Tohoku Math. J.
54 (2002), 277-295

HALANAY INEQUALITY, YORKE 3/2 STABILITY CRITERION,
AND DIFFERENTIAL EQUATIONSWITH MAXIMA

ANATOLI IVANOV, EDUARDO LIz AND SERGEI TROFIMCHUK

(Received June 19, 2000, revised January 29, 2001)

Abstract. We present an extension of the well-knowf23stability criterion by Yorke
for two term functional differential equations. a¥rove the exact nature of the obtained sta-
bility region which coincides with the Yorke result in the special case when the decay term
is absent. Moreover, we reveal some interesting links existing between the Yorke conditions,
Halanay inequalities and differential equations with maxima, all of them essentially involving
the maximum functionals.

1. Introduction. It can be observed that several important approaches in the stability
theory of delay differential equations of the form

(1.1 X' +ax@)+bf(t,x)=0, teR, (x(s)=x(t+5s),se[-h0],

involve the maximum functional max_n.o; ¢ (s) on the spac& := C([—h,0],R) in an
essential and subtle way which sometimes is far away from the simple use sipHnerm
relations like

(1.2) Lt x0)| < llxllc = max|x| .

To be more specific, we mention the Barnea’smet[2] and the following two remarkable
advances of the late sixties. The first one is the Halanay inequality and its various applications
(see [7] and Section 3 of the present paper), and the second one is a version by Yorke of the
3/2-stability criterion (see [24] and Section 2 below). For example, the 3/2 criterion says that
if f:Rx C — Riscontinuousqg = 0,0 < bh < 3/2, and the following Yorke condition

(1.3 ming = —max(—¢) < f(t, ) < max¢

is satisfied, then the trivial solution of (1.1) is uniformly asymptotically stable. Moreover,
the constant R gives the exact upper bound fek. Notice that the bifurcation character of

this number was already indicated by Myshkis [10] for linear delay differential equations. An
important contribution by Yorke was in the extension of the Myshkis criterion to nonlinear
systems for the nonlinearities that can be appropriately majorized by maximum functionals.
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On the other hand, by applying to (1.1) the method of the Halanay inequality
1.4 x'(t) +ax() +bmaxx; <0,

with its various generalizations, one can even more relax the Yorke condition (1.3), requiring
only (1.2) together with the following additional assumption introduced in [14]:

(1.5 | f(t,9) — p(0)| < hmax|¢’| foranyte R and ¢ ¢ Cl—h,0].

As a result, the global exponential stability of the trivial solution always follows.

The Halanay and Yorke theorems were sag of a number of subsequent studies and
improvements, so that it would be impossible to give here a complete list of corresponding
references. We list only several most relevant papers [5, 6, 9, 11, 13, 15, 22, 23] (some
additional relevant references can be found in [3, 8]) together with recent papers [14, 16, 19]
by the authors.

Both results mentioned above provide a strong indication that it is the differential equa-
tions with “maxima” (f (¢, ) = max¢) rather than the linear oneg (¢, ¢) = ¢ (—h)) that
represent natural comparison systems in the stability theory of quasilinear functional differ-
ential equations. Let us demonstrate this idea by using the simple equation

x'=—b max x(s),
seft—1,¢]
which can be viewed as a comparison equation for (1.1), (1.3) avith 0. By the Yorke
theorem, this equation is uniformly asymptotically stable #® < 3/2. This fact by itself
does not have much interest, since one can easily prove (see [16]) that the above equation is
actually asymptotically stable for all > 0. In Section 4 we point out a strong connection
between the number 3/2 and the nonhomogen&epsriodic differential equation
(1.6) x'=—-b max x(s)+ ().
seft—1,¢]
In fact, a family of variational equations can hesociated with the periodic problem (1.6),
and the numbeb = 3/2 is determined completely by trepectrum of this family. In par-
ticular, we will show that (1.6) has a globally exponentially stablperiodic solution for
every T-periodic forcing termf (¢) if and only if b € (0, 3/2). We notice again that for the
corresponding linear equation

xX'=—bx(t =D+ f(),

the number 32 is not basic at all (the equation is asymptotically stable fer & < 7/2).

Our paper reveals, for the first time we believe, this new aspect of the theory of equations
with maxima (see Section 4 for details and more references about this type of delay systems).
Moreover, now we are in a position to deduce a whole familp@att Yorke type stability
criteria for more general systems (see Theorems 2.9 and 2.10 below).

In the present paper we establish various sufficient conditions for the global exponential
stability of the zero solution for equations like (1.1). Moreover, we present explicit conver-
gence estimates in the case of such stability. We point out a sharp and sometimes exact nature
of the obtained results. Finally, a basic feature of the paper is in a special emphasis we put
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on the links existing between the following three objects: the Yorke type equations (1.1),
(1.3), the Halanay inequality (1.4) with its generalizations, and the differential equations with
maxima

1.7) x' () +ax(®) +bmaxx, = f(t).

The paper is organized as follows. In Section 2 we present our main stability results
(Theorems 2.4 and 2.6 with corollaries), whose proof can be found in Sections 5—-7. Section 3
deals with the Halanay-type inequalities, while Section 4 is devoted to equations with maxima
of the form (1.7). The results of the third and fourth Sections are of crucial importance in the
proof of Theorems 2.9 and 2.10.

