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Abstract. Imagine a thin elastic rod like a piano wire. We consider the situation that
the elastic rod is bent and twisted and both ends are welded together to form a smooth loop.
Then, does there exist a stable equilibrium? In this paper, we generalize the energy of uniform
symmetric Kirchhoff elastic rods in the 3-dim&innal Euclidean space to consider such a vari-
ational problem in a Riemannian manifold. We give the existence and regularity of minimizers
of the energy in a compact or homogeneous Riemannian manifold.

1. Introduction. Let M be ann-dimensionalC*® Riemannian manifold. Let be
a positive constant, which represents the length of a piece of the elastic rod. We consider
a unit-speed closed curye = y(¢) : St = R/IZ — M. We assume that is of class
H?, that is, the components fwith respect to ang’*> local coordinate system are of class
Hl(z)c in . To describe how the elastic rod is twisted, we consider an orthonormal frame field
M = (M1, Mo, ..., M,_1) in the normal bundle along|jo;. (In general M (0) # M(l).)
Here, we assume thaf is of classH !, that is, the components of; (1 < i < n — 1) with
respect to ang' > local coordinate system are of cIaH%C in z. We consider the paiy, M}
of y andM.

Let v be a positive constant, which is determined by the material of the wire. We define
the energy¥ as follows:

I n—-1 .
‘3({y,M})=/O |V,;}|2dt+v2/0 \VEM;|2dr .
i=1

This energy is a generalization of the eneofiyhe uniform and symmetric case of Kirchhoff
elastic rods in the 3-dimensional Euclideamsp, which is possibly the simplest energy with
the effect of bending and twisting (cf. [12], [5]). Here, the first term of the right hand side is
called the bending energy of which is the simplest energy with only the effect of bending.
We now formulate the space of configurations of the loop wire. We introduce an element
¢ of the (n — 1)-dimensional special orthogonal groS@ (n — 1) to represent how the sides
of the ends of the elastic rod are welded. Denoté/Byl, ¢) the totality of the paify, M} as
above satisfying the following boundary condition:

M) = M©O)gp.

Let UCo(l, ¢) be a connected componentid€ (I, ¢). This space represents the totality of
configurations of the loop wire. We consider the following variational problem.
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PROBLEM. Does there exist an elementi@€o(l, ¢) attaining the infimum of the en-
ergy £? Moreover, is the element smooth?

In the case that the ambient space is thellEean space, the existence and regularity
theorem of minimizers was proved by Antman]j[for a much broader class of energies and
boundary conditions. Also, in the case that the ambient space is a general compact Riemann-
ian manifold and the energy is the bending energy, it was proved by Langer and Singer ([11])
and by Koiso ([9]). Langer and Singer ([11]) proved that the bending energy on the space of
curves in a compact Riemannian manifold satisfies the Palais-Smale condition. This implies
the existence of general critical curves including minimizers. Also, Koiso ([9]) proved the
existence and regularity of minimizers of the bending energy on the space of curves restricted
in a Riemannian submanifold by using the direct method of the calculus of variations.

In this paper, we affirmatively answer to the above variational problem in the case that
the ambient spac#1 is a compact or homogeneous Riemannian manifold and the energy is
the¥ defined above.

THEOREM 1.1. Suppose that M is a compact Riemannian manifold or a homoge-
neous Riemannian manifold. There exists {y, M} € UCo(l, ¢) attaining the infimum of the
energy . Moreover, {y, M} isof class C*°.

REMARK. Even forg € O(n — 1), the above theorem holds in the following sense.
Namely, iflUC(l, ¢) # ¥, then there exists a smooth minimizer®din any connected compo-
nenttdCo(l, ¢) of UC(, ).

The organization of the paper is as follows: In Section 2, we introduce the notation
precisely, and prove the existence of minimizers. In Section 3, we prove the regularity of
minimizers.

The author would like to express his gratitude to Professor Norihito Koiso for his sugges-
tion and constant encouragement. The author also wishes to thank Professor Minyo Katagiri
for his advice and warm encouragement, and the referee for valuable comments.

