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Abstract. We classify singular fibers of curves of genus three and determine their topo-

logical monodromies and the strata of their moduli points.

Introduction. Let φ : S be a proper surjective holomorphic map from a

complex surface S to the unit disk = {t C | |t | < 1} such that φ 1(t) is a smooth curve of

genus g 1 for any t A* = {0}. We call φ a degeneration of curves of genus g and call

F = φ 1(0) the singular fiber. The most fundamental problem of degenerations of curves is

to classify singular fibers, their monodromies and moduli points. After the monumental work

of Kodaira [Ko] for elliptic curves, Namikawa-Ueno [NU1], [NU2] classified singular fibers

of genus two and determined their homological monodromies and the limits of their period

matrices.

The main result of this paper (Theorem 4.3) is to classify singular fibers of genus three

and determine their topological monodromies and the strata of their moduli points. More

precisely, we explicitly determine the conjugacy class, arising from the usual monodromy

action for each degeneration, of the mapping class group of a Riemann surface of genus three

and determine the topological type of the stable curve which is the limit of the moduli map in

Deligne-Mumford's compactified moduli space M3 of genus three.

Our basic tools are the following Theorems (A) and (B), which was first studied by

Nielsen [Ni2], developed by [Cl], [Im], [ES], [ST], [AMO], etc., and finally settled by Matsu-

moto-Montesinos [MM1], [MM2]:

(A) ([MM2, Theorem 1]) The conjugacy class, realized as the topological monodromy

of a degeneration of curves, of the mapping class group of a Riemann surface of genus g 2

is represented by a pseudo-periodic map of negative type. Conversely, any conjugacy class of

pseudo-periodic map of negative type is realized as the topological monodromy of a certain

degeneration of curves.

(B) ([MM2, Theorem 2]) The conjugacy class of a pseudo-periodic map f : Σg Σ g

of negative type of a smooth curve Σg of genus g is determined by the following data: An

admissible system of cut curves C = \J Ci on Σg, the action of f on the oriented graph GC

induced by C, the screw numbers of f around each annulus of Ci and the valency data of
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the periodic maps which stabilize the connected components of Σg C. It is equivalent to

determining the action of f on GC and Matsumoto-Montesinos' generalized quotient Σg

Sf off.

Our strategy for the classification is divided into the following four steps:

(1) We classify admissible systems C of cut curves on Σ3 (Lemma 3.2). This is equiv-

alent to classifying the stable curves of genus three, which is well-known.

(2) We classify cyclic automorphisms of the graph GC (Lemma 3.4). This is equivalent

to classifying the cyclic automorphisms of the dual graphs of stable curves of genus three.

(3) We classify periodic homeomorphisms modulo isotopy of a Riemann surface with

boundary, which is realized as a connected component of Σ3 C. This is equivalent to

classifying the cyclic automorphisms of an irreducible n -pointed stable curve of genus 3

and small n admitting permutations of marked points. For this purpose, we first classify the

valency data of the cyclic automorphisms of a closed Riemann surface of genus 3 by using

Nielsen and Harvey's formula (Lemma 1.4). The sufficiency of these conditions is proved in

§4.4. We apply the result to Riemann surfaces with boundary case by case in §2.2.

(4) For each action on the graph GC classified in (2), we choose periodic homeomor-

phisms of "parts" of a Riemann surface described in (3) compatible to this acion. In this way,

we classfiy all conjugacy classes of pseudo-periodic maps of negative type of genus three

(Proposition 3.8).

In Section 1 through Section 3, we avoid the language of algebraic geometry and discuss

in terms of the mapping class group of a Riemann surface. In Section 4, we translate this

result into the algebro-geometric statement on degenerations. In summary, the degeneration

(j> : S A which we obtain has the following properties:

(a) The stable curve which is the moduli point of φ has the dual graph GC.

(b) The topological monodromy of φ is determined by the data which we have at the

starting point for characterizing the pseudo-periodic map f of negative type.

(c) The topological type of the singular fiber φ 1(0) coincides with Sf. We obtain

Sf by substitution in the sense of Subsection 3.7 of the corresponding "partial" generalized

quotient space in Table 1 to the graph in Table 2 or Table 3.

For a numerical classification of singular fibers of genus three, see Uematsu [Ue]. For

an algebro-geometric study of a pencil of genus three, see Mendes-Lopes [Me]. The algebro-

geometric meaning of Matsumoto-Montesinos' theory is partially studied by Takamura [Ta]

and Terasoma [Te].
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1. Periodic map. In this section, we first review a part of Nielsen's work [N1] and

then apply it to classify conjugacy classes of periodic homeomorphisms of closed surfaces of

genus 3.

1.1. By a surface Σ, we mean an oriented connected real 2-dimensional manifold with

or without boundary. When we emphasize its complex structure, we call Σ a Riemann sur-

face. Let f : Σ Σ be a periodic orientation-preserving homeomorphism (or periodic map,

for short) of order n 2. Let P be a point on Σ. There is a positive integer α(P) such that

the points P,f(P),... , fα(P) 1(P) are mutually distinct and fα(P)(P) = P. If α(P) = n,

we call the point P a simple point of f, while if α(P) < n, we call P a multiple point of f.

Note that a multiple point is an isolated and interior point of Σ.

Let C be an oriented simple closed curve on Σ, which we sometimes write C to em-

phasize its orientation. Let m = m(C) be the smallest positive integer such that fm(C) =

C±, i.e., fm(C) = C as a set and fm preserving the orientation of C. The restriction of

fm to C is a periodic map of order, say, λ 1. Note that n = mλ. Let Q be any

point on C, and suppose that the images of Q under the iteration of fm are ordered as

(Q, fmσ(Q), f2mσ(Q), ... , f(λ 1)mσ(Q)) viewed in the direction of C±, where σ is an inte-

ger with 0 σ λ 1 and gcd(σ, λ) = 1. Let δ be the integer which satisfies

(1.1.1) σδ 1 (modλ), 0 δ λ 1.

Then the action of fm on C is the rotation of angle 2ΠΔ/Λ with a suitable parametrization of

C as an oriented circle. Nielsen called the triple (m, λ, σ) the valency of C with respect to f.

He also defined the valency of a boundary curve (i.e., a connected component of the

boundary Σ) as its valency with respect to f assuming it has the orientation induced by the

surface Σ. The valency of a multiple point P is defined to be the valency of the boundary

curve DP, oriented from the outside of a disk neighborhood DP of P.

Let Π : Σ Σ £' be the n-fold cyclic covering associated with f, where £' is the quo-

tient surface of Σ with respect to f. The multiple points of f coincide with the ramification

points of Π. We define the valency of a branch point P on £' as the valency of a ramification

point on Π 1(P).

By Nielsen's theorem [N1, §11], the conjugacy class of periodic maps is completely

determined by the set of valencies of the multiple points and boundary curves.

A periodic map of a bounded surface is easily extended to that of a closed surface by the

following:

LEMMA 1.2. Let Σ be an oriented surface whose boundary is a disjoint union of

simple closed curves 1, . . . , k, and let f : Σ Σ £ be a periodic map. Let (mi, λi,σ i)

(1 i k) be the valency of i with respect to f Then there exists a closed surface £ which

contains Σ, and a periodic map f : Σ ˜ • £ such that

(i) the complement Σ — £ is a disjoint union ofk open disks Ui<i<k D i

(ii) the restriction f˜|Σ coincides withf

(iii) the multiple points of f on Σ — £ are the centers Pi of the disks Di (1 i k)

and the valency at Pi with respect to f coincides with the valency (mi, λi, σ).
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PROOF. For each i (1 i k), we have a parametrization θi with i ~ S1 =

{exp(2ns/^lOi) |0 < 9t < 1} such that fm\Si : 3; -> 3; is given by 9t i-> 9t + 5,-/A,-

(modZ), where δi is the integer determined by (MI,Λ i,σ i ) as in (1.1.1). The curve i is

mapped by f to one of the boundary curves, which we write f(i) (1 f(i) k). Under the

above parametrization, the map f| i : i f ( i ) is written as θi H>- θf(i) = Fi(θ i), where

Fi is a continuous function of θi. Now let E be a closed oriented surface obtained from Σ

and k closed disks Di (1 i k) by identifying i and the boundary D i . We define the

parametrization D i = {ri exp(2π 1θi) | 0 ri 1, 0 θi < 1} which is compatible with

the previous parametrization of i at D i . We define the map f : Σ ˜ Σ ˜ by f = f on
27 c E, and by r, exp(2^-N/-T^i) >-> n exp(2^-N/-T^i(^i)) on £), (1 < i < k). Then /
satisfies the required properties. Q.E.D.

1.3. Let Σg be a closed surface of genus g ^ 2, and let Γ g be its mapping class group.

In the isotopy class of a periodic map of Σg, one can choose a representative which is an

analytic automorphism under a certain complex structure on Σg ([Ni1], [B2, Theorem 1] or

in more generalized form [Ke]).

Now let f : Σg Σ g be a cyclic analytic automorphism of order n, and let Π : Σ

17' be the corresponding n-fold cyclic covering. Let </ be the genus of E'. We denote by

λ 1 , . . . ,λl the ramification indices of Π and let (n/λ i ,λi, σ i) (1 i l) be the valencies of

the branch points. The following are known:

(i) (the Hurwitz formula) 2(g 1)/n = 2{g' 1) + J^Lli1 ~ ! A i).

