanay (see, for instance [7, p.
378] or [3, Lemma 1.4.6]).

PROPOSITION 3.1. Let x : [µ− h,∞) → [0,∞) be a continuous function such that
(1.4) is satisfied for t ≥ µ. If a ≥ −b > 0, then

x(t) ≤ [maxxµ] exp(γ (t − µ)) for t ≥ µ ,

where γ ≤ 0 is the largest real root of the equation λ+ a = |b| exp(−λh). Moreover, γ = 0
only if a = −b.

For (2.10), the Halanay Lemma applies even whenf (t, xt ) satisfies only the sublinear-
ity condition (1.2), which is considerably weaker than (1.3). Here, a direct application of
Proposition 3.1 gives:

COROLLARY 3.2. Suppose that the continuous functional f satisfies (1.2)and

ess sup
t∈R

|b(t)| = b ≤ a .

Then every solution x(t) of (2.10)satisfies

(3.1) |x(t)| ≤ [
max|xµ|] exp(γ (t − µ)) , t ≥ µ ,

where γ ≤ 0 is the largest real root of the equation λ + a = b exp(−λh). Note that γ = 0
only if a = b.

Various generalizations of the Halanay Lemma to systems of vector inequalities can be
found in [3, 13, 14]. Below we present a version of this result from ([14, Theorem 2.1]) for a
two-dimensional case:

PROPOSITION 3.3. Suppose functions u, v : [µ−h,+∞) → R+ satisfy the following
system of inequalities:

u(t) ≤ e−M(t−µ)u(µ)+
∫ t

µ

e−M(t−s)(Bmaxus + Cw(s) +Dmaxws)ds ,

w(t) ≤ Fu(t)+Gmaxut +H maxwt , t ≥ µ .

(3.2)

where all the coefficients are positive and H < 1. Then there exists δ < 0 such that

u(t) ≤ [
maxuµ

]
exp(δ(t − µ)) ; w(t) ≤ [

maxwµ
]

exp(δ(t − µ)) , t ≥ µ

if and only if Ψ = −M + B + (C +D)(F +G)(1 −H)−1 < 0.
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REMARK 3.4. The best value ofδ above is equal to max{ln(H)/h, λ} < 0, whereλ
is the maximal real root of the characteristic equation

λ+M − Be−λh − (C +De−λh)(F +Ge−λh)
1 −He−λh

= 0 .

In order to apply Proposition 3.3 to equation (2.10) the sublinearity condition (1.2) alone
is not sufficient, so we will use the additional assumption (1.5). The Yorke condition (1.3) is
also sufficient for our purposes here, since it implies (1.5) together with (1.2). However, the
inverse implication is not valid at all (e.g., check all relations withf (ϕ) = min{‖ϕ‖C, ϕ(0)+
|ϕ(−h/2)− ϕ(−h)|}).

Let us illustrate how our idea applies to (1.1):

THEOREM 3.5. Suppose that the continuous functional f satisfies (1.2) and (1.5).
Then either of the following two conditions

i) (|a| + |b|)h < 1, −b < a < 0,
ii) 0 < bh < 1, a ≥ 0,

implies the existence of γ < 0 such that every solution x : [µ− 2h,∞) → R to (1.1)satisfies
(3.1). (Moreover, this γ can be found explicitly in the way indicated by Remark 3.4).

PROOF. Let x : [µ − 2h,∞) → R be a solution of (1.1). Then for every parameter
α ∈ R, we have

x ′(t) = −ax(t)− bf (t, xt ) = −(a − α)x(t)− (b + α)f (t, xt )+ α(f (t, xt )− x(t)) .

Using the variation of parameters formula, we obtain

x(t) = e−(a−α)(t−µ)x(µ)+
∫ t

µ

e−(a−α)(t−s)
[−(b + α)f (s, xs)+ α(f (s, xs)− x(s))

]
ds

Now, in view of (1.2) and (1.5),

|x(t)| ≤e−(a−α)(t−µ)|x(µ)|
+

∫ t

µ

e−(a−α)(t−s)
[
|b + α| max

u∈[s−h,s] |x(u)| + |α|h max
u∈[s−h,s] |x

′(u)|
]
ds .

(3.3)

Introducing one more parameterβ by

x ′(t) = −(a − β)x(t)− (b + β)f (t, xt )+ β(f (t, xt)− x(t)) ,

we have

(3.4) |x ′(t)| ≤ |a − β||x(t)| + |b + β| max
s∈[t−h,t ] |x(s)| + |β|h max

s∈[t−h,t ] |x
′(s)| .

