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THE BEHAVIOR OF THE PRINCIPAL DISTRIBUTIONS ON THE
GRAPH OF A HOMOGENEOUS POLYNOMIAL
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Abstract. In this paper, we shall study the behavior of the principal distributions on the
graph of a homogeneous polynomial in two variables such that the set of its umbilical points is
finite. In particular, we shall present a method of describing the indices of the umbilical points
and the point at infinity.

1. Introduction. LetS be a smooth surface inR3 and Umb(S) the set of the umbilical
points ofS, and set Reg(S) := S \ Umb(S). If Reg(S) �= ∅, then there existsa principal
distribution DS on S, which is a one-dimensional continuous distribution on Reg(S) such that
DS(p) is a principal direction atp ∈ Reg(S). The behavior ofDS around a non-umbilical
point p ∈ Reg(S) is easily described. Namely, it is represented by a vector field which is
nonzero atp. On the other hand, the behavior around an umbilical pointp0 ∈ Umb(S) may
be very complicated. Generally, it is not always represented by any vector field. Letp0 be
isolated as an umbilical point. Then as a quantity in relation to the behavior ofDS aroundp0,
the index indp0(S) of p0 is defined ([5, pp. 137]).

LetPkF denote the set of the homogeneous polynomials of degreek � 3 in two variables
such that the set of the umbilical points on each of their graphs is finite. Letf be an element
of PkF andGf the graph off , andG̃f denote the topological space obtained by the one-

point compactification forGf . Denote by∞ the point added toGf , and set Sing(G̃f ) :=
Umb(Gf ) ∪ {∞}. Inducing the natural differentiable structure onG̃f , one may consider any

principal distribution onGf as a distribution oñGf \ Sing(G̃f ). The purpose of this paper is

to present a method of describing the index indp0(G̃f ) of eachp0 ∈ Sing(G̃f ).
Let o denote the origin ofR3. Let ro, r∞ be positive numbers satisfying

Umb(Gf ) \ {r2
o < x2 + y2 < r2∞} = {o} ,

andD(1)f , D(2)f two principal distributions onGf which give the principal directions at each

point of Reg(Gf ). For i = 1,2 and forω = o,∞, let φ(i)rω be a continuous function onR
satisfying

cosφ(i)rω (θ)
∂

∂x
+ sinφ(i)rω (θ)

∂

∂y
∈ D(i)f (rω cosθ, rω sinθ)

for anyθ ∈ R. In Section 3, we shall prove the following:

PROPOSITION 1.1. For i ∈ {1,2}, ω,ω1, ω2 ∈ {o,∞} and for θ0 ∈ R,
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(1) there exists a continuous function φ(i)ω,θ0 on (0,∞) satisfying

(a) φ
(i)
ω,θ0

(rω) = φ
(i)
rω (θ0), and

(b) for any ρ ∈ (0,∞), cosφ(i)ω,θ0(ρ)∂/∂x + sinφ(i)ω,θ0(ρ)∂/∂y is in a principal
direction at (ρ cosθ0, ρ sinθ0);

(2) there exist numbers φ(i)ω,o(θ0), φ
(i)
ω,∞(θ0) satisfying

lim
ρ→0

φ
(i)
ω,θ0

(ρ) = φ(i)ω,o(θ0) , lim
ρ→∞ φ

(i)
ω,θ0

(ρ) = φ(i)ω,∞(θ0) ;

(3) there exist numbers φ(i)ω1,ω2(θ0 + 0), φ(i)ω1,ω2(θ0 − 0) satisfying

lim
θ→θ0±0

φ(i)ω1,ω2
(θ) = φ(i)ω1,ω2

(θ0 ± 0) .

We set

Γ (i)ω1,ω2
(θ0) := φ(i)ω1,ω2

(θ0 + 0)− φ(i)ω1,ω2
(θ0 − 0) ,

Sω :=
{
θ0 ∈ R ;

2∏
i=1

Γ (i)ω,ω(θ0) �= 0

}
,

Su :=
{
θ0 ∈ R ;

∏
{ω1,ω2}={o,∞}

2∏
i=1

Γ (i)ω1,ω2
(θ0) �= 0

}
.

For an integern ∈ Z, let In be the subset ofR defined by

In :=
{{nπ/2} if n is even,

((n− 1)π/2, (n+ 1)π/2) if n is odd.

In Section 4, we shall prove the following:

PROPOSITION 1.2. For ω ∈ {o,∞, u}, the following hold:
(1) the set Sω ∩ [θ, θ + π) for θ ∈ R is finite and the number �{Sω ∩ [θ, θ + π)} does

not depend on θ ;
(2) For θ0 ∈ So ∪ S∞ ∪ Su and for ω1, ω2 ∈ {o,∞}, there exists an integer νω1,ω2(θ0)

satisfying Γ (i)ω1,ω2(θ0) ∈ Iνω1,ω2(θ0)
for i = 1,2.

Forθ ∈ R, let Hessf (θ) be the Hessian off at(cosθ, sinθ), andη a continuous function
on R such thatt (cosη(θ), sinη(θ)) is an eigenvector of Hessf (θ) for any θ ∈ R. We set
f̃ (θ) := f (cosθ, sinθ). In addition, we set

Zf := {θ0 ∈ R ; f̃ (θ0) = 0} ,

Z′
f :=

{
θ0 ∈ Zf ; df̃

dθ
(θ0) �= 0

}
, Z′′

f :=
{
θ0 ∈ Zf ; df̃

dθ
(θ0) = 0

}
.

