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Abstract. We present sufficient conditions of extending a meromorphic function which is
defined outside an analytic compact curve in a complex surface. The function we deal with
is a first integral for a holomorphic foliation in the whole surface. The key to extension is the
study of singularities of the foliation on the complex curve.

1. Introduction. We consider a singular holomorphic foliatidhin a complex sur-
faceM, equipped with a meromorphic first integral defined outside a compact complex curve
S. We are basically concerned with the following question: under which conditions&oes
admit a meromorphic first integral in the entire surface

Proposition 2 asserts that wh&iis not F-invariant, then the first integral extends to the
whole M. To study the case whef&is F-invariant, some necessary hypotheses are set on the
singularities ofF in S: we assume that any singularity containedihas no saddle-nodes in
its desingularization. Such a singularity is callegeaeralized curve. We have:

THEOREM A. Let F be a singular holomorphic foliation in a complex surface M
admitting a meromorphicfirstintegral 2 in M \ S, where S isa compact, smooth, connected
complex curve. If some singularity of F in S is a non-dicritical generalized curve, then h
extends to a meromorphic first integral for F in M.

In the case where all singularities§rare dicritical (here, beindicritical means having
an infinite number of separatrices), further hypothesis are set on theSurve

THEOREMB. Let F bea singular holomorphic foliation in a complex surface M ad-
mitting a meromorphic first integral 4 in M \ S, where S is a compact, smooth, connected
complex curve with negative self-intersection number. If all singularities of F in S are gen-
eralized curves, then 1 extends to a meromorphic first integral definedin M.

When S has non-negative self-intersection number, the extension is still possible if
contains an adequate amount of spediatitical singularities, which we catirdinary dicrit-
ical:

THEOREMC. Let F bea singular holomorphic foliation in a complex surface M ad-
mitting a meromor phic first integral 4 outside a compact, smooth, connected complex curve S
with self-intersection number n > 0. Suppose that the singularitiesof 7 in S are generalized
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curves. If there are at least n + 1 ordinary dicritical singularitiesin S, then h extendsto a
meromorphic first integral in M.

The basic tool for the proofs of Theorems A, B and C is Lemma 2, which is called
Extension Lemma. It asserts that a meromorphic first integral in a neighborhood of one of
the separatrices of a simple singularity extends to a neighborhood of the singularity. This,
along with some results on the extension of meromorphic functions, transforms our problem
into one of finding separatrices through the desingularization divisor.

Sections 5 and 6 are devoted to the situation wiiéres a complex projective space
CP". We study the problem in dimension two and then show how the proble@wih
reduces to a two-dimensional one.

In Section 7 we give conditions upon that similar extension theorems apply to a foliation
by curves in a complex manifold of dimensiom. Finally, in Section 8, we produce variants
of Theorems A, B and C where we extend closed meromorphic one-forms defining a foliation
in a complex surface. With some adaptations, the techniques of the previous sections also
apply to this situation.

This work was developed as a Ph. D. thesis at IMPA, Brazil. | am grateful to my advisor
C. Camacho. | also thank P. Sad and B. Azevedo Scardua for their valuable comments and
contributions.

2. Proofsof themain theorems. LetF be a singular holomorphic foliation defined
in a complex surfacé/, that is, a two-dimensional complex manifold. By a singular holo-
morphic foliation we mean a holomorphic foliation outside an analytic €}, thesingular
set of F, of codimension two or greater. We remark that, as a consequence of Levi’'s exten-
sion theorem, a singular holomorphic foliation of dimension one is induced by a holomorphic
vector field in a neighborhood of eapbint (see [L]). We say that a poipt € s(F) is a re-
duced singularity if the eigenvalugs and, of the linear part of a vector field which defines
F at p satisfy one of the following:

(i) A1#0,22%0,h2/21 ¢ QF;

(i) A #0,x2=00rr1 #0,A2=0.
Singularities of type (i) are said to Isample. The special case in which /12 € Q™ is called
aresonance. Singularities of type (ii) are calleshddle-nodes.

A meromorphic functiork is called ameromorphic first integral for F if its indetermi-
nacy set is contained i(F) and its level curves contain the leavesfafSimple singularities
which admit meromorphic first integrals are linearizable resonances, as the following results
prove:

PROPOSITION 1. Let p be areduced singularity of F admitting a meromorphic first
integral in some neighborhood. Then p is a resonance.

PROOF.  Suppose first that is simple and non resonant. Th&nis formally lineariz-
able (see [CS1]); in formal coordinatesatF is given byw, = xdy — Aydx, A € C—Q.
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Write

F(x,y)= Z amnxmyn,

m=>mo,n>ng

the development in Laurent series of the (formal) first integralfioiVe have
O=wy, AdF
= (xdy — Aydx)A( Z Mampx™ Ly dx + Z namnx'"y”_ldy)

m>mo,n>ng m>mo,n>ng

= - Z (m + An)am,x™y"dx Ady .

m>mo,n>ng

Sincer ¢ Q, we must have,,,, = 0 for any(m, n) # (0, 0), contradicting the fact thaf is
non-constant.

Similar formal calculations employing Dulac’s normal form ([CS1]) show ghaannot
be a saddle-node. m]

We say that a one-dimensional analytic §a§ a separatrix throughp € s(F) if p €
S and S is invariant by 7. We remark that a simple singularity admits a pair of smooth
separatrices. For a saddle node, we can assure the existence of one smooth separatrix (see
[CS1)). In general, a singularity always admits at least one separatrix ([CS]).

LEMMA 1 (Linearization lemma). Let p € s(F) and S a separatrix for F at p.
Suppose that F admits a meromorphic first integral F in a neighborhood V of $* = S\ {p}.
Then the holonomy with respect to S is linearizable.