(ii) (Nielsen [Ni1, (4.6)]) X)i=i a> A i i s a n integer.

(iii) (Wiman [W]) n 4g + 2.

(iv) (Harvey [H]) Assume g 2. Set M = lcm(λ1,... , λl). Then we have:

(1) lcm(λ1,... , A.;,... ,λl) = M for all i, where A, denotes the omission of λ i.

(2) M divides n, and if g' = 0, then M = n.

(3) / ^ 1, and, if g' = 0, then l 3.

(4) If 2|M, the number of λ 1 , . . . , λl which are divisible by the maximal

power of 2 dividing M is even.

Conversely, there exists a cyclic analytic automorphism of Σg whose covering degree, ram-

ification indices and the genus of the base surface satisfy the above conditions (i) and (iv),

(1)-(4).

Here is a comment on the condition (ii). Let E° be a surface obtained from Σ by

removing all the open disks around the multiple points of f. Then we obtain the condition

(ii) by applying the formula [Ni1, (4.6)] to the restriction f|Σ•.

Now we classify the conjugacy classes of periodic maps of closed surfaces with 1

g 3. By Nielsen's theorem [Ni1, §11], it suffices to classify the order of the map and the

valencies of multiple points. For brevity's sake, if we have the data of valencies (n/λi,λ i,σ i)

(1 i < 0, we symbolically write σ1/λ 1 + · · · + σl/λ l which we will call the total valency.

We also write the order n of the map and the genus g' of E'. However if g' = 0, the genus is

omitted. Then:
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LEMMA 1.4. Non-identical conjugacy classes of periodic maps of closed surfaces of

genus 1 g 3 are classified as follows:

(i) g = 1 .
(1) n = 6; 1/6+1/3+1/2, 5/6+ 2/3+1/2.

(2) n= 4; 1/4+1/4+1/2, 3/4+ 3/4+1/2.

(3) n = 3; 1/3+1/3+1/3,2/3 + 2/3 + 2/3.

(4) n = 2; 1/2 + 1/2 + 1/2 + 1/2.

(5) g' = 1,n is arbitrary and Π : Σ Σ 17' s an unramified covering.

(ii) g = 2.

(1) n = 10; 1/10+2/5+1/2,3/10+1/5+1/2,7/10+4/5+1/2,9/10+3/5+1/2.

(2) n = 8; 1/8 + 3/8+ 1/2, 5/8 + 7/8+ 1/2.

(3) n = 6; 1/6 + 1/6 + 2/3, 5/6 + 5/6 + 1/3, 1/3 + 2/3 + 1/2 + 1/2.

(4) n = 5; 1/5+ 1/5 + 3/5, 1/5 + 2/5 + 2/5, 2/5 + 4/5 + 4/5, 3/5 + 3/5 + 4/5.

(5) n = 4; 1/4 + 3/4 + 1/2 + 1/2.

(6) n = 3; 1/3+1/3 + 2/3 + 2/3.

(7) n = 2; 1/2 +1/2 +1/2 +1/2 +1/2 +1/2.

(8) g' = 1, n = 2 and 1/2 + 1/2.

(iii) g = 3 .

(1) n = 14; 11/14 + 5/7+1/2,3/14 + 2/7+1/2,13/14 + 4/7+1/2,

1/14 + 3/7 + 1/2, 9/14 + 6/7 + 1/2, 5/14 + 1/7 + 1/2.

(2) n = 12; 11/12 + 7/12+1/2,1/12 + 5/12+1/2,11/12+3/4+1/3,

1/12 + 1/4 + 2/3, 7/12 + 3/4 + 2/3, 5/12 + 1/4 + 1/3.

(3) n = 9; 8/9 + 4/9 + 2/3, 1/9 + 5/9 + 1/3, 7/9 + 5/9 + 2/3,

2/9 + 4/9 + 1/3, 8/9 + 7/9 + 1/3, 1/9 + 2/9 + 2/3.

(4) n = 8; 7/8 + 3/8 + 3/4, 1/8 + 5/8 + 1/4, 5/8 + 5/8 + 3/4,

3/8 + 3/8 + 1/4, 7/8 + 7/8 + 1/4, 1/8 + 1/8 + 3/4.

(5) n = 7; 6/7 + 6/7 + 2/7, 1/7 + 1/7 + 5/7, 6/7 + 5/7 + 3/7,

1/7 + 2/7 + 4/7, 6/7 + 4/7 + 4/7, 1/7 + 3/7 + 3/7,

5/7 + 5/7 + 4/7, 2/7 + 2/7 + 3/7.

(6) n = 6; 5/6+1/6+1/2+1/2,5/6+1/3 + 1/3+1/2, 1/6 + 2/3 + 2/3+1/2.

(7) n = 4; 3/4 + 3/4 + 3/4 + 3/4, 1/4 + 1/4 + 1/4 + 1/4,

3/4 + 3/4 + 1/4 + 1/4, 3/4 + 3/4 + 1/2 + 1/2 + 1/2,

1/4+1/4+1/2+1/2+1/2.

(8) n = 3; 2/3 + 2/3 + 2/3 + 2/3 + 1/3, 1/3 + 1/3 + 1/3 + 1/3 + 2/3.

(9) n = 2; 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2.

(10) g' = 1, n = 4 and 1/2 + 1/2.

(11)
 fl
'= 1,n = 3 and2/3+ 1/3.

(12) g'= 1,n =2 and 1/2+1/2+1/2+1/2.

(13) g' = 2, n = 2 and Π : Σ Σ E' is an unramified covering.
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PROOF. The isotopy class of a periodic map is realized as an analytic cyclic automor-

phism of a Riemann surface ([Ni2], [B2], [Ke]). If g ^ 2, we obtain the possibility for

periodic maps in the above table by easy calculations using the conditions (i)-(iv) in 1.3. We

will prove the existence of these maps in §4.4. The case (i) is classical. Q.E.D.

2. Marked generalized quotient. In this section, we classify marked generalized

quotient spaces of pseudo-periodic maps of bounded surfaces which we need in §3.

2.1. Let f : Σg Σ g be an orientation-preserving homeomorphism of a closed

surface of genus g. We call f a pseudo-periodic map if f is isotopic to a homeomorphism

f':Eg->- Σg such that the following conditions are satisfied:

(i) There exists a disjoint union of simple closed curves C = C1 C2 · · · Cr on

the interior of Σ such that f'(C) = C (C might be empty).

(ii) Set B = Σg C. Then the restriction f'\s : B B is isotopic to a periodic map.

Note that a (non-periodic) pseudo-periodic map is said to be a surface transformation

of algebraically finite type in Nielsen [Ni2], is said to be reducible with all component maps

being of finite order in Thurston [T], and is said to be of parabolic type in Bers [B2].

We call C an admissible system of cut curves if each connected component of B has

negative Euler number. If Σ has negative Euler number, such a system always exists in the

isotopy class of f. For each component Ci of C, there exists a minimal integer α i such that

fαi (C±i) = C± i. There also exists a minimal integer L i such that fLi |Ci is a Dehn twist of ei

times (ei Z). We set s(Ci) = eiαi/L i and call it the screw number of f at Ci (cf. [Ni2]). f

is said to be of negative type if s(Ci) < 0 for any 1 i r.

The curve Ci is said to be amphidrome if α i is even and fαi/2(C±i) = C±i, and non-

amphidrome otherwise.

For a pseudo-periodic map of negative type f, Matsumoto-Montesinos [MM1], [MM2]

defined the notion of minimal generalized quotient Π : Σg • Sf as follows: Sf is a numeri-

cal chorizo space in the sense of [MM1], [MM2], i.e., Sf is the underling topological space of

a Riemann surface with nodes so that a multiplicity mj is attached to each component Sf(j) of

Sf. The map π is a pinched covering (or Bers' deformation [B1]) such that the covering de-

gree π 1(Sf(j) ) SJ coincides with mj. Moreover π corresponds in a canonical way to a

special representative in the isotopy class of f which is called the superstandard form ([MM1,

§4, §5]). We call Sf the generalized quotient space of f. Since the explicit construction of

Sf is important in our argument, we summarize it;

Let Σg = A B˜, where A is the union of annular neighborhood of the curve in C such
that f(A) = A, and B is the closure of Σg A so that f|B˜ : B ˜ B is periodic. Let P be a
branch point of the cyclic covering of disjoint union of bounded surfaces B ˜ B˜/(f |B )̃, and
let (M, λ, σ) be the valency of P. By Euclidean algorithm, we obtain a sequence of integers

a0 > a1 > · · · > al = 1 such that

(2.1.1) a0 = λ, a1=σ, aj 1 + aj+1 0 (mod aj) ( j = 0, 1, . . . , l 1).

Set mj = maj ( j = 0, 1 , . . . , l 1). Let C(B˜) be the chorizo space constructed from
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B˜/(f |B̃ ) by replacing a disk neighborhood of each branch point by a chain of a disk and l
spheres with multiplicities mj (0 j l). Note that, since the disk neighborhood DP of P
is oriented from the inside in [MM1], [MM2], they set a0 = λ,a1 = λ σ. We orient DP

from the outside as in § 1.1, so that we should put a0 = λ, a 1 = σ.

Let Ai A beanannularneighborhoodofCi. Let(m( 1 ),λ( 1 ),σ( 1 )) and(m( 2 ),λ( 2 ),σ( 2 ))

be the valencies of the boundary curves C[ and C" of Ai, which are regarded as boundary

curves of the periodic part B˜.