The main theorem in this paper is the following:

THEOREM 1.3. Let f be an element of PkF . Then
(1) (a) θ0 ∈ So holds if and only if Hessf (θ0) is a scalar matrix,

(b) θ0 ∈ So satisfies νo,o(θ0) = −1, and
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(c) for any θ ∈ R, the following holds:

indo(G̃f ) = η(θ + 2π)− η(θ)

2π
− �{So ∩ [θ, θ + π)}

2
;

(2) (a) θ0 ∈ S∞ satisfies det(Hessf (θ0)) = 0 and ν∞,∞(θ0) ∈ {1,−1,−2}, and
(b) for any θ ∈ R, the following holds:

ind∞(G̃f ) = 1 + 1

2
�{Z′

f ∩ [θ, θ + π)} + �{Z′′
f ∩ [θ, θ + π)}

− 1

2

∑
θ0∈S∞∩[θ,θ+π)

ν∞,∞(θ0) ;

(3) (a) θ0 ∈ Su holds if and only if on {(ρ cosθ0, ρ sinθ0)}ρ>0, there exists an umbil-

ical point p(θ0) satisfying indp(θ0)(G̃f ) �= 0, and
(b) θ0 ∈ Su satisfies

(ν∞,o(θ0), νo,∞(θ0), indp(θ0)(G̃f )) ∈ {(2,−2,1/2), (−2,2,−1/2)} .
We shall prove (1) (resp. (2), (3)) of Theorem 1.3 in Section 5 (resp. Section 6, Section

7).
In our previous paper [1], we studied the behavior of the principal distributions onGf

aroundo, and showed that indo(Gf ) ∈ {1+i−k/2}[k/2]i=0 . We have further studied the behavior
of the principal distributions aroundo, in relation to the existence of other umbilical points of
Gf thano and the behavior of the gradient vector field off ([2]).

It is known that ifS is a surface with constant mean curvature, then an umbilical point
which is not contained in the interior of Umb(S) is isolated and its index is negative ([5, pp.
139]). More generally, ifS is a special Weingarten surface, then the same result is obtained
([4]).

It has been expected that for any smooth surfaceS with an isolated umbilical pointp0,
indp0(S) � 1 holds. If this conjecture is affirmatively solved, then Hopf-Poincaré’s theorem
implies that the number of the umbilical points on a compact, orientable surface of genus 0 is
more than or equal to two, and this immediately gives the affirmative answer to Carathéodory’s
conjecture on the number of the umbilical points on a compact, strictly convex surface.

Let F be a smooth, real-valued function of two real variables and set∂z̄ := (∂/∂x +√−1∂/∂y)/2. Then Loewner’s conjecture for a natural numbern ∈ N says that if the vector
field Re(∂nz̄ F )∂/∂x + Im(∂nz̄ F )∂/∂y has an isolated zero pointz0, then its index is less than
or equal ton ([9], [6]). It is known that Loewner’s conjecture forn = 2 is equivalent to the
above conjecture that indp0(S) � 1 ([8]). As for recent papers in relation to Carathéodory’s
and Loewner’s conjectures, [3], [7], [8] may be found.

The author is a research fellow of the Japan Society for the Promotion of Science. The
author is grateful to Professor T. Ochiai for his helpful advice and constant encouragement.

2. A gradient root. LetPko denote the set of the homogeneous polynomials of degree
k � 3 in two variables such that on each of their graphs,o is an isolated umbilical point. For
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f ∈ Pko , we set

pf := ∂f

∂x
, qf := ∂f

∂y
, rf := ∂2f

∂x2
, sf := ∂2f

∂x∂y
, tf := ∂2f

∂y2
.

Moreover, we define

p̃f (θ) := pf (cosθ, sinθ) , q̃f (θ) := qf (cosθ, sinθ) ,

r̃f (θ) := rf (cosθ, sinθ) , s̃f (θ) := sf (cosθ, sinθ) ,

t̃f (θ) := tf (cosθ, sinθ) ,

and

df (θ, φ) := s̃f (θ) cos2 φ + {t̃f (θ)− r̃f (θ)} cosφ sinφ − s̃f (θ) sin2 φ ,

nf (θ, φ) := {s̃f (θ)p̃f (θ)2 − p̃f (θ)q̃f (θ)r̃f (θ)} cos2 φ

+ {t̃f (θ)p̃f (θ)2 − r̃f (θ)q̃f (θ)
2} cosφ sinφ

+ {p̃f (θ)q̃f (θ)t̃f (θ)− s̃f (θ)q̃f (θ)
2} sin2 φ .

Then(ρ0, θ0, φ0) satisfies the equation

(2.1) ρk−2
0 df (θ0, φ0)+ ρ3k−4

0 nf (θ0, φ0) = 0

if and only if a tangent vector cosφ0∂/∂x+sinφ0∂/∂y at(ρ0 cosθ0, ρ0 sinθ0) is in a principal
direction ([1]). We set

gradf (θ) :=
(
p̃f (θ)

q̃f (θ)

)
, Hessf (θ) :=

(
r̃f (θ) s̃f (θ)

s̃f (θ) t̃f (θ)

)
, uφ :=

(
cosφ

sinφ

)
.

We denote by〈 , 〉 the scalar product inR2. Then, since

(2.2) gradf (θ) = 1

k − 1
Hessf (θ)uθ ,

we obtain
LEMMA 2.1. The following hold:

df (θ, φ) = 〈Hessf (θ)uφ, uφ+π/2〉 ,
nf (θ, φ) = ck(θ)〈Hessf (θ)uθ , uφ〉 sin(φ − θ) ,

where ck(θ) := det(Hessf (θ))/(k − 1)2.

A numberθ0 is said to bea gradient root of f if (df̃ /dθ)(θ0) det(Hessf (θ0)) = 0 holds.
The set of the gradient roots off is denoted byRGf .

PROPOSITION 2.2. For θ0 ∈ R, θ0 ∈ RGf holds if and only if there exists a number
ξ ∈ [0, π) such that for any φ ∈ R, the following holds:

(2.3) (cosξ)df (θ0, φ)+ (sinξ)nf (θ0, φ) = 0 .