PROOF. Lety : [0, 1] - S* be a simple closed path aroupdLetg = y(0) = y (1)
and ¥ a small complex disc centered @t contained inV and transversal t&, provided
with a complex coordinate. If 4, : ¥ — X is the holonomy map associatedjtothen
F(hy,(w)) = F(w) foranyw € X. Setting a new complex coordinatein which F|x
readsF|x(z) = 7", we have(h, (z))" = z". Thereforeh, (z) = ¢>**/!z, wherek,l € Z
andl|n. O

LEMMA 2 (Extensionlemma).Let p € s(F) and S aseparatrix for F at p. Suppose
that F admits a meromorphic first integral F in a neighborhood V of $* = S\ {p}. If pisa
simple singularity, then F extends meromor phically to a neighborhood of p.

PROOF. The previous Lemma and [MM] show th#t is a linearizable resonance at
p; there exists a system of coordinates y) centered ap such thatF is defined byw =
xdy — Aydx,» € QY. WriteA = —p/q, p,q € N, (p,q) = 1. Suppose thaf has the local
equation{y = 0}. DevelopingF in the Laurent series

F(x, y) = Z amnxmynv

n>ng
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we have

O=dF Aw= Z (mqg — np)ampx™y"dx A dy.

n=zng

We see thati,,,, # 0 if and only ifmqg — np = 0, which occurs if and only if there exists
[ € Zsuch thatn = Ip andn = Iq. Itis then possible to rewrite

F(x,y) =) aipiqxPy?)
1=Ig

for somelp € Z. This shows thaf” extends meromorphically to a neighborhood of 0. O

Levi's extension theorem, which provides the extension of a meromorphic function de-
fined in a Hartogs’ domain to its holomorphic closure ([Siu]), allows us to prove the follow-

ing:

LEMMA 3. Let M beacomplex surfaceand S a smooth, compact, connected complex
curve. Supposethat / isameromor phic function defined in M\ S. If h extends as a meromor-
phic functionto (M \ S) U V,,, where V,, isa neighborhood of a point p € S, then it extends
meromorphically to M.

PROOF. Let W be the union of the pointg € S for which there exists a neighborhood
V4, g € Vg, such that: extends meromorphically toM \ S) U V,. W is non-empty by
hypothesis and open from its definition. Let us show that it is closed. pake S in the
closure ofW. This means that there exists a sequepce VW such thaty, — po. Chose
a coordinate neighborhodd,, aroundpg , @ = (x,y) : Up, — C? a coordinate chart,
such thatP := @& (U,,) is a polydisc andb (Sp N Up,) = {y = 0}. Takeng sufficiently
large so thatj,, € Up,. ThenP \ {y = 0} U @(Up, NV, ) is a Hartogs’ domain. Levi's
theorem assures thatextends meromorphically tt,,. Therefore,pg € W and the result
follows. m]

Let F be a foliation in a complex surfadd admitting a meromorphic first integral in
M \ S, whereS is a smooth, compact, connected complex curve. We are concerned with
finding conditions for extending the meromorphic function to the whdleFirst of all, if S
is not F-invariant, then extension is immediate:

PROPOSITION 2. Let M be a complex surface with a singular holomorphic foliation
JF admitting a meromorphic first integral 2 in M\ S, where S isa smooth, connected complex
curve. If S isnot F-invariant, then i extendsto M as a meromorphic first integral for F.

PROOF. Let p € S be a regular point ofF where the foliation is transversal
Choose a coordinate neighborhadg aroundp and® = (x,y) : U, — C? a coordinate
chart such thaP := @(U,) is a polydisc,®(S N Up) = {y = 0} andF|y, is a foliation
with vertical leaves given byx = 0. Sincen is a first integral, we have thatx, y) = h(x)
for (x,y) € P\ {y = 0}. Therefore,s extends meromorphically toy = 0} by setting
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h(x,0) = h(x). This yields the extension df to S outsides(F) N § and the points of
tangency betwee and S. They constitute, however, a codimension two analytic set, and
the meromorphic extension to them is straight. |

Suppose now thaf is invariant byF. From Proposition 1, it is reasonable to assume
that the singularities af overS do not have saddle-nodes in their desingularization; they are
generalized curves, according to the definition in [CLS].

Letw : M — M be a sequence of blow-ups that desingularie®) N S (see [Sei]).

We consider the desingularization divisbr= 7~1(S) = U'_o Pi, wherePy = *(S) is

the strict transform of and|J!_; P, = 77 1(s(F) N S) are the projective lines associated
to the blow-ups. LefF be the foliation induced idZ andh = h o 7 its meromorphic first
integral defined inV \ D. Among Py, ... , P, there are perhaps some non-invariant lines.
By the previous propositiort, automatically extends to these lines outside their intersection
with other invariant lines.

Let D be the set of invariant curves ip. We decompos® = Ul}:o Dj, where eaclD;
is connected and; N D; =@ if i # j. Do is taken to be the component which contafas
Our job is now reduced to searching separatrices through Packhich are not contained
in D;. Since we are dealing with generalized curves, this is equivalent to the existence of
a singularity of 7 outside a corner. Suppose such a separatrix exists at apommntained
in some componend;,. Denote bySp the separatrix and b;, the line which containg.
Sincep is not a saddle-node and a meromorphic first integral is defined in a neighborhood
of So \ {p}, by applying Extension Lemma 2, it is possible to extérd a neighborhood of
p. Lemma 3 allows us to exteridto Piy\ {q1, ... , qi}, the points of intersection a?;, with
other lines inD,. Now we apply the same process and extend a neighborhood of each
g; and, as a consequence, to the lines which contain them. This procedure is repeated until
is extended throughoud ,.

Next we show that it is always possible to find a separatrix thrangh . . , D,. We do
not always assure the existence of a separatrix thrayghHowever, some conditions may
be given so that this occurs.

