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Abstract. In this work, complete constant mean curvature 1 (CMC-1) surfaces in hy-
perbolic 3-space with total absolute curvature at mastade classified. This classification
suggests that the Cohn-Vossen inequality can be sharpened for surfaces with odd numbers of
ends, and a proof of this is given.

1. Introduction. This is a continuation (Part Il) of the paper [14] (Part I) with the
same title. As pointed out in Part I, complete CMC-1 (constant mean curvature 1) surfaces
f in the hyperbolic 3-spacé/® have two important invariants. One is thmtal absolute
curvature TA( f), and the other is theual total absolute curvature TA( /%), which is the total
absolute curvature of the dual surfat In Part |, we investigated surfaces with low TA).
Here we investigate CMC-1 surfaces with low (TA.

Classifying CMC-1 surfaces 73 with low TA(f) is more difficult than classifying
those with low TA f#), for the following reasons: T&f) equals the area of the spherical
image of the (holomorphic) secondary Gauss ma@andg might not be single-valued on
the surface. Therefore, TA) is generally not a #-multiple of an integer, unlike the case of
TA(f*). Furthermore, the Osserman inequality does not hold farfTAalso unlike the case
of TA(f%). The weaker Cohn-Vossen inequality is the best general lower bound fgf) TA
(with equality never holding [19]). In Section 3, we shall prove the following:

THEOREM 1.1. Let f : M2 — H?® be a complete CMC-1 immersion of total absolute
curvature TA(f) < 4x. Then f iseither

(1) ahorosphere,

(2) an Enneper cousin,

(3) an embedded catenoid cousin,

(4) afinite s-fold covering of an embedded catenoid cousin with M2 = C\ {0} and
secondary Gauss map g = z* for u < 1/6, or

(5) awarped catenoid cousin with injective secondary Gauss map.

The horosphere is the only flat (and consequently totally umbilic) CMC-1 surfaé.in
The catenoid cousins are the only CMC-1 surfaces of revolution [3]. The Enneper cousins
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are isometric to minimal Enneper surface$ [Fhe warped catenoid cousins [19] are less
well-known and are described in Section 2.

Although this theorem is simply stated, for the reasons stated above the proof is more
delicate than it would be if the condition T&A) < 4z were replaced with TAf#) < 4r,
or if minimal surfaces inR® with TA < 47 were considered. CMC-1 surfacgswith
TA(f#) < 4z are shown in Part | to be only horospheres, Enneper cousin duals, catenoid
cousins, and warped catenoid cousins with embedded ends. It is well-known that the only
complete minimal surfaces iR® with TA < 4x are the plane, the Enneper surface, and the
catenoid.

We see from this theorem that any three-ended surfasatisfies TAf) > 4x, and
so the Cohn-Vossen inequality is not sharp for syichOn the other hand, the Cohn-Vossen
inequality is sharp for catenoid cousins, and a numerical experiment in [15] shows it to be
sharp for genus 0 surfaces with Ads. This raises the question:

Which classes of surfaceg have a stronger lower bound for TA) than that
given by the Cohn-Vossen inequality?

Pursuing this, in Section 4 we show that stronger lower bounds exist for genus zero CMC-1
surfaces with an odd number of ends.

We extend Theorem 1.1 in a follow-up work [15], to find an inclusive list of possibilities
for CMC-1 surfaces with TAf) < 8, and consider which possibilities we can classify or
find examples for. (Minimal surfaces R® with TA < 8z are classified by Lopez [9]. Those
with TA < 4x are listed in Table 1 in Section 2.)

2. Preliminaries. Let f: M — H®be a conformal CMC-1 immersion of a Riemann
surfaceM into H3. Letds? dA andK denote the induced metric, induced area element
and Gaussian curvature, respectively. Thén< 0 anddo? := (—K)ds? is a confor-
mal pseudometric of constant curvature 1 &h We call the developing map: M :=
(the universal cover aff)— CP? the secondary Gauss map of f, whereCP! is the com-
plex projective line. Namelyy is a conformal map so that its pull-back of the Fubini-Study
metric of CP! equalsdo?:

Adgdg
2.1 do? = (—K)ds®> = ——~
1) (1+99)?
By definition, the secondary Gauss mapf the immersionfs is uniquely determined up to
transformations of the form

ailg + a2 ail daip
2.2 = = SU?2).
2.2) g ang = B4 42) sy
In addition tog, two other holomorphic invariants andQ are closely related to geomet-
ric properties of CMC-1 surfaces. Thgperbolic Gaussmap G : M — CP* is holomorphic
and is defined geometrically by identifying the ideal boundary#dfwith CPY: G(p) is
the asymptotic class of the normal geodesicf@M) starting atf(p) and oriented in the

mean curvature vector’s direction. Thopf differential Q is the symmetric holomorphic
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2-differential onM such that—Q is the (2, 0)-part of the complexified second fundamental
form. The Gauss equation implies

(2.3) ds®-do®>=4Q -0,
where- means the symmetric product. Moreover, these invariants are related by
(2.4) S(g) — S(G) =20,

whereS(-) denotes the Schwarzian derivative

N 1\ d
Shy=\|{—) —=| — d =
w=|(7) -2() |« (-&)
with respect to a complex coordinai@n M.
SinceK < 0, we can define thiotal absolute curvature as

TA(f) := A(—K)dA € [0, +o0].