Moreover, such a number ξ ∈ [0, π) is uniquely determined by θ0 ∈ RGf .
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PROOF. Suppose det(Hessf (θ0)) = 0. Then we obtainnf (θ0, φ) = 0 for anyφ ∈ R.
Sincef ∈ Pko , we see that Hessf (θ0) is nonzero, anddf (θ0, φ) �= 0 holds for someφ ∈ R.
Suppose det(Hessf (θ0)) �= 0 and(df̃ /dθ)(θ0) = 0. Then by (2.2) together with

(2.4)
df̃

dθ
(θ) = 〈gradf (θ), uθ+π/2〉 ,

we find numbersd(θ0) ∈ R andn(θ0) ∈ R \ {0} satisfying

df (θ0, φ) = d(θ0) sin 2(φ − θ0) , nf (θ0, φ) = n(θ0) sin 2(φ − θ0) .

Therefore forθ0 ∈ RGf , there exists a numberξ ∈ [0, π) satisfying (2.3) for anyφ ∈ R.
Suppose now that there exists a numberξ ∈ [0, π) satisfying (2.3) for anyφ ∈ R, and

det(Hessf (θ0)) �= 0. Then we obtainξ �= π/2. Therefore it follows from Lemma 2.1, (2.2)
and (2.4) that(df̃ /dθ)(θ0) = 0.

Hence we obtain Proposition 2.2. �
The numberξ ∈ [0, π) in Proposition 2.2 shall be denoted byξ(θ0).
For θ ∈ R, we set

Umbθ (Gf ) := Umb(Gf ) ∩ {(ρ cosθ, ρ sinθ)}ρ>0 .

Then we obtain

COROLLARY 2.3. For θ0 ∈ R,
(1) Hessf (θ0) is a scalar matrix if and only if θ0 ∈ RGf and ξ(θ0) = 0 hold;

(2) det(Hessf (θ0)) = 0 holds if and only if θ0 ∈ RGf and ξ(θ0) = π/2 hold;

(3) Umbθ0(Gf ) �= ∅ holds if and only if θ0 ∈ RGf and ξ(θ0) ∈ (0, π/2) hold. If
Umbθ0(Gf ) �= ∅, then Umbθ0(Gf ) = {p(θ0)} holds, where

p(θ0) := (ρ(θ0) cosθ0, ρ(θ0) sinθ0) , ρ(θ0) := (tanξ(θ0))
1/(2k−2) .

COROLLARY 2.4. Let θ0 be an element of R \ RGf and φ0 a number satisfying (2.1)
for some ρ0 > 0. Then df (θ0, φ0)nf (θ0, φ0) �= 0 holds.

We shall prove

PROPOSITION 2.5. PkF = {f ∈ Pko ; df̃ /dθ �≡ 0}.
PROOF. If df̃ /dθ ≡ 0, thenk is even andf is represented by(x2 + y2)k/2 up to a

constant ([1]). Then we obtaind(θ)n(θ) < 0 for anyθ ∈ R, whered(θ) andn(θ) are as in the
proof of Proposition 2.2. Therefore we obtainξ(θ) ∈ (0, π/2) andf /∈ PkF . If df̃ /dθ �≡ 0,
then the setRGf is discrete. Corollary 2.3 implies that�Umbθ (Gf ) ∈ {0,1}. Therefore we

obtainf ∈ PkF . Hence we have proved Proposition 2.5. �

3. The behavior of the principal distributions on an open ray. From now on, we
supposef ∈ PkF .
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LEMMA 3.1. Let θ0 be an element of R \ RGf and ξ an element of [0, π/2]. Then
there exists a number φ ∈ R satisfying (2.3)and

(3.1) (cosξ)
∂df

∂φ
(θ0, φ)+ (sinξ)

∂nf

∂φ
(θ0, φ) = 0

if and only if (ξ, f̃ (θ0)) = (π/2,0) holds.

PROOF. There exists a matrixQf (ξ, θ0) such that〈Qf (ξ, θ0)uφ, uφ〉 is equal to the
left hand side of (2.3). Therefore there exists a numberφ ∈ R satisfying (2.3) and (3.1) if and
only if det(Qf (ξ, θ0)) = 0 holds.

Let ηθ0 be the number satisfying

(3.2) df (θ0, ηθ0) = 0 , ηθ0 < θ0 < ηθ0 + π/2 .

We set

λ
(1)
θ0

:= 〈Hessf (θ0)uηθ0
, uηθ0

〉 , λ
(2)
θ0

:= 〈Hessf (θ0)uηθ0+π/2, uηθ0+π/2〉 .
Then for anyφ ∈ R, the following holds:

(3.3)
nf (θ0, φ) = ck(θ0) sin(φ − θ0){λ(1)θ0 cos(φ − ηθ0) cos(θ0 − ηθ0)

+ λ
(2)
θ0

sin(φ − ηθ0) sin(θ0 − ηθ0)} .
Therefore we obtain

(3.4) nf (θ0, ηθ0)λ
(2)
θ0
< 0 , nf (θ0, ηθ0 + π/2)λ(1)θ0 > 0 .

Similarly we obtain

(3.5) df (θ0, θ0)(λ
(2)
θ0

− λ
(1)
θ0
) > 0 .