2. Existenceof minimizers. Let M be amm-dimensionalC>® Riemannian manifold,
and! a positive constant. For later convenience in Section 3, we define some configuration
spaces consisting of those which are not seadly parameterized by arc length. Let=
y (@) : $t = R/1Z — M be aregular closed curve. We assume jhit of classH?, that is,
the components gf with respect to any"*° local coordinate system are of cIaH%C inz.
Note thaty is of classC! by the Sobolev embedding theorem. kebe the tangent vector to
y, andv(r) = |y (@)| = (y(@), y(@))Y? the speed, an@ (r) = (1/v(¢))y (¢) the unit tangent
vector. We denote b§ M the tangent bundle of1, and byV the Levi-Civita connection.
We use the symbol¥; = Vj,5; = Vy;. When we think ofy as a curve having two end
pointsy (0) andy (/), we denote it byy |0, : [0,/] — M. Denote byT - M the normal
bundle along/ (0,77, and byV+ the normal connection. Leéf = (M1, M>, ..., M,_1) be an
orthonormal frame field i~ M. (In general M (0) # M(l).) Here, we assume thaf is
of classH1, that is, for anyC* local coordinate systerix®, x2, ..., x"), the components of



KIRCHHOFF ELASTIC RODS 181

M; (1 <i < n— 1) with respect to the bastyaxt, 9/9x2, ..., d/dx" are of class}, in t.
We consider the pafy, M} of y andM.
Now, letv be a positive constant. We define the enetgs follows:

I n-1 .
‘I({y,M}):/ Vo T Pvdt +v ) /|V%M,-|2udt.
0 . 0

i=1

We note thaf is invariant under reparameterizationrof

Letp € SO — 1). Denote byC(¢) the totality of{y, M} as above satisfying the
following boundary condition:

M) = M©O)p.

Also, we denote byC(l, ¢) the totality of elementgy, M} of C(¢) such that the length
fé v(t)dt of y is equal tol, and byl/C(l, ) the totality of elements$y, M} of C(l, ¢) such
thaty is unit-speed.

Here, we introduce the following topology &€ (I, ¢) to take its connected components.
For a technical reason, we consider a slightly weaker topology than the natural topology on
UC(, ¢). Note that the following inclusion relation holds.

UC(, ) C C(l, 9) C Clp) C HA(SY, M) x (HX([0, 1], TM))" L
c cXst, M) x (c(o, 11, TM))" L,

where(H1([0, [], T M))"~1, etc. are thes — 1 times direct products df ([0, /], T M), etc.
We introduce on the right hand side the product topology ofithéopology of C1(St, M)
and theC? topology of C°([0, I], TM). We call it theC™-? topology. LetidCo(l, ¢) be a
connected component &iC (1, ¢) with respect to th&1-° topology. (See the last paragraph
of the proof of Lemma 2.1.)

Now, we prove Theorem 1.1. From now on, we assumeAhas a compact or homoge-
neous Riemannian manifold. In the rest of this section, we show the existence of minimizers.
Let {y?, MP} = {y?,(M],....M" D} (p = 1,2,...) be a minimizing sequence &f in
UCo(l, ¢), andTy the infimum ofE. Thus, lim,_, oo T({y?, M?}) = To.

LEMMA 2.1. There exists a subsequence {{y?/, ij}};?il of {{y?, Ml’}};;":l
and {y®>°, M*°} e UCo(l, ¢) such that {y?/} converges to y*° in the weak topology of
H?(SY, M) and {MPi} converges to M in the weak topology of (H([0, I], TM))"~* as
j — 0.

PrRoOOF First, we consider the case th& is a homogeneous Riemannian manifold.
Without loss of generality, we may assume théat is connected. Sincé is connected,
the connected componegt, of the isometry group oM with the unit element also acts
transitively onM as isometries. Far € G, we denote bys, the corresponding isometry on
M, and bysS, its differential map. Ify, M} € UCo(l, @), then{S, oy, Sy« M} € UCo(, ¢).
Also, T({S, oy, Se«M}) is equal taZ({y, M}). Therefore, without loss of generality, we may
assume that the poinjg” (0) are independent gf. Thus, the imageg” (S1) are contained in
a compact subset o¥1 independent of. Next, in the case that! is a compact Riemannian
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manifold, the images?(S1) are also contained in a compact et (The compactness or
homogeneity ofM is not necessary, hereafter.)

By the condition|y?| = 1, the sequencéy”} is equicontinuous. Thus, the Ascoli
theorem ([7]) yields that there exists a subsequetyz:%i}f;":1 of {yP}jf:l which con-
verges to a closed curye® e C(St, M) in the C° topology. We rewrite the subsequence
{yP1, MPiy)32 as{{y?, MP}T2 .