Finally, settingu(t) = |x(t)| andw(t) = |x ′(t)|, we can apply Proposition 3.3 to the
system of inequalities (3.3) and (3.4) withM = a − α, B = |b + α|, C = |α|h, D =
0, F = |a− β|, G = |b+ β|, H = |β|h. Hence we have the exponential stability if the real
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number

Ψ ∗ = minΨ (α, β) = min
α<a,|β|h<1

{
−(a − α)+ |b + α| + |α|h

1 − |β|h(|a − β| + |b + β|)
}

is negative. Therefore, it remains to calculate the above minimum value and to prove that it is
less than zero if either of the hypotheses of the theorem is satisfied.

Indeed, i) implies thath|a| < 1, and therefore

Ψ ∗ ≤ Ψ (−b, a) = −(a + b)(1 − h(|a| + |b|))
1 − |a|h < 0 .

Analogously, if−b < 0 ≤ a, then|b|h < 1 implies

Ψ ∗ ≤ Ψ (−b,0) = −(a + b)(1 − |b|h) < 0 .

This fact proves the sufficiency of the inequalitybh < 1 for the stability in the case−b <
0 ≤ a.

Notice also that we have required all constants in (3.2) to be positive. Therefore, even
if the minimal negative valueΨ ∗ of Ψ is achieved at a point(α∗, β∗), we need to consider
some other point(α̃, β̃) close to(α∗, β∗) in order to ensure the mentioned positivity and then
to use Proposition 3.3. For the same reasonD should be taken as an arbitrary small positive
number. With these reservations, we apply Remark 3.4 to calculate the convergence exponent
γ . �

At the first glance, Theorem 2.9 includes Theorem 3.5 as a partial case whena > 0.
However, the latter was proved under the assumptions (1.2) and (1.5) which are weaker than
the condition (1.3). Moreover, we have also got some results for the case ofa < 0. We also
particularly emphasize the simplicity in the use of the Halanay inequality.

4. Differential equations with maxima. Equation (1.7) has appeared in the sixties
in the theory of automatic control and morerecently it has been a subject of new studies (see,
for instance, [1, 3, 10, 16, 17 18, 21] and further references therein). In spite of its very simple
form the equation can exhibit a complicated (chaotic) behavior [17].

It was proved in [1] that (1.7) with periodicf (t), f (t) = f (t + T ), has at least one
T -periodic solutionq(t) for everya + b �= 0. It is easy to check that Theorems 2.9 and 3.5
and Corollary 3.2 can be applied to derive conditions for the global exponential attractivity
of this solution. In this way, for nonnegativea, we completely solve the stability problem for
(1.7) introduced earlier in several papers (see, e.g., references in [1, 16]):

THEOREM 4.1. Assume that a ≥ 0, b �= 0. Then (1.7)has a globally asymptotically
uniformly stable T -periodic solution for every T -periodic f (t) if and only if one of the fol-
lowing conditions is satisfied: (i) 0 < −b < a, or (ii) b > 0 and the pair (a, b) satisfies the
inequality (2.12),or (iii) a = 0 and 0< bh < 3/2.

PROOF. The sufficiency of conditions (i) and (ii) follows from Corollary 3.2 and The-
orem 2.9 respectively, and in the case (iii) we can use the Yorke theorem. Note that in the
casea < −b the trivial solution of (1.7) withf ≡ 0 is unstable (see [16] for details). If
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a = −b andf ≡ 0, it is obvious that any constant is a periodic solution of (1.7), and the
trivial solution cannot be asymptotically stable.

Finally, to prove the necessity of (ii) in the caseb > 0, we shall need the following
statement from [16]:

PROPOSITION 4.2. Let T > h and suppose that x∗(t) is a T -periodic solution of (1.7)
with exactly two critical points tmax, tmin over the period. Set x∗(τ (t)) = maxs∈[t−h,t ] x∗(s).
If x∗(t) has a nondegenerate maximum at the corresponding point tmax (that is x∗′′(tmax) �=
0), then the Poincaré map for the linear T -periodic variational equation v′(t) + av(t) +
bv(τ (t)) = 0 along x∗(t) has a unique non-zero characteristic multiplier χ and x∗(t) is an
exponentially stable (unstable) solution if and only if |χ | < 1 ( |χ | > 1).