2. Stability criteria. The main results of this section concern gquestions like the fol-
lowing one: for what values of the nonnegative parametess ||a(t) || andb = ||b(t)|loo
the functional differential equation

(2.1) xX'@®) +a®)x@)+b®)x(t—h)=0, t,xeR,

with nonnegative coefficient(s) is uniformly asymptotically stable? In some cases it is pos-
sible to get a satisfactory answer by comparing the nonautonomous equation with the corre-
sponding linear autonomous equation obtaingddplacing the coeffigints by their limiting
values. This is precisely the case wlign) < 0, as the following result proved in [4] shows:

ProPOSITION 2.1. Assume that (2.1) with bounded a, b € C(R,R), b(t) < Ois
uniformly asymptotically stable. Then, for any bounded continuous c(¢) such that |c(z)] <
—b(t), the equation x'(¢) + a(®)x(r) + c(t)x(t — h) = 0 is also uniformly asymptotically
stable.

Whenb(t) > 0, this comparison principle does not apply. This fact was first pointed out
by A. Myshkis fora = 0, h = 1. He also showed that the “limit" value ¢b(7) || is 3/2,
which is less thamr /2 suggested by the analysis of the corresponding autonomous equation
(see [8, 10]). Therefore, in general, theatog of Proposition 2.1 is not valid for the case
b(t) > c(¢r) > 0. A different approach is needed, and we present it below. Our methods allow
us to describe the exact stability domains in the parameter space in several important cases.
Our main results concern the stability of the functional differential equation

(22) X))+ g, x@))+b@)f(t,x) =0, teR, (x(s)=x(t+s),se[—h0],

wherex; € C = C[—h,0]with h > 0 andb € L*(R, Ry). In many situations modeled by
(2.2), the coefficienb(r) subject to O< b(¢r) < b can be viewed, for instance, as a control
implied by an external observer, while the internal structure of the system is described by
some ‘hidden’ continuous functionadsz, x), 1 (¢, ¢).

We will also assume that only the upper boung ess sup.g b(¢) is known and that the
continuous and ‘almost linear’ functiongkz, ¢) satisfies the Yorke condition (1.3). Regard-
ing the nonlinearityy (¢, x), we will consider the following sequence of hypotheses:

@ x-g@t,x)>0forall x #0;
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(b) ¢ : R?> > Ris a Carathéodory function, and the equatidr- ¢ (7, x) = h(r) has
a unique (local) solution for every initial value problem and for every locally integratbe

(© f,:°° b(s)ds = oo or[t;roo lg (s, h(s))|ds = oo for eachry and for every continuous
function# : [fo, +00) — Rsuch thating, |A(7)| > 0.
We will also use the following condition implyin):

(d) There exisiu > 0 andg € (0, 1) such that

t+p
inf [Mﬁlg (s, h(s)) +gb(s)lds >1—gq

teR J;
for everyM > 0 and for every continuous function: R — R such thati(t) > ¢M. The
same condition holds if we takg, (¢, x) = —g(¢, —x) instead ofg (¢, x).

REMARK 2.2. It should be noted th4d) is satisfied if infcr ft’“‘ b(s)ds > 0 for
someup > 0 (see a dynamical interpretation of this inequality in [19]). Also, within our
approach, conditions like ess $g@h*1 ,’+h b(s)ds < b can be considered in place of ess
SURcrb(t) < b.

Before presenting the last two hypotheses, we have to introduce several notations. Let
b= ||blle = kY and¢ € R be fixed. Then, bya), for the solutiont (r) of

23) X ()=—g@t,x(®)—bx(t—h), t>¢, and x(s)=-M <0, s<¢,

we can findx € [¢, ¢ + h] such thati}x(r) < 0on[¢, @); ii) x(a) =0, x'(a) = bM > O;
i) x(t) > Oforallt € I = (o, B) C (o, @ + h), wheref is assumed to be the maximal num-
ber having this property. Defing(¢, M) = max<;x (7). Next, since the functiog (¢, x) =
—g(t, —x) retains all stated above propertiesgdf, x), we can find the corresponding func-
tionr1(¢, M) in an analogous way. Finally, set;, M) = maxro(¢, M), r1(¢, M)}.

Now, we are able to state our last two assumptions:

(€ bh<gq <1lorbh>1andM1r(¢, M) < g < 1forsomeyandallM > 0,¢ € R.

(f) bh<2lorbh>1landM 1r(z,M)<1forallM >0, ¢ € R.

RemARK 2.3. If both(d) and (e) hold with differentg andg’, then they are also
satisfied with the samg@” = max(q, ¢’} € (0, 1). It is sufficient to prove this remark only
for (d), the casde) being obvious. We note first that the inequality(@) holds also for every
continuous functiorh : R — R such thati(r) > ¢”M > gM. Then replacing; by the
q"” > ¢ in the same inequality, we will decrease the right-hand side, while the left hand side
of the expression will be increased.

Now we are in a position to state the main theorems of the paper.

THEOREM 2.4. Assume (1.3) and the hypotheses (a), (b), (c), (f). Then, for every
solutionx : [t — h, o0) — R of (2.2) one has

(2.4) [x(@®)] < max |x(s)| forall t>1.
s€[t—h,t+2h]
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COROLLARY 2.5. Under the conditions of Theorem 2.4, the zero solution of (2.2) is
uniformly stable and

(25) Ixllc < expBbhe Hllxsllc, >s.
Replacing(c), (f) by stronger assumptioifd), (€), we obtain the exponential stability:
THEOREM 2.6. Assume (1.3) and the hypotheses (a), (b), (d), (€). Then, for every
solutionx : [t — h, o0) — R of (2.2) one has

(2.6) x(®)| <gq max |x(s)] forall t>1+3h+pu.
s€[t—h,7+3h+u]

We can write (2.6) in a more usual form by introducing the constant

Ing
— >
w+4h

COROLLARY 2.7. Under the assumptions of Theorem 2.6 the inequalities (2.4) and
(2.6) are satisfied together with

1
2.7) lxellc < 5exp(szahe*)nxs||c exp—y(t —s)), 1>s.

Therefore, the zero solution of (2.2) is globally exponentially and uniformly stable.