We first assume Ci to be non-amphidrome. Then m(1) = m(2) = α i, which we write m.

We obtain a sequence of integers a0 > a1 > · · · > au = 1 and b0 > b1 > · · · > bv = 1 such

that

a0 = λ ( 1 ) , a1 = σ ( 1 ) , aj 1 + aj+1 0 (modaj) (j = 1, 2, . . . , u 1),

b 0 = λ(2), b1 = o^ , bj 1 + bj+1 0 (modbj) (j = 1, 2, . . . , v 1).

Set

(2.1.3) K = s (C i ) δ ( 1 ) / λ ( 1 ) δ ( 2 ) / λ ( 2 ) ,

where SU) (j = 1, 2) are integers with σ( j ) S U ) 1 (modλ ( j ) )and0 < SU) < λ(j). Note that

ifλ( j) = 1, then we put S ̂  = 0. K is an integer greater than or equal to 1. Then the chorizo

space Ch(A) is defined by a chain of two disks and several spheres whose multiplicities are

as follows:

(i) If K 1, then the multiplicities are

(ma0, ma1, ... , mau, m,m, ... ,m, mbv, ... , mb1, mb0) .

K 1

(ii) If K = 0, then the multiplicities are (ma0, ma1,... ,mau 1,m,mbv 1, ... ,mb1,

mb0).

(iii) If K = 1, then we can find u0 < u and v0 < v so that au0 = bv0 and (au0 1 +

bv0 1)/au0 is an integer greater than 1. Then the multiplicities are (ma0, m a 1 , . . . , mau0,

mbv0 1, ..., mb1, mb0).

Note that ma0 and mb0 are multiplicities of disks on both sides while the others are of spheres.

We next assume Ci to be amphidrome. ThenC-and C-'have the same valency (2m, λ, σ),

where2m = α i . Puta0 = λ, a1 = σ, a0 > a1 > · · · > au = 1 a n d a j 1 +aj+1 0 (modaj)

(1 j u 1) similarly. Then K = s(Ci)/2 δ/λ is a non-negative integer where

Scr 1 (mod λ). The chorizo space Ch(A) consists of a disk and u + K + 2 spheres, whose

dual graph is a Dynkin diagram of type D and the multiplicities are
(2ma0, 2ma1, ... 2mau, 2m,. . . , 2m (the tree part), m, m (the terminal part))

K

(see [MM2, p.73, Figure 3]).
Then Ch(B) and Ch(A)'s are naturally patched together and we obtain the space Sf.

Note that Sf is uniquely determined by the conjugacy class of f ([MM1, §5]).

2.2. Let Σ be a surface of genus g with k boundary curves 1, . . . , k. Let f : Σ Σ

be an orientation-preserving homeomorphism which satisfies (1) there is a disjoint union of
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simple closed curves C = LJy^i Cj s u c h that C and Σ = LJy=i j do not intersect each

other, (2) Σ C is connected, (3) f(C) = C and f|Σ C i s periodic.

Let £ be the closed surface containing Σ obtained by pasting disks Dj (1 j k)

along j and let / : Σ ˜ Σ ̃  be the extension of f as in the proof of Lemma 1.2. For the map
˜ , we construct a numerical chorizo space S˜ by the same method as in §2.1. Moreover, we
add arrows at the top of the trees of Sf̃  corresponding to the center of the disks Dj (see for
instance (ii2) of Table 1). We also denote this space by Sf and call it the marked generalized
quotient space of f.

Now we classify Sf for special values of (g, r, k) and write the figures of Sf in Table 1.
We use the following notation. We write the valency data of j by bold face characters. We
enclose by double parentheses the valency data of the boundary curves C'j and C'j of Aj. If f
permutes the components of Σ or the components of C or the components of the boundary

curves of A, then we use the symbol of permutation. For example, if f ( 1) = 2, f ( 2) = 3

and f ( 3) = 1, then we write ( 1, 2, 3). If C1,... ,Cs (s r) is amphidrome, we write

Amp{C1,... , Cs}. We denote the order of f by ord(f), but we sometimes omit it if there is

no fear of confusion.

(i) Assume g = 3 and r = k = 0. The map / = f is one of the periodic maps

classified in Lemma 1.4 (iii). Let n, σ1/λ 1 + · · · + σl /λ l and g' be one of the data in Lemma

1.4 (iii). Then Sf has a star-shaped dual graph as in Figure 1(a). The component of the center

of the graph has genus g' with multiplicity n and has l trees of spheres whose multiplicities

{M11, . . . ,m1k1},... , {ml1 •• • , mlkl} are calculated by (2.1.1). From now on, we use the

notation of (b) in Figure 1 instead of (a) for convenience. In order to describe Sf in each case

of Lemma 1.4 (iii), we write the data n, g' and {m11,... ,m1k1},... ,{ml1 ,... ,mlkl}:

(I) n = 14, {11, 8, 5, 2, 1}, {10, 6, 2}, {7}. (2) n = 14, {3, 1}, {4, 2}, {7}.

(3) n = 14, {13,12, 11,10, 9, 8, 7,6, 5,4, 3,2, 1}, {8, 2}, {7}. (4) n = 14, {1}, {6,4,2}, {7}.

(5) n = 14, {9, 4, 3, 2, 1}, {12, 10, 8, 6, 4, 2}, {7}. (6) n = 14, {5, 1}, {2}, {7}.

(7)n = 12, {11, 10, 9, 8, 7,6, 5,4, 3,2, 1}, {7,2, 1}, {6}. (8)n = 12, {1}, {5, 3, 1}, {6}.

(9) n = 12, {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}, {9, 6, 3}, {4}. (10) n = 12, {1}, {3}, {8, 4}.

(II) n = 12, {7,2, 1}, {9,6, 3}, {8,4}. (12) n = 12, {5, 3, 1}, {3}, {4}.

(13) n = 9, {8, 7, 6, 5, 4, 3, 2, 1}, {4, 3, 2, 1}, {6, 3}. (14) n = 9, {1}, {5, 1}, {3}.

(15) n = 9, {7, 5, 3, 1}, {5, 1}, {6, 3}. (16) n = 9, {2, 1}, {4, 3, 2, 1}, {3}.

(17) n = 9, {8, 7, 6, 5, 4, 3, 2, 1}, {7, 5, 3, 1}, {3}. (18) n = 9, {1}, {2, 1}, {6, 3}.

(19) n = 8, {7, 6, 5, 4, 3, 2, 1}, {3, 1}, {6, 4, 2}. (20)n = 8, {1}, {5, 2, 1}, {2}.

(21) n = 8, {5, 2, 1}, {5, 2, 1}, {6, 4, 2}. (22) n = 8, {3, 1}, {3, 1}, {2}.

(23) n = 8, {7, 6, 5, 4, 3, 2, 1}, {7, 6, 5, 4, 3, 2, 1}, {2}. (24) n = 8, {1}, {1}, {6, 4, 2}.

(25) n = 7, {6, 5, 4, 3, 2, 1}, {6, 5, 4, 3, 2, 1}, {2, 1}. (26) n = 7, {1}, {1}, {5, 3, 1}.

(27) n = 7, {6, 5, 4, 3, 2, 1}, {5, 3, 1}, {3, 2, 1}. (28) n = 7, {1}, {2, 1}, {4, 1}.

(29) n = 7, {6, 5, 4, 3, 2, 1}, {4, 1}, {4, 1}. (30) n = 7, {1}, {3, 2, 1}, {3, 2, 1}.

(31) n = 7, {5, 3, 1}, {5, 3, 1}, {4, 1}. (32) n = 7, {2, 1}, {2, 1}, {3, 2, 1}.

(33)n = 6, {5, 4, 3, 2, 1}, {1}, {3}, {3}. (34) n = 6, {5, 4, 3, 2, 1}, {2}, {2}, {3}.

(35) n = 6, {1}, {4, 2}, {4, 2}, {3}. (36) n = 4, {3, 2, 1}, {3, 2, 1}, {3, 2, 1}, {3, 2, 1}.
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n (genus g') n (genus g')

(a) (b)

FIGURE 1.

(37) n = 4, {1}, {1}, {1}, {1}. (38) n = 4, {3, 2, 1}, {3, 2, 1}, {1}, {1}.
(39) n = 4, {3, 2, 1}, {3, 2, 1}, {2}, {2}, {2}. (40) n = 4, {1}, {1}, {2}, {2}, {2}.
(41) n = 3, {2, 1}, {2, 1}, {2, 1}, {2, 1}, {1}. (42)n = 3, {1}, {1}, {1}, {1}, {2, 1}.
(43) n = 2, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}. (44) n = 4, g' = 1, {2}, {2}.
(45) n = 3, g' = 1, {2, 1}, {1}. (46) n = 2,g' = 1, {1}, {1}, {1}, {1}.
(47) n = 2,g' = 2, { }.

(ii) Assume g = 2, r = 0 and k = 1. f˜is one of the periodic maps classified in
Lemma 1.4 (ii). Then the total valency of / is one of the following:

(1) / = idΣ̃ .(
(4)9/10+3/5+1/2.
(7)7/8 + 5/8+1/2.
(10)5/6 + 5/6+1/3.
(13)4/5 + 4/5 + 2/5.
(16)3/5 + 3/5 + 4/5.
(19)2/5 + 2/5 + 1/5.
(22)2/3 + 2/3+1/3+1/3.