Then TA(f) is the area of the image @P* of the secondary Gauss map. (A is generally
not an integer multiple of # — for catenoid cousins [3, Example 2] and th&ifold covers,
TA(f) admitsany positive real number.

For each conformal CMC-1 immersiof: M — H?, there is a holomorphic null im-
mersionF : M — SL(2, C), thelift of f, satisfying the differential equation

_ 2
(2.5) dF = F (9 g w, a):g
1 —yg dg

such thatf = FF*, whereF* = 'F. Here we consideH 3 = SL(2, C)/ SU(2) = {aa* |a €
SL(2, O)}. If F = (F;;), equation (2.5) implies

dFi2 dFy;
g = _dTll = _dTZJ_ )
and it is shown in [3] that
dFi1  dF1p
= dT21 = dez

We now assume that the induced metfi¢ on M is complete and that Té¥) < oco.
Hence there exists a compact Riemann surfaeof genusy and a finite set of points
{p1,...,pn} C M,, (n > 1) so thatM is biholomorphic toM,, \ {p1,..., pn}. We call
the pointsp; the ends of f. Moreover, the pseudometrity? as in (2.1) is an element of
Mety(M,) ([3, Theorem 4], for a definition of Megtsee Appendix A).

Unlike the Gauss map for minimal surfaces with FAoco in R®, the hyperbolic Gauss
map G of f might not extend to a meromorphic function o, (as the Enneper cousins
show). However, the Hopf differenti@d does extend to a meromorphic differential Aif}
[3]. We say aneng; (j =1,...,n) ofa CMC-1 immersion isegular if G is meromorphic
atp;. When TA(f) < oo, an endp; is regular precisely when the order @fat p; is at least
—2, and otherwis& has an essential singularity af [19].
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FIGURE 1. A horosphere, a catenoid cousin with= z* (1« = 0.8), and a fundamental
piece (one-fourth of the surface with the end cut away) of an Enneper cousin
with g =z, Q = (1/2)dz2.

FIGURE 2. Two warped catenoid cousins, the first with= 1,/ = 4, b = 1/2 and
the second witld = 2,1 = 1, b = 1/2. (Half of the first surface has been
cut away.) Only the second of these two surfaces hagfTA= 4r (since
| = 1), even though its ends are not embedded.

Thus the orders of at the endg; are important for understanding the geometry of the
surface, so we now introduce a notation ttedtacts this. We say a CMC-1 surface istyfe
I'(d1,...,dy) ifitis given as a conformal immersiofi: My \{p1,..., pn} = H3, where
ord,; 0 =d;forj =1,...,n (for example, ifQ0 = z2dz% atp1 = 0, thend; = —2). We
usel because it is the capitalized formypfthe genus 01\7Iy. For instancel,(—4) is the class
of surfaces of genus 1 with 1 end so tifahas an order 4 pole at the end, &@-2, —3) is
the class of surfaces of genus 0 with two ends so¢hbas an order 2 pole at one end and an
order 3 pole at the other.

We close this section with a description of the warped catenoid cousins. Here is a slightly
refined version of Theorem 6.2 in [19]:

THEOREM 2.1. A complete conformal CMC-1 immersion f : M = C \ {0} — H3
with two regular endsisa §-fold cover of a catenoid cousin (which ischaracterized by g = z#
andw = (1 — u?z " 1dz/(4u) for u € R), or animmersion (or possibly a finite covering
of it), where ¢ and w can be chosen as

82 _ 12 ; 0
= b, == — 1y,

2 z + w dg Z Z
withl,§ e Z*,1 #6,andb > 0.

When b = 0, f isads-fold cover of a catenoid cousinwith © = /. Whenb > 0, wecall f
awarped catenoid cousimand its discrete symmetry group is the natural Z, extension of the

g



CMC-1 SURFACES OF LOW TOTAL CURVATURE I 379

FIGURE 3. Cut-away views of the second warped catenoid cousin in Figure 2.

dihedral group D;. Furthermore, the warped catenoid cousins can be written explicitly as
f=FF* F=FB,

where
L ooz 3=l v
2 2
A R 4 o B=<1 —b)
0ol L . ZUED sy 0 1
I+ 4

PROOF In [19] it is shown that a complete conformal CMC-1 immersionMf =
C \ {0} with regular ends is a finite cover of a catenoid cousin or an immersion determined by
g = azl + b, w=cz 7Yz,
wherel is a nonzero integer and b andc are complex numbers, which satighu 4acl = §2
for a positive integet anda, ¢ # 0. (The proof in [19] contains typographical errors: The
exponentg:. and—zu in equations (6.13) and (6.14) should be reverseg. ¢ Z*, then the
last paragraph of Case 1 is correct.ulfe Z*, then one must consider a possibility that is
included in Case 2 in that proof, and the result follows.) Changitwl/z if necessary, we
may assumeé > 1.
Choose so thath := he?? > 0. Doing the S2) transformation

i0 0 o
g|—>(0 e_l-e)*g, w> e 2,
and replacing with e=%%/1c1/!7 produces the same surface, and one has

8212
o4

g = acg! +b, w= zil*ldz, ac

Thusg andw are as desired.
To study the symmetry group of the surface, we consider the transformations
1621+ )\ "' 1

m) z
of the plane. Then the Hopf differential and secondary Gauss map change as
bg+1

= pa:

bo(z) =%z (oeZ), and ¢(z>=<

Qogp=0, gopo=9g9, Qop=0, go¢ =Axg,
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TABLE 1. Classification of minimal surfaces R? with TA < 4.