Consider the important particular case when the funcgignx) is continuous and lo-
cally Lipschitz inx and satisfies the inequalities

(2.8) O<ax?< g, x)x < cx? forall (¢,x) e R?

for some fixed O< a < ¢ (for example, one can think here of the cage, x) = a(s, x)x
witha <a(t,x) <c, t €R).

Notice that in this cas€a), (b), (¢), (d) hold in an obvious way and we only need to
check either conditioife) or condition(f). A direct calculation (see Section 7 for details)

shows that
b b b
e < w2 { (14 2) e ),
a C C

where
1 | b+o)/(c—a)

n .
c—a (b+c)/(c—a)—e (14 c/b)a/c

Therefore, we have the following result:

E=h+

COROLLARY 2.8. Assumethat function g (¢, x) is continuous and locally Lipschitzin
x and satisfies inequalities (2.8) together with
bh <1 or
(2.9)

X . _ ,—ah ajc . 2

1 < ph and 1 In(b+c)/(c a)—e “"(1+4c/b) S1Inac+b
c—a b+0o)/(c—a) ¢ bc+b?

for some fixed 0 < a < ¢. Then the zero solution of (2.2) is uniformly stable for every

0 < b(r) < b and every continuous functional f(z, ¢) satisfying (1.3). Moreover, it is
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uniformly exponentially stable if the sign of the strict inequality < in (2.9)is replaced by <,
and the non-strict inequalities < arereplaced by <.

Obviously,g (t, x) = ax whena = c. In this case (2.2) becomes
(2.10 X@) +ax@)+b@®)f(t,x) =0, teR,
and the inequality (2.9) takes the following “limit" form:

1+a/b
14 a?/b?

The following two theorems show to what extent this sufficient condition is sharp.

(2.11) %exp(—ah)zln< ) a>0, b>0.

THEOREM 2.9. Leta > 0,b > 0. Then the zero solution of (2.10)is globally ex-
ponentially uniformly stable for every continuous functional f (¢, ¢) satisfying (1.3) and for
every O < b(r) < b if and only if the point (a, b) belongs to the domain D c R? given by

1+a/b
1+ a?/b?

In the limit case, when the poitit, ) belongs to the bounda@D of the domainD of
asymptotic stability, we still have the uniform stability:

(2.12) %eXQ—ah)>|n( ), a>0, b>0.

THEOREM 2.10. Leta > 0,b > 0. Then the zero solution of (2.10) is uniformly
stable for every continuous functional f (¢, ¢) satisfying (1.3) and for every 0 < b(¢) < b if
and only if the point (a, b) belongs to the domain D U aD given by (2.11) Moreover, every
solution x : [t — h, +00) — R of (2.10)satisfies inequality (2.4).

The sufficiency part of these two theorems is a consequence of Corollary 2.8, while the
necessity will be proved in Section 4.

REMARK 2.11. Considering the case of general (not necessarily positive)and
applying the Halanay inequality (see Section 3), we will also show that the necessary and
sufficient condition for the zero solution of (2.10) to be globally exponentially uniformly
stable [resp. uniformly stable] for every continuous functiofi@l ¢) satisfying (1.3) and for
every|b(1)| < bis|b| < a [resp.|b| < a].

Theorems 2.9 and 2.10 give an immediate extension of fes@ability criterion by
Yorke [24]. In fact, by indicating the exact stability domain we obtain a family of tj& 3
type stability conditions. If: > 0, the correspondingxact upper bound, for ||b(t)|lo Can
be found from (2.12). Moreover, the Yorke theorem corresponds to the limithgase3/2.
Indeed, the inequality & » < 3/2 is the limit form of (2.12) aa — 0+, so that the closure
of D intersected with the axis = 0 gives the Yorke stability intervg0, 3/2].

Finally, we note that the Grossman report [5] contains a proof of the sufficiency of (2.11)
for the uniform stability as well as the corresponding result for the uniform asymptotic stabil-
ity in (2.10). The result was partially announced in [8], however, it was never published and
remained hardly accessible and largely unknown. The sharp nature of the condition (2.11)
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was not established. This exactness is a new and essential aspect in the statements of Theo-
rems 2.9 and 2.10. Grossman also constructed an example showing that in thé cade

(2.2) can lose its stability even under the assumpt{ahgb), (c) and (1.3). Thus, with some
reservations, we can say that the conditi(@sand(f) are necessary to ensure the stability.

3. Halanay inequalities. The inequalities (1.3) suggest that the scalar equation with
maxima (1.7), or the Halanay inequality (1.4), can be considered as the comparison systems
for (2.10).

We begin this section by recalling the original result of Halanay (see, for instance [7, p.
378] or [3, Lemma 1.4.6]).

ProPOSITION 3.1. Letx : [u — h, 00) — [0, 0o) be a continuous function such that
(1.4)issatisfiedfor t > . Ifa > —b > 0, then

x(¢) < [maxx,Jexply(t —w)) for t>pu,
where y < Oisthelargest real root of the equation A + a = |b| exp(—Ah). Moreover, y =0
onlyifa = —b.

For (2.10), the Halanay Lemma applies even wlfén x;) satisfies only the sublinear-
ity condition (1.2), which is considerably weaker than (1.3). Here, a direct application of
Proposition 3.1 gives:

COROLLARY 3.2. Supposethat the continuous functional f satisfies (1.2) and

esssupb(t)|=b <a.
teR

Then every solution x (¢) of (2.10)satisfies

3.1) ()] < [max|x,|Jexpy (t — ), 12 p,

where y < Oisthelargest real root of the equation A + a = bexp(—Ah). Notethat y = 0
onlyifa = b.