(2)7/10 + 4/5 + 1/2.
(5) 1/10 + 2/5 + 1/2.
(8) 1/8 + 3/8 + 1/2.
(11)1/6+1/6 + 2/3.
(14)1/5+1/5 + 3/5.
(17)3/5 + 3/5 + 4/5.
(20)3/4+1/4+1/2+1/2.
(23)2/3 + 2/3 + 1/3+1/3.

(3)3/10+1/5 + 1/2.
(6)7/8 + 5/8+1/2.
(9) 1/8 + 3/8 + 1/2.
(12) 4/5 + 4/5 + 2/5.
(15) 1/5+1/5+3/5.
(18) 2/5 + 2/5 + 1/5.
(21)3/4 + 1/4+1/2+1/2.

(24) 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2.
(25) 1/2 + 1/2. In this case, g' = 1 where g' is the genus of S/{f}.
We write the graphs of Sf of (ii), (1)-(25) in (ii1)-(ii25) of Table 1.

(iii) Assume g = 3, r = 1 and k = 0. Suppose that C1 is non-amphidrome. Then
we may consider any two valencies of the fixed points of in the list of Lemma 1.4 (ii) as the
valencies at C[ and C'[ for f. Then:
(1) f|Σ C = id. (2) ((7/8)) + ((5/8)) + 1/2.
(4) ((5/6)) + ((5/6)) + 1/3. (5) ((1/6)) + ((1/6)) + 2/3.
(7) ((4/5)) + 4/5 + ((2/5)). (8) ((1/5)) + ((1/5)) + 3/5.
(10) ((3/5)) + ((3/5)) +4/5. (11) ((3/5)) + 3/5 + ((4/5))

(3) ((3/8)) + ((1/8)) + 1/2.
(6) ((4/5)) + ((4/5)) + 2/5.
(9) ((1/5))+ 1/5+ ((3/5)).
(12) ((2/5))+ ((2/5))+ 1/5.

(13) ((2/5)) + 2/5 + ((1/5)). (14) ((3/4)) + ((1/4)) + 1/2 + 1/2.
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7,6,5,4,3,2,1 5,2,1

1,... , 1-

K > 1

7,6,5,4,3,2 5,2 7,6,5,4,3

A: = 0

FIGURE 2.

K = - 1

(16) ((2/3))+ 2/3+ ((1/3))+1/3.
(18) ((1/2)) + ((1/2)) + 1/2 + 1/2 + 1/2 + 1/2.

(15) ((2/3)) + ((2/3)) + 1/3 + 1/3.
(17) ((1/3))+ ((1/3))+ 2/3+ 2/3.
(19) ((1/2)) + ((1/2)), g' = 1.

For instance, we consider the case of (2). Let s(C1) be the screw number at C1 of f.
The integer K in (2.1.3) satisfies K = 7/8 5/8 s(C1) 1. Then Sf is as in Figure 2
corresponding to K 1, K = 0 and K = 1.
If K = 1, then we first add the symbol " " inside the sequence obtained by the algorithm
(2.1.2), i.e., 8, 7, 6, 5,4, 3, 2, 1, , 1, 2, 5, 8. Next we apply the "contraction" operations and
"blow down" operations in [MM2, §6], and obtain 8, 7, 6, 5, 4, 3, 2, 5, 8.

Instead of these three graphs, we use the unified graph (iii2) in Table 1. In Table 1,
the thick line means the tree of K 1 spheres (K 1), or means the identification of
the multiplicity one components of the trees on both sides (K = 0), or means the result of
shortening trees on both sides by the above two operations (K = 1). The number beside
the thick line means the multiplicity of each component of the tree.

Suppose C1 is amphidrome. Then:
(20) 7/10 + ((4/5)) + 1/2. (21) 3/10 + ((1/5)) + 1/2. (22) 9/10 + ((3/5)) + 1/2.
(23) 1/10+((2/5))+ 1/2. (24) 5/6+ 5/6+((1/3)). (25) 1/6+1/6 +((2/3)).
(26) ((1/3)) + 2/3 + 1/2 + 1/2. (27) 1/3 + ((2/3)) + 1/2 + 1/2.
(28) 3/4+1/4+((1/2))+1/2.
(29) Σ ->• •£"/(/> is a double covering with six branch points such that the disks D[ and D'[
do not contain any branch points, f(C[) = C'2 and the valency at C[, C'[ is (2, 1, 1). In this
case, we write the total valency data as 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + ((1)). From
now on, we use the same notation in a similar situation.
(30)1/2+1/2 + ( ( l ) ) , f l ' = l .
For instance, the graph Sf of (20) is as in Figure 3. Instead of these two graphs, we use the
unified graph (iii20) in Table 1.

(iv) Assume g = 1, r = 0 and k = 1. Then:
(1) f = id. (2)5/6 + 2/3+1/2. (3)1/6+1/3 + 1/2.
(4)2/3 + 2/3 + 2/3. (5)1/3+1/3+1/3. (6)3/4 + 3/4+1/2.
(7) 1/4 + 1/4 + 1/2. (8) 1/2 + 1/2 + 1/2 + 1/2.
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FIGURE 3.

(3) 1/4 + 1/4 + 1/2.
(6)1/2 + 1/2+1/2+1/2.

(3)3/4+3/4+1/2.

(4)1/2 + 1/2 + 1/2+1/2.

(v) Assume g = 1, r = 0 and k = 2.
(a) Suppose f( i ) = i (i = 1, 2). Then:

(1) f = id. (2)3/4 + 3/4+1/2.
(4)2/3 + 2/3 + 2/3. (5)1/3+1/3+1/3.

(b) Suppose ( 1, 2 ) . Then:
(1)5/6 + 2/3+1/2. (2)1/6+1/3+1/2.
(4) 1/4 + 1/4 + 1/2. (5) 1/2 + 1/2 + 1/2 + 1/2 + 1.
(6) f comes from an unramified double covering,

(vi) Assume g = 1, r = 0 and k = 3.
(a) Suppose f( i ) = i (i = 1, 2, 3). Then:

(1) f = id. (2)2/3 + 2/3 + 2/3. (3)1/3+1/3 + 1/3.
(b) Suppose ( 1, 2) and f( 3) = 3 . Then:

(1)5/6 + 2/3+1/2. (2)1/6+1/3+1/2. (3)3/4+3/4+1/2.
(4) 1/4 + 1/4 + 1/2. (5) 1/2 + 1/2 + 1/2 + 1/2 + 1.

(c) Suppose ( 1, 2, 3). Then:
(1) 5/6 + 2/3 + 1/2. (2) 1/6 + 1/3 + 1/2. (3) 2/3 + 2/3 + 2/3 + 1.
(4) 1/3 + 1/3 + 1/3 + 1. (5) f comes from an unramified triple covering.

(vii) Assume g = 2, r = 1 and k = 1. Suppose C1 is non-amphidrome. Then:
(1) f|Σ C = id. (2) ((2/3)) + ((2/3)) + 2/3. (3) ((1/3)) + ((1/3)) + 1/3.
(4) ((1/2))+ ((1/2))+ 1/2+1/2.
Suppose Amp{C1}. Then:
(5) 5/6 + ((2/3)) + 1/2. (6) 1/6+((1/3))+1/2. (7) 3/4+3/4+((1/2)).
(8) 1/4 + 1/4 + ((1/2)). (9) 1/2 + 1/2 + 1/2 + 1/2 + ((1)).

(viii) Assume g = 3, r = 2 and k = 0. Then:
(1) f|Σ C = id. (2) ((3/4)) + ((3/4)) + ((1/2)). (3) ((1/4)) + ((1/4)) + ((1/2)).
(4) ((1/2)) + ((1/2)) + ((1/2)) + ((1/2)). (5) ((1/2)) + ((1/2)) + 1/2 + 1/2 + ((1)).
(6) 1/2 + 1/2 + 1/2 + 1/2 + ((1)) + ((1)).
(7) Amp{C1, C2} and f comes from an unramified double covering.
(8) (C1, C2), 1/2 + 1/2 + 1/2 + 1/2 + ((1)) + ((1)).
(9) (C1, C2), Amp{C1, C2}, 1/4 + 1/4 + 1/2 + ((1)) + ((1)).
(10) (C1, C2), Amp{C1, C2}, 3/4 + 3/4 + 1/2 + ((1)) + ((1)).
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(11) (C1, C2) and f comes from an unramified double covering.

(12) Amp{C1, C2}, (C1, C2) and f comes from an unramified four-fold covering,

(ix) Assume g = r = 0 and k = 3. Then:

(a) f = id.

(b) ord(f) = 2, ( 1, 2 ) , f ( 3) = 3,1/2 + 1/2 + 1.

(c) ord(f) = 3, ( 1, 2, 3 ) , 1/3 + 2/3 + 1.
(x) Assume g = r = 0 and k = 4. Then:

(a) f = id.
(b) ord(f) = 2, ( 1, 2 ) , f ( i ) = i (i = 3,4), 1/2 + 1/2 + 1.

(c) ord(f) = 2, ( 1, 2 ) , ( 3, 4 ) , 1/2 +1/2 + 1 + 1.
(d1) ord(f) = 3, ( 1, 2, 3 ) , f ( 4 ) = 4 , 2/3 + 1/3 + 1.
(d2) ord(f) = 3, ( 1, 2, 3 ) , f ( 4 ) = 4 , 2/3 + 1/3 + 1.
(e) ord(f) = 4, ( 1, 2, 3 , 4 ) , 3/4 + 1/4 + 1.