Let I c S* be an open interval, and/, (x%, x2,...,x™) alocal coordinate neighbor-
hood of M satisfyingy>(I) ¢ U, wherel is the closure ofl. For sufficiently largep,
y?(I) C U. Denotebyroy? = (xtoy? x20y?, ..., x" o yP?) the coordinate expression of
yP, and by(M")L, (MP)?, ..., (MP)" the coordinate expression 81" with respect to the
basisd/dxt, 8/9x2, ..., d/0x". We show that

o ¥ P 132 ey = f oy 1% +1(x 0 y?Y I + |(x 0 y?)|7dt
’ 1

is bounded with respect tp, where| x | g denotes the Euclidean norm of a vectoRhand
" denotes differentiation with respect#oFirst, |x o )/I’I% is bounded by a positive constant
independent op andt, becauséx o y”} converges ta: o ¥ in the C° topology. Next, we
considen(x o yl’)’ﬁ;. SinceU,"le yP(I)(C M) is compact, there exists a positive constant
C1 independent op andt such that

(xoy?)|Z < CilyP)2=C1.
Next, we consider

/1 I(x o y?)")2dt .

We denote by}, the Christoffel symbols, and b§v;y7)%, ..., (V;y?)"~1 the components
of V,y P with respect to the basydx?, ..., d/dx". Since

n
VipP) =@ oy?) + Y Ik oy?) (o Py,
ki=1
we have
|(xoy?)'[5 < 2[(Viy D)L ... (Vp )G
n n 2
+22< Z F,fl(xk oy”Y(x'o y”)’)
(21) i=1 “k,l=1
2C2|V,yP|? + 2C3|(x 0 yP)'[},
2C,|V,pP |2 +2C3C2,
for almost every € I, whereC, andCj3 are constants independentyofinds. Therefore,

<
<

/1 I(x 0 yP)"12dt < 2C2Z({yP, MP}) 4+ 2C3C2l.

SinceX({y?, MP}) is bounded by a constant independenpp$o is the left hand side of the
above expression.
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LetIy,..., I, c S! be afamily of open intervals and,,, (x,,))(m = 1,...,r) be a
family of coordinate neighborhoods #ff such thats = 71, U- - - U I, andy*(I,,) C U, for
eachm. For eachn, ||x,, o y? ||22(Im!R,,) is bounded with respect fo. A bounded sequence in
a Hilbert space has a weakly convergent subsequence ([2]). Thus, there exists a subsequence
{y?, MP./}}?‘;l such that{x,, o yl’f}?:l converges to an elemegt, of H2(1,,, R") in the
weak topology ofH?(I,,, R"). For eachn, we successively extract such a weakly convergent
subsequence. We rewrite the resulting subsequent{@asMp}};Ozl. We can check that if
I 0 Iy # 9, theng, = (xx 0 x,,1) o &,. Thus, there exists an elemenof H2(S, M) such
thaté,, = x,, o £&. Consequently;y”} converges t@ in the weak topology of72(S1, M).

SinceH?(1, R") is compactly embedded ifil (1, R"), a weakly convergent sequence in
H?(1,R") is a strongly convergent sequencedh(/, R"). Therefore{y”} converges tg in
the C* (strong) topology, and sp = y*°. Also, we havdy ™| = 1, becauséy ”} converges
to > in the C* topology.

Next, we consideMl.”. We denote by an open interval if0, /]. We write the pair of
componentg(M”)t, (M")?, ..., (MP)") as the same notatial”, unless confusion could
occur. We first show thatM/ || 1, re) is bounded with respect to. Since|M/|? = 1, itis
sufficient to show that

am;
dt

2.2
(2.2) /1 ar |,
is bounded with respect to. In the same way as (2.1), we have

am? |?
‘ Ll < CalViM[ P + Cs,
dt |g
for almost every € I, whereC4 andCs are constants independentpénd:. By the Leibniz

rule, VA MP|? = |V, MP 12 — |(MF, V,p?)|?, and so we have
n—1

n—1

1
Z/|V,M;’|2dt= Z/|V}M,P|2dt+/|vtyp|zdt < <1+—> T({yP?, MPY).
i=1 1 i=1 4 1 v

Therefore,f; |V; Mi”|2dt is bounded with respect o, and so is (2.2).