It follows from (3.4) together with (3.5) that det(Qf (ξ, θ0)) < 0 for anyξ ∈ (0, π/2).
We obtain det(Qf (0, θ0)) < 0 and det(Qf (π/2, θ0)) � 0. For anyθ ∈ R, the following

holds:

(3.6) k(k − 1)f̃ (θ) = 〈Hessf (θ)uθ , uθ 〉 .
Therefore we see that det(Qf (π/2, θ0)) = 0 is equivalent toθ0 ∈ Z′

f .
Hence we obtain Lemma 3.1. �
Note that by Proposition 2.2 and Lemma 3.1, we obtain (1) of Proposition 1.1. Also, by

(2.1) and Lemma 3.1, we obtain the following

LEMMA 3.2. For θ0 /∈ RGf and for ρ > 0,φ(i)ω,θ0 is smooth at ρ and satisfies

dφ
(i)
ω,θ0

dρ
(ρ) = 2(k − 1)df (θ0, φ

(i)
ω,θ0

(ρ))

ρ
∂

∂φ
{df + ρ2k−2nf }

∣∣∣∣
(θ0,φ

(i)
ω,θ0

(ρ))

.
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PROOF OF(2) OF PROPOSITION 1.1. Forθ0 ∈ RGf , (2) holds. Ifθ0 /∈ RGf , then from

Corollary 2.4, we see thatφ(i)ω,θ0 is bounded, and from Corollary 2.4 together with Lemma 3.2,

we obtain(dφ(i)ω,θ0/dρ)(ρ) �= 0 for anyρ > 0. Then (2) holds. �
Let ψ be a continuous function onR such that gradf (θ) is represented byuψ(θ) up to

a constant for anyθ ∈ R. LetΠ be the canonical projection fromR onto R/{nπ; n ∈ Z}.
Noticing (2.1), we obtain

LEMMA 3.3. The following hold:
(1) For any θ0 ∈ R, u

φ
(i)
ω,o(θ0)

is an eigenvector of Hessf (θ0).

(2) For θ0 /∈ RGf , {Π(φ(i)ω,∞(θ0))}2
i=1 = {Π(θ0),Π(ψ(θ0)+ π/2)} holds.

By Lemma 3.1 and Lemma 3.3, we obtain (3) of Proposition 1.1.

LEMMA 3.4. For θ0 /∈ RGf , the following holds:

det(Hessf (θ0))
dφ

(1)
ω,θ0

dρ
(ρ)

dφ
(2)
ω,θ0

dρ
(ρ) > 0 .

PROOF. By Lemma 3.1, we obtain

(3.7)
2∏
i=1

∂

∂φ
{df + ρ2k−2nf }

∣∣∣∣
(θ0,φ

(i)
ω,θ0

(ρ))

< 0

for anyρ > 0. By (3.3), we obtain

(3.8) nf (θ0, φ
(1)
ω,o(θ0))nf (θ0, φ

(2)
ω,o(θ0)) det(Hessf (θ0)) < 0 .

Therefore by Corollary 2.4, we obtain

(3.9) nf (θ0, φ
(1)
ω,θ0

(ρ))nf (θ0, φ
(2)
ω,θ0

(ρ)) det(Hessf (θ0)) < 0

for anyρ > 0. Hence Lemma 3.4 follows from (2.1), Lemma 3.2, (3.7) and (3.9). �

4. An element of Zf . From now on, forθ0 ∈ R letUθ0 be a neighborhood ofθ0 in R
satisfying

Uθ0 \ {θ0} ⊂ R \ (RGf ∪ Zf ) .
LEMMA 4.1. It holds that Z′

f = Zf \ RGf and Z′′
f = Zf ∩ RGf . In addition,

(1) if θ1 ∈ Z′
f , then det(Hessf (θ)) < 0 holds for any θ ∈ Uθ1;

(2) if θ2 ∈ Z′′
f , then the following hold:

(a) det(Hessf (θ2)) = 0,
(b) det(Hessf (θ)) < 0 for any θ ∈ Uθ2 \ {θ2}.

PROOF. By (2.2), (2.4) and (3.6), we obtain det(Hessf (θ1)) < 0 for θ1 ∈ Z′
f . Then we

obtainZf \ RGf = Z′
f , andZf ∩ RGf = Z′′

f . If θ2 ∈ Z′′
f , then by (2.2), (2.4) and (3.6), we

obtain det(Hessf (θ2)) = 0. We may representf as

(4.1) f (x, y) = {−(sinθ2)x + (cosθ2)y}2g(x, y) ,
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whereg is a homogeneous polynomial satisfyingθ2 /∈ Zg . By a direct computation, we obtain
det(Hessf (θ)) < 0 for anyθ ∈ Uθ2 \ {θ2}. �

By (2.2), (2.4), (3.6) and (4.1), we obtain the following.

LEMMA 4.2. For θ0 ∈ R, θ0 ∈ Zf is equivalent to Π(θ0) = Π(ψ(θ0)+ π/2).

LEMMA 4.3. Suppose θ0 = ψ(θ0) + π/2 for θ0 ∈ Zf . Then for any θ ∈ Uθ0 \ {θ0},
(θ − ψ(θ) − π/2)(θ − θ0) > 0 holds.

We shall now prove

LEMMA 4.4. Let θ1 (resp. θ2) be an element of Z′
f (resp. Z′′

f ). Then

(1) Γ
(i)
ω1,ω2(θ1) = 0 holds;

(2) {Γ (i)ω,o(θ2)}2
i=1 = {0} and {Γ (i)ω,∞(θ2)}2

i=1 = {−π,0} hold.
In particular, Zf ∩ Sω = ∅ holds for ω = o,∞, u.

PROOF. Supposeθ1 ∈ Z′
f . From Lemma 3.1, we obtainΓ (i)ω,o(θ1) = 0. Suppose

φ
(i)
ω,o(θ1) = ηθ1 + (i − 1)π/2, whereηθ1 is as in (3.2). Moreover, noticing Lemma 4.2,

supposeθ1 = ψ(θ1)+ π/2. Then by Corollary 2.4, Lemma 3.3, Lemma 3.4 and Lemma 4.1,
we obtain

(4.2) {φ(1)ω,∞(θ), φ(2)ω,∞(θ)} = {θ,ψ(θ)+ π/2}
for anyθ ∈ Uθ1. ThereforeΓ (i)ω,∞(θ1) = 0 holds. This proves (1).