(xi) Assume g = r = 1 and k = 1. Then:

(1) f |Σ C = i d .
(2) ord(f) = 2, Amp{C1}, 1/2 + 1/2 + ((1)).

(xii) Assume g = r = 1 and k = 2. Then;
(a1) f|Σ C = id.
(a2) ord(f) = 2, Amp{C1}, 1/2 + 1/2 + ((1)).
(b1) ord(f) = 2,Amp{C1}, ( 1, 2 ) , 1/2+1/2 +((1)) + 1.
(b2) ord(f) = 2, ( 1, 2 ) , ((1/2)) + ((1/2)) + 1.

(xiii) Assume g = r = 1 and k = 3. Then:
(a) f|Σ C = i d .
(b) ord(f) = 2, Amp{C1}, 1/2 + 1/2 + 1 + ((1)).
(c) ord(f) = 3, ( 1, 2, 3 ) , ((1/3)) + ((2/3)) + 1.

(xiv) Assume g = r = 2 and k = 1. Then:
(1) f | Σ C = id.
(2) ord(f) = 2, Amp{C1, C2}, 1/2 + 1/2 + ((1)) + ((1)).

(3) ord(f) = 2, (C1, C2), 1/2 + 1/2 + ((1)) + ((1)).

(4) ord(f) = 4, Amp{C1, C2}, (C'v C>2, C'{, C'{\ 3/4 + 1/4 + ((1)).

(5) ord(f) = 4, Amp{C1, C2}, (C[, C2, C'{, C'{), 3/4 + 1/4 + ((1)).

(xv) Assume g = r = 3 and k = 0. Then:
(1) f | Σ C = id.
(2) ord(f) = 2, Amp{C1, C2}, f(C 3 ) = C3, ((1/2)) + ((1/2)) + ((1)) + ((1)).

(3) ord(f) = 2, Amp{C1, C2, C3}, 1/2 + 1/2 + ((1)) + ((1)) + ((1)).

(4) ord(f) = 2, Amp{C3}, (C1, C2) 1/2 + 1/2 + ((1)) + ((1)) + ((1)).

(5) ord(f) = 2, (C1, C2), f(C 3 ) = C3, ((1/2)) + ((1/2)) + ((1)) + ((1)).

(6) ord(f) = 3, (C1, C2, C3), 1/3 + 2/3 + ((1)) + ((1)).

(7) ord(f) = 4, Amp{C1, C2}, f(C 3 ) = C3, (Cj, C ,̂ C'/, C'{), ((1/4)) + ((3/4)) + ((1)).

(8) ord(f) = 6, Amp{C1, C2, C3}, (Cj, C ,̂ C'3, C'[, C'{, C3'), 1/6 + 5/6 + ((1)).
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3. Pseudo-Periodic maps of genus three. In this section, we classify the conjugacy

classes of pseudo-periodic maps of negative type of genus three.

3.1. In order to classify decompositions of a Riemann surface Σ3 = B C of genus

three by an admissible system C of cut curves, we introduce the weighted graphs A-O in

Table 2. In Table 2, a vertex v (which we express by a small circle for visual impression)

corresponds to a connected component Bv of B. An edge corresponds to a component in C

which is adjacent to two connected components of B. We disregard the orientation of edges

in §3.1.

Let g(Bv) be the genus of Bv and let ρ(v) be the number of those curves in C that are

adjacent only to the component Bv. The number inside the small circle in Table 2 means

g(Bv) + ρ(v). We omit the number when it is zero. For instance, the graph (B) in Table 2

represents six types of decompositions, that is, the component corresponding to v1 has genus

i1 and is adjacent to 2 i1 non-separating curves in C, and the component corresponding to

v2 has genus i2 and is adjacent to 1 i2 non-separating curves in C (0 i1 2, 0 i2 1).

We write it as B i 1 i 2 . For example, B01 represents the decomposition in Figure 4.

LEMMA 3.2. The decompositions of a Riemann surface of genus three by an admissi-

ble system of cut curves can be classified in terms of the following weighted graphs;

A3, A2, A1, A0, B21, B20, Bn, Bio, B01, B00, C111, C110, C101, C001, C010, C000, D111, D110,

D001, D000, E11, E10, E00, F11, F10, F00, G11, G10, G01, G00, H1, H0, I1, I0, J1, J0, K1, K0, L,

M, N, O.

PROOF. By easy calculation. Note that this problem is equivalent to classifying stable

curves of genus three, which is well-known. (See, for example, [F]).

3.3. Let X be one of the weighted graphs listed in Lemma 3.2. By an automorphism

a : X X, we mean an automorphism of the graph such that the weight (g(Bv), ρ(v))

coincides with (g(Bσ(v)), ρ(σ(v))) for each vertex v of X.

In order to study the amphidrome action of a pseudo-periodic map, Matsumoto-

Montesinos [MMI, §7] introduced the notion of "extended partition graph" of an admissi-

ble system of cut curves. In our case, we conveniently fix the orientation e of each edge e in

advance as in Table 2 and study the automorphisms of weighted graphs with their orientations

taken into account.

For instance, consider the graph of type E11. We have three non-trivial automorphisms

a as follows:

FIGURE 4.
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(1) σ fixes the vertices v1 and v2, and interchanges the edges e1 and e2 preserving their

orientations.

(2) σ interchanges the vertices v1 and v2 and fixes the edges e1 and e2 as a set, but

changes their orientations.

(3) σ interchanges the vertices v1 and v2 and interchanges the edges e1 and e2.

We express by (e1, ei)) the cyclic group generated by the automorphism (1), express by

(v1, v2)(e1, e1)(e2, £2)} the cyclic group generated by the automorphism (2), and ex-

press by (v1, v2) (e1, ei)) the cyclic group generated by the automorphism (3). This is

equivalent to the following: We consider the symmetric group S6 of formally independent six

variables v1, v2, e1, e1, e2, e2. Then the group (e1, e2)) is isomorphic to the subgroup

of S6 generated by the product (e1, e2)( e1, e2). The group (v1, v2)(e1, e1)(e2, —ei)) is

isomorphic to the subgroup generated by the product (v1, v2)(e1, e1)(e2, e2). The group

(v1, v2)(e1, —ei)) is isomorphic to the subgroup generated by the product (v1, v2)(e1, e2)

(e2, e1).

In order to express all cyclic automorphism groups of X, we introduce the subgroups

II(0, 1)-V(1, 1) of the symmetric group S17 of 17 variables v1,... , v5, ±e1,...,

II(0, 2 ) = ((«1,«2)(«3,«4)>,

II(1, 3) = (v1, v2)(e1, e1)(e2, -ei)),

II(1, 4) = (v1, v2)(e1, e2)(e3, «4»,

II(1, 5) = (v1, v2)(e1, e2)(e3, -«4»,

II(1, 6) = (v1, v2)(e1, e1)(e2, e2

II(1, 7) =

II(1, 8) =

II(1, 9) =

II(1, 10) = (v1, v2)(e1, e2)(e4, e4)(e5, e6)>

II(2, 1) = (v1, v2)(v3,
 v4)(e1, e2)(e3, e4)),

II(2, 2) =

II(2, 3) =

II(2,4) =

II(2, 5) =

II(2, 6) =

II(2, 7) = (v1, v4)(v2, v3)(e5, e6)(e1,
II(2, 8) =

III(1,1) = ((W1,W2,W3)(«1>«2>«3)>,

III(1, 2) = (v1, v2, v3)(e1, e2

IV(0, 1) = ((«i,«2,«3,«4)>,
) = (v1, v2)(e1, e2, e3,
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1, 2) = (v1, v2)(e1, e3, e2, <

1, 3) = (v1, v3, v4, v2)(e6, e3, e2, e4)(e1, e5, e1, e

IV(2, 2) = (v1, v3)(v2, v4)(e1, e3, e2, e4)(e5, e5)(e6, e
VI(1, 1) = (v1, v2)(e1, e2)(e3, e1)(e2, e3)(e4, —64)}.

In the above table, for simplicity, we write (e^,,. . . , e7;) instead of (e^,1.. , eT,)(—ei1,... ,
-e7 ;), where e^ (j = 1 , . . . , l ) is one of ±ek (k = 1 , . . . , 6). The letters II, III, IV and VI
mean that the order of the corresponding group is 2, 3, 4 and 6, respectively.

Suppose X is of type E00 or E11. Then the non-trivial cyclic automorphism group of X
is II(0, 1), II(1, 2) or II(1, 3). For simplicity, we express this fact as

(0 i 1) : II(0, 1), II(1, 2), II(1, 3).