In the same way agy”}, we obtain the following. There exists a subsequence
{y?, MP./}};?‘;l such that{Mipj}jil(c H([0, 1], T M)) converges to an elemeM ™ of
HY([0,1], T M) in the weakH * topology of H([0, /], TM). Thus,{M/’} also converges to
M in theC? topology. We seM>® = (M, ..., MX ). SinceMl.pj (t) converges ta/>°(t)
andy ?i (¢t) converges tgr°°(¢) for every fixedr, M is an orthonormal frame field of the nor-
mal bundle along *°|[o,;7, andM*°(l) = M*°(0)¢. Therefore{y >, M*°} € UC(, ).

Here, recall that/Co(l, ¢) is a connected component with respect todHé’ topology.
Since({y?/, MPi}}32; converges tdy >, M>} in the C10 topology, we havéy >, M>®} ¢
UCo, ). O

Now, we showZ({y >, M*>°}) = Ty. We rewrite the subsequen¢/?/, MP/}}?Zl in
Lemma 2.1 aS{yP,MP}};Ozl. Let0O=1 <t1 < -+ < t,_1 < t, = [ be a subdivision

2
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of the interval[0, /] and (U, (x,,))(m = 1, ..., r) be a family of coordinate neighborhoods

of M such thaty*([t,,—1, tn]) C U, for eachm. We setJ,, = [tn—1,1,]. We denote

by ¥|,,{y, M}) the integral of the corresponding energy densityJgninstead off0, /] in

the definition of. Since the sequend&|,,, ({y?, Mfl’})}jjj’:l is a bounded sequence of real
numbers, there exists a convergent subsequence. Thus, without loss of generality, we may

assume that the sequen(cg;, ({y?, M”})};’j’:1 converges to a real number for eaghSet

Ty, = lim %, {y?, M"}).
p—>00

We note thad ", _, 7, = To.

We fix m, hereafter. We write the coordinate expressieh o y?, ..., x/% o y?) of y?
by the same notation”, and (M), (M")?, ..., (MP)") asM?, unless confusion could
occur. Then(y?, MP?) = (y?, (M}, ..., M ,)) belongs to the Hilbert space

H2(Jn, R x (HY(Jp, RH)"L,

We often denote the above Hilbert space¥x (H1)"~1. (In the same way, we often denote
the Banach spad@l(J,,, R") x (C%(J,,, R"))"* 1 by 1 x (€%)"~1.) We denote by a dot the
derivative with respect to. Since|V/M;|? = Z;;} (Ve M;, M;) |2, %15, ({y, M}) has the
following expression:
(2.3 L, (v, M}) = / W), M), (1), y (1), M(t))dt

I
wherey (1), M (t) are the coordinate expressions ang’, M,y.y, M) is defined as follows:

(G, M,y y. M) = g {GH* + TG P HEG) + TG ()}
-1

0 Y L (MM + TR (M) 12,
i,j=1

(2.4)

where ()%, etc. are the components §f etc., g; = g;;(y) are the components of the
Riemannian metrig of M and the Einstein summation convention is adopted. We think of
the right hand side of (2.3) as a formal functionalpf M) € H? x (HY)"~1, and write it as

Ty, (v M) .
SinceH? x (HY)"~1is compactly embedded ifi* x (C°)"~1 and¥ is quadratic with respect
to 7 andM, we obtain the following lemma.
LEMMA 2.2. Thefunctional € J,, 1S continuous with respect to the strong topology of
H2(J, R") X (H(Jp, R,

Now, we need the following fact from [2]. Lét be a Banach space. For a subseif X,
let C.h.[A] denote the convex hull of, that is, the set of all linear combinatiods;_; A, X
of elementsX; € A, where 0< A, < land) i_; Ay = 1.

LEMMA 2.3 (Corollary V.3.14 of [2]). Let X be a Banach space. Let {X,};°, bea
sequence of elements of X converging weakly to an element X of X. Then, some sequence of
Ch[{X,;n=12,...}] convergesto X inthe metric topology.
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By applying the above lemma, we have the following

LEMMA 2.4. Let po beapositiveinteger. Then there exists a sequence {(¢%, N%)}°2 4
in S(po) which converges to (y*°, M>) asa — oo with respect to the strong topology of
H2(J, RY) x (HY(Jm, R")"~ 1, where

S(po) = C.h.[{(y”, MP); p > po}].