Supposeθ2 ∈ Z′′
f . Then from Corollary 2.3 and Lemma 4.1, we obtainΓ (i)ω,o(θ2) = 0.

Supposeθ2 = ψ(θ2)+ π/2 andφ(1)ω,o(θ2) = ψ(θ2). We then see that for anyθ ∈ Uθ2, uφ(1)ω,o(θ)
is an eigenvector of̃g (θ)Hessf (θ) corresponding to the positive eigenvalue, whereg is as in
(4.1). Forθ0 ∈ R, we set

Uθ0,+ := Uθ0 ∩ {θ > θ0} , Uθ0,− := Uθ0 ∩ {θ < θ0} .
Then by Corollary 2.4, Lemma 3.4, Lemma 4.1 and Lemma 4.3, we obtain

(4.3) φ(1)ω,∞(θ) = θ − π (resp.= θ)

for anyθ ∈ Uθ2,+ (resp.∈ Uθ2,−). ThereforeΓ (1)ω,∞(θ2) = −π holds. Ifφ(2)ω,o(θ2) = ψ(θ2) +
π/2, then we obtain

(4.4) φ(2)ω,∞(θ) = ψ(θ)+ π/2

for anyθ ∈ Uθ2, andΓ (2)ω,∞(θ2) = 0. This proves (2). �
LEMMA 4.5. For ω ∈ {o,∞, u}, Sω ⊂ RGf holds.

PROOF. From Lemma 3.1, we obtainSo ∪ Su ⊂ RGf . From Lemma 3.1 together with

Lemma 4.4, we obtainS∞ ⊂ RGf . �

Noticing Corollary 2.3, Lemma 4.5 and thatΠ(RGf ) is a finite set, we obtain (1) of
Proposition 1.2.
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PROPOSITION 4.6. For θ0 ∈ R \ Z′′
f and for ω1, ω2 ∈ {o,∞}, there exists an integer

νω1,ω2(θ0) satisfying Γ (i)ω1,ω2(θ0) ∈ Iνω1,ω2(θ0)
for i = 1,2.

PROOF. By Lemma 3.3 and Lemma 4.2, we see that forω1, ω2 ∈ {o,∞}, there exists
an odd integernω1,ω2 satisfyingφ(2)ω1,ω2(θ) − φ

(1)
ω1,ω2(θ) ∈ Inω1,ω2

for θ ∈ R \ Zf . Noticing
Lemma 4.4, we then obtain Proposition 4.6. �

From Lemma 4.4 and Proposition 4.6, we obtain (2) of Proposition 1.2.

5. The behavior of the principal distributions around o.

LEMMA 5.1. Suppose that Hessf (θ0) is a scalar matrix for θ0 ∈ R. Then η(θ0) /∈
{θ0 + nπ/2}n∈Z holds.

PROOF. Suppose that Hessf (θ0) is the unit matrix, andθ0 = 0. Then we may represent
f asf (x, y) := ∑k

i=0 aix
k−iyi , wherea0 = 1/k(k − 1), a1 = 0 anda2 = 1/2. Therefore,

Hessf (θ) = ∑k−2
i=0 Mi cosk−2−i θ sini θ holds, whereM1 is not a diagonal matrix. Hence we

obtain Lemma 5.1. �
For θ0 ∈ RGf , there exists a non-negative integerm satisfying(dm+1f̃ /dθm+1)(θ0) �= 0.

The minimum of such integers asm is denoted byµ(θ0). Thenθ0 is said to berelated (resp.
non-related) to the origin if µ(θ0) is odd (resp. even). Ifθ0 is related to the origin, then we
say thatthe critical sign of θ0 is positive (resp.negative) if

f̃ (θ0)
dµ(θ0)+1f̃

dθµ(θ0)+1
(θ0) � 0 (resp.> 0)

holds, and denote the critical sign ofθ0 by c-sign(θ0). Suppose thatθ0 is non-related
to the origin. Then noticing (4.1), we obtainθ0 /∈ Zf . The sign of a nonzero number
f̃ (θ0)(d

µ(θ0)+1f̃ /dθµ(θ0)+1)(θ0) is denoted by sign(dθ f̃ 2(θ0)). For θ0 ∈ RGf , it occurs just
one of the following cases:

c-sign(θ0) = + , sign(dθ f̃ 2(θ0)) = + ,
c-sign(θ0) = − , sign(dθ f̃ 2(θ0)) = − .

LEMMA 5.2. Suppose that Hessf (θ0) is a scalar matrix for θ0 ∈ R. Then θ0 ∈ RGf
and c-sign(θ0) = − hold.

PROOF. By (2.2), (2.4) and (3.6), we obtain Lemma 5.2. �
LEMMA 5.3. Let θ0 be an element of R \ (RGf ∪ Zf ). Suppose that Π(θ0) =

Π(φ
(i0)
ω,∞(θ0)) holds for i0 ∈ {1,2}. Then the following holds:

dφ
(i0)
ω,θ0

dρ
(ρ)f̃ (θ0)

df̃

dθ
(θ0) det(Hessf (θ0)) > 0 .

PROOF. By Corollary 2.4, Lemma 3.1 and Lemma 3.2, we obtain

dφ
(i0)
ω,θ0

dρ
(ρ)df (θ0, φ

(i0)
ω,∞(θ0))

∂nf

∂φ
(θ0, φ

(i0)
ω,∞(θ0)) � 0 .
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On the other hand, the following holds:

df (θ0, φ
(i0)
ω,∞(θ0))

∂nf

∂φ
(θ0, φ

(i0)
ω,∞(θ0)) = kf̃ (θ0)

df̃

dθ
(θ0) det(Hessf (θ0)) .