Various generalizations of the Halanay Lemma to systems of vector inequalities can be
found in [3, 13, 14]. Below we present a version of this result from ([14, Theorem 2.1]) for a
two-dimensional case:

PROPOSITION 3.3. Supposefunctionsu, v : [u—h, +00) — R satisfy thefollowing
system of inequalities:

t
ut) < e MWy ) + / e M=) (B maxu, + Cw(s) + D maxw;)ds ,

m
w(t) < Fu(t) + Gmaxu; + Hmaxw;, t>u.

(3.2)

where all the coefficients are positiveand H < 1. Then thereexists § < 0 such that
u(t) < [maxu,|expd( —w)); w() < [maxw,|expé —w), t=u
ifandonlyif ¥ = —M + B4 (C+ D)(F +G)(1— H)™1 < 0.
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REMARK 3.4. The best value of above is equal to md(H)/h, A} < 0, wherei
is the maximal real root of the characteristic equation

(C + De ) (F + Ge™*h)
1— He M

In order to apply Proposition 3.3 to equation (2.10) the sublinearity condition (1.2) alone
is not sufficient, so we will use the additional assumption (1.5). The Yorke condition (1.3) is
also sufficient for our purposes here, since it implies (1.5) together with (1.2). However, the
inverse implication is not valid at all (e.g., check all relations witlp) = min{||¢|lc, ¢(0) +
lo(=h/2) — p(=)I}).

Let us illustrate how our idea applies to (1.1):

A+ M — Be M — =0.

THEOREM 3.5. Suppose that the continuous functional f satisfies (1.2) and (1.5).
Then either of the following two conditions

i) (al+|bDh <1, —b <a <0,

i) 0<bh<1l a>0,
impliesthe existence of y < 0 such that every solution x : [u — 2k, c0) — Rto (1.1)satisfies
(3.1). Moreover, this y can be found explicitly in the way indicated by Remark 3.4).

PROOFE Letx : [u — 2h,00) — R be a solution of (1.1). Then for every parameter
a € R, we have

x'(1) = —ax(t) = bf (t, x;) = —(a —a)x(t) = (b + o) f(t, x)) +a(f({t,x) —x(1).

Using the variation of parameters formula, we obtain

t
x(t) = e~y () 4 / e~ @D (b + ) £ (5, x5) + a(f (s, x5) — x(5))] ds
"

Now, in view of (1.2) and (1.5),

lx ()] <e™ @O x ()]

(3.3) ' /
+/ e~ @) 1p 4 o] max |x(u)|+ |elh max |x )| |ds.
M u€els—h,s] uels—h,s)]

Introducing one more parametgiby
x'(t) = —(a = B)x(t) — b+ B) f(t, x) + B(f(t, x1) — x(1)),
we have

(3.4 X' (O] < la—=Bllx@] + b+ Bl max |x(s)|+[Blh max [x'(s)].
s€[t—h,t] se€lt—h,t]

Finally, settingu(r) = |x(#)| andw(r) = |x'(z)|, we can apply Proposition 3.3 to the
system of inequalities (3.3) and (3.4) with = a —«, B = |b+ «a|, C = |alh, D =
0, F=la— 8|, G=1|b+ 8|, H=|B|h.Hence we have the exponential stability if the real
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number
||
1-1Blh
is negative. Therefore, it remains to calculate the above minimum value and to prove that it is
less than zero if either of the hypotheses of the theorem is satisfied.
Indeed, i) implies thak|a| < 1, and therefore

Ut < W(—ba)= +b>(11 _Ihl(f|la| +16D) o
—|a

Analogously, if—b < 0 < a, then|b|h < 1 implies
U* < (=b,0)=—(a+b)(1—|blh) <O0.

U* =min¥ (o, ) = min {—(a—O{)+|b+Ol|+
a<a,|Blh<l

(la =Bl + |b+ﬂ|)}

This fact proves the sufficiency of the inequality < 1 for the stability in the caseb <
0<a.

Notice also that we have required all comgtain (3.2) to be positive. Therefore, even
if the minimal negative valug* of ¥ is achieved at a poinix*, 8*), we need to consider
some other pointa, B) close to(a*, *) in order to ensure the mentioned positivity and then
to use Proposition 3.3. For the same reaBoshould be taken as an arbitrary small positive
number. With these reservations, we apply Rda3a4 to calculate the convergence exponent

V. O

At the first glance, Theorem 2.9 includes Theorem 3.5 as a partial caseavke®.
However, the latter was proved under the asgtions (1.2) and (1.5) which are weaker than
the condition (1.3). Moreover, we have also got some results for the case:di. We also
particularly emphasize the simplicity in the use of the Halanay inequality.

4. Differential equationswith maxima. Equation (1.7) has appeared in the sixties
in the theory of automatic control and maezently it has been a subject of new studies (see,
forinstance, [1, 3, 10, 16, 17 18, 21] and further references therein). In spite of its very simple
form the equation can exhibit a complicated (chaotic) behavior [17].

It was proved in [1] that (1.7) with periodi¢ (¢), f(z) = f(t + T), has at least one
T -periodic solutiory (z) for everya + b # 0. It is easy to check that Theorems 2.9 and 3.5
and Corollary 3.2 can be applied to derive conditions for the global exponential attractivity
of this solution. In this way, for nonnegative we completely solve the stability problem for
(1.7) introduced earlier in several papers (see, e.g., references in [1, 16]):

THEOREM 4.1. Assumethata > 0, b # 0. Then (1.7) has a globally asymptotically
uniformly stable T-periodic solution for every T-periodic f(¢) if and only if one of the fol-
lowing conditions is satisfied: (i) 0 < —b < a, or (i) » > 0 and the pair (a, b) satisfies the
inequality (2.12),or (iii) a = 0and 0 < bh < 3/2.