LEMMA 3.4. The non-trivial cyclic automorphism groups of the weighted graphs in
Lemma 3.2 are classified as follows:

(1) Ciij (0 i, j 1): II(1,1).
(2) Diij (0 i, j 1): II(1, 1), D i i i (0 i 1): III(1, 1).
(3) Eij (0 i, j 1): II(0, 1), Eii (0 i 1): II(0, 1), II(1, 2), II(1, 3).
(4) Fij (0 i, j 1): II(0, 1), Fii (0 i 1): II(0, 1), II(2, 1), II(2, 2).
(5)Gij (0 i 1):II(0, 1).
(6) Hi (0 i 1): II(0, 1), III(0, 1).
(7)Ii (0 i 1): II(0, 1), III(0, 1).
(8) J (0 i 1): II(0, 1), II(1,4), II(1, 6).
(9) K (0 i 1): II(0, 1), II(1, 4), II(1, 6).
(10) L: II(0, 1), II(0, 2), II(1, 5), II(1, 7), II(1, 8), III(0, 1), IV(0, 1), IV(1, 1), VI(1, 1).
(11) M: II(0, 1), II(0, 2), II(1, 9), IV(1, 2).
(12) N: II(0, 1), II(0, 2), II(2, 3), II(2, 4), II(2, 5), II(2, 7), II(2, 8), IV(2, 1), IV(2, 2).
(13) O: II(1, 10), II(2, 6), III(1, 2), IV(1, 3)

Elementary calculations are omitted.
3.5. Let X and G = (a) be a weighted graph and a cyclic automorphism group of X

described in Lemma 3.4. We define the quotient graph Y of X with respect to G as follows
(cf. [MM1, §7]): Y is a weighted graph which may have loops and satisfies the following
properties:

(i) There exists a map h : X Y of graphs.
(ii) Let |X| and |Y| be the underling 1-dimensional cell complex of X and Y, respec-

tively. Then the map h naturally induces a finite branched covering map |h| : |X | | Y| such
that the covering transformation group of|h| coincides with G.

(iii) Let v be a vertex of Y. Then h 1(v)¯ consists of a finite number, say l(v)¯, of
vertices vi (1 i l(v)) such that their weights (g(vi), ρ(v i)) coincide with each other, and
denoted by (g(v), ρ(¯v))¯. In this sense, v has the triple weight (l(v),̄  g(v), ρ(¯v))¯.

(iv) Let e be an edge of Y. Then h 1(e)¯ consists of a finite number, say ξ(e)̄ , of edges
of X. We put the weight ξ(e)̄  on e¯.
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We remark that, if the vertices v, v' which are ends of an edge e satisfies h(v) = h(v'),

then h(e) is a loop of Y starting from and ending at h(v).

Next we define the resolution Y of Y. Suppose that there exists an edge e of X and an

positive integer m which satisfy σm(e) = e, σm(v) = v' and crm(v') = v, where v and v'

are the vertices at both ends of e. Let m¯ be the minimal positive integer for m which satisfy
the above conditions. Then we replace h(e) by a line with weight 2m¯ where the top part is
branched into two lines with weight m¯ (see for instance Graph(6) in Table 3). We call the sum
of these three lines D-edge of weight 2m¯. After completing this process for every edge with
the above property, we obtain a weighted graph Y˜, which we denote by Y = X/G.

In Table 3, the number inside a small circle (i.e., a vertex v̄ ) means g(v) + ρ(v)¯, and
the number beside the circle means l(v)¯. The number beside an edge e means ξ(e)̄ . A loop
is written with two arrows (see for instance Graph(5)). If g(v) + ρ(v)¯ = 0 or l(v) = 1 or
ξ(e)̄  = 1, then it is omitted. Note that one graph might represent several weighted graphs Y
as in the case of Table 2. Then we have:

LEMMA 3.6. For each weighted graph X and each automorphism group G of X in
Lemma 3 .4, the resolution X/G of quotient graph are as in Table 3.

3.7. For a graph Y = X/G, we introduce the notion of substitution of marked general-
ized quotient in the following way: Since Y is planer, we have an embedding ι : Y ^-^ E2 into

Euclidean plane E2. We fix ι. Let v be a vertex of Y˜. Let B(v, ε) be a closed ball of small

radius ε in E2 with center v, and set

V = Y ˜ B(v,ε).

Suppose e1,..., es, es+1, . . . , es+s> are the edges of Y containing v as end with each of

es+1, . . . , es+si being a loop. Then V consists of a vertex v ands + 2s' segments e[,,... ,e's,

e's+v < + 1 , - - - , e's+s,, e%s, (ei B(v, ε) = e[ for 1 i s, e n B(v, ε) = ei U e'( for

s + 1 i s + s'). Moreover, V has a natural weighted graph structure induced by Y˜, i.e.,
the vertex v has triple weight (l(v), g(v), ρ(v)) and the edge e\ (1 i s + s') has weight

ξ(ei), which the edge e'( (s + 1 i s + s') has weight ξ(e i).

On the other hand, let Σ be a surface of genus g 3 with k boundaries. Let f : Σ Σ

be one of the pseudo-periodic maps whose admissible system consists of r curves classified

in §2.2, and satisfies the following conditions:

(i) g = g(v), r = ρ(v) and k = (££( ^O + ££f+i ^'!))/l(v).
(ii) The chorizo space Sf has s + 2s' arrows. Set Sf = J2j mjEj + J2i niF±i, where

Ej is a component of Sf and F±i is an arrow of Sf (ni, mj are their multiplicities). Changing

the order if necessary, we have

§(4) = l(v)ni (1 i s + s'), %{e") = l(v)ni (s + s' + 1 i s + 2s').

We denote by E(F±i) the component of J2 Ej which intersect F±i. We substitute Sf to V in Y

in the following way: we replace the vertex v by J2j Kv)mj Ej and connect each edge e[ (or

e") to J2j l(v)mj Ej so that e\ (or e'() intersect E(F±i) transversally.
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We perform this process for each part V of Y˜, and substitute each edge e of Y whose
ends are vertices by trees of spheres. More precisely, this part of the graph has two or three
types according as K 1, K = 0 (and K = 1) as we explained in §2.2 (iii) Figure 2. We
also substitute each D-edge by a tree of spheres of Dynkin diagram of type D (see [MM2, p.
73 Figure 3]). In this way, we obtain the generalized quotient space Sf for a certain pseudo-
periodic map f : Σ3 Σ 3 of negative type. The map f has the following properties:

Considering the types of vertices defined in Lemma 3.2, the graph X naturally represents

the admissible system of cut curves of f. The action to X of f coincides with G, and the

stabilizer of G for each connected component Bi of Σ3 C coincides with one of the periodic

maps in §2.2 whose marked generalized quotient space is just substituted to Vi corresponding

to Bi.

For instance, let X = K1 and G = II(1,4). Then the parts of K1/II(1, 4) in Table 3 (19)

consist of

V1 = {v1, e[; l(v1) = g(v1) = 1, ρ(v1) = 0, $(e[) = 1}

V2 = {v2, e[, e'2; l(v2) = 1, g(v2) = ρ(v2) = 0, $(e[) = 1, $(e'2) = 2}

V3 = {v3, 4 e'3, e'{\ l(v3) = 2, g(v3) = ρ(v3) = 0, i;(e'2) = $(e'3) = $(e3') = 2} .

By our rule, we substitute one of (iv1)-(iv8) in Table 1 to V1, (ixb) to V2 and (ixa) to V3. We

write this result as

K1:II(1,4), V1 = (iv), V2 = (ixb), V3 = (ixa).

We have eight types of generalized quotient spaces in this case. For example, if we substitute

V1 = (iv2), then Sf is as in Figure 5. Now we classify the conjugacy classes of the pseudo-

periodic maps of negative type of genus three. By Matsumoto-Montesinos [MM2, Theorem

2], it is equivalent to classifying triples (X, G, Sf) in our notation. We express Sf by the

substitution of the corresponding marked generalized quotients in Table 1 to the parts of the

quotient graph X/G in Table 2 or Table 3. Since the substitution of (ixa) or (xa) is trivial, we

omit it.

1 , •••, 1

5, 4, 3, 2, 1 /
2 , • • • , 2

FIGURE 5.



212 T. ASHIKAGA AND M. ISHIZAKA

PROPOSITION 3.8. The conjugacy classes of the pseudo-periodic maps of negative
type of genus three are classified as follows:

(1)A3:Id, V1 = (i) in §2.2.
(2)A2:Id, V1 = (iii).
(3)A1:Id, V1 = (viii).
(4)A0:Id, V1 = (xv).
(5) B21: Id, V1 = (ii), V2 = (iv).
(6) B20: Id, V1 = (ii), V2 = (xi).
(7) B11: Id, V1 = (vii), V2 = (iv).
(8) B10: Id, V1 = (vii), V2 = (xi).
(9) B01: Id, V1 = (xiv), V2 = (iv).
(10) B00: Id, V1 = (xiv), V2 = (xi).
(11) C111: Id, V1 = V2 = (iv), V3 = (va). II(1, 1), V1 = (iv), V2 = (vb).
(12) C110: Id, V1 = V2 = (iv), V3 = (xiia). II(1, 1), V1 = (iv), V2 = (xiib).
(13) C101: Id, V1 = (iv), V2 = (xi), V3 = (va).
(14) C100: Id, V1 = (iv), V2 = (xi), V3 = (xiia).
(15) C001: Id, V1 = V2 = (xi), V3 = (va). II(1, 1), V1 = (xi), V2 = (vb).
(16) C000: Id, V1 = V2 = (xi), V3 = (xiia). II(1, 1), V1 = (xi), V2 = (xiib).
(17) D111: Id, V1 = V2 = V3 = (iv). II(1, 1), V1 = V3 = (iv), V2 = (xb).

III(1, 1), V1 = (iv), V2 = (ixc).
(18) D110: Id, V1 = V2 = (iv), V3 = (xi). II(1, 1), V1 = (iv), V2 = (xb), V3 = (xi).
(19) D100: Id, V1 = (iv), V2=V3 = (xi). II(1, 1), V1 = (xi), V2 = (xb), V3 = (iv).
(20) D000: Id, V1 = V2=V3 = (xi). II(1, 1), V1 = V3 = (xi), V2 = (xb).