Notice that the conditionx∗(τ (t)) = maxs∈[t−h,t ]x∗(s) determinesT -periodic function
τ (t) in a unique way except only one point over period (denoted asν below). Obviously,
this fact does not affect our construction. Next, in order to see why the variational equation
has such a form, one has to linearize (1.7) alongx∗(t) (or differentiate max functional at
pointsx∗

t ∈ C1, for more details see [16]). Without loss of generality we can assume that
tmax = 0, T > tmin = κ > 0. Thus necessarily there exists a pointν ∈ (κ, T ) such that
x∗(ν) = x∗(ν − h). Accordingly, the variational equation alongx∗(t) assumes the form

v′(t) =



−av(t)− bv(0) , 0 ≤ t < h ;
−av(t)− bv(t − h) , h ≤ t < ν ;
−(a + b)v(t) , ν ≤ t < T .

The explicit form of this equation allows us to calculate the characteristic multiplierχ . For
example, ifa = 0 and ν ≤ 2h,we can find thatχ = (1−bν+b2(ν−h)2/2) exp(−b(T −ν)).
If a �= 0 and ν ≤ 2h, then

χ = exp(−(a + b)(T − ν))

{
b2

a2 +
(

1 + b

a

)
e−a(ν−h)

[
e−ah − b

a
+ bh− νb

]}
.

Finally, to prove the sharp nature of condition (ii) of Theorem 4.1 we will use the fol-
lowing trick. Suppose that, for given(a, b), we can find aT -periodic smooth functionq(t)
such that it is an unstable solution of (1.7) for some perturbationfq(t). Then the functional
differential equation

v′(t) = −av(t)− bf (t, vt )

with f (t, vt ) = [maxs∈[t−h,t ](v(s)+q(s))−maxs∈[t−h,t ] q(s)] has the unstable zero solution,
while f (t, ϕ) satisfies (1.3). Therefore the pair(a, b) cannot belong to the stability domain
D indicated in Theorem 2.10. Proposition 4.2 gives us a possibility to construct such unstable
solutions, firstly by choosinga > 0, b > 0 to have|χ | > 1 and then by definingT -periodic
perturbation asfq(t) = q ′(t) + aq(t) + bmaxqt . Hence, the parameter values(0, b) such
that

ζ = sup
h≤ν≤2h, ν<T

|(1 − bν + b2(ν − h)2/2) exp(−b(T − ν))| > 1
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should be excluded from the stability domainD. Since we can manage the form of the solution
q(t) appropriately (fortunately, we can control its shape and therefore numbersν andT in the
formula forχ), we find that

ζ = sup
h≤ν≤2h

|(1 − bν + b2(ν − h)2/2)| = sup
0≤x≤bh

|(1 − bh− x + x2/2) |.

Analogously, ifa > 0, then

ζ = ζ(a, b) = sup
0≤z≤h

∣∣∣∣b
2

a2
+

(
1 + b

a

)
e−az

[
e−ah − b

a
− bz

]∣∣∣∣ ,
and the corresponding pair(a, b) should be excluded from the stability domainD if ζ(a, b) >
1.

In the case ofa = 0, it can be verified by a direct calculation thatζ < 1 if and only if
bh < 3/2. The casea > 0 is slightly more complicated. To study it, we need to examine
properties of the function

ψ(z) = b2

a2 +
(

1 + b

a

)
e−az

[
e−ah − b

a
− bz

]
, z ∈ [0, h] .

In the case of instability, as we have seen, necessarily one hasb > a (by Corollary 3.2) and
µ = exp(−ah)b−1 < h (since, by Corollary 2.8, we havebh > 1 > exp(−ah), once the
equation is unstable). Thereforeψ(0) < 1 andψ(z) → b/a > 1 asz → +∞. Furthermore,
ψ(z) has only one critical pointtc = µ ∈ (0, h), where it reaches its minimal value. The
mentioned properties ofψ(z) imply that

ζ = max

{∣∣∣∣b
2

a2 −
(

1 + b

a

)
e−aµ

b

a

∣∣∣∣ ,
∣∣∣∣b

2

a2 +
(

1 + b

a

)
e−ah

[
e−ah − b

a
− bh

]∣∣∣∣
}
.