PrROOF The sufficiency of conditions (i) and (ii) follows from Corollary 3.2 and The-

orem 2.9 respectively, and in the case (iii) we can use the Yorke theorem. Note that in the
casea < —b the trivial solution of (1.7) withf = 0 is unstable (see [16] for details). If
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a = —b and f = 0, it is obvious that any constant is a periodic solution of (1.7), and the
trivial solution cannot be asymptotically stable.

Finally, to prove the necessity of (ii) in the cabe> 0, we shall need the following
statement from [16]:

PROPOSITION 4.2. Let T > h and supposethat x*(¢) isa T-periodic solution of (1.7)
with exactly two critical points fmax, fmin OVer the period. Set x*(z (1)) = maXeg—n, x*(s).
If x*(¢) has a nondegenerate maximum at the corresponding point fmax (that is x*” (fmax) #
0), then the Poincaré map for the linear T-periodic variational equation v'(r) + av(t) +
bv(t(¢)) = 0along x*(r) has a unique non-zero characteristic multiplier x and x*(¢) isan
exponentially stable (unstable) solution if and only if |x| < 1 (|x| > 1).

Notice that the condition™(t (1)) = maXe[—n.r1x*(s) determines’-periodic function
7(¢) in a unigue way except only one point over period (denoted helow). Obviously,
this fact does not affect our construction. Next, in order to see why the variational equation
has such a form, one has to linearize (1.7) alafig) (or differentiate max functional at
pointsx} e C1, for more details see [16]). Without loss of generality we can assume that
tmax = 0, T > tmin = ¥ > 0. Thus necessarily there exists a paing («, T) such that
x*(v) = x*(v — h). Accordingly, the variational equation along(z) assumes the form

—av(t) —bv(0), 0<t<h;
V() =1 —av(t) —bv(t—h), h<t<v;
—(a+byw®), v=<tr<T.

The explicit form of this equation allows us to calculate the characteristic multiplidtor
example, ifz = 0and v < 2k, we canfind thak = (1—bv+b%(v —h)?/2) ex(—b(T —v)).
If a #0andv < 2k, then

x = exp(—(a + b)(T —v)) — + 1+-—)e e ——+bh—vb|;.
a a a

Finally, to prove the sharp nature of condition (ii) of Theorem 4.1 we will use the fol-
lowing trick. Suppose that, for giveta, b), we can find & -periodic smooth functiog (¢)
such that it is an unstable solution of (1.7) for some perturbafi@r). Then the functional
differential equation

V() = —av(t) — bf(t, v;)

with f(z, v/) = [MaX%efr—n,n(v(s)+q(s)) —MaXer:—n.r1 ¢ (s)] has the unstable zero solution,
while f(z, ) satisfies (1.3). Therefore the pdir, b) cannot belong to the stability domain

D indicated in Theorem 2.10. Proposition 4.2 gives us a possibility to construct such unstable
solutions, firstly by choosing > 0, b > 0 to have|x| > 1 and then by definin@ -periodic
perturbation ag, (1) = ¢'(t) + aq(t) + b maxgq,. Hence, the parameter valugd b) such

that

= sup |(L—bv+b%w —h)?/2)exp(—b(T —v))| > 1
h<v<2h,v<T
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should be excluded from the stability domé&in Since we can manage the form of the solution
q () appropriately (fortunately, we can control its shape and therefore numbeT in the
formula for x), we find that

c= sup |1—bv+b2v—h)?/2)= sup |(L—bh—x+x%/2)|.
h<v<2h 0<x<bh

Analogously, ifa > 0, then
b? b b
_ 1 _ —az —ah . b
G I

and the corresponding pdir, b) should be excluded from the stability domamif ¢ (a, b) >
1.

¢ =1¢(a,b)= sup

0<z=<h

’

In the case ofi = O, it can be verified by a direct calculation that< 1 if and only if
bh < 3/2. The casa > 0 is slightly more complicated. To study it, we need to examine
properties of the function

2
V(z) = b_2 + <1+ é) e [e_“h _b —bzi| . z€[0,n].
a a a

In the case of instability, as we have seen, necessarily onk kas (by Corollary 3.2) and
u = exp(—ah)b~1 < h (since, by Corollary 2.8, we havér > 1 > exp(—ah), once the
equation is unstable). Therefogg0) < 1 andy(z) — b/a > 1 asz — +oo. Furthermore,
¥ (z) has only one critical point. = u € (0, k), where it reaches its minimal value. The

mentioned properties af (z) imply that

b? b b| |b? b b

S (14 =) S 4+ (1+=)e e = —bh||} .
a2 a a a2 a a

Therefore, the boundary of the dom&in= {(a, b)|a > 0, b > 0, and¢(a, b) > 1} in Ri is
contained in the unioly U I'> of the two curved, I'> given respectively by

b? b\ _,.b _ a 14a/b
i <1+ ;) e ME =-1 (equwalently by 5 exp(—ah) = In (m))
and

b? b b . 2a sinh(ah)
s 1 e —ah —ah _ 7 =1 | | — .
) + ( + a) e [e . bh} <eqU|va ently by b explah) —1— ah)

’

¢ = max{

Since the domai® of the asymptotic stability found in Theorem 2.9 cannot contain any
part of Iy or I'; inside, and it is also bounded By, we conclude that > 1if (a, b) € I,
and the boundary &f in Ri is preciselyry. O

REMARK 4.3. Clearly, the exact nature of the conditions given in Theorems 2.9 and
2.10 follows immediately from this result.

REMARK 4.4. ltisrather surprising that using only test functions of very special form
given in Proposition 4.2, we can derive the exact stability domain for (1.7) wherd. We
can do the same in the cage< 0, indicating the “upper boundary" or “eventual stability
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domain"€ for D. Clearly, we can expect th&t = D. In other words, our test functions are
“dense" to detect the exact stability conditioim@wever, in the latter case it looks like we
need to consider > 2h).