We need another lemma to prove tfat®, M°°} is a minimizer of%.
LEMMA 2.5. For anye > 0, there exists a positive integer po such that
25, (6, N) < Ty, +& foral (z,N) e S(po).

m

PROOF  To prove this lemma, we first show the following two lemmas.

LEMMA 2.6. For anye > 0, there exists a positive integer po such that

L), N) - / W, N, p®, y™°, M™)dt| <e foral (¢, N)e S(po).

PROOF Lete be an arbitrary positive number. By the convexity of an open baR"in
together with the fact thety 7} converges tg> in the C* topology and(M”} converges to
M in the C° topology, we have the following. For ady> 0, there exists a positive integer
po such that for all¢, N) € S(po),

L) —y® W <8, L@ —y®MI <8, [INi(@)—MX @) <3

on J,,. Therefore, there exists a positive integgrsuch that

ifm(;,zv)—/ W N, 5,y M)

Im

@(Z/J |'§'k';'l|dt+2fj |Ek|dt+Z/J |N{<N}|dt+2/J |]\'ll.k|dt)
k)l m k m m k,l m

k,l,i

forall (¢, N) € S(po), where the componentg)*, (N;)* are simply written ag*, N¥.
Thus, it is sufficient to show that the quantities

Z/ |Z%¢dr Z/ \£X|dt Z/ INKN!|dr and Z/ |NK|dt
k¥ Im kY Im kol,i ¥ Im ki 7 Im

are bounded by a constant independentgind (¢, N). Suppose thatz, N) is expressed as

u
(25) @ N) =) Ay, M%),
s=1
whereis, ..., A, are non-negative real numbers such thit ; A, = 1, andqx, ..., ¢, are

positive integers. Then,

n n 2
o . o g2
= <n <n max |y®|%.
E 1£%¢| (1;—1'{ I) <nlglg < 7 <MIJ/ |E

ki=1 SIS
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Sincefjm |j/'1’|%dt is bounded with respect tp,

o 18

k=17 Jm

is bounded by a constant independenpgfind(¢, N).
Next, we consided ;_; [, |¢*|dr. By the Schwarz inequality,

n 2
(Zf |;k|dr> <nldal | 1E1Zdr,
k:l m Jm

where|J, | is the length of the interval,,. By the same argument as above, the right hand
side of the above expression is bounded by a constant independenantl (¢, N). In the
same way, we can check thgt, ; ; [, INfN!|dt andy ", ; [, |NF|dt are both bounded by

a constant independent pf and(¢, N). O

LEMMA 2.7. The function ¥ defined by (2.4)is a convex function with respect to y
and M. That is, the n2-variable function ¥ (w, 7, y, M) of w = (, M) € R" satisfies

u u
W(Z)"SWSs)./sysM)gZ)"SlI/(WSvj}vva)
s=1

s=1

for everyws, ..., w, € R** and real numbers A1, ..., A, > Osuchthat > ¢ _; A, = 1.

PROOF. It is sufficient to show that the Hessi@b?w/ow dw’); < ;<,2, wherew =

w?, ... w), is positive semi-definite at all points R'. Since the metric tensdyy,) is

positive definite, it is sufficient to show that the matfixy)1<i,«<» defined by

n—=1 n
Cha = D Gidap (M) (M)
j=11.p=1
is positive semi-definite. For any?, ..., y") € R,
n n—1 n n—1 n 2
Y Vaay® =)0 D0 oMY Y gup(M)P) = Z{ > y"gkl(Mjﬂ} >0.
k,a=1 j=1k,l,o,Bp=1 j=1 " kiI=1
Thus,(ckq) is positive semi-definite. O

Now, we prove Lemma 2.5. Letbe an arbitrary positive number. Lgg be a positive
integer satisfying the expression in Lemma 2.6 ﬁo,g(yp, MP) < Ty, + ¢ for any integer
p = po. Let(z, N) be an element of (pg) expressed as (2.5), whexe, ..., A, are non-
negative real numbers such thal{_, A, = 1, andqa, ..., g, are integers greater than or
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equal topg. Then, by Lemma 2.6 and Lemma 2.7, we have

&5, (6 N) =/ WE N ¢ g N)di

m

< / W, N,y®, y>®, M®)di + ¢

m

u
<st/ W (s, ME, p®, ™, M®)dt + ¢
s=1 I
u
<he [y e 426
J,
S_l m

u
=Y A, (%, M%) + 26
s=1
<7y, +3¢.
Thus, we complete the proof of Lemma 2.5. O
Thus, we have the following proposition.
PrROPOSITION 2.8 T, ({y>, M>*}H) < Ty, A <m<r).