Therefore, the boundary of the domainE = {(a, b)|a > 0, b > 0, andζ(a, b) > 1} in R2+ is
contained in the unionΓ1 ∪ Γ2 of the two curvesΓ1, Γ2 given respectively by

b2

a2 −
(

1 + b

a

)
e−aµ b

a
= −1

(
equivalently, by

a

b
exp(−ah) = ln

(
1 + a/b

1 + a2/b2

))

and

b2

a2
+

(
1 + b

a

)
e−ah

[
e−ah − b

a
− bh

]
= 1

(
equivalently, by b = 2a sinh(ah)

exp(ah)− 1 − ah

)
.

Since the domainD of the asymptotic stability found in Theorem 2.9 cannot contain any
part ofΓ1 or Γ2 inside, and it is also bounded byΓ1, we conclude thatζ > 1 if (a, b) ∈ Γ2,
and the boundary ofE in R2+ is preciselyΓ1. �

REMARK 4.3. Clearly, the exact nature of the conditions given in Theorems 2.9 and
2.10 follows immediately from this result.

REMARK 4.4. It is rather surprising that using only test functions of very special form
given in Proposition 4.2, we can derive the exact stability domain for (1.7) whena ≥ 0. We
can do the same in the casea < 0, indicating the “upper boundary" or “eventual stability
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domain"E for D. Clearly, we can expect thatE = D. In other words, our test functions are
“dense" to detect the exact stability conditions(however, in the latter case it looks like we
need to considerν > 2h).

5. Proof of Theorem 2.4 and Corollary 2.5.

PROOF OFTHEOREM 2.4. Assume that, on the contrary, (2.4) does not hold. Then
there is a solutionxt (ϕ) of some initial value problemxτ = ϕ such that for someτ∗ > τ + 2h
we have

‖xτ∗(ϕ)‖C > δ = max
s∈[τ,τ+2h] ‖xs(ϕ)‖C .

SetQ = {s > τ+2h | ‖xs(ϕ)‖C > δ} and considerτ1 = infQ ≥ τ+2h (so that‖xτ1(ϕ)‖C =
δ).

Letx(·) = x(·, ϕ) : [τ−h,+∞) → R be an “ordinary" solution defined asx(t+s, ϕ) =
xt (ϕ)(s), s ∈ [−h,0], t ≥ τ . We claim that necessarily there exists an interval∆ = (α, β) �
τ1 with β ∈ R∪{+∞} andτ+h ≤ τ1−h ≤ α ≤ τ1 such thatx(α) = x(β) = 0 andx(t) �= 0
for all t ∈ ∆.

Indeed, suppose that|x(t)| > 0 for all t ∈ [τ1 − h, τ1]. If, for example,x(t) > 0,
then by (1.3) we havef (σ, xσ ) ≥ 0 almost everywhere (a.e.) in some neighborhoodU of τ1.
This implies the inequalityx ′(σ ) < 0 for almost allσ ∈ U, contradicting the definition of
τ1. Hence such pointα exists. If the graph ofx(t) intersects the zero level for somet > α,

then we can chooseβ as the first zero. Ifx(t) > 0 for all t > α, then we havef (t, xt ) ≥ 0,
and thereforex ′(t) < 0 for all t ≥ α + h. Thusx(t) decreases monotonically towards some
nonnegative real numberc. In fact,c cannot be positive, since integrating (2.2) betweenα+h
andt we derive, by using the assumption(c), a contradiction:

x(t)− x(α + h) = −
∫ t

α+h
[g (s, x(s))+ b(s)f (s, xs)]ds

≤ −
∫ t

α+h
[g (s, x(s))+ b(s)c]ds → −∞ as t → +∞ .

(5.1)

Hence in this casex(+∞) = 0 and we can chooseβ = +∞. The case of negativex(t) can
be treated similarly. In the sequel, we will assume thatx(t) is positive atτ1. In the opposite
case, we can define the new variabley(t) = −x(t), and then it is sufficient to notice that all
the previous assumptions are still valid for the functional differential equation

x ′(t)+ g 1(t, x(t))+ b(t)f1(t, xt) = 0

with g 1(t, x) = −g (t,−x) andf1(t, x) = −f (t,−x).
LetM = maxt∈∆ x(t) = x(ξ) > 0, whereξ is the smallest real number having this prop-