Let M be a complex surface anfél a singular holomorphic foliation. Thalgebraic
multiplicity (or simply themultiplicity) of F at p € M, denoted by ,(F), is the lowest
order of the terms appearing in the Taylor seriewgf some holomorphic one-form which
gives the foliation afp. Let S be a smooth separatrix through Choose a local system of
coordinategx, y) at p such thatS = {y = 0} andw, = p(x, y)dx +q(x, y)dy is a defining
one-form forF. Thetangent multiplicity of 7 andS at p, m,(F, S), is the order of; (x, 0)
atx = 0. If S is one of the separatrices of a simple singularity, or the strong separatrix of
a saddle node, them ,(F, S) = 1. We also have thap is a regular point if and only if
mpy(F,S) =0.

Letw : M — M be a sequence of blow-ups startingsat M andD = = ~1(p) the
associated divisor. Itis proved in [CLS] that

mp(F)+1= Y (p(P))m(F,P),
qePCD
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where

my(F, P) if ¢ is nota corner

* —
my(F, P) = {mq(]-" P)—1 if gisacorner

andp (P) is a weight associated #®. For our purposes, it is sufficient to know thatP) = 1
when P is associated to the first blow-up.

LEMMA 4. Let p bea singularity of a singular holomorphic foliation F admitting a
smooth separatrix S. Suppose that p isa generalized curve. Then p admits another separa-
trix distinct from S.

PrRooOF If p is dicritical, there is nothing to prove. Suppose tiwaadmits a finite
number of separatrices. H is already reduced, then it is simple and has two transversal
smooth separatrices. H is not reduced, we desingularize it and prove by induction in the
number of blow-ups.

Suppose first that one blow-up desingulariZes Denote byP the projective line in-
troduced, byS the strict transform ofs (which is smooth and transversal ®), and set
po = P N S. If there exists another singularity gf in P, it is reduced and has a separatrix
transversal taP. So, let us examine the case whexgis a unique singularity iP. It is
reduced and haB andS as the set of its separatrices. We have

my(F) +1=m,(F, P)=1,

which impliesm ,, = 0, an absurdity.

Suppose now that > 1 is the number of blow-ups necessary to desingularization and
that the result is already proved for singularities which desingularize in lessitlséaps.
Let us perform a first blow-up at, introducing P, S and po as above. If there exists a
singularityg € P, distinct from pg, then the induction hypothesis applies to assure the
existence of a separatrix throughdistinct from P. It remains to consider the case where the
only singularity inP is po, havingP andS as the set of its separatrices. However, according
to [CLS], a generalized curve having exactlyottvansversal smooth separatrices is reduced.
The argument of the preceding paragrapplees here to achieve a contradiction. ]

REMARK 1. Lemmad4 may be false ffis not smooth. For instance, take= (0, 0) €
C?2 §:x2—y3 =0andF : d(x2 — y3) = 2xdx — 3y%dy = 0. p is a generalized curve
havings$ as its unique separatrix.

At this point, we are ready to prove Theorem A:

PROOF OFTHEOREMA. We suppose thaf is F-invariant, since the other case was
already proved. Applying Lemma 4, we exteintb S\ {p1, ..., pn}, Whereps, ..., p, are
the other singularities af in S. Since these points form a codimension two analytic/set,
extends through them, yielding a meromorphic first integraliatefined inM. |

Remark that the conclusion of the theorem implies that all singularities iof S are
generalized curves.
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Let M be a complex surface. L&t = (J/_; Si € M be a finite union of compact
complex curves. The matrids = (s;j)1<i, j<n, Wheres;; = §; - S;, is called thentersection
matrix associated t§. Notice thatMg is symmetric and has real entries.

Observe that itMg € M, (R) is symmetric andQ € M, (R) is non-singular, theip
is negative definite if and only i’ MpQ is. As a consequence, a permutation of columns
followed by the corresponding permutation of lines of a negative definite, symmetric, real
matrix yields a negative definite, symmetric, real matrix. This means that the negative defi-
niteness of the intersection matrix of a curve is independent from the enumeration associated
to its components. The following is proved in [La]:

THEOREM 1. Letw : M — M beasequence of a finite number of blow-upsat p € M
andD =n"1(p), D= UJ/_; P;, where P; are projective lines. Then the intersection matrix
M p is negative definite.

We establish now a connection between the negative definiteness of the intersection
matrix Mg and the existence of separatrices through a diisor

Let S = [J7_, Si be a union of complex curves in a complex surfateTo S we asso-
ciate a graph’s constructed in the following way: The set of verticés, = {Vy, ..., V,,}
corresponds bijectively to the set of components;afo each point inS; N S; we define an
edge connecting; andV;. We have the following proposition:

PrRoPOSITION 3 ([C]). Let M be a complex surface with a singular holomorphic fo-
liation F. Let S = |J'_; Si be a union of F-invariant compact smooth complex curves.
Suppose that the singularities of F in S are non-dicritical and

(i) Theassociated graph I's isatree,

(i) My isnegative definite.

Then, there exists a separatrix through S.

LEMMA 5. Let My € M,(R) be a symmetric negative-definite matrix. If M1 €
M, (R) isa submatrix of Mg in itsdiagonal, then M, is negative-definite.

PROOF. We may suppose thafy has the form
_ (M N!
Mo = ( N Mz) ,
whereM, € M,—,, (R) andN € M(,—n,)xn, (R). If v € R™, v # 0, then we have
VM1V’ = (v, 0)Mg(v, 0)' <O,

sinceMy is negative definite. This accomplishes the proof. |

Suppose thad/ carries a singular holomorphic foliatiaf. Let = be a sequence of
blow-ups that desingularizgs € s(F) andD = 7 ~1(p) the associated divisor. Denote by
D the union of all invariant lines iD. Write D = U’_1 Di, where eactD; is a connected
set coposed by union of projective lines abdN D; = @ if i # j. We have
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PrROPOSITION 4. Thereexists a separatrix through each D;.