[ Type [ TA | The surface |
0(0) 0 | Plane
O(—4) 47 | Enneper surfacg
0O(-2,-2) || 47 | Catenoid

TABLE 2. Classification of CMC-1 surfaces i3 with TA(f) < 4r.

[ Type [ TA(H) | The surface |
0(0) 0 Horosphere
O(-4%) 4 Enneper cousins

O(=2,-2) || (0,47] | Catenoid cousins and
their 5-fold covers
0(-2,-2) A Warped catenoid

cousins withl = 1

where

i b 1
A= 71—1—192 <1 —b) e SU(2) .
Hencep, and¢ represent isometries of the surface. One can then check that there are no other
isometries of the surface, i.e., thatte@re no other anti-conformal bijectiopf M so that
Qop=Qandgod = AxgforsomeA € SU?2). Thus the symmetry group B; x Z».
To see that the warped catenoid cousins have the explicit representation described in the
theorem, one needs only to verify that= FoB satisfies (2.5). |

3. Complete CMC-1 surfaceswith TA(f) < 4x. In this section we will prove The-
orem 1.1. First we fix our notation and recall basic facts. For a complete conformal CMC-1
immersionf: M = M, \ {p1,..., p,} — H?3, we defineu; andu? to be the branching
orders of the Gauss mapsandG, respectively, at each eng. At an irregular engp;, we
have;ﬁj? = oo. Letd; := ord,; O, the order ofQ at p;. (For an explanation of the notation
ord,; O, see Section 2.)

Ifan endp; is regulard; > 2 holds, and relation (2.4) implies that the Hopf differential
Q expands as

1 Cj
(31) 0= <2(Z—Pj)2
wherez is a local complex coordinate aroupd.
Let{q1,...,gm} C M be them umbilic points of the surface, and lgt = ord,, Q. (For
example, ifQ = 7" dz?, thenorg Q0 = m). Then, as in (2.5) of Part I,

1 1
+- ) dz?, ¢j= —Hikjt 2+ EM?(M? +2),

n m n
(3.2) Y di+) & =4y —4, inparticular, » d; <4y —4.
j=1 k=1 ]
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By (2.3) and (2.4), it holds that
(3.3) & = [branch order ofG atqi] = [branch order ofy atg,] = ord,, do?.
As in (2.4) of Part I, the Gauss-Bonnet theorem implies that
TA(f) - : -
oy = x (M) + X;Mj +;«‘§k,
]= =

wherey denotes the Euler characteristic. Combining this with (3.2), we have

TA(S) -
(3.4) =2 =24 (- dp).
j=1
Proposition 4.1 in [19] implies that
(3.5 wj—d;>1 in particular, p;—d;>2 ifu;e”.

Anendp; is regular if and only iiZ; > —2, and therG is meromorphic ap;. Thus
(3.6) M? is a non-negative integerdf; > —2.

By Proposition 4 of [3],

(3.7 wj>—1.

Hence Equation (3.1) implies that

(3.8) pj=utez if dj>=-1.

Finally, we note that

(3.9) any meromorphic function on a Riemann surfa?t;a of
genusy > 1 has at least three distinct branch points.
To prove this, letp be a meromorphic function ofEly with N branch pointdq1, ..., gy} Of
branching ordety; atgx. Then the Riemann-Hurwicz relation implies that
N

2degp =2-2y + > Y.
k=1

On the other hand, since the multiplicity@fatgy isyx +1,degp > v +1(k =1,..., N).
Thus

(N —-2)degp >2(y — 1)+ N.
If y > 1,thendeg > 2, and saV > 3.

REMARK. Facts (3.4) and (3.5) imply that, for CMC-1 surfaces, the equality never holds
in the Cohn-Vossen inequality [19]:

(3.10) ¥>—X(M)=n—2+2y.
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PROOF OFTHEOREM1.1. By (3.4),

TAW) -
> =224 ) (- dp.

j=1

(3.11) 2

Sinceu; — d; > 1 by (3.5), we have
4>2y+n.
Thus the only possibilities are
(y.m)=(0,1, 0,2, (0,3, (LI1).

THE CASE(y,n) = (1,1). By (3.11) and (3.7), we hav® > u1 — 2 > —3. Thus the
endp1 is regular, ands is meromorphic omM1. By (3.2),d1 < 0. If d; = —2, then the end
has non-vanishing flux, and the surface does not exist, by Corollary 3 of [13]. # O or
—1, then by (3.2) there is at most one umbilic point. Since any branch po@teht an end
or an umbilic point, (3.9) is contradicted. Hence a surface of this type does not exist.

THE CASE(y,n) = (0,1). Herethe surface is simply connected, so there is a canonical
isometrically corresponding minimal surfaceRA with the same total amlute curvature. We
conclude the surface is a horosphere or an Enneper cousin.

THE CASE(y,n) = (0,2). Here, by (3.2), we havé; + d2 < —4. On the other hand,
by (3.11) and (3.7), we havA + d> > —4+ (u1 + u2) > —6. Thusdy + d> is either—4 or
—5. We now consider these two cases separately:

Thecasedi + d» = —4. |If di + d» = —4, then there are no umbilic points, by (3.2).
If d1, d > —2, then the ends are regular, and Theorem 2.1 implies that the surfagdatda
cover of an embedded catenoid cousin with 1/, or a warped catenoid cousin with= 1.