5. Proof of Theorem 2.4 and Corollary 2.5.

PROOF OFTHEOREM 2.4. Assume that, on the contrary, (2.4) does not hold. Then
there is a solution, (¢) of some initial value problem, = ¢ such that for some, > t + 2k
we have

Xz, (@)llc >3 = max [xs(@)llc-
s€[r,t+2h]

SetQ = {s > t+2h| ||x;(¢)|lc > §} and considet, = inf Q > 7+2h (so thatl|x, (¢)|lc =
8).

Letx(:) = x(-, ) : [t —h, +00) — Rbe an “ordinary" solution defined ast +s, ¢) =
x:(p)(s), s € [—h,0],t > 7. We claim that necessarily there exists an intesvat («, 8) >
71 With 8 € RU{+oo0}andr +h < 11—h < «a < 11 suchthat (@) = x(8) = 0andx(r) #0
forall r € A.

Indeed, suppose that(z)| > O for allt € [t1 — h, r1]. If, for example,x(z) > O,
then by (1.3) we havé¢ (o, x,) > 0 almost everywhere (a.e.) in some neighborhtoof 7.
This implies the inequality’(c) < 0 for almost allo € U, contradicting the definition of
71. Hence such point exists. If the graph of (z) intersects the zero level for some- «,
then we can choosg as the first zero. k() > O forallz > «, then we havef (¢, x;) > 0,
and therefore’(r) < O forallt > o + k. Thusx(r) decreases monotonically towards some
nonnegative real number In fact,c cannot be positive, since integrating (2.2) betweeni
andr we derive, by using the assumptifs), a contradiction:

t
x(t) — x(e +h) = - / [g (5, x()) + b(s) £ (5, x,)1ds
(5.1) ot
< —/ [g(s,x(s)) + b(s)clds - —o0 ast — +oo.

a+h
Hence in this case(+o00) = 0 and we can choosg = +oco. The case of negative(r) can
be treated similarly. In the sequel, we will assume th@j is positive atr;. In the opposite
case, we can define the new variable) = —x(¢), and then it is sufficient to notice that all
the previous assumptions are still valid for the functional differential equation

x' () 4+ g1, x(1)) + b(t) fa(t,x;) =0

with g,(¢t, x) = —g(t, —x) and f1(¢, x) = — f (¢, —x).

LetM = maxca x(t) = x(§) > 0, wheret is the smallest real number having this prop-
erty. If, additionally, mince > 0, then, by continuity o% () and again by (1.3), we obtain that
x'(t) < 0 in some two-sided neighborhoodfa contradiction. Hence migg—p & x(s) <
0, and therefore there exists an intervill = («*, *) with &€ — h < B* < « and such that
x(t) < Oforallr € A* andx(«*) = x(8*) =0ora* =1t — h.
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Next, we notice that on the intenvat, £], x(¢) is a solution of the following initial value

problem:

x'(1) = =g (t, x(0) + hi(), x(@) =0,
wherehy(t) = —b(t) f(t, x;). Considering now the solution(z, «, M) of the comparison
equation
Y()=—g(t,y®)+bM, y@ =0, te€la k],
with bM > b(t)(— minx;) > h1(t) = —b(t) f (¢, x;), we can conclude (see, e.g., comparison
Theorem 1.10.2 in [12, p. 43] established for the scalar Carathéodory equations), that
x(1) <y(@) < A(M) = max y(s, o, M).
aeR,sela,a+h]

Evaluating the last inequality at the point &, we have O< M < A(M), and therefore
the inequality sup#ozflx(z) < 1 implies (2.4). Also, since.(M) < bMh, we conclude
thatbh < 1 is sufficient to ensure (2.4). Hence, in the sequel we will consider only the case
bh > 1

In the next stage of the proof, givene R, we consider the initial value problem

(5.2 V() =—g(t,v@®) —bv(t—h), t>¢, v(is)=-M foranyselt—h,C].

Obviously, the solution of (5.2) strictly increases until its possible intersection with the real
axis at some poing + AZ, A¢ > 0. We claim thatA¢ < k. Indeed, using the method of
steps on the first intervét, ¢ + k], we have

V(@) =—gt,v@) +bM, v(i)=-M.
Therefore, sincéh > 1,
v +h)>v)+bMh >0, V(+A:)>0,

which proves our claim. This last observation shows thatpfgiven above, we can fingd
such thatx = ¢ + A¢. Or, in other words, there exists< « such that the solution of (5.2)
is negative and nondecreasing on the intewak= [¢ — h, «), andv(e) = 0. We claim
thatx(t) > v(¢) fort+ € X. This inequality holds trivially on the intervgt — &, ¢], since
|lx()| < M for all ¢ € [t,&). Suppose now that(m) = v(m) at some pointn € (¢, @) C
(¢, ¢ + h) andx(¢) > v(t) whenr € [¢ — h, m). Next, by comparing solutions of the initial
value problems

V(1) = —g(t,v(0)) +da(t),  v(m) =x(m), da(t) =—bv(t —h)(=bM), t=m;
xX'(t)=—g@t, x(1)) +d1(t), x(m)=v(m), di(t)=—b@)f(t,x;) <da(t), t=m,
we obtain, again by using the comparison results (see also [20, Theorem 5.111})(that
v(t) whent € (m, «]. Finally, x(«) < v(«) = 0, a contradiction.

Now, considering extensions of solutions of equations (2.2) and (5.2) (or, which is the
same, (2.3)) to the intervéd, « + &) in the form of the Cauchy problems

V() = —g(t,v(0) +do(t), (@) =0, do(t)=—bv(t—h), t>a;
x'(t) =—g@t,x@®) +di(t), x(@)=0, di(t)=—-b@)f(t,x;) <do(t), t>a,
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we conclude that(r) < v(¢) fort € I = (o, ) N (o, @ + k) (Notice also thadl>(z) > di(t)
for small|r — «f).