erty. If, additionally, minxξ ≥ 0, then, by continuity ofx(t) and again by (1.3), we obtain that
x ′(t) < 0 in some two-sided neighborhood ofξ , a contradiction. Hence mins∈[ξ−h,ξ ] x(s) <
0, and therefore there exists an interval∆∗ = (α∗, β∗) with ξ − h < β∗ ≤ α and such that
x(t) < 0 for all t ∈ ∆∗ andx(α∗) = x(β∗) = 0 orα∗ = τ − h.
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Next, we notice that on the interval[α, ξ ], x(t) is a solution of the following initial value
problem:

x ′(t) = −g (t, x(t))+ h1(t) , x(α) = 0 ,

whereh1(t) = −b(t)f (t, xt ). Considering now the solutiony(t, α,M) of the comparison
equation

y ′(t) = −g (t, y(t))+ bM , y(α) = 0 , t ∈ [α, ξ ] ,
with bM ≥ b(t)(− minxt ) ≥ h1(t) = −b(t)f (t, xt ), we can conclude (see, e.g., comparison
Theorem 1.10.2 in [12, p. 43] established for the scalar Carathéodory equations), that

x(t) ≤ y(t) ≤ λ(M) = max
α∈R,s∈[α,α+h]

y(s, α,M) .

Evaluating the last inequality at the pointt = ξ , we have 0< M ≤ λ(M), and therefore
the inequality supz �=0 z

−1λ(z) < 1 implies (2.4). Also, sinceλ(M) < bMh, we conclude
thatbh ≤ 1 is sufficient to ensure (2.4). Hence, in the sequel we will consider only the case
bh > 1

In the next stage of the proof, givenζ ∈ R, we consider the initial value problem

(5.2) v′(t) = −g (t, v(t))− bv(t − h) , t ≥ ζ , v(s) = −M for any s ∈ [ζ − h, ζ ] .
Obviously, the solution of (5.2) strictly increases until its possible intersection with the real
axis at some pointζ + ∆ζ, ∆ζ > 0. We claim that∆ζ < h. Indeed, using the method of
steps on the first interval[ζ, ζ + h], we have

v′(t) = −g (t, v(t))+ bM , v(ζ ) = −M .

Therefore, sincebh > 1,

v(ζ + h) ≥ v(ζ )+ bMh > 0 , v′(ζ +∆ζ) > 0 ,

which proves our claim. This last observation shows that, forα given above, we can findζ
such thatα = ζ + ∆ζ . Or, in other words, there existsζ < α such that the solution of (5.2)
is negative and nondecreasing on the intervalΣ = [ζ − h, α), andv(α) = 0. We claim
thatx(t) > v(t) for t ∈ Σ. This inequality holds trivially on the interval[ζ − h, ζ ], since
|x(t)| < M for all t ∈ [τ, ξ). Suppose now thatx(m) = v(m) at some pointm ∈ (ζ, α) ⊂
(ζ, ζ + h) andx(t) > v(t) whent ∈ [ζ − h,m). Next, by comparing solutions of the initial
value problems

v′(t) = −g (t, v(t))+ d2(t) , v(m) = x(m) , d2(t) = −bv(t − h)(= bM) , t ≥ m ;
x ′(t) = −g (t, x(t))+ d1(t) , x(m) = v(m) , d1(t) = −b(t)f (t, xt ) < d2(t) , t ≥ m ,

we obtain, again by using the comparison results (see also [20, Theorem 5.III]), thatx(t) <

v(t) whent ∈ (m, α]. Finally,x(α) < v(α) = 0, a contradiction.
Now, considering extensions of solutions of equations (2.2) and (5.2) (or, which is the

same, (2.3)) to the interval(α, α + h) in the form of the Cauchy problems

v′(t) = −g (t, v(t)) + d2(t) , v(α) = 0 , d2(t) = −bv(t − h) , t ≥ α ;
x ′(t) = −g (t, x(t))+ d1(t) , x(α) = 0 , d1(t) = −b(t)f (t, xt ) ≤ d2(t) , t ≥ α ,
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we conclude thatx(t) < v(t) for t ∈ I = (α, β) ∩ (α, α + h) (notice also thatd2(t) > d1(t)

for small|t − α|).
HenceM is less than the maximal valuer(ζ,M) of the solutionv(t) considered on the

intervalI . This contradicts to the assumption(f). �

PROOF OF COROLLARY 2.5. Givens ∈ R, consider solutionx(t) on the interval
[s−h, s+2h]. Letζ ∈ [s, s+2h] be a point of local maximum such that|x(ζ )| > M = ‖xs‖C .
Proceeding as in the proof of Theorem 2.4, we claim the existence of someα ∈ [ζ − h, ζ ],
andβ > α such that: i)|x(t)| > 0 for all t ∈ Π = (α, β) ; ii) x(α) = 0; and iii) either
x(β) = 0 or β = s + 2h. Moreover, without loosing the generality, we can assume that
N = maxt∈Π x(t) = x(α + δ) > 0 (so thatN > M1 = maxt≤α |x(t)| ≥ M).