Now assume that

di>-1, dy<-3.

Then we havet; € Z by (3.8). By Proposition A.1 in Appendix A, we cannot have just one
w; & Z,soalsquz € Z. Theng is single-valued o/ . Sinceg andG are both single-valued
on M, the lift  is also (see equations (1.6) and (1.7) in [21]), and so the dual immefEiisn
also single-valued omf. Since( f#)* = f, f#is a CMC-1 immersion with dual total absolute
curvature 4 and of typeO(—1, —3) (for an explanation of this notation, see Section 2). Such
an f# cannot exist by Theorem 3.1 of Part |, so suchfatioes not exist.

Thecased; + d» = —5. If d1 + d2 = —5, then the surface has only one umbilic point
g1 with & = 1, by (3.2), and we can safp = CU {oo}, p1 = 0, po = 00, andgy = 1.

By (3.11),u1 + n2 < —1. Then, by (3.7), at least one pfi and 2 is not an integer.
Hence both are not integers, by Proposition A.1 in Appendix A. Then (3.8) implies that we
may assumé; = —2 andd, = —3. By Proposition A.2 in Appendix A, the metrits? is
the pull-back of the Fubini-Study metric @P* by the map

g =zt <z—“7+1) (c € C\ {0}, u € R\ {0, £1}).
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On the other hand, the Hopf differenti@lis of the form

=12 wec\ o).

(3.12) 0(zx) =q(x)dz* =6 Z_z
Thusw = Q/d g can be written in the form

6 1 1

(3.13) a)zw(Z)dZ:ZmZMﬁ <.

Consider the equation (which is introduced in [19] as (E.1))
w'(2)

(3.14) X"+ a(@X +bz)X =0, <a(z) =——, b(2) = —CI(Z)> .
w(z)

We expand the coefficientsandb as

1 1
a(z) = = 2, b)) =5 bzl
(2) ZZajz (2) ZZZ iz
j=0 j=0

Then the originz = 0 is a regular singularity of equation (3.14). LetandA + m be the
solutions of the corresponding indicial equatign — 1) + aot + bg = 0 withm > 0. If
the surface exists, then Theorem 2.4 of [19] implies thanust be a positive integer and
the log-term coefficient of the solutions of (3.14) must vanish. Wihea Z*, the log-term
coefficient vanishes if and only if

m—1
Y {0+ K)am—k + bnim () =0,
k=0
whereng = 1 andpy, ..., n,—1 are given recursively by
j—1
nj=——-=) {A+kaj_r+bj_rIn
T jm =) kz=0 S

as in Proposition A.3 in Appendix A of Part I. Here we have
Ozal:a2:«o«’ O:bz:bg:’

and so the log-term coefficient never vanishes at theggndecausé; = —6 # 0. Thus this
type of surface does not exist.

THE CASE (y,n) = (0,3). This is the only remaining case. But this type of surface
does not exist, by the following Theorem 3.1. O

THEOREM 3.1. Let f: M — H® bea complete CMC-1 immersion of genus zero with
three ends. Then TA(f) > 4.

REMARK. The second and third authors proved that fA> 4x holds for CMC-1 sur-
faces of genus 0 with three ends [24, Proposition 2.7]. Then the essential part of Theorem 3.1
is that TA(f) = 4z is impossible.
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PROOF OFTHEOREM3.1. We suppose T&') = 4r, and will arrive at a contradiction.
Without loss of generality, we may s&éfop = C U {oo} andp; = 0, po = 1 andpz = oo.
Sep 1. Sincey = 0and TA(f) < 4r, (3.4) implies that

3
(3.15) 4> (uj—dj).
j=1

Sinceu; —d; > 1forall j, (3.15) implies that.; — d; < 2 forall j. Henceus, uo, u3 ¢ Z
by (3.5). Then (3.8) implies that; < —2 for all j, and as Equations (3.15) and (3.7) imply
thatdy +dz +d3 > —4 + 1+ u2 + n3 > —7, we have

(3.16) di=dp =d3 = -2,

and so the ends are regular.
On the other hand, since T&) = 4x, (3.4) and (3.16) imply that

(3.17) p1+ p2 +ps = —2.
Then by (3.7), we have
(3.18) -1<pj<0 (j=123),

and furthermore at least two of the are less thar-1/2. We may arrange the ends so that
1
(3.19) —1</,L1,/,L2<—§ and —1<pusz<0.

Moreover, by Appendix A of [24] (note that th€; there equak (i; + 1)), the metricd o2

is reducible (as defined in Appendix B of the present paper). Then, by Proposition B.1 and
the relation (A.3) in the appendices here, the secondary Gausg wepbe expressed in the
form

(3.20) g =z mtD _ 1)/3+1&Z) ,

b(z)
wherea(z), b(z) are relatively prime polynomials without zerosmgtand p», and
(3.21) B=p2 of B=-2—po.