PrROOF.  Infact, after renumbering the projective linesirif necessary, eacl p, will
be a submatrix in the diagonal 8 p. The result follows from the fact thatp is negative
definite. O

We are at the point of proving Theorem B:

PROOF OFTHEOREMB. WhenS is not F-invariant, the result is already proved. If
S is F-invariant, perform the desingularization ofF) N S. Denote byr the sequence of
blow-ups. Easy calculations show that blowing up a divisor with negative definite intersection
matrix yields a divisor with negative definitetersection matrix. The proof of Proposition 4.
shows that a divisor contained in a larger divisor with negative definite intersection matrix
also has negative definite intersectimatrix. Since we depart from a cun$ewith negative
self-intersection number, these facts show that the largest connected set contditing
composed by the union of invariant curvesmofl(S) has negative definite intersection ma-
trix. This assures that it is crossed by a separatrix. It is therefore possible to éxtend.

|

We remark that Theorem B may be proved through more general results. A divisor with
negative definite intersection matrix may be blown down to a complex surface having normal
singularities ([La], Theorem 4.9 and Propositi.6). On the other hand, a theorem of Levi
assures the extension of a meromorphic function defined outside a codimension-two variety
in a normal complex space ([N], Theorem VII-4). The proof we present here has a virtue of
relying on properties of foliated surfaces.

In the following lines we make an attempt to extend a meromorphic first integral through
a smooth complex curve with non-negative self-intersection number.

Let p be a non-reduced singularity 8f in an invariant curves, which is smooth ap.

A linear chain at p (with respect taS) (see [CS]) is a sequence of blow-ups performed in the
following way: Letm; be a blow-up ap and P; = nfl(p). If p1 =mi(S)N Pyisreduced,

then the linear chain agi; is 1. If p1 is non-reduced, then make another blowspat p1

and, if necessary, successive blow-ups at the corners, until all of them are reduced; the linear
chain atp consists of the compositiar), o. . .o 1 of these blow-ups. We make the following
definition:

DEFINITION 1. Letp be asingularity of a germ of holomorphic foliatidhadmitting
a germ of smooth separatrix We say thatp is anordinary dicritical singularity if the
desingularization op has one non-invariant projective line lying in the divisor associated to
the first linear chain with respect

EXAMPLE 1. LetS; andS, be two smooth algebraic curves@P2. Choose an affine
planeCP?\ L, such thatL ., does not intersect; N Sz. Let p1(x, y) = 0 andpa(x, y) =0
be irreducible polynomial equations 6§ and S, in CP2 \ L. LetF be the foliation
in CP2 induced byw(x, y) = p%d(pl/pz) = pidpz — p2dp1 = 0. ThenSi N Sz is
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composed by dicritical singularities ¢f which are ordinary dicritical with respect to both
S1 and S>. We remark that ifS; and S, are transversal, then, by Bezout's theorémn S
has degregs:1)degreés») points. In particular, if degréd;) < degre€sS»), thenS; contains
more thandegre€s;))? = S1 - 1 ordinary dicritical singularities.

The above definition explains the statement of Theorem C, which we prove now:

PROOF OF THEOREM C.  We prove by induction in the intersection numberSof
Suppose firs§ - § = 0. Letp € S be an ordinary dicritical singularity. If, in the sequence of
blow-ups that producebe linear chain fronp, a dicritical line intersects the strict transform
of §, then, at this moment, this will have negative self-intersection number. Theorem C
applies to this case. Otherwise, we will reachk fbllowing situation: The strict transform
S of S will have self-intersection number at mosg, while the intersection number of the
projective lineP (intersectings) will be —1. The intersection matrix associated to the divisor
SU P will clearly be negative definite. Further steps in the desingularization process will take
this to a divisor with negative definite intersection matrix.

Suppose now thaf - S = n > 0 and the result is valid for curves with self-intersection
number less than. We may suppose that ail+ 1 ordinary dicritical singularities lie in the
second case of the previous paragraph. Otherwise we reduce to a curve of smaller intersection
number and apply the induction hypothesis. After an appropriate sequence of blow-ups, we
reach the situation whet®has self-intersection number at mast 2(n + 1) = —n — 2 and
P;-P; = —1fori =1,... ,n+1 (eachp; is a projective line intersectin§ belonging to the
first linear chain of one of the singuiltes related above). The divisér = SUPLU.. UPyy1
has the following(n + 2) x (n + 2) intersection matrix

S-s 1 1
Mp = 1 -1 0 ’
1 0 -1
which is negative definite. This concludes the proof. ]

3. Some Consequences. We present in this section several situations where Theo-
rems A, B and C apply.

COROLLARY 1. Let F bea parabolic foliation on CP? whose |leaves are proper out-
side some algebraic invariant curve S ¢ CP2. Assume that the singularities of F along §
satisfy the hypothesis of Theorem A, B or C. Then F exhibits a rational first integral.

PrROOF.  Atheorem of Suzuki ([Su]) implies th& admits a meromorphic first integral
onCP2\ S, sinces is a Stein manifold. o

COROLLARY 2. Let X bea polynomial vector field on C?. Suppose that the orbits of
X have total finite curvature and are complete for the Euclidean metric on C? (this implies
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that the line at infinity/, is invariant) If there are no affine invariant lines for X and
if the singularities of the corresponding projective foliation on CP? are as in Theorem A,
we conclude that X admits a rational first integral and its orbits are contained in algebraic
Curves.

PrROOF. A well-known theorem of Osserman on minimal surfaces assures that each
orbit is a parabolic Riemann surface ([W]), so ttfats parabolic. According to [Sc] the fact
that the total curvature is finite also implies that the orbits are properly embed@2d Tine
result then follows from the corollary above. a

COROLLARY 3. Let F and F; be projective foliations on CP2. Assume that F is a
pencil by algebraic curves of genus g > 2, and that there exists some analytic automorphism
T : C? — C? that conjugates F and F1 on C?. Assume also that the singularities of 71
along theline at infinity are asin Theorem A. Then 1 admitsarational first integral and T
isalgebraic.