Now, considering (2.2) on the interval(α, α + δ) and again applying the comparison
method, we obtain thatM1bδ ≥ N > M1, and thereforebδ > 1. Hence, on the interval
[s, s + 2h] there exists only a finite number of points likeα + δ. Let us numerate them in
the increasing order asαi + δi, 1 ≤ i ≤ k, and introduce the notation|x(αi + δi)| = Ni .
Obviously

∑
δi < 3h, and we complete the proof of the corollary by noting that

max
t∈[s,s+2h] |x(t)| = max

i=1,...,k
Ni ≤ M

∏
(bδi) ≤ M

(
b

∑
δi

k

)k

≤ M

(
3bh

k

)k
≤ M exp(3e−1bh) .

�

6. Proof of Theorem 2.6 and Corollary 2.7. The idea of proof of Theorem 2.6 is
close to that of Theorem 2.4. However, it contains a significant number of essentially different
details. Rather than to refer the reader to the proof of Theorem 2.4 for similar details, we think
it is more appropriate and convenient to present the proof in complete details in this Section.

PROOF OFTHEOREM 2.6. Assume that, on the contrary, (2.6) does not hold. Then
there is a solutionxt (ϕ) of some initial value problemxτ = ϕ such that at some pointτ∗ ≥
τ + 3h+ µ we obtain

‖xτ∗(ϕ)‖C > qM = q max
s∈[τ,τ+3h+µ] ‖xs(ϕ)‖C .

SetQ = {s > τ + 3h+ µ | ‖xs(ϕ)‖C > qM} and considerν = infQ ≥ τ + 3h+ µ (so that
‖xν(ϕ)‖C = qM or ν = τ + 3h+ µ, ‖xν(ϕ)‖C > qM).

Letx(·) = x(·, ϕ) : [τ−h,+∞) → R be an “ordinary" solution defined asx(t+s, ϕ) =
xt (ϕ)(s), s ∈ [−h,0], t ≥ τ . Note that there exists a pointτ0 ∈ T ∗ = [ν − µ − h, ν] ⊂
[τ + 2h, ν] such that|x(τ0)| < qM. Indeed, if, for example,x(t) ≥ qM for all t ∈ T ∗ then,
by (d),

−x(ν)+ x(ν − µ) =
∫ ν

ν−µ
(g (s, x(s))+ b(s)f (s, xs))ds

≥
∫ ν

ν−µ
(g (s, x(s))+ b(s)minxs)ds > M(1 − q) .



FUNCTIONAL DIFFERENTIAL EQUATIONS 291

Finally,x(ν − µ) > M(1 − q)+ x(ν) ≥ M, a contradiction.
Hence, we deduce the existence ofτ1 ≥ τ + 2h such that: (i)‖xt (ϕ)‖C ≤ M for all

t ∈ [τ, τ1]; (ii) ‖xτ1(ϕ)‖C = Mq; and (iii) ‖xt (ϕ)‖C > Mq in some right neighborhood of
τ1.

Now, we claim that necessarily there exists an interval∆ = (α, β) � τ1 with β ∈
R ∪ {+∞} andτ + h ≤ τ1 − h ≤ α ≤ τ1 and such thatx(α) = x(β) = 0 andx(t) �= 0 for
all t ∈ ∆.