Note that the order of at p3 = oo is £(u3 + 1) and is alsau; — B — dega + degb. If
B = u2, then

2uy =dega —degh —1 or 2up =degh—dega —1
holds. Thus either2; or 2uz is an integer, but this contradicts (3.19),56= —u — 2:

a(2)

3.22 L e N e .
(3.22) g=z (z—-1 @)

Thus, by (3.17), we have
—u3—dega +degh = +(uz+1).
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Hence either

(3.23) dega —degh =1 and the order of atoois —uz —1, or
(3.24) u3 = —1/2 dega = degb andthe orderof atoois uz + 1

holds because of (3.19). To get more specific information ab@)tandb(z), we now con-
siderdg:

Sep 2. SinceQ is holomorphic orC \ {0, 1} with two zeroes (by (3.2)), (3.1) implies
that

1(csz?+(c2—c1—c)z+c1) 5
3.25 = — dz=,
(3.25) 0 2 < 72(z — 1)2 ¢

with thec; asin (3.1), as pointed out in [24, page 84]. Note that
(3.26) ;>0 (j=123)),
becauseﬁ? > 0and—1 < u; < 0. Letg1 andg> be the two roots of
(3.27) c3z? 4 (c2—c1—c3)z+c1=0.

In the case of a double root, we wrije= g1 = ¢2.
Using (3.3) and Proposition B.1 in Appendix 8¢ has only the following four possibil-

ities:

ZTM72(z — 1)TH272(2 — q1) (2 — q2)
3.28 dg =C dz,
(3.28) g Tt = an? z

M2 = 1)THT2(z — )
3.29 dg=C d ,
(3:29) g (z—q2)3 [ i1z — an)? < @ #q)
Z—Ml—z(z _ 1)-#2—2

3.30 dg =C d ,
(3.30) g EESp T s (E— z (g1 # q2)
or

—u1—2(, _ 1)—H2—2
(3.31) dg =C— -1 (g =q1=q2),

dz
(@ = @)*[Tjza(z — an)?
wherer is a non-negative integer and the poiatse C\ {0, 1, g1, g2} are mutually distinct.
In the first case (3.28), the order&§ at infinity (z = p3 = o0) is given by

U1+ pu2+2r =2r —2—pu3 = pu3or —uz — 2.

S0 —-2=2uze (—2,000r2r —2— u3z = —u3— 2. Hencer = 0 and the order af ¢ at
o0 is —u3 — 2 in the first case.
In the other three cases (3.29), (3.30) and (3.31), the ordeks af infinity are

u1+pu2+(2or6ord +2r+2>2—puz+2r > 2,
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respectively. These orders must equal eifhgr< 0 or —u3z — 2 < 0, so none of these three
cases can occur. We conclude thatis of the form
(3.32) dg = Cz7M72(z = 1)7*272(z — q1)(z — q2) dz (CeC\{0}).

Since the order o g atoo is w1 + u2 = —u3z — 2 < 0, (3.23) holds.
Sep 3. Now we determine the polynomial$z), b(z) in the expression (3.22). Differ-
entiating (3.22), we have

B Zﬂ“*z(z _ 1)*#2*2

(3.33) dg = 0 F@dz,
where
(3.34) f@@) =—A+ p1)z —Dab — (14 p2)zab + z2(z — 1)(a’b — ab’) .

Sincea(z) andb(z) are relatively primeb(z) does not dividef (z) when de@ > 1. But (3.32)
and (3.33) imply thab?(z) divides f (z), Sob(z) is constant, and we may assuine- 1. Here,
as seen in the previous step, (3.23) holds, and therg de@. Thus we have

(3.35) a(z)=ai1z+ap and b=1 (a1 #0).

Sep 4. By (3.32), (3.33), (3.34) and (3.35) we have

(3.36) —a1(u1+ pz+ Dz? + {ura1 — (u1 + p2 + ao} z + (1 + pua)ao
=C(z—q1)(z—q2).
Equation (3.27) also has roajs andgz, SO
acl+p1r <1
(3:37) Ne= s = ar(l+p3) 3 3
By (3.7), (3.26) and the first equation of (3.37), we hayga; > 0. Substituting the first
equation of (3.37) into the second, we have

2 _ _1+u2<@ +1)‘

c3 1+ uz\a
Sinceap/ay; > 0, (3.7) implies thaty/c3 < 0, contradicting (3.26) and completing the
proof. m]

ao + mnia c c
_ M3a0 Mll__1+1 2

4. Improvement of the Cohn-Vossen Inequality. For a complete CMC-1 immersion
f into H3, the equality in the Cohn-Vossen inequality never holds ([19, Theorem 4.3]). In
particular, whenf is of genus 0 with: ends,

(4.1) TA(f) > 2n(n —2).
Forn = 2, the catenoid cousins show that (4.1) is sharp. But Theorem 3.1 implies that
TA(f) > 4n for n=3,

which is stronger than the Cohn-Vossen indijyg4.1). The following theorem gives a
sharper inequality than that of Cohn-Vossen, whénany odd integer:
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THEOREM 4.1. Let f: CU {00} \ {p1...., pas1} — H?® be a complete conformal
CMC-1 immersion of genusOwith 2/ + 1 ends, [ € Z. Then
TA(f) > 4nl.
To show this, we first prove two lemmas and a proposition.
LEMMA 4.2. Let 8y, 62,63 € [0, ] be three real numbers such that
(4.2) cog 01 4 €0 6 + coS B3 + 2 COH1 COSHo COSH3 < 1.
Then the following inequalities hold:
4.3) 01+602+63 >,
(4.4) 6o —01 <m—03.
REMARK. Itis well-known that the inequality
COL 01 + COL 0y + COL O3 + 2 COSH1 COSHp COSA3 < 1

is a necessary and sufficient condition for the existence of a spherical triangith angles

01, 62 andf3. Then (4.3) follows directly from the Gauss-Bonnet formula, and (4.4) is the
triangle inequality for the polar triangle @f, and the lemma follows.Z(’s polar triangle is

the one whose vertices are the centers of the great circles containing the ediged ofvever,

we give an alternative proof:

PROOF OFLEMMA 4.2. We set

E := coS 01 + coL 0, + COL H3 + 2 COH1 cosz cosf3 — 1 < 0.