PROOF.  First we observe that; admits a meromorphic first integral and therefore
a rational first integral by Theorem A. TherefdFeis an analytic automorphism @? that
takes algebraic curves into algebraic curves. Since the algebraic curves involved have genus
g > 2 it follows from a result of Kizuka ([K]) thaf” must be algebraic. |

4. Examples. We give some examples where there are obstructions to extend a
meromorphic first integral.

EXAMPLE 2. Consider the foliatiotF in CP? induced by
w=dy—(ax)y+b(x))dx=0,

wherea(x) andb(x) are polynomials. LefA(x) be a primitive fora(x) andB(x) a primitive
for b(x)/exp(A(x)). The meromorphic function

Fx,y) = — eXp(B(x))

y
exp(A(x))
is a first integral forF in CP2 \ L. All singularities of F are contained iLo.. We have
the following cases:

(i) Ifdegreda) < degreéb), thens(F) consists of a single point dt,, N {x = 0}. It
is a non-reduced singularity, giving rise to a saddle-node by a single blow-up.

(i) If degredga) > degreeb), then the crossing, N {x = 0} is also a non-reduced
singularity, which produces a saddle-node after one blow-up. In this £gseontains an-
other singularity, which is a saddle-node.

The above example does not admit a rational first integral, since it contains saddle-nodes
in L (see Proposition 1).
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ExaMPLE 3. The following construction is carried out by means of the techniques of
[L]. We construct a surfacép provided with a foliationFo, having an invariant projective
line Py such thatPy- Pp = —1, with two singularitieg; andp2, both of them are linearizable
with index—1/2 with respect taPy. We also construct a surfadé; provided with a foliation
F1, having an invariant projective linB; such thatP; - P = —1, with a linearizable singu-
larity g1 with index —2 with respect taP;, and a second singularity, which is radial. We
defineM; to be a copy oM. Similarly, defineF; to be the foliation inM», P» the invariant
projective line g2 andr; the singularities.

We glue a neighborhood @t in Mg with a neighborhood oP; in M1 by identifying the
local models ofFg in p; andF1 in g1, and with a neighborhood df; in M by identifying
the local models afFg in p2 andF3 in g2. The result is a complex surfadé with a foliation
F havingPo U P1 U P> as an invariant divisor.

Blow up r1 andry, giving rise to dicritical lined.; andL,. Denote byPo, P, Pz and
F the strict transforms of%, P1, P, and F, respectwely Choosmg a poimt € L1, we
prowdeLl \ {s1} with a complex coordinate such thatPy N L1 corresponds tg = 0. We
define a holomorphic functio® in L1\ {z = 0} in the coordinate by H(z) = exp(1/z).
H may be extended to a first integral t6rin a neighborhood of. 1 outsideP; by following
the leaves ofF. Similarly, we extendH to a neighborhood of; outside P, U Py and
then to a neighborhood afy outside Pp U P; U P,. Carrying out the same construction
starting fromL,, we will have, by symmetry, a meromorphlc first integhatlefined in a
ne|ghborhood00 U PLULiU Py U LyoutsidePy U Py U Ps. If we blow downLq, Py
and Ly, P, then the result will be a foliatiog in a complex surface with an invariant line
P such thatP - P = 1, having two dicritical singularities and admitting a meromorphic first
integral outsideP. This does not extend tB. Notice that these singularities are not ordinary
dicritical with respect taP, according to our definition. Considering the foliatidhand the
complex curvePy U P1 U P,, we have an example where theorem A fails when the curve in
guestion is singular.

EXAMPLE 4. LetG be the group of M6bius maps generategay = z/(z +1). Let
T be a complex torusy and g the generators of1(7T) and® : 71(T) — G the homomor-
phism such tha® («) = g, ®(8) = ¢g. We make the suspension of this homomorphism, that
is, we build a complex fiber bundIg with baseT” and fiberC and a holomorphic foliation
F in E transversal to the fibers such that the holonomyFah a fiber is given by® (see
[CL]). F admits a meromorphic first integral i \ Eg, whereEq >~ T is the null section,
constructed in the following way: Letbe a complex coordinate in a fixed fib&g such that
the generator of the holonomy group is writtenggs) = z/(z + 1). H(z) = exp(2ri/z) is
holomorphic outsid¢z = 0} and satisfie# (¢(z)) = H(z) for z # 0. Therefore, by follow-
ing the leaves ofF, we may extendd to a holomorphic first integrai for F defined outside
Eo. Of course: does not extend t&g. Notice that the obstruction for the extension is the
existence of a map in the holonomy with respecktpwhich has the structure of a flower,
which implies that its orbits acummulate in the origin (see [C1]).
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ExamMPLE 5. In this example we follow the construction of Riccati foliations with
given holonomy, as done in [L]. L&% be the group of Mébius maps generatedfhiz) = —z
and f2(z) = z/(z + j), wherej = exp(2ri/3). G is hon-abelian and its generators satisfy
2 = f3 = (fio f2)% = id. The functionH (z) = P'(1/z)?, where?P is the Weierstrass
function, is meromorphic i€ \ {z = 0} and satisfiedd (f(z)) = H(z) for f € G (see [F],
Section VII-I1). We build a fiber bundi® : E — C with fiber C and a singular holomorphic
foliation F in E with three invariant vertical fiberdyp, F1 and F», transversal to the fibers in
E\ (FoU F1U F»). Let Eg ~ C be the null section. For a fixed fib&r # Fo, F1, F», with a
complex coordinate ({z = 0} = F N Ejp), the holonomy map corresponding to a looin
aroundp1 = P(F1) is given by fi, while f> is the holonomy map associated to a loop around
p2 = P(F2). The holonomy map associated to a loop aropne= P(Fp) is (f10 )7L We
obtain a meromorphic first integraffor 7 defined outsidé&o U Fy U F; U F> by extending
the functionH defined inF \ {z = 0} by following the leaves ofF. In a neighborhood
V; x C of F;, with coordinatesx;, z;), (x;, Z;), wherez; = 1/z; (the fibers correspond to the
equations;; = ¢ andp; corresponds tox;, z;) = (0, 0)), F is given by the equations

wi(x,z;) = o;zidx + x;dz; =0,
i (x,z;) = —0Zidx + x;dz; =0,

whereag = 6, a1 = 2, a2 = 3. Sincei,, (F, Eg) = —1/a;, we have that(Eg) =
Z?:l ip;(F,Eg) = —1. ltis therefore possible to blow dowFo by a mapr : E —