HenceM is less than the maximal valu€c, M) of the solutionv(z) considered on the
interval I. This contradicts to the assumptitfi). O

PrROOF OF COROLLARY 2.5. Givens € R, consider solutionc(¢) on the interval
[s—h, s+2h]. Let¢ € [s, s+2h] be a point of local maximum such that(¢)| > M = ||xs]|c.
Proceeding as in the proof of Theorem 2.4, we claim the existence of gomg — £, ¢],
andpB > « such that: i)x(#)| > Oforallr € IT = (a, B) ;i) x(e) = 0; and iii) either
x(B) = 0orB = s + 2h. Moreover, without loosing the generality, we can assume that
N =maXcg x(t) = x(a +8) > 0 (so thath > M1 = max<, [x(t)| > M).

Now, considering (2.2) on the intervék, @ + §) and again applying the comparison
method, we obtain tha¥/16§ > N > M;j, and thereforés > 1. Hence, on the interval
[s, s + 2h] there exists only a finite number of points like+ §. Let us numerate them in
the increasing order ag + §;, 1 < i < k, and introduce the notatign («; + 3;)| = N;.
Obviously>_ §; < 3k, and we complete the proof of the corollary by noting that

by 8\
= N < M8 <M (=2
max |x(0]= max N;=M]]ws) = ( - )

tels,s+2n] i=l,..,

3bh\¥ 1
<M ra < M exp(3e” "bh) .
O

6. Proof of Theorem 2.6 and Corollary 2.7. The idea of proof of Theorem 2.6 is
close to that of Theorem 2.4. However, it contains a significant number of essentially different
details. Rather than to refer the reader to the proof of Theorem 2.4 for similar details, we think
it is more appropriate and convenient to present the proof in complete details in this Section.

PROOF OFTHEOREM 2.6. Assume that, on the contrary, (2.6) does not hold. Then
there is a solution; () of some initial value problem; = ¢ such that at some point >
7 + 3h + u we obtain

Ixe.(@)llc >gM =g max |xs(@)llc.
s T+3h+pu]

€lr,t+3n

SetQ ={s >t+3h+pu||lxs(¢)llc > gM} and consider = inf Q > 7 + 3h + u (so that
lxv(@llc =gMorv=rt+3h+u, [x@lc>qgM).

Letx(:) = x(, @) : [t —h, +o0) — Rbe an “ordinary"” solution defined as +s, ¢) =
x:(p)(s), s € [—h,0], t > 7. Note that there exists a poisg € T* = [v — u — h,v] C
[t + 2h, v] such thatx(zp)| < ¢ M. Indeed, if, for examplex (¢) > gM for all t € T* then,
by (d),

—x()+x(—p) = / (g(s,x(s)) +b(s)f(s,xs5))ds
v—p

> /V (g(s,x(s)) + b(s)minxs)ds > M(L—gq).
v—p
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Finally,x(v — u) > M(1— ¢q) + x(v) > M, a contradiction.

Hence, we deduce the existencerof> t + 2k such that: (i)||x;(¢)|lc < M for all
t € [r, ral; (i) [lx (@) llc = Mg; and (iii) ||lx; (@) llc > Mg in some right neighborhood of
71.

Now, we claim that necessarily there exists an intevak= (o, 8) > 171 with 8 €
RU {4+oc}andt +h < 11 — h <« < 11 and such that(«) = x(8) = 0 andx(z) # O for
allr € A.

Indeed, suppose thai(¢)| > O forallt € [t1 — h, 71]. If, for examplex(r1) > 0O, then
by (1.3) we havef (o, x,) > 0 in some open interval containing. Thereforex’(c) < 0
for o close tor1, which contradicts the property (iii) afi. Hence such point exists. If
the graph of solutiorx(z) intersects the zero level for some> «, then we can takg as
the zero. Ifx(r) > O forallt > «, then we havef (¢, x;) > 0, and therefore’(r) < O for
all t > a + h. Thus,x(t) decreases monotonically towards some nonnegative real number
c¢. In fact, ¢ cannot be positive, since integrating (2.2) between » and¢, we get, by the
assumption(d), the contradiction (5.1). Hence in this casgtoo) = 0, and we can take
B = +oo. The case of negative(r) is treated similarly. In the sequel, we will assume that
x(t) is positive atr;. In the opposite case, we can define new varigde = —x (¢) and apply
the same arguments to the functional differential equation

x' () 4+ g1, x(@)) + b(t) fa(t,x;) =0

with g (¢, x) = —g(t, —x) and f1(¢, x) = — f (¢, —x).

Hence, we havgM < N = maxca x(#) = x(&), where¢ is the smallest real num-
ber having this property. If mim: > 0 then, by continuity ofc(r) and by (1.3), we have
x'(0) < 0 almost everywhere in some open interval containinga contradiction. Hence
minse(z—ng1x(s) < 0, and therefore there exists an intervell = (a*, p*) with &€ — h <
B* < a suchthat(r) < Oforallr € A* andx(«*) = x(8*) =0ora* =1t — h.