Then
61+ 602+0 —01+6>+0
E — 4c0s 1+ 62+ 03 oS 1+ 602+ 03
2 2
<91—92+93> <91+92—93>
X COS > cos > .

If 014 602+ 03 < 7, then we havé+ 01 &+ 60> £ 63| < 7, and so

+61 £+ 62+ 6
os<%)>o,

implying E > 0, a contradiction. This proves (4.3). Now, since
E = o€ 01 + coS( — 62) + COS (7 — 3) + 2 COH1 COS — 6) COS(T — f3) — 1
andE < 0andf1, m — 62, m — 63 € [0, ], (4.3) implies that
L+ (r —02) +(r —63) =7,
thatis, (4.4) holds. O
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For a matrixa € SU(2), there is a uniqu&C € [0, 7] such thata has eigenvalues
{—e*C}. We define theotation angle of ¢ as
f(a) :=2C.

Indeed, if one considers the matrix acting on the unit sphere as an isometry (M6bius action on
CP! with the Fubini-Study metrich (a) is exactly the angle of rotation.
LEMMA 4.3. Let ag, a1, a2, a3 be four matrices in SU(2) satisfying aja2az = ap.
Then it holds that
0(a1) + 0(a2) + 0(az) = 6(ao) -

PROOF. Settingb := az(ag) ! = (a1a2)~1, we haveriazb = id. Then Appendix A of
[24] implies that

0(az) 4 cog o) Olar) . .02 0059(19) -1

0(a1)
S g —~ +2cos
co +co 5 +2c0s— 5 5 =

2 2
So by Lemma 4.2 we have
O(a1)  6(a2)  0(D)
>
2 2 2 -
On the other hand, we havzglbao = id. Again Appendix A of [24] implies that

0 (ao) 0(az) 0(b) blao) 0(a3) 0(b)
cog > + cog > +(:0527+200., 5 COS—— COS— = <

sincee(agl) = 0(a3). By (4.4) of Lemma 4.2, we have
0(ag) 6O(az) _ 0(b)
- T——.
2 2~ 2
By (4.5) and (4.6), we get the assertion. ]

(4.5)

1,

(4.6)

PROPOSITION 4.4. Letay, ..., az,+1 bematricesin SU(2) satisfying

aiaz - -azy+1 = id .

Then it holds that
2m+1

0(a;) > 2m.
Y 6,

j=1
REMARK. This result does not hold for an even number of matrices: Suppgse. ,
azy € SU(2) satisfyaiaz - - - az, = id. Then the inequalit)E?”;le(aj) > 0 is sharp. In fact,
the equality will hold if alla; = —id.

PROOF OFPROPOSITION4.4  We argue by induction. i = 1, the result follows from
Lemma 4.3 withzg = id. Now suppose that the result always holdsifor 1(> 1). Set

b := aiazas.
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Then, by Lemma 4.3,
4.7 0(ay) +6(az) +6(az) = 0(b).

On the other hand, we hawey - - - az,+1 = id, so by the inductive assumption,
2m+1
(4.8) o)+ Y 0a)) = 2.
j=4
By (4.7) and (4.8), we get the assertion. O

We now apply Proposition 4.4 to the monodromy representation of pseudometrics in
Met; (C U {o0}) (see Appendices A and B):

COROLLARY 4.5. Letdo? e Met;(C U {oo}) with divisor

N n
D= Bipi+ Y &ar. Bj>-1. &eZT,
j=1 k=1
wherethe p1, ..., ps, q1, ..., g, aremutually distinct pointsin C U {oc}.
Ifs+& +---+ &, isanoddinteger,then 81 + -- -+ Bs > 1 —s.

PROOF. Let g be a developing map offlo? with the monodromy representation
pg: T1(M) — PSU2) = SUQ2)/{£id} onM = CU {00} \ {p1, .-+, Ps+ q1s - - qn}

pg can be lifted to an S(2) representation, : 71(M) — SU(2) so that the following
properties hold:

(1) LetT; (j=1,...,s)andSc (k =1,...,n) be deck transformations oY corre-
sponding to loops abouyt; andg, respectively. Then it holds that

ﬁg(Tl) e 'ﬁg(Ts)lag (81) -~ ;5g (Sn) = id .

(2) The eigenvalues of the matrif, (7)) (resp. g (Sk)) are {—e=™#itD} (resp.
{—etTEFDY,

This is proven in [24, Lemma 2.2] for = 3, n = 0, and the same argument will work
for generals andn. We include an outline of the argument here: One chooses a solution
F to equation (2.12) in [24] (wittG = z andQ = S(g)/2). ThenF has a monodromy
representatiop;: 71(M) — SU(2), whereF — F - p;(y) about loops/ € w1(M). Then
pg = £pj, and we simply choose the lifi; so thatp, = +pz. The first property is then
clear.