E ~ CP2. The foliationz.F has a meromorphic first integral outside the linesy, 7, F1
andz, F». This does not extend ©P2 and the obstruction lies once again in the existence of
a map in the holonomy of with respect taEg which has a structure of flower (for instance,
[fi, f2l = fio fao fit o f51 = z/(1 — 22)). Notice that all the singularities of,F are
generalized curves.

5. Foliations in CP2. In this section we study foliations i€P2 which admit a
meromorphic first integrat defined inCP? \ S, wheres is a smooth algebraic curve. We
remark that meromorphic functions @P?2 are rational, that is, they are given by quotients
of polynomial functions. We have the following:

PROPOSITION 5. Let S bean algebraic curve invariant by a foliation F in CP? with
arational first integral 2. Then S contains a dicritical singularity.

PROOF  We supposé(x, y) = p(x, y)/q(x, y), wherep andg are non-constant poly-
nomials. Without loss of generality, we may suppose shatirreducible. Také f (x, y) = 0}
to be an irreducible polynomial equation definifigThe foliationF is defined by

1) px,y) —2q(x,y)=0, reC.

Sinces is invariant and irreducible, there exists € C such thatf dividesp — Aogq; there
exists a polynomiag such that

(2) fl,»glx,y) = plx,y) —rog(x,y).
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Substituting (2) in (1), we have the following set of equations:

(3 f,»glx,y) —(r—2ro)g(x,y) =0, 1 €C.

Choose a poinp in the intersection ofg = 0} and{ f = 0}. This is a dicritical singularity for
F. In fact, assuming that it lies in the affine plane in question (otherwise simply perform an
appropriate change of coordinates), (3) gives an infinite number of algebraic curves through

p. ]

Let us suppose that a foliatiofi in CP2 admits a meromorphic first integral @P2 \ S,
whereS is a smooth algebraic curve. Theorem A applies to this case if there exists a non-
dicritical generalized curve ifi. As a consequence of this theorem and the preceding result,
we have

COROLLARY 4. Let F beasingular holomorphic foliation in CP2 admitting a mero-
morphic first integral outside some smooth algebraic curve S. Suppose that a singularity of
Fin S isageneralized curve. Then F hasadicritical singularity in S.

PROOF. Letp € s(F) N S be a generalized curve. If it is non-dicritical, Theorem A
says thatF has a rational first integral. Proposition 5 then assures the existence of a dicritical
singularity inS. |

6. Foaliationsin CP”" of codimension 1. LetF be a codimension one singular holo-
morphic foliation inCP", n > 3. Suppose that admits a meromorphic first integral outside
some smooth hypersurface This n-dimensional case can be handled by reducing it to a
two-dimensional problem.

Let H ¢ CP" be anm-dimensional complex plane, 2 m < n. We say thatH is in
general position with respect taF if H is not F-invariant ands(F) N H is a codimension
two analytic set. The proof of the following proposition is adapted from Lemma 5 in [CLS1]:

PROPOSITION 6. Let F beasingular holomorphic foliationin CP" and H C CP" a
hyperplane in general position with 7. Then F admits a rational first integral if and only if
Flg does.

PrRoOOF. The “only if* part of the proof is straightforward. Let us prove the opposite
implication. It is enough to build a meromorphic first integral 6y, whereV is an open
neighborhood oH. SinceCP" \ H is a Stein manifold, it extends ©P" ([Siu]). Let f be a
meromorphic first integral fofF | . Takep € H a regular point fotF. It is possible to find a
sufficiently small neighborhooW,, of p and a holomorphic coordinate chart: W, — A,
whereA c C" is a polydisc, such that:

() YHNW,) ={z,=01NA4,

(iiy W (F)isgiven bydzy = 0.

Let fp = f o WY sn(,=0). This extends naturally to a meromorphic function defined in
A, which we still call f,, by settingf,(z1. ... .zx) = fp(z1. ... .2a1.0). This is a first
integral forw,(F). We definef, = f, o ¥.
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Notice that, if W, N W, # @, p andg being regular points forF, then we have
folw,nw, = fqlw,nw,. This follows easily from the identity principle for meromorphic
functions. LetW = U,y F) Wp- W is a neighborhood off \ s(F), whereF admits
a meromorphic first integral, which we cafly. All we have to do is extendingy to a
neighborhood off N s(F). SinceH is in general position with respect 16, H N s(F)
is a codimension two analytic set il. Let p € H N s(F). Itis possible to find a neigh-
borhoodV,, of p, a change of coordinates such that®(p) = 0, #(V,) = A1 x D and
@ 1((A1\ A2) x D) C W N V,, whereA; C A1 C c 1 are polydiscs and c C
is a disc, all of which centered in the originA1 \ A2) x D is a Hartogs’ domain whose
holomorphic closure isi; x D. Levi’'s theorem then allows us to exterfgl to V,. The
result is a meromorphic first integral defined inV, the neighborhood off consisting of

W Upes(]:)ﬁH Vp. O

It is proved in [CLS1] that the set of hyperplanes in general position with respect to a
foliation F in CP", n > 3, is generic in the set of all hyperplanes.