Indeed, suppose that|x(t)| > 0 for all t ∈ [τ1 − h, τ1]. If, for example,x(τ1) > 0, then
by (1.3) we havef (σ, xσ ) > 0 in some open interval containingτ1. Thereforex ′(σ ) < 0
for σ close toτ1, which contradicts the property (iii) ofτ1. Hence such pointα exists. If
the graph of solutionx(t) intersects the zero level for somet > α, then we can takeβ as
the zero. Ifx(t) > 0 for all t > α, then we havef (t, xt ) ≥ 0, and thereforex ′(t) < 0 for
all t ≥ α + h. Thus,x(t) decreases monotonically towards some nonnegative real number
c. In fact, c cannot be positive, since integrating (2.2) betweenα + h andt , we get, by the
assumption(d), the contradiction (5.1). Hence in this casex(+∞) = 0, and we can take
β = +∞. The case of negativex(t) is treated similarly. In the sequel, we will assume that
x(t) is positive atτ1. In the opposite case, we can define new variabley(t) = −x(t) and apply
the same arguments to the functional differential equation

x ′(t)+ g 1(t, x(t))+ b(t)f1(t, xt) = 0

with g 1(t, x) = −g (t,−x) andf1(t, x) = −f (t,−x).
Hence, we haveqM < N = maxt∈∆ x(t) = x(ξ), whereξ is the smallest real num-

ber having this property. If minxξ ≥ 0 then, by continuity ofx(t) and by (1.3), we have
x ′(σ ) < 0 almost everywhere in some open interval containingτ1, a contradiction. Hence
mins∈[ξ−h,ξ ] x(s) < 0, and therefore there exists an interval∆∗ = (α∗, β∗) with ξ − h <

β∗ ≤ α such thatx(t) < 0 for all t ∈ ∆∗ andx(α∗) = x(β∗) = 0 orα∗ = τ − h.
Notice next that on the interval[α, ξ ], x(t) is a solution of the following initial value

problem:

x ′(t) = −g (t, x(t))+ h1(t) , x(α) = 0 ,

whereh1(t) = −b(t)f (t, xt ). Considering now the solutiony(t, α,M) of the comparison
equation

y ′(t) = −g (t, y(t))+ bM , y(α) = 0 , t ∈ [α, ξ ] ,
with bM ≥ b(t)(− minxt ) ≥ h1(t) = −b(t)f (t, xt ), we conclude that

x(t) ≤ y(t) ≤ λ(M) = max
α∈R,s∈[α,α+h]

y(s, α,M) .

Evaluating the last inequality at pointt = ξ , we have 0< Mq < N ≤ λ(M). Therefore,
the inequalityM−1λ(M) ≤ q, M �= 0, implies (2.6). Also, sinceλ(M) < bMh, we conclude
thatbh ≤ q < 1 is sufficient for the stability of equation (2.2). Hence, in the sequel we will
consider only the casebh ≥ 1.
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In the next stage of the proof, givenζ ∈ R, we consider the initial value problem

(6.1) v′(t) = −g (t, v(t))− bv(t − h) , t ≥ ζ , v(s) = −M for any s ∈ [ζ − h, ζ ] .
Obviously, a solution of (6.1) strictly increases until its possible intersection with the zero
level at some pointζ + ∆ζ, ∆ζ ≥ 0. We claim that∆ζ < h. Indeed, using the method of
steps we have

v′(t) = −g (t, v(t)) + bM , v(ζ ) = −M
on the first interval[ζ, ζ + h]. Therefore, sincebh ≥ 1,

v(ζ + h) > v(ζ )+ bMh ≥ 0 , v′(ζ +∆ζ) > 0 ,

which proves the claim. This last observation shows that, givenα, we can findζ such that
α = ζ +∆ζ . Or, in other words, there existsζ < α such that the solution of (6.1) is negative
and increasing on the intervalΣ = [ζ − h, α), andv(α) = 0. We claim thatx(t) ≥ v(t)

for t ∈ Σ. This inequality holds trivially on the interval[ζ − h, ζ ] since|x(t)| ≤ M for all
t ∈ [τ, ξ). Suppose now thatx(m) < v(m) at some pointm ∈ (ζ, α) ⊂ (ζ, ζ + h). Next,
while considering solutions of the following initial value problems

v′(t) = −g (t, v(t))+ d2(t) , v(m) > x(m) , d2(t) = −bv(t − h)(= bM) , t ≥ m ;
x ′(t) = −g (t, x(t))+ d1(t) , x(m) < v(m) , d1(t) = −b(t)f (t, xt ) ≤ d2(t) , t ≥ m ,

we get, again by the comparison results from [12, 20], thatx(t) < v(t) when t ∈ (m, α].
Finally,x(α) < v(α) = 0, a contradiction.