Hence we obtain Lemma 5.3. �
LEMMA 5.4. Suppose that Hessf (θ0) is a scalar matrix for θ0 ∈ R. Then for any

θ ∈ Uθ0 \ {θ0}, (dφ(i)ω,θ /dρ)(ρ)(θ − θ0) > 0 holds.

PROOF. Noticing Corollary 2.3, we supposeφ(1)ω,∞(θ) = θ for anyθ ∈ Uθ0. Then by

Lemma 5.2 and Lemma 5.3, we obtain(dφ(1)ω,θ /dρ)(ρ)(θ − θ0) > 0 for anyθ ∈ Uθ0 \ {θ0}.
By Lemma 3.4, we also obtain(dφ(2)ω,θ /dρ)(ρ)(θ − θ0) > 0. Hence we have Lemma 5.4.�

PROOF OF(1) OF THEOREM 1.3. If Hessf (θ0) is a scalar matrix forθ0 ∈ R, then

by Lemma 5.1 and Lemma 5.4, we obtainΓ (i)o,o(θ0) = −π/2, θ0 ∈ So andνo,o(θ0) = −1.
It follows from Corollary 2.3 together with Lemma 4.5 that Hessf (θ0) is a scalar matrix for
θ0 ∈ So. This proves (a) and (b).

Note that for anyθ ∈ R, the following holds:

(5.1) indo(G̃f ) = φ
(i)
ro (θ + 2π)− φ

(i)
ro (θ)

2π
.

By Lemma 3.1 and Lemma 3.3, we obtain

(5.2) φ(i)ro (θ + 2π)− φ(i)ro (θ) = η(θ + 2π)− η(θ)+
∑

θ0∈So∩[θ,θ+2π)

Γ (i)o,o(θ0) .

By Γ (i)o,o(θ0) = −π/2 for θ0 ∈ So, (5.1) and (5.2), we then obtain (c). �
REMARK. LetR(Hessf ) be the set of the numbers such that eachθ0 ∈ R(Hessf ) sat-

isfiesη(θ0) ∈ {θ0 +nπ/2}n∈Z. By (2.2) and Lemma 5.1, we obtainR(Hessf ) ⊂ RGf \So. We
say thatthe sign of θ0 ∈ R(Hessf ) is positive (resp.negative) if there exists a neighborhood
Uθ0 of θ0 in R satisfying

{θ − η(θ)− (θ0 − η(θ0))}(θ − θ0) > 0 (resp.< 0)

for anyθ ∈ Uθ0 \ {θ0}. When this is the case, the sign is denoted by sign(θ0). Forσ ∈ {+,−},
if we set

nσ := �Π({θ0 ∈ R(Hessf ); sign(θ0) = σ }) ,
then we obtain

η(θ + 2π)− η(θ)

2π
= 1 − n+ − n−

2
.

For θ0 ∈ R(Hessf ), (∂df /∂φ)(θ0, η(θ0)) �= 0 holds. Therefore, by the implicit function
theorem, we see thatη is infinitely differentiable atθ0. By

df (θ, θ) = (k − 1)
df̃

dθ
(θ) ,
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we obtain

(5.3)
dm(θ − η)

dθm
(θ0) = (k − 1)

dm+1f̃

dθm+1 (θ0)

/
∂df

∂φ
(θ0, θ0)

for m = 1, . . . , µ(θ0). Therefore we see that forθ0 ∈ R(Hessf ), the sign ofθ0 is positive
or negative if and only ifθ0 is related to the origin. Also, ifθ0 is related to the origin, then
sign(θ0) is given by the sign of the nonzero number

δ(θ0) := dµ(θ0)+1f̃

dθµ(θ0)+1
(θ0)

∂df

∂φ
(θ0, θ0) .

This number has been studied in [2]. Forθ0 ∈ R(Hessf ) related to the origin, c-sign(θ0) =
+ implies δ(θ0) > 0; if c-sign(θ0) = −, then δ(θ0) > 0 (resp.< 0) is equivalent to
Umbθ0(Gf ) = ∅ (resp.�= ∅).

6. The behavior of the principal distributions around ∞∞∞. An elementθ0 ∈ RGf is
said to berelated (resp.non-related) to the curvature if there exists a nonzero numberc(θ0)

satisfyingc(θ0) det(Hessf (θ))(θ − θ0)
m > 0 for anyθ ∈ Uθ0 \ {θ0} and form = 1 (resp.

= 0). If θ0 is related (resp. non-related) to the curvature, then the sign ofc(θ0) is denoted by
k-sign(θ0) (resp. sign[K̃f (θ0)]). Forθ0 ∈ RGf , it occurs just one of the following cases:

k-sign(θ0) = + , sign[K̃f (θ0)] = + ,
k-sign(θ0) = − , sign[K̃f (θ0)] = − .

Let · denote the law of composition of the set{+,−} of symbols+,− satisfying+ · + =
− · − = + and+ · − = − · + = −.