III(1, 1), V1 = (xi), V2 = (ixc).
(21) E11: Id, V1 = V2 = (va). II(0, 1), V1 = V2 = (vb). II(1, 2), V1 = (va).

III(1, 3), V1 = (va).
(22) E10: Id, V1 = (va), V2 = (viia). II(0, 1), V1 = (vb), V2 = (xiib).
(23) E00: Id, V1 = V2= (viia). II(0, 1), V1 = V2= (viib). II(1, 2), V1 = (xiia).

III(1, 3), V1 = (xiia).
(24) F11: Id, V1 = V2 = (iv). II(0, 1), V1 = V4 = (iv), V2 = V3 = (ixb).

II(2, 1), V1 = (iv). II(2, 2), V1 = (iv).
(25) F10: Id, V1 = (iv), V2 = (xi). II(0, 1), V1 = (iv), V2 = V3 = (ixb), V4 = (xi).
(26) F00: Id, V1 = V2 = (xi). II(0, 1), V1 = V4 = (xi), V2 = V3 = (ixb).

II(2, 1), V1 = (xi). II(2, 2), V1 = (xi).
(27) G11: Id, V1 = (va), V2 = (iv). II(0, 1), V1 = (vb), V2 = (ixb), V3 = (iv).
(28) G10: Id, V1 = (va), V2 = (xi). II(0, 1), V1 = (vb), V2 = (ixb), V3 = (xi).
(29) G01: Id, V1 = (xiia), V2 = (iv). II(0, 1), V1 = (xiib), V2 = (ixb), V3 = (iv).
(30) G00: Id, V1 = (xiia), V2 = (xi). II(0, 1), V1 = (viib), V2 = (ixb), V3 = (xi).
(31) H1: Id, V1 = (via). II(0, 1), V1 = (vib), V2 = (ixb).

III(0, 1), V1 = (vic), V2 = (ixc).
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(32) H0: Id, V1 = (xiiia). II(0, 1), V1 = (xiiib), V2 = (ixb).

III(0, 1), V1 = (xiiic), V2 = (ixc).

(33) I1: Id, V1 = (iv). II(0, 1), V1 = (ixb), V2 = (xb), V3 = (iv).

III(0, 1), V1 = (ixc), V2 = (xd), V3 = (iv).

(34) I 0 : Id, V1 = (xi). II(0, 1), V1 = (ixb), V2 = (xb), V3 = (xi).

III(0, 1), V1 = (ixc), V2 = (xd), V3 = (xi).

(35) J1: Id, V3 = (va). II(0, 1), V1 = (va), V2 = V3 = (ixb).

II(1,4), V1 = (vb). II(1, 6), V1 = (vb).

(36) J0: Id, V3 = (xiia). II(0, 1), V1 = (xiia), V2 = V3 = (ixb).

II(1,4), V1 = (xiib). II(1, 6), V1 = (xiib).

(37) K1: Id, V4 = (vi). II(0, 1),V1 = V2 = (ixb), V4 = (iv).

II(1,4), V1 = (iv), V2 = (ixb). II(1, 6), V1 = (iv), V2 = (ixb).

(38) K0: Id, V4 = (xi). II(0, 1), V1 = V2 = (ixb), V4 = (xi).

II(1,4), V1 = (xi), V2 = (ixb). II(1, 6), V1 = (xi), V2 = (ixb).

(39) L: Id. II(0, 1), V1 = V2 = (xb). II(0, 2), V1 = V2 = (xc). II(1, 5). II(1, 8).

III(0, 1), V1 = V2 = (xd). IV(0, 1), V1 = V2 = (xe).

IV(1, 1), V1 = (xc). VI(1, 1), V1 = (xd).

(40) M: Id. II(0, 1), V1 = (ixb), V3 = (xb). II(0, 2), V1 = (xc), V2 = V3 = (ixb).

II(1, 9), V1 = (xc). IV(1, 2), V1 = (xe), V2 = (ixb).

(41) N: Id. II(0, 1), V1 = V3 = (ixb). II(0, 2), V1 = V2 = V3 = V4 = (ixb).

IV(0, 1). II(2,4). II(2,5). II(2,7). II(2,8).

IV(2, 1), V1 = V2 = (ixb). IV(2, 2), V1 = V2 = (ixb).

(42)O: Id. II(1, 10), V1 = V2 = (ixb). II(2,6). III(1, 2), V1 = (ixc). IV(1, 3).

PROOF. Cyclic automorphisms of the weighted graph in Lemma 3.4 are clearly induced

by pseudo-periodic maps of negative type. Therefore we get the assertion by easy calculations.

4. Classification of degenerations.

4.1. Let φ : S be a proper surjective holomorphic map to the unit disk = {t

C | |t | < 1} such that φ 1(t) is a smooth Riemann surface of genus g 2 for any t A* =

A {0}. We call φ a degeneration of genus g, and call F = φ 1 (0) the singular fiber. Suppose

that φ is normally minimal, i.e., the reduced scheme of F has normal crossing and any ( 1)-

curve in F intersects the other components at at least three points. For two degenerations φ :

S A and <j>' : S — , if there is an orientation-preserving homeomorphism ψ : S S'

which satisfies </>' • ψ = φ, then we say φ and 0' are topologically equivalent.

Let Mg be the moduli space of Riemann surfaces of genus g and let Mg be the Deligne-

Mumford compactification ofMg (cf. [DM]). Since is complex one-dimensional, the mod-

uli map µ : ->• M g is uniquely extended to a morphism µ¯ : Mg. We call the stable
Riemann surface µ(̄ 0) the moduli point of φ.

By fixing t0 4* as a base point, the canonical generator of n(A*, t0) ~ Z acts natu-

rally on the Riemann surface φ 1(t0) as an orientation-preserving homeomorphism modulo

isotopy. Since a change of the base point corresponds to a conjugation in the mapping class
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group Γg, the degeneration of φ uniquely determines an element M (φ) of the conjugacy class

ˆg of Γg. We call m(φ) the topological monodromy of φ. Then Matsumoto-Montesinos'

fundamental theorem [MM2, Theorem 1] says the following:

An element of fg which is the topological monodromy of a degeneration is represented

by a pseudo-periodic map of negative type. Conversely, any conjugacy class of a pseudo-

periodic map of negative type is realized as the topological monodromy of a certain degenera-

tion. The topological monodromy uniquely determines the equivalence class of a topological

type of a degeneration.

Thanks to this theorem, we can classify topological equivalence classes of degenerations

of Riemann surfaces of genus three.

Let f : Σ3 Σ 3 be a pseudo-periodic map of negative type, and let φf : S be

the degeneration whose topological monodromy coincides with the conjugacy class of f (cf.

[MM1, §10]). By the construction of φf, the singular fiber φf 1(0) coincides topologically

with the generalized quotient space Sf of f. Let C be the admissible system of cut curves of

the class f. By shrinking each curve of C to a point, we naturally associate a stable Riemann

surface Xf. In this sense, the weighted graphs classified in Lemma 3.2 (Table 2) can also

be considered as the dual graphs of stable Riemann surfaces. Namely, a vertex of the graph

corresponds to an irreducible component of Xf, the weights of the vertex are the genus and

the number of double points of the component, and an edge corresponds to a double point of

Xf and so on.

LEMMA 4.2. The topological structure of the stable Riemann surface which is the

moduli point of φ f : S ε coincides with Xf.

PROOF. Let A be an annular neighborhood of the admissible system C. Since f is

pseudo-periodic, there exists a natural number N so that fN can be considered (modulo iso-

topy) to be the identity map on Σ3 A and fN behaves as an integral Dehn twist on each

component of A.

Now let h : A be the cyclic covering map t H>- tN between disks and let S be the

minimal desingularization of the fiber product S × via h. The natural map φ˜ : S ˜ is a
degeneration with singular fiber F = φ˜ 1(0) and the topological monodromy of φ˜ coincides
with fN. From the construction of the chorizo space, F is a semi-stable Riemann surface
obtained from Xf by replacing each double point of Xf by a tree of smooth rational curves
of multiplicity one. In other words, φ˜ is the semi-stable reduction of φf and the stable model

of F coincides with Xf.

Hence the topological structure of the moduli point of φf coincides with Xf. Q.E.D.

By the previous arguments, we have:

THEOREM 4.3. Letφ : S be a degeneration of Riemann surfaces of genus three.

Let µ¯φ(0)top be the topological structure of the stable Riemann surface associated to µ¯φ(0).

Letm(φ) and F be the topological monodromy and the singular fiber ofφ, respectively. Then

(µ¯φ(0)top, m(φ), F) is one of the following:

(i) µ¯φ(0)top is one of those listed in Lemma 3.2.
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(ii) m(φ) is one of those listed in Proposition 3.8 associated with µ¯φ(0)top.

(iii) The topological structure ofF coincides with the generalized quotient space Sm(φ)

which we described in Proposition 3.8.

Conversely, the degenerations which satisfy the properties (i), (ii), (iii) exist.

4.4. Lastly, we prove the latter part of Lemma 1.4 which we postponed in § 1.

Step 1. Assume g' 1. If we fix n, g' 1 and ( λ 1 , . . . , λl), then the total valency

is unique from the list of Lemma 1.4. Therefore the existence of the desired periodic map is

clear by Harvey's theorem. Hence from now on, we assume g' = 0.