Now, considering prolongations of solutions of equations (2.2) and (6.1) (or, which is the
same, (2.3)) on the interval(α, α + h) in the form of the Cauchy problems

v′(t) = −g (t, v(t)) + d2(t) , v(α) = 0 , d2(t) = −bv(t − h) , t ≥ α ;
x ′(t) = −g (t, x(t))+ d1(t) , x(α) = 0 , d1(t) = −b(t)f (t, xt ) ≤ d2(t) , t ≥ α ,

we conclude thatx(t) ≤ v(t) for t ∈ I = (α, β) ∩ (α, α + h).
HenceN does not exceed the maximal valuer(ζ,M) of the solutionv(t) on the interval

I . SinceN > Mq, this fact contradicts to the assumption(e). �

PROOF OFCOROLLARY 2.7. First of all, we notice that (2.6) implies the inequality

‖xt‖C ≤ max
u∈[s−h,s+2h+µ]

|x(u)| exp(−γ (t − (s + 2h+ µ))) , t ≥ s .

Therefore, by Theorem 2.4 and Corollary 2.5, we conclude that

‖xt‖C ≤ max
u∈[s−h,s+2h] |x(u)| exp(−γ (t − (s + 2h+ µ)))

≤ max
u∈[s−h,s] |x(u)| exp(3e−1bh) exp(γ (2h+ µ)) exp(−γ (t − s)) , t ≥ s .

To derive the final estimate it is sufficient to make use of the following inequality

exp(γ (2h+ µ)) =
(

1

q

)(2h+µ)/(4h+µ)
< 1/q .

�
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7. Proof of Corollary 2.8. This section contains some calculations necessary for the
proof of Corollary 2.8. Here we will use the notation from Section 2 introduced before the
assumption(e). First, the comparison result implies that the solutionx : [ζ, α] → R of (2.3)
is greater than or equal to the solutiony : [ζ ′, α] → R of the equation

y ′(t) = −cy(t)+ bM, t ≥ ζ ′ ≥ ζ , y(s) = −M , s ≤ ζ ′ ,

whereζ ′ is chosen to satisfyy(α) = 0. Since every comparison system here is autonomous,
we can setζ ′ = 0. This givesx(t) ≥ −M for t ≤ 0 and

(7.1) x(t) ≥ y(t) = M

[
b

c
− b + c

c
exp(−ct)

]
, t ∈ [0, α] , where α = 1

c
ln
c+ b

b
.

Notice thatα ≤ h because ofbh ≥ 1. Next, it is easy to see that the solutionx : [α, h] →
R does not exceed the solutionz : [α, h] → R of the initial value problem

z′(t) = −az(t)+ bM , z(α) = 0 .

Integrating this equation, we have

x(h) ≤ z(h) = M
b

a

[
1 − exp

(
−ah+ a

c
ln
c + b

b

)]
.

Finally, on the interval(h, α + h) we havex(t) ≤ w(t), wherew(t) is the solution of the
initial value problem

(7.2) w′(t) = −aw(t)− by(t − h) , w(h) = z(h) ,

andy(t) is defined by (7.1). Integrating (7.2), we obtain

w(t) = Ce−at +M

[
b(c+ b)

(a − c)c
e−c(t−h) − b2

ca

]
,

where

C = b

a
M

[
eah

c + b

c − a
−

(
1 + c

b

)a/c]
.

Notice thatC > 0, since it can be represented as the sum of three positive numbers:

C = M exp(ah)

[
b

a

(
1 − exp

(
−ah+ a

c
ln
c + b

b

))
+ b2

ca
+ b(c+ b)

c(c − a)

]
.

Now, the unique critical pointξ of w(t) (its explicit expression is given before the statement
of Corollary 2.8) can be found by solving the equationw′(ξ) = −aw(ξ) − by(ξ − h) = 0.
Moreover,ξ ∈ (h, α + h], since

w(h) = z(h) > 0, w(+∞) < 0 , and w′(h) = Mb exp

(
−ah+ a

c
ln
c + b

b

)
> 0 ,

and

w′(α + h) = −aw(α + h)− by(α) = −aw(α + h) ≤ 0



294 A. IVANOV, E. LIZ AND S. TROFIMCHUK

(note thatw(t) has at least two critical points in the casew(α + h) < 0, w′(α + h) > 0).
Therefore, we have

r0(ζ,M) = max
t∈(α,α+h)

x(t) ≤ w(ξ) = −b
a
y(ξ − h) .

By applying the symmetry argument, we also find that

r1(ζ,M) ≤ −b
a
y(ξ − h) = M

b

a

{(
1 + b

c

)
e−cξ+ch − b

c

}
.
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