PROPOSITION 6.1. Let θ0 be a number satisfying det(Hessf (θ0)) = 0.
(1) If θ0 is related to the origin and satisfies θ0 /∈ Zf , then the following holds:

ν∞,∞(θ0) =




0 if c-sign(θ0) · sign[K̃f (θ0)] = − ,
−1 if θ0 is related to the curvature ,

−2 if c-sign(θ0) · sign[K̃f (θ0)] = + .
(2) If θ0 is non-related to the origin, then the following holds:

ν∞,∞(θ0) =




1 if sign(dθ f̃ 2(θ0)) · k-sign(θ0) = + ,
0 if θ0 is non-related to the curvature ,

−1 if sign(dθ f̃ 2(θ0)) · k-sign(θ0) = − .
PROOF. Suppose(df̃ /dθ)(θ0) = 0 andθ0 /∈ Zf . Then we obtainf̃ (θ0)(d

2f̃ /dθ2)(θ0)

< 0. Therefore by Lemma 5.3, we see that ifi0 ∈ {1,2} and θ ∈ Uθ0 \ {θ0} satisfy

Π(φ
(i0)∞,∞(θ)) = Π(θ), then the following holds:

(6.1)
dφ

(i0)∞,θ

dρ
(ρ) det(Hessf (θ))(θ − θ0) < 0 .
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Suppose thatθ0 = ψ(θ0) = φ
(1)∞,o(θ0) andφ(2)∞,o(θ0) = θ0 + π/2. Then by (3.8), we obtain

det(Hessf (θ)) sin(θ − φ(1)∞,o(θ)) sin(φ(1)∞,o(θ)− ψ(θ)) < 0

for anyθ ∈ Uθ0 \ {θ0}. Noticing thatuθ0 is an eigenvector of Hessf (θ0) corresponding to the
nonzero eigenvalue, we see the following:

(1) If θ ∈ Uθ0,+ satisfies det(Hessf (θ)) > 0 (resp.< 0), then the following holds:

φ(1)∞,o(θ) < ψ(θ) < θ (resp.ψ(θ) < φ(1)∞,o(θ) < θ) .

(2) If θ ∈ Uθ0,− satisfies det(Hessf (θ)) > 0 (resp.< 0), then the following holds:

θ < ψ(θ) < φ(1)∞,o(θ) (resp.θ < φ(1)∞,o(θ) < ψ(θ)) .

Then by (6.1), we obtain (1) of Proposition 6.1.
Suppose(df̃ /dθ)(θ0) �= 0. Then for anyθ ∈ Uθ0, the following holds:

(6.2) Π(θ) /∈ {Π(ψ(θ)),Π(ψ(θ) + π/2),Π(φ(1)∞,o(θ)),Π(φ
(2)∞,o(θ))} .

Suppose thatθ0 is related to the curvature. Then by Lemma 5.3, we see that ifi0 ∈ {1,2}
andθ ∈ Uθ0 \ {θ0} satisfyΠ(φ(i0)∞,∞(θ)) = Π(θ), then the sign of(dφ(i0)∞,θ /dρ)(ρ)(θ − θ0) is

given by sign(dθ f̃ 2(θ0))·k-sign(θ0). Therefore noticing (6.2), we see that ifΠ(φ(1)∞,∞(θ−)) =
Π(θ−) holds forθ− ∈ Uθ0,−, thenΠ(φ(1)∞,∞(θ+)) = Π(ψ(θ+)+ π/2) holds forθ+ ∈ Uθ0,+.
Hence we obtain

ν∞,∞(θ0) =
{

1 if sign(dθ f̃ 2(θ0)) · k-sign(θ0) = + ,
−1 if sign(dθ f̃ 2(θ0)) · k-sign(θ0) = − .

If θ0 is non-related to the curvature, then we obtainΓ (i)∞,∞(θ0) = 0. Consequently, we obtain
(2) of Proposition 6.1. �

Next, we shall prove

LEMMA 6.2. For θ0 ∈ R, i0 = 1 or 2 satisfies the condition

(∗)
{
Π(φ

(i0)∞,∞(θ)) = Π(θ) for any θ ∈ Uθ0,− ,
Π(φ

(i0)∞,∞(θ)) = Π(ψ(θ) + π/2) for any θ ∈ Uθ0,+
if and only if one of the following holds:

(1) A number θ0 is an element of Z′
f .

(2) A number θ0 is an element of S∞ such that ν∞,∞(θ0) is odd.

PROOF. By Lemma 4.3 together with (4.2), we see thati0 = 1 or 2 satisfies condition
(∗) for θ0 ∈ Z′

f . From (4.3), we also see thati0 ∈ {1,2} does not satisfy(∗) for θ0 ∈ Z′′
f .

By Lemma 4.2, we then see thati0 = 1 or 2 satisfies(∗) for θ0 /∈ Zf if and only if θ0 is an
element ofS∞ such thatν∞,∞ is odd. Hence we have Lemma 6.2. �

LEMMA 6.3. Let θ̃1, θ̃2 be numbers satisfying

(1) θ̃i /∈ RGf for i = 1,2 , (2) θ̃1 < θ̃2 ,

(3) det(Hessf (θ̃i)) < 0 for i = 1,2 , (4) (θ̃1, θ̃2) ∩ Z′
f = ∅ .
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Then the following holds:

{φ(i)∞,∞(θ̃2)− φ(i)∞,∞(θ̃1)}2
i=1

=
{
θ̃2 − θ̃1 − ζ ′′

f (θ̃1, θ̃2)π + π

2
ν∞(θ̃1, θ̃2), ψ(θ̃2)− ψ(θ̃1)+ π

2
ν∞(θ̃1, θ̃2)

}
,

where

ζ ′′
f (θ̃1, θ̃2) := �[Z′′

f ∩ (θ̃1, θ̃2)] , ν∞(θ̃1, θ̃2) :=
∑

θ0∈S∞∩(θ̃1,θ̃2)
ν∞,∞(θ0) .

PROOF. From Corollary 2.3 and Lemma 4.5, we obtain det(Hessf (θ0)) = 0 for θ0 ∈
S∞. Therefore by Lemma 4.1, (4.3), (4.4), Proposition 6.1 and Lemma 6.2, we obtain Lemma
6.3. �

PROOF OF(2) OF THEOREM 1.3. We know det(Hessf (θ0)) = 0 for θ0 ∈ S∞. From
Lemma 4.4 and Proposition 6.1, we obtainν∞,∞(θ0) ∈ {1,−1,−2} for θ0 ∈ S∞. Hence we
obtain (a).