Step2. From the data n and {σi/λi }1 i l , we obtain a sequence of integers OQ > a1i >

• ·· > ak

i which satisfy

a'0 = A,-, a[=cri, a j . j + a ^ ^ O (moda}) (j = 0, 1, . . . , k{ - 1).

Set

. = 1 j = 1 λ

where E0E1i = 1, E0Eji = 0 (j 2), EjiEji+ 1 = 1 ( j = 1 , . . . ,ki 1), £}£}', = 0

( | j j ' \ > 2) (i, i' = 1 , . . . , l ) and E0, Ei are nonsingular rational curves. X naturally has

the structure of a scheme.

By Winters [Wi, Cor. 4.3], there exist a nonsingular surface S and a surjective holomor-

phic map φ˜ : S ˜ such that X is the fiber over the origin. We claim that any fiber of φ˜ is
connected. By [Wi, Cor. 3.7] it suffices to prove

gcd(n, n/λ 1a11 ... , n/λla1l) = 1.

Suppose gcd(nσ1 /λ 1,... ,nσl/λl,n) = d jt 1. Then nσ i/(λ id) (1 i l) are

integers. Since gcd(σi,λ i ) = 1, λi divides n/d for any i (1 i l). This contradicts the

condition n = lcm(λ1,... , λl) (§1.3 (iv) (2)).

Step 3. An irreducible component of a singular fiber of a certain degeneration is called

main component when its genus is more than zero or it intersects the other components at

more than two points.

Now we claim that the monodromy / of the degeneration φ˜ is periodic. Assume that f
has a non-empty admissible system C. First assume that the number of connected components
of Σg C is one. If / has no amphidrome, the dual graph of the chorizo space Sf˜ has loops.
If / has amphidrome, S˜ clearly has at least two main components. Since X has only one
main component E0, this is a contradiction.

Next assume that the number n of connected components of Σg C is greater than one.

Since X has only one main component, the action on the dual graph induced by / cyclically

permutes all components. Then the quotient graph has a loop or / has an amphidrome action

at a certain part, which is a contradiction. Hence / is periodic.

Considering multiplicities of the components of X, the valency data of the periodic map

/ coincides with {σi/λ i }1 i k. Q.E.D.
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TABLE 1. Marked generalized quotient.

(iii)
5 6,2 5

genus 2
7,4, 1

-10 -10 -10

8,6,4,2 3'2' ! 2 9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,

I
5, 2, 1

10
4,2

I

5,2,1
—I

3, 1

7,6,5,4,3,2, 1 7,6,5,4,3,2, 1
I

(iilO) (iill)

5,4,3,2, 1
4,2 4,3,2, 1

5,4,3,2,1 2 4, 3,2, 1 2 1

(iil 5) (iil 6)

I
4,3,2, 1

2,1

3,1

4, 3, 2, 1

I
4 ,3 ,2 , 1,

5

3, 1
I

3, 1

4,3,2 ,1
I

(iil 8) (iil 9)

I
2, 1

I
2, 1

2 2

3, 1 3, 1 2, 1 2, 1 3,2, 1

("24)

3,2, 1

2, 1 2, 1

2, 1 2, 1

elliptic



(iiil)

genus 2

1 , . . . , 1

|
4.2
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TABLE 1 (continued)

4 I
I 5, 2, 1
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7,6,5 4,3,2, 1

1 , . . . , 1

I I
2 t | l 4, 3 ,2 , 1

4,3, 2.1 5

1 , . . . , 1

(iiilO) |
4 ,3 ,2 ,1

2, 1

2, 1

1 . . . . , 1

2, 1 2. 1

(iiil 4)

3, 2, 1

-4-4-

5,4,3,2, 1
6

5, 4, 3, 2, 1

|
3, 2, 1 2, 1

4,3 2, 1

3, 1

(iiill)

1 , . . . , 1

3, 1 3, 1

1, . . . . 1

(iiil 2)

4,3 2.1

1 , . . . , 1

2,1 2,

(iiil 6)

2,1 2,

1, . . . , 1

2, 1

2, 1

(iiil 9)

elliptic

1 , . . . , 1

1 0 •

1, . . . , 1

7,4,1

8,6,4,2

2, . . . , 2

10
3,2 1 9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 , 1

2 , . . . ,2

10 10
6,2

2 , . . . ,2

4,2

,4,2 3

2 , . . . ,2

2 3

4,2 3

2 , . . . ,2 2 , . . . ,2

5 ,4 ,3 ,2 , 1

2 5,4,3,2,1

2, . . . , 2

3,2, 1
4 -H \

2 , . . . ,2

elliptic

2 , . . . ,2 2, . . . , 2
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TABLE 1 (continued)

(ivl) (iv2) (iv3) (iv4)

3 3 2

elliptic

(iv5)

5,4,3 2,1 4 ' 2

(iv6)

1 2,'l 2,1

(iv7)

3,2,1 3,2,1

(val)

i
(va5)

(va2) (va3)

(iv8)

(va4)

, H—h
elliptic 3 j 2 1 3,2, 1

2, 1 2, 1 2, 1

(va6) (vbl) (vb2)

5,4,3,2,1 4,2

(vb3) (vb4) (vb5)

2 ' 2

(vb6)

3,2, 1

(vial)

3, 2, 1
"2 2-

elliptic

(via2) (via3) (via4)

elliptic

(vibl)
(vib2) (vib3) (vib4)

5,4,3,2,1 4,

(vib5)

2

(vicl)

3+7

(vic2)

4,2 3

-4
3 , 1 1

>~
2

3

(vic3)

5,4,3,2, 1 2, 1 2, 1 2, 1

(vic4) (vic5)

-3 3 elliptic
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TABLE 1 (continued)

(viil)

1 , . . . . 1 /

elliptic

2 , . . . , :

1 ' 2 , 1

4,2

5,4,3,2, 1 2 , . . . ,2

3,2, 1 3 , 1 1

219

1, . . . , 1

2 , . . . ,2

(viiil)

' ' \ / elliptic "j 1 [4
V 3,2, 1 3 2 1

. 1 , . . . , 1

1, . . . , 1
2, . . . ,

1 . . . . 2

1, . . . , 1

2 , . . . ,2

(viiilO)

4 3,2,1

I . . . . ,

elliptic

(viiil 1)

2, ••• ,2

(vi i i l 2)

4, • •• , 4

\ 2 , . . . , 2 /

4 , • • • , 4
elliptic

elliptic

4 , • • • , 4
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(ixa)
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TABLE 1 (continued)

(ixb) (ixc)

3
2, 1

(xa) (xb) (xc) (xdl)

2 2

2, 1

(xd2) (xe)

3 | 2,1

(xil)

4 3, 2, 1

(xi2)

t
2 , . . . ,2

(xiial)

_ \

(xiibl)

1 /» t
(xiiia)

2 , . . . , :

(xiiib)

t
(xiib2)

N 1 " " ' )

(xivl)

t
2 , . . . ,2

(xiiic)

2 , . . . , :

2, 1

(xiv2)

I 1 , . . . , 1

(xiv3) (xiv4)

1 . . . . . 1 2 , . . . , 2
r 3. 2, 1

I

4 , . . . ,4

(xiv5)
2 2

3, 2, 1

4 , . . . ,4

2 2
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TABLE 1 (continued)
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(xv!) (xv2)

1, . . . , 1

(xv3)

2 rx
2 , . . . ,2

2 . . . . . :

2, . . . , 2 ,

2 , . . . ,2

(xv5) (xv6)

1 , . . . , 1

(xv7)

2 , . . . ,2

2, 1

3 , . . . ,3 4 , . . . ,4

(xv4)

t
2 , - . - , 2 2 , . . . , 2

(xv8)

5,4,3,2,14 t
6, . . . , 6

3 3

(A)

TABLE 2. Admissible system of cut curves.

(B) (C)

U2

(D)

(E)

ei

"2

(F) (G)

(H)

«3

(I)

Vi — V2 "3

(J)
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(K)

(N)
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TABLE 2 (continued)

(L)

(O)

(M)

TABLE 3. Resolution of quotient graph.

(4) E,7/II(0,l) (5) E,-,/II(L2)

(7) (8)



(9) F;;/H(2,2)

DEGENERATIONS OF CURVES OF GENUS THREE

TABLE 3 (continued)

(10) G,7/II(0,l) (11) H,/II(0,l)

"1

1

(12) H,/III(0,l)

(18) K,/II(0,l)

(21) L/II(0, 1)

(13) 1,711(0,1)

(16) J,/II(1,4)

(19) K,/II(K4)

(22) L/II(0,2)

(14) I,/IU(0,l)

(17) J,7TT(1,6)

(20) K,/I1(1,6)

V\ V2 U3
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(23) L/II(1,5)

(24) L/II(1,7) (25) L/II(1,8) (26) L/III(0, 1)
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(27) L/IV(O, 1)

1J| V2

T. ASHIKAGA AND M. ISHIZAKA

TABLE 3 (continued)

(28) L/IV(1, 1)

t-'i

(30) M/II(0, 1)

(33) M/IV(1,2)

(36) N/IV(0, 1)

(32) M/II(1,9)

(37) N/II(2,4)

2 2

(35) N/II(0,2)

(38) N/II(2,5)

(39) N/II(2,7) (40) N/U(2, i

2 2 2

(41) N/IV(2, 1)
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TABLE 3 (continued)
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(42) N/IV(2,2) (43) 0/11(1,10) (44) O/II(2,6)

(45) O/III(1,2) (46) O/IV(1,3)
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