We can apply the above facts to reduce the extension problem in dimensi@prob-
lem in dimension two. We find a sequence of linear subspéiges ... C H,—1 C H, =
CP", where eaclH; is a linear subspace of dimensigriransversal td; 1 N S, and in gen-
eral position with respect t&1,,,, fori = 2,... ,n — 1 (H, = CP"). Choosing eacl; in
such a way that the meromorphic first integral #is non-constant over it ~ CP2 will
be provided with a foliatior¥ | z, which admits a meromorphic first integral outsile N S.

FurthermoreF |, admits a rational first integral if and only # does.

7. Foliationsby curvesin higher dimension.  Let M be amm-dimensional complex
manifold with a foliationF whose leaves are curves (s locally induced by a holomorphic
vector field). In this section we consider the problem of extending a meromorphic function
F defined outside a compact subvarigtywhose level surfaces contain the leavesrof
Such a function will still be called &irst integral for 7 . We first remark that ifS is of
codimension two or greateF, extends meromorphically téf as a consequence of Levi's
theorem. Therefore, it is enough to consider the case whe&ref codimension one. When
S is not F-invariant, the extension is automatic and the proof proceeds as that of Proposition
2:

PrROPOSITION7. Let M, S, F and F be as above. If S isnot F-invariant, then F
extendsto M asa meromorphic first integral for F.

For the case wherg is F-invariant, a higher dimensional version of Extension Lemma
2 is required:

LEMMA 6. Let F be a meromorphic first integral for the linear vector field
X(z1,...,20) = A1210/0z1 + - -+ + Apz,0/0z,, Where A; £ Ofori = 1,...,n, defined
outside the hyperplane {z1 = 0}. If X admits a finite number of separatrices at O (outside
{z1 = 0}), then F extends to a neighborhood of 0 as a meromorphic first integral for X.
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PrROOF. We consider the development Bfin the Laurent series:

F(z1,...,z4) = Z ail...i,,zgfL e Zi,n .
ir€Z,ip>lp,... in>ly
SincerF is afirst integral forX outside{z; = 0}, we have
0=dF(z1,...,z0)X(z1, ... ,2n)
= Yo it by i, 22

ilEZ,izle, N

Whenevew;, ;, # 0, we have
)\lil+"‘+)\nin :07

which is equivalent to

AZ . An
I1=——l2—-+— —1
1 )Ll 2 )\l n
Restricting the fieldX to invariant two dimensional planeg x z;, i = 2,...,n, we see

thati; /A1 € Q (since there exists a meromorphic first integral outside- 0). On the other
hand, the hypothesis on the finite number of separatrices implies that, infact, e Q*.
This means that is bounded from below by = —(A2/A1)lo—- - - — (A /A1), Which gives
the meromorphic extension &f to the hyperplangz; = 0}. |

The hypothesis on the number of separatrices is necessary. For inBtgacey, z3) =
eXﬂz%/zl) is a first integral forX (z1, z2, z3) = 27198/9z1 + z20/03z2 + z39/9z3, which does
not extend meromorphically tix; = 0}. In view of the previous lemma, we may state the
following:

THEOREM 2. Let M, S, F and F be asin the beginning of this section. Assume that
SisF-invariant. If p € S isalinearizable singularity of F, whichisa saddle (only non-zero
eigenvaluespdmitting a finite number of separatrices outside S. Then F extendsto M asa
meromorphic first integral for F.

PROOF.  We apply the previous lemma to exteAdo a neighborhood op, and Levi's
theorem to obtain an extension to the whafe ad

8. Closed meromorphic one-forms.  In this section we seek conditions for extend-
ing a closed meromorphic one-form which defines a foliatfooutside a compact complex
curve. We remark that i€? closed meromorphic one-forms with simple poles correspond
to foliations admitting as a first integral a multiform function of the kifl’& .. fﬁ”, where
f1,..., fp are holomorphic andy, ... , 1, € C(see [CM]). We will see that the techniques
developed above also apply to this situation.
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PROPOSITION 8. Let M beacomplex surfaceand S ¢ M a compact complex curve.
Let F be a singular holomorphic foliation in M, which is induced in M \ S by a closed
meromorphic one-form w. If Sis not F-invariant, then » extends to a meromorphic closed
one-formin M.

PROOF.  The proof is similar to that of Proposition 2. Lebe a regular point i, also
regular forF, where the foliation is transversal 5 Choosel/,, a coordinate neighborhood
aroundp and® = (x,y) : U, — C? a coordinate chart such thAt:= @ (U,) is a polydisc,
@(SNUp) = {y =0} andF|y, is the foliation with vertical leaves given x = 0. Let
o = ®.o|y,s. We haveo(x,y) = a(x, y)dx,(x,y) € P\ {y = 0}, wherea(x, y) is
meromorphic inP \ {y = 0}. Sincew is closed, we have that(x, y) is a function ofx only.
The extension of to S is achieved by noticing that the singular pointsSothe tangencies
of F andS, and the singularities gf in S form a codimension two analytic set. |

The following is a generalization of Lemma 1:

LEMMA 7. Let p € s(F) beasimple singularity and S a separatrix for F at p.
Suppose that F is given in a neighborhood V of $* = S\ {p} by a closed meromorphic
one-form w with simple poles. Then the holonomy with respect to S islinearizable.

PROOF Lety : [0,1] — S* be a closed path such that] € H1(S*) is a generator.
ChooseX' a small disk such that x X is contained inV. Suppose first thaf C (®)oo-

Fix ¢ € y. There exists a neighborhoddt of ¢ and a local chartX, Y) in which F is
given bydY = 0 andS N U = {Y = 0}. Sincew is closed and has simple poles, it follows
thatw = adY/Y + d¢, wheregp € O(U) anda € C is the residue of» with respect taS*
(hence, independent frog). Fromw A dY = 0, we havelp A dY = 0, so thatp = ¢ (Y).
In a new system of coordinat€s, y) = (X, Yexp(¢(Y))), F is given bydy = 0, while
w=ady]/y.