PROOF Lemma 2.5 and Lemma 2.4 imply the following. For any 0, there exist a
positive integeipo and a sequendgs*, N*)}o° ; in S(po) such that

(2.6) %5, (C% N¥ < Ty, +¢,

m

and(¢%, N%) converges t@y >, M*>) asa — oo with respect to the strong topology. Thus,
Lemma 2.2 yields that

‘%Jm(fa:Na)ﬁ‘iJ,,,()/oo,Moo) as o — 00.

Therefore, by (2.6), we ha\féjm(yoo, M*®) < Ty, +¢. Henceﬁjm (y>*°,M*)<Ty,. O
Proposition 2.8 implies th& ({y*°, M*°}) = Ty, because

Ty, M®) =Y Ty, (v, M) < Y Ty, =To.
m=1

m=1

That is,{y°°, M*°} € UCo(l, ¢) attains the infimunTy of the energyx.

3. Regularity of minimizers. We shall show the regularity of a minimizgr, M} €
UCH(, ). LetCo(l, ¢) be theCL-0 connected component 6/, ¢) including{y, M}. If we
reparameterize an element@j(l, ¢) by arc length, then the resulting elementd (, ¢)
actually belongs t&/Co(l, ). Therefore{y, M} also minimizes the enerdyin Co(l, ¢).

We think of{y, M} as a “critical point” of¥ on the spacé€(y) under the constraint of the
length ofy, and use the Lagrange multiplier principle. First, we define the following vector
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space:
A is anH? vector field alongy : ST — M
Tyy.mC(9) = 1 (A, F); andF :[0,I] — so(n — 1) is an H! curve satisfying | ,
F() =¢7'F(0)¢
whereso(n — 1) stands for the vector space of all— 1)-by-(n — 1) skew-symmetric matrices.

LEMMA 3.1. Let (A, F) € Ty, mC(p). Let f/(t) be the ji component of F (7). We
can construct a variation {y*, M*}(|A] < 1) of {y, M}(= {y° M%) in C(p) satisfying the
following. (Weset 7 (A, 1) = y*(r), M(k, 1) = M*(r), below)) The maps 7, M are C* with
respect to A for any fixed ¢, and satisfy

ay 3
3.1 5(0, 1) = A1),
n—1 )
(3.2) (D M;)(0, 1) = Z oM@ 1<i<n—1).
j=1

Here, D' M; is the normal component of the vector field V; M; along y*, that is,
Dkltl\;li = ViM; — (V; M;T)T ,
where T = (1/|07/0t|)d7 /91 is the unit tangent vector to y* and V, = Vo

PROOF We sety(A,t) = exprA(t), where exp is the exponential map vt. If
|A| is sufficiently small,y* is an H? regular closed curve. Le¥ = (Mq, ..., M,_1) be
the solution of the following initial value problem of the ordinary differential equation with
independent variablg:

n—1

(3.3) ViM; = —(M;. Vi YT+ f/M; A<i<n-1),
j=1

(3.4) M@, 1) = M(1).

By (3.3), it is verified thatM”(¢) is an orthonormal frame field of the normal bundle along
¥*i0.n and (3.2) holds. Also, we can check thdt (/) = M*(0)¢ in the following way. We
defines (1) € O(n — 1) by the relationM?(I) = M*(0)o (A). Then, (3.3) yields that (1)
satisfies

35) 97C) _ G 0)F@) - FO0 G,
dA
(3.6) c0)=9p.
Also, F(I) = ¢~ 1F(0)¢ yields thato (1) = ¢ satisfies (3.5) and (3.6). Therefora()) = ¢.

a

Now, the first variation formula fof is calculated as follows (cf. [5], [10]). We use the
sign convention of the curvature tensrcorresponding to that of [8].
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LEMMA 3.2. Let (A, F) € T, mC(e), and let {y*, M*}(Jx| < 1) be the variation
of {y, M} inC(g) constructed in the proof of Lemma 3.1.Then,