To show the second property, we note that wifgnand &, are all given the value
0, thenQ is identically 0 and saF is constant and alb; = +id. Hence the eigenval-
ues{£eTBitD) (resp. (et EADY) of 5y (T)) (resp.pq (Sk)) are {—e= 7 FitD} (resp.
{—e*™E+DY) in this case. Then, g8 andg, are deformed back to their original values, the
matricesp, (7)) (resp.poy (Sk)) change analytically and so the sign of the eigenvalues cannot
change, showing the second property.

We have

0(pg(Tj)) =2m(Bj + 1),
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and since&y is an integer, we have
(4.9) Py (SK) = (—=D%id .

Assumes = 2m + 1 is an odd number. Then, by the assumptian; - - - + &, is an even
integer, and by (4.9) above we ha¥g(T1) - - - pg (T2m+1) = id, so by Proposition 4.4,

2m+1 2m+1
21 Y B+ D = Y 05y (T)) = 2.
j=1 j=1

proving the corollary whem is odd.

Now suppose that = 2m is even. We havg, (S1) - - - p4(S,) = —id, becausé; +
.-+ &, isodd. Hencgy (T1) - - - pg (T2)(—id) = id, and sinc# (— id) = 0, Proposition 4.4
implies that

2m 2m
27 (B + 1) =) 05y (T)) +0(—id) > 2,

j=1 j=1
proving the corollary when is even. ]
PROOF OFTHEOREMA4.1. Suppose that; € Z. Then by (3.4) and (3.5),
2m+1
TA
(4.10) zfrf)z—Z—i-(p,l—dl)—i— Z(p,j—dj)>—2+2+2m=2m,
j=2

proving the theorem whem; € Z.

Next, suppose that; < —3. In this casep; — d1 > —1+4 3 = 2. Hence again by (3.4)
and (3.5), we have (4.10), and the theorem follows.

Thus we may assume; ¢ Z andd; > —2 at all ends. Then, by (3.8), we have all
dj = —2. So, by (3.2) and (3.3), the corresponding pseudomtrichas divisor

2m+1 [

l
S wipi+> G, Y G=4m—-2e2Z,
j=1 k=1 k=1

whereg; = ord,, Q at each umbilic poingx (k =1,...,1). Then by Corollary 4.5,
pi+p2+ -+ pomy1 = —2m,

and so (3.4) implies the theorem. ]

REMARK. Whenm = 1, we know the lower bound#n in Theorem 4.1 is sharp.
However, we do not know if it is sharp for general For CMC-1 surfaces of genus 0 with
an even numbet > 4 of ends, we do not know if there exists any stronger lower bound than
that of the Cohn-Vossen inequality.

In [15], it is shown numerically that there exist CMC-1 surfaces of genus 0 with four
ends whose total absolute curvature gets arbitrarily clos& to 4



CMC-1 SURFACES OF LOW TOTAL CURVATURE I 391

Appendix A. For a compact Riemann surfageand pointsps, ..., p, € M, a con-
formal metricdo? of constant curvature 1 o := M \ {p1,..., pn} is an element of
Mety (M) if there exist real numbergy, ..., B, > —1 so that eactp; is a conical singu-

larity of orderg;, that is, ifdo? is asymptotic ta;lz — p; 1%Pi dz - dz atp;, forc; # 0andz
a local complex coordinate aroupd. We call the formal sum

(A1) D:=Y Bjp;
j=1

thedivisor corresponding tao2. For a pseudometri¢o? € Mety (M) with divisor D, there
is a holomorphic mag : M — CP* such that/o2 is the pull-back of the Fubini-Study metric
of CP!. This map, called theeveloping map of do 2, is uniquely determined up to Mébius
transformationg — a x g fora € SU(2).

For a conical singularity ; of do?, there exists a developing mgpand a local coordi-
natez of M aroundp; such that

9(@)=@@—pj)7g3@ (rj e R\ {0},
whereg (z) is holomorphic in a neighborhood ¢f; andg(p;) # 0. Here, the ordeg; of
do? at pjis

7, —1 if r; >0,
—-7;—1 if ; <O.

(A.2) Bi= {

In other words, itlg = (z— p;)?h(z) dz, whereh(z) is holomorphic neap; andh(p;) # 0,
then the ordep; is expressed as

o B if B>-—1,
(A-3) ﬂ-’_{—ﬁ—Z if g <—1.

The following proposition gives an obstruction to the existence of certain pseudometrics
in Met1(CU {o0}).

PROPOSITION A.1. For any non-integer 8 > —1, there is no pseudometric do? in
Met1(C U {o0}) with the divisor

n
Bpi+ Y mjpj (ma,....m, €2Z),
j=2

where p1, ..., p, aremutually distinct pointsin C U {oo}.

Whenn =1 (i.e., WhenZ;?zz m p; is removed), this nonexistence of a “tear-drop" has
been pointed outin [17] and [4].

PROOF. We may sep; = oo. Since then; € Z, the developing map of do?is well-
defined orC, and sog is meromorphic orC. As do? has finite total curvature; extends to
z = oo as a holomorphic mapping. In particul@re Z. O
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REMARK. When a Riemann surfacd, has genuy > 0, there is a pseudometric in
Met1(M, ) with only one singularity that has order less than 0, by [18].