For anyθ ∈ R, the following holds:

(6.3) ind∞(G̃f ) = 2 − φ
(i)
r∞(θ + 2π)− φ

(i)
r∞(θ)

2π
.

SupposeZ′
f = ∅. Then by Lemma 6.3, we obtain

(6.4)
φ
(i)
r∞(θ̃0 + 2π)− φ

(i)
r∞(θ̃0)

= 1

2
{2π − ζ ′′

f (θ̃0, θ̃0 + 2π)π + ψ(θ̃0 + 2π)− ψ(θ̃0)+ πν∞(θ̃0, θ̃0 + 2π)}

for any θ̃0 ∈ R \ RGf . Noticing (6.3), (6.4),ζ ′′
f (θ̃0, θ̃0 + 2π) = 2�Π(Z′′

f ) and

ψ(θ̃0 + 2π)− ψ(θ̃0)

2π
= 1 − �Π(Zf ) ,

we obtain (b).
SupposeZ′

f �= ∅. Let {θ̃i}i=0
2�Π(Z′

f ) be a subset ofZ′
f satisfying

θ̃0 < θ̃1 < · · · < θ̃2�Π(Z′
f )−1 < θ̃2�Π(Z′

f )
= θ̃0 + 2π .
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Then by Lemma 4.1, Lemma 6.2 and Lemma 6.3, we see that

{φ(i)∞ (θ̃0 + 2π)− φ(i)∞ (θ̃0)}2
i=1

=
{ �Π(Z′

f )∑
i=1

(θ̃2i − θ̃2i−1 − ζ ′′
f (θ̃2i−1, θ̃2i )π)

+
�Π(Z′

f )∑
i=1

(ψ(θ̃2i−1)− ψ(θ̃2i−2))+ π

2
ν∞(θ̃0, θ̃0 + 2π),

�Π(Z′
f )∑

i=1

(θ̃2i−1 − θ̃2i−2 − ζ ′′
f (θ̃2i−2, θ̃2i−1)π)

+
�Π(Z′

f )∑
i=1

(ψ(θ̃2i )− ψ(θ̃2i−1))+ π

2
ν∞(θ̃0, θ̃0 + 2π)

}
.

Therefore we obtain (6.4), and (b). �

7. The behavior of the principal distributions around an umbilical point on
an open ray. If θ0 ∈ Su, then from Corollary 2.3 together with Lemma 4.5, we obtain
Umbθ0(Gf ) �= ∅. Generally, if Umbθ0(Gf ) �= ∅, then the following hold:

indp(θ0)(G̃f ) = Γ
(i)∞,o(θ0)

2π
= −Γ

(i)
o,∞(θ0)

2π
.

Hence we obtain (a) of (3) of Theorem 1.3. To prove (b), we have only to see

PROPOSITION 7.1. If Umbθ0(Gf ) �= ∅, then the following holds:

Γ (i)∞,o(θ0) =



π if c-sign(θ0) = + ,
0 if θ0 is non-related to the origin ,

−π if c-sign(θ0) = − .
To prove Proposition 7.1, we need the following lemmas.

LEMMA 7.2. For θ0 ∈ R, Umbθ0(Gf ) �= ∅ is equivalent to Π(φ
(i)
o,θ0
(ρ)) �=

Π(φ
(i)
∞,θ0

(ρ)) for some ρ > 0.

PROOF. We obtain Umbθ0(Gf ) �= ∅ fromΠ(φ
(i)
o,θ0
(ρ)) �= Π(φ

(i)
∞,θ0

(ρ)).
If Umbθ0(Gf ) �= ∅, then by Corollary 2.3, we see that there exists a nonzero number

c
(i)
ω (θ0) �= 0 satisfying

c(i)ω (θ0)(ρ − ρ(θ0))
∂

∂φ
{df + ρ2k−2nf }

∣∣∣∣
(θ0,φ

(i)
ω,θ0

(ρ))

> 0
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for ρ �= ρ(θ0). On the other hand, we obtainro < ρ(θ0) < r∞ and∏
ω∈{o,∞}

∂

∂φ
{df + r2k−2

ω nf }
∣∣∣∣
(θ0,φ

(i)
ω,θ0

(rω))

> 0 .

ThereforeΠ(φ(i)o,θ0(rω)) �= Π(φ
(i)
∞,θ0

(rω)) holds. �
LEMMA 7.3. If Umbθ0(Gf ) �= ∅, then det(Hessf (θ0)) > 0 holds.

PROOF. Corollary 2.3 implies that det(Hessf (θ0)) �= 0. If det(Hessf (θ0)) < 0, then
we obtaind(θ0)n(θ0) > 0, whered(θ0) andn(θ0) are as in the proof of Proposition 2.2. This
contradictsξ(θ0) ∈ (0, π/2). �

PROOF OF PROPOSITION 7.1. By Corollary 2.3, we see thati0 = 1 or 2 satisfies
Π(φ

(i0)∞,∞(θ)) = Π(θ) for any θ ∈ Uθ0. By Lemma 5.3 and Lemma 7.3, we see that if

c-sign(θ0) = + (resp.= −), then(dφ(i0)∞,θ /dρ)(ρ)(θ0 − θ) > 0 (resp.< 0) holds for any
θ ∈ Uθ0 \ {θ0}, and that ifθ0 is non-related to the origin, then there exists a nonzero number

ĉ(θ0) satisfyingĉ(θ0)(dφ
(i0)∞,θ /dρ)(ρ) > 0 for anyθ ∈ Uθ0 \ {θ0}. Then, noticing Lemma 7.2

and
Π(φ(i0)∞,o(θ0 + 0)) = Π(φ(i0)∞,o(θ0 − 0)) = Π(φ(i0)o,o (θ0)) ,

we obtain Proposition 7.1. �
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