— gy, M*
A (y D
l
= /0 [((VI)ZA,ZVM
n—1
+<V,A,—<3|v,y|2+v2|v,iM,~|2>;>
i=1
3.7) o S . o
+2VZ((VIV7 Mi)V-M; —(V,y,V; Mi)Mi)>

i=1
n—1
+<A, 2R(Vi7.9)V +2vy R(V;M;, Mi)y'>]dr
i=1

n—1 I
+2v Z / VM, Mj)dr
i,j=1"9
We denote byIT(, u)(A, F) the right hand side of (3.7). Thed¥(, v : Ty, m)C(p) —

Ris alinear functional. Now, we use the Lagrange multiplier principle. We consider the length
functional£({y, M}) = fé v(2)dt. The first variation formula fo£ is given as follows:

di
=0
We write the right hand side akCy, yy(A, F). Thend £y, my : Ty, m)C(9) — Ris alinear
functional. We define the following vector space:

Ty.mC, @) = {(A, F) € Ty, myC(@); dLqy my(A, F) =0}.

[
£dy*, M*)) =/O(V,A,J'/)dt.

By the similar argument in the proof of Lemma 3.1 of [5], we have the following.

LEMMA 3.3. Supposethat y isnotaclosed geodesicin M. Let (A, F) € Ty, myC(1, ).
We can construct a variation {y*, M*}(|x| < 1) of {y, M}(= {y°, M%) inC(l, ¢) such that
y(A, 1) =y (@) and M(x, 1) = M*(¢) are C™ in A for any fixed  and (3.1)and (3.2) hold.

Itis verified that the first variation formula (3.7) is valid for the variatiptt, M*}(|1| <
1) constructed in Lemma 3.3. Suppose thas not a closed geodesic i, hereafter. Then,
the following holds.

LEMMA 3.4. Thereexistsareal number 1o such that
(3.8) dZy My + pnod Ly m)(A, F) =0
for all (A, F) € Ty, mC(9).

PROOR For (A, F) € Ty.mC(, ¢), let {y*, M*}(JA| < 1) be the variation con-
structed in Lemma 3.3. Note that*, M*}(|A| < 1) is a variation inCo(/, ¢). Since{y, M}
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is a minimizer of% in Co(l, ¢), d/dX,=0T({y*, M*}) = 0. Thus,dT(, m(A, F) =
Therefore, bothi<,, ), andd £y, my vanish onTy, 4)C(l, ¢). Sincey is not a closed geo-
desic inM, there exists aif? vector fields2 alongy such thatf}, uC(p) is expressed as
the linear direct sum af{, a)C(l, ¢) and the one-dimensional subspace spannedXy).
Thus, (3.8) holds by setting
_ _d‘I{%M}(Q, 0

d&y my(£2,0) '

O

In consequence, we have the following lemma, which implies that the twist is uniformly
distributed over the curvg.

LEMMA 3.5. Leta'(t) = (VLM,, M;). Then, a'(t) isconstant on [0, I]. Denote by
a = (a ) the m — 1)-by-(n — 1) matrix with ji componenISa Thena € so(n — 1) and
pap~t =a.

PROOF Let(A, F) € T, m)C(p) satisfy A = 0 and the following:

)y =0 if (j.i) # (p,q) and (j,i) # (g, p),
7O =fr0=0
Then, sincg3.8) = 0,

(39) / Paldi =

This holds for allf) e H([0, ], R) satisfying 7 (0) = f () = 0. Therefore, by the du
Bois-Reymond lemma ([13])15 () is constant oni0, /].
By the Leibniz rulea € so(n — 1). We showpap™ = a. Let (A, F) € Ty, mC(p)
satisfyA = 0. Then, by the relatiow (/) = ¢ 1 F (0)¢, the left hand side of (3.8) equals to
2vtr(aF () — aF(0)) = 2vtr(F(0)(pap ™t — a)).