PROPOSITION A.2. Suppose a pseudometric do? in Met; (C U {oc}) has divisor

Bipi+ Pep2+ps (B, f2>—landpi, 2 ¢ Z),
where p1 := 0, p2 := 00, and p3 := 1. Then do? has a developing map ¢ of the form

1
(A.4) g =cz" (z—i> (ceC, nueR),
"

where 1 = |u| —land 2 = [ + 1] — 1.

PROOF. Sincedo? has only two non-integral conicalngularities, it is reducible, and
Proposition B.1 in Appendix B shows that the mafs written in the form

g="C2 (g7,
Z

wherea(z) andb(z) are relatively prime polynomials witla(0) # 0 andb(0) # 0. Note that
b(z) can have a multiple root only at a conical singularity/ef?, hence only at = 1. Thus
b'(z0) # 0 for all rootszg € C\ {0, 1} of b.
Since the change — 1/¢ preservesio?, we may assume that deg> degb. By a
direct calculation, we have
ght

dg(z) = Wh(z)dz , With h(z) = pa(2)b(z) + za'(2)b(z) — za(2)b'(2) .

Note thath(0) = ua(0)b(0) # 0.

Letzo € C\ {0, 1}. If b(z0) # O, theng(zg) # oo, and sincey is not a singularity of
do?, we havel g (zo) # 0, and hencé(zo) # 0. If b(zo) = 0, thena(zo) # 0 andb’(zp) # 0,
s0h(zo) # 0. Hence the only root of the polynomiia(z) is 1:

hz)=k(z—1", meZt, keC\{0}.

We claim thatn = 1. If b(1) # 0, theng (or do) having order 1 aps = 1 means
thatm = 1, by (A.3) and the above form afg(z). Supposeb(1) = 0. Then we have
b(z) = (z — 1)'b(z), whereb(z) is a polynomial inz with 5(1) # 0 andl € Z*. Furthermore,
h(z) = (z — D!"Yh(z), whereh(z) is a polynomial withi(1) # 0, sincea(l) # 0. So
m =1 —1. Then, by (A.3), we haves = 1.

Suppose that ddg> 1. Since deg > degb, the top term ofi(z) must vanish. Thus we
haveu = degb — dega € Z, contradicting thapi, B2 ¢ Z. Sob(z) is constant. Similarly, if
dega > 2, thenu = —dega € Z. Hence deg = 1, andg is as in (A.4).81 = |u| — 1 and
B2 = |u + 1| — 1 follow from (A.3). m]

Appendix B. Considerdo? € Met;(M) with divisor D as in (A.1) in Appendix A
and developing mag. Since the Fubini-Study metric @P? is invariant under the deck
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transformation group1(M) of M := M \ {p1, ..., p,}, there is a representation
pg: T (M) — SU2)
such that
goT t=pg(T)xg (T €m(M)).

The metricdo? is calledreducible if the image ofp, is a commutative subgroup in $2),
and is calledrreducible otherwise. Since the maximal abelian subgroup of3\is U(1), the
image ofp, for a reducibledo? lies in a subgroup conjugate to(l), and this image might
be simply the identity. We call a reducible metiie2 H3-reducible if the image ofpy is the
identity, andH*-reducible otherwise (for more on this, see [12, Section 3]).

Let p1, ..., ps—1 be distinct points irC andp,, = co. We set

Mpl ..... Pn ::CU{OO}\{pLPZwH:pn} (pn:Oo)s

andM,, . ,, its universal cover.
The following assertion was needed in the proof of Theorem 1.1.

PROPOSITION B.1. Let p1, ..., p,—1 bemutually distinct pointsof C, and let do? bea
metric of constant curvature 1 definedon M, ..., (p, = oo) which hasa conical singularity
at each p;. Suppose that do? isreducibleand g; := ord,, do? satisfy

Bl,.- s Bn€Z, Butl,---.Bn—1€Z, B, €Z,

for somem < n — 1. Then the metric do? has a developing map g : 1\71,,1
given by

yenes

g=@C@—pD™--@—=pn)™r@ (t1,....Tm € R\ 2),
where r(z) isarational functionon CU {oo} and

m z dZ
(z—pD)™ (2= pm)™ = eXp(Z’J’/ > (z € Mp,....p,)
j=1 7

0% Pj
for some base point zo € My, p, -

PROOF. do? is reducible only if the image of the representatjgnis simultaneously
diagonalizable, so we may choose a developing mam?pl = CP? such that

~~~~~ n

(8.1) py(T) = (63 e—?9r> .
Thus we have
log(g o T~Y) = log(g) + 2i67 .
Differentiating this gives
dlog(g o T~ = dlog(g),

which implies that/ log(g) is single-valued o, .. -
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On the other hand, by Proposition 4[Bj, there is a complex coordinate around each
endp; such that

(B.2) ajxg=w—pj)H¥ (rj e R\{0,£1})

for somea; € SU2) (j = 1,...,n). Let T; be the deck transformation &1, ., corre-
sponding to a loop surrounding . Then

pg(Tj)) #xid forj=1,...,mandj=n.
Hencer; ¢ Z whenj <m andj = n. By (B.1),a; in (B.2) is diagonal, so
g(pj)=0 or oo (Gj=1,....,m,n).

Henced log(g) has poles of order 1 aty, . .., pn, and thus

d T1dz Tndz
dlog(g) =L = 2= 4 L)z,
g Z—p1 Z— Pm
whereu(z) is meromorphic. Integrating this gives the assertion. O
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