Notice next that on the intervddr, £], x(¢) is a solution of the following initial value
problem:

x'(t) =—g@t, x(0)+h1(t), x(a)=0,
wherehy(t) = —b(t) f(t, x;). Considering now the solution(z, «, M) of the comparison
equation
Y(t)=—gt,y®)+bM, y@) =0, telafl,
with bM > b(t)(— minx;) > h1(t) = —b() f (¢, x;), we conclude that

x() <y@t) <A(M) = max y(s,a, M).
aeR,sela,a+h]

Evaluating the last inequality at point= &, we have O< Mg < N < A(M). Therefore,
the inequalityM —*A(M) < ¢, M # 0, implies (2.6). Also, since(M) < bMh, we conclude
thatbh < g < 1 is sufficient for the stability of equation (2.2). Hence, in the sequel we will
consider only the cageh > 1.
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In the next stage of the proof, givene R, we consider the initial value problem
6.1) V() =—g¢, v@®) —bvt—h), t>¢, v(s)=-M foranyselc—h,Z].
Obviously, a solution of (6.1) strictly increases until its possible intersection with the zero
level at some point + AZ, A¢ > 0. We claim thatA¢ < h. Indeed, using the method of
steps we have
V(1) = —g@t,v@®) +bM, v()=-M
on the first interval¢, ¢ + k). Therefore, sincéh > 1,
v +h) >v@)+bMh >0, V(4 A7) >0,

which proves the claim. This last observation shows that, gijene can find; such that
o = ¢ + A¢. Or, in other words, there exists< « such that the solution of (6.1) is negative
and increasing on the interval = [¢ — h, «), andv(a) = 0. We claim thatx(z) > v(?)
fort € X. This inequality holds trivially on the interv@d — h, ¢] since|x(¢)| < M for all
t € [t,£&). Suppose now that(m) < v(m) at some pointn € ({,«a) C (¢, ¢ + h). Next,
while considering solutions of the following initial value problems

V() = —g(t,v() +da(t), v(m)>x(m), da(t) =—bv(t —h)(=bM), t>m;

x'(t) = =gt x(0) +di(t), x(m) <v(m), di(t)=—b@A)f(t,x) <do(t), t=m,
we get, again by the comparison results from [12, 20], #@t < v(z) whenr € (m, «].
Finally, x (@) < v(@) = 0, a contradiction.

Now, considering prolongations of solutions of equations (2.2) and (6.1) (or, which is the
same, (2.3)) on the intervé, o + k) in the form of the Cauchy problems

V() = =g, v®) +da(t), v(@) =0, dao(t) =—bv(t—h), t=a;

x'()=—g(t, x() +di(t), x()=0, di(t) =—b@®)f(t,x;) <do(t), t>a,
we conclude that () < v(¢) fort € I = («, B) N (o, ¢ + h).
HenceN does not exceed the maximal valu@, M) of the solutiorv(z) on the interval
I. SinceN > Mg, this fact contradicts to the assumpti@@. O

PrROOF OFCOROLLARY 2.7. First of all, we notice that (2.6) implies the inequality

lx:llc < max Ix@)|exp(—y( — (s +2h+wn))), t=s.
uels—h,s+2h+u)

Therefore, by Theorem 2.4 and Corollary 2.5, we conclude that

lx:llc < max |x(u)|exp(—y(t — (s + 2h + p)))
u€ls—h,s+2h]

uels—h,
To derive the final estimate it is sufficient to make use of the following inequality

1\ @/ Eh+10)
exp(y (2h + w)) = <g)

< Jnax |x ()| exp(3e1bh) exp(y (2h + p)) exp(—y (t —s)), t>s.

<1/q.
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7. Proof of Corollary 2.8. This section contains some calculations necessary for the
proof of Corollary 2.8. Here we will use the notation from Section 2 introduced before the
assumptior{e). First, the comparison result implies that the solution[¢, ] — R of (2.3)
is greater than or equal to the solutign [¢/, ] — R of the equation

Y)y=—cy®)+bM, t>¢'>¢, ys)=-M, s=<i,

where¢’ is chosen to satisfy(«) = 0. Since every comparison system here is autonomous,
we can set’ = 0. This givesc(r) > —M forr < 0 and

b+

c+b
b

Notice thatx < h because abi > 1. Next, it is easy to see that the solution[«, h] —
R does not exceed the solutign [«, /] — R of the initial value problem

7.1 x(t) > y(t) =M [g _2re exp(—ct)} . tel0,a], where o= %In

Z(t) = —az(t) + bM, z(a) =0.

Integrating this equation, we have

x(h) <z(h) = Mé |:1_9XP(—ah n a n C_;g_b>i| |
a

c
Finally, on the intervalk, o« + h) we havex(t) < w(t), wherew(¢) is the solution of the
initial value problem
(7.2 w'(t) = —aw() — byt —h), wh)=zh),
andy(z) is defined by (7.1). Integrating (7.2), we obtain

2
w(t)=Ce ™ +M LC +b) e—Ct=h _ b— ,
(a —c)c ca

where

b c+b c\a/c
C=-M|e"— — (14 - .
a |:e c—a ( +b) i|

Notice thatC > 0, since it can be represented as the sum of three positive numbers:
b b b?>  b(c+b
C=Mexpah)|—({1—exp —ah+glnc+ +—+ (c+5) .
a c b ca c(c—a)

Now, the unique critical poin§ of w(r) (its explicit expression is given before the statement
of Corollary 2.8) can be found by solving the equatioft¢) = —aw(&) — by(€ — h) = 0.
Moreoverg € (h, a + h], since

b
wh) =z(h) >0, w(+oo) <0, and w'(h) = Mbexp(—ah + 4 In C;‘; ) >0,
c

and
w (o +h) = —aw(a +h) —by(a) = —aw(+h) <0
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(note thatw(r) has at least two critical points in the caséx + &) < 0, w'(a + 1) > 0).
Therefore, we have

b
ro(¢, M) = te(Tgfh)X(t) sw@)=——"yE—h.

By applying the symmetry argument, we also find that

r1(¢, M) < _éy(g): —h) = Mé {(1+ é) e—c’;‘+ch _ é}
a a c

c
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