This vanishes for alF (0) € so(n — 1). Thereforepap=! = a. |

Sincepap~! = g, (3.8) reduces to the following:

[
fo [((Vz)ZA, 2V,y)

n—1

+<v, <3|Vrylz—uo+VZ|VLMl )

i=1
(3.10) -
+20) (Viy. Mi)VEM; — (Vi V%Mi>M,~)>
i=1

n—1
+<A, 2R(Viy, )Y +2v) RV M;, M»y’ﬂdr =0.
i=1
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We show thatfy, M} is C* on(0,1). LetI = (11, t2) C (0, 1) be an open interval, and
(U, (x/)) alocal coordinate neighborhood 84 such thaty ([t1, 2]) C U. We show that the
coordinate expressions pfandM are of clas<C™ on 1. Let A* be the component of with
respect to the basi®/dx?, ..., d/0x"). We use the Einstein convention in the following.
The integrand of (3.10) is expressed as follows:

ARP 4+ AR Qy + AFS
where
Pe =29y (7' + I}, 77y%).
We omit the explicit expressions @, andS;, although they are expressed $¥, y”, y?,

MP,MP?, gy, I'l, and the curvature tens®¥ji/.
Now, we state the following du Bois-Reymond type lemma, whose proof is omitted.

LEMMA 3.6. LetI = (11, r2) beafiniteopeninterval. Let f, g, h € L1(I). If
2
/ W"f+¥'g+y¥h)dt =0
41

for all ¥ € C°(I), then f e WD), f' — g e Wii(1) and
(f'—9 +h=0.
We simply writeW-1(1), etc. asw'-, etc. By Lemma 3.6P, P, — Qx € Wt and
(3.1 (P — Qu) + S =0.
We show, by induction, that
(3.12) yz e Wl ple wrt

for any integer > 1. First, (3.12) is obvious if = 1. Assume that (3.12) holds. Since the
matrix (g;;) is invertible,j is expressed as

. 1 .
(3.13) 7' =S4 P — "y

where(¢*) is the inverse matrix ofg;;). By (3.12), P, Qx andS, € W'~ Thus, (3.11)
yields P, € WL, Therefore, the right hand side of (3.13) belongsib!, and soy! €
wr+2.1 follows. Now, by the Leibniz rule,

(3.14) (VMY = Mf + p' T M + (Viy, M) p-

Sincey! € W +21 the second and third terms of the right hand side of (3.14)idrk Also,
by Lemma 3.5, the left hand side of (3.14)W&*L. Therefore M} e W’*+11. Thus, (3.12)
holds for any integer > 1, and hence!, M! ¢ C™.

Next, we show thag is C* on the wholest, andM is alsoC> on[0, []. LetI = (1, 12)
be an open interval, wherel < 11 < 0 < 1, < [, and let(U, (x/)) be a local coordinate
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neighborhood ofM such that ([71, 2]) C U. Let M be the orthonormal frame of the normal
bundle along/|(;,,1,] given by

Mt)=M@E+De ' if n<t<0,
M@ =M@) if0<t<t.

Note thatM is of classH!. Denote byK (¢) the integrand of (3.10), and h§ (r) the ex-
pression which is obtained by replacing a} in K () with M;. Then, we can check that
K (t) = K(¢) for almost every € I. Thus,

(3.15) / K(t)dt =0
1

for all A whose support is contained ih Leta/(r) = (V;"M;, M;), and leta(r) be the
matrix with ji componenﬁl.j(t). By a = gap~1, it follows thata(r) = « for almost every

t € I. Thatis, the fact analogous to Lemma 3.5 holds. Thus, by (3.15) together with the
similar argument as above, it follows that the coordinate expressions ahdM|; areC™.
Therefore,y is C* on the wholes?, andM is alsoC* on [0, ].

Finally, we consider the case thais a closed geodesic. As is well-knownijs C*°, and
hence it is sufficient to show thaf is C* on[0, /]. Note that Lemma 3.1 and Lemma 3.2 still
follow. Now, let (A, F) e Tj, .mC(¢) satisfy A = 0. Then, the variatiofy*, M*}(|A| < 1)
constructed in Lemma 3.1 is, indeed, a variatiodgtl, ¢), because/* = y for all 1. Since
{y, M}is aminimizeroff in Co(l, ¢), Lemma 3.2 yields that the second term of the right hand
side of (3.7) equals to O for al# ! curveF : [0, 1] — so(n — 1) such thatF'(I) = ¢~ 1F(0)¢.
Thus, Lemma 3.5 still holds. Therefore, by using the expression (3.14), we can ségithat
C* on (0, 1) in the same way. Also, it is shown that is C*° on [0, /] in the same way as
above. This completes the proof of the regularity.
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