It follows that we may cover a neighborhoodyok {0} with a finite number of coordinate
charts(x;, y;) such thatS N U; = {y; = 0}, Fly, : dy; = 0 andwl|y; = ady;/y;.
Whenevet; N U; # ¢, we have

dyi dyj
a— =a—

Yi YVj
so thaty; = c¢;jyj, wherec;; is locally constant in; N U;. It follows that the holonomy
mapping associated f¢] is linear.

Suppose how thaf ¢ (w)s. AS above, we produce a coveringjofx {0} with a finite
number of open set§; provided with coordinateér;, y;) such thatF|y; : dy; = 0. We
can thus writew|y; = a;(y;)dy;, wherea;(y;) is holomorphic. LetA;(y;) be a primitive
of a;(y;) such thatd;(0) = 0. A; is a holomorphic first integral faF|y,. If U; N U; # ¢,
we havedA; = oly,ny; = dAj, which givesA; = A; in U; N U;. The functionA :
U =J;U; — Csuchthatd|y; = A; is a holomorphic first integral faF|y. If hy is the
holonomy map associated g we have tha#|s o h,, = A|,. Thereforep, is linearizable.

O

’
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LEmMMA 8 (Extension Lemma l).Let p € s(F) be a simple singularity and S a
separatrix for F at p. Suppose that F is given in a neighborhood V of §* = S\ {p} by
a closed meromorphic one-form w with simple poles. Then » extends to a meromorphic
one-form defined in a neighborhood of p.

PROOF. Lemma 7 and [MM] give thaf is linearizable ap, that is, there are coordi-
nates(x, y) such that the one-form = xdy — Aydx, » € C\ Q*, induces the foliation in
a neighborhood op = (0, 0). Suppose thaf = {y = 0} in this coordinate system. Let us
write

w=a(x,y)dx +b(x,y)dy
= Z aijxiyj dx + Z bijxiyj dy.
j>-1iel j>-1iel
Sincew is closed, we have
Z ib,-,jx’;lyj - Z ja,',jx"yjfl =0.

j=-1ieZ j=-1ieZ
Therefore
4) (+Dbiy1,;=(+Dajy1 forj>-1lieZ.
On the other hand, sineeA n = 0 in a neighborhood where both forms are defined, we have

Z aijx' ™yl 41 Z bix'yitl =0,
j>-1iel j>-1iel

which gives
(5) ajj41=—Abiy1; forj>-1ieZ.
Suppose that sonig, ;, # 0, wherejo 7 —1. From relations (4) and (5) we have

5= _Gio=Ljotl _ o _ p
bio,j() jO + 1 q '

wherep, ¢ € Z* are such thatp, ¢) = 1. This means that whenevier; # 0 with j # —1,
we have

i p

I
That is, there exists€ Z such that = Ip andj = —1+ Iq. Whenb; _1 # 0, equation (4)
implies thati = 0. Therefore the set of indicé€s j) such thab; ; is possibly non-zero is of
the form

i=lIp,
U2 i, 120
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This means that(x, y) extends meromorphically to a neighborhoogopossibly having a
simple pole in{y = 0}. From equation (5) we see that

ai,j #0=bit1j-1#0

:>{l.:_1+lp’ [>0.
]:lq’

Thereforeu(x, y) also extends meromorphically jo m]

In the case of closed forms with poles of higher order we have:

LEMMA 9 (Extension Lemma ll).Let p € s(F) be a simple singularity and S a
separatrix for F at p. Suppose that F is given in a neighborhood V of $* = S\ {p} by a
closed meromorphic one-form w with a pole of order k + 1 > 2in S. Then w extendsto a
meromor phic one-form defined in a neighborhood of p.

PrRooOF Ifthe holonomy ofS at p is linearizable, then the proof goes as that of Lemma
8. We therefore suppose that the holonomy is not linearizable. We first remark (see [LSc])
that sinceS is a pole of ordek + 1 > 2 of the closed fornw, the holonomy group of is
conjugated to a subgroup 6f; , for somea in C, where

Gy ={Roog,1,:z€C A =1},

and

— ox xk—i—l P
G = OXP\ 23577 55 )

It follows from formal calculations that must be a resonance. We then have #te
following Martinet-Ramis normal form ([MaR, p. 597]): There are formal coordinatgs at
such thatF is given in a unique way by a form of the model

wpg ks =P+ A= DPyDR)ydx + g1+ A(xPy)*)xdy,

where(p, g) = 1. The holonomy maps &b = 0} and{x = O} are given respectively by

eX(—27ip/q) © Gonigk.ig/p
and
exp(—2riq/p) o 92ri, pk,(A\—1)p/q -

Since each germ of diffeomorphism (€, 0) tangent to the identity is formally conjugated
to a uniqgue modey, , , ([MaR, p. 580]), we see that the holonomy$ht p is analytically
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normalizable, that is, the coordinates in question are holomorphic. Therefore the Martinet-
Ramis normal form is in fact holomorphic.

On the other handy, /4 5 hash(x, y) = pgxy(xPy?)¥ as an integrating factor. That
iS, @p /g k.0 = h(x, ) "Iw,/4 1.1 is closed. Therefore, there exists a meromorphic fungfion
defined inV such thatw = g, /4 1.5. If g were non-constant, it would be a first integral for
FinV, sincew andw, 4 «,» are closed. Then the holonomy $t p would be linearizable,
which is not the case. Thereforg,is constant and extends to a neighborhood ¢f as
9@p/q.k,2.- This completes the proof. O

We also have:

LEMMA 10. Let M beacomplex surface and S a compact connected complex curve.
Suppose that w is a meromorphic one formdefined in M \ S. If w extends as a meromorphic
oneformto (M \ S) U V,, where V,, is a neighborhood of a point p € S, then it extends
meromorphically to M.

PrROOF. The proof is similar to that of Lemma 3, noticing that a meromorphic one-
form defined in a Hartogs’ domain extends to its holomorphic closure. o

The proofs of theorems’AB’ and C, stated below, proceed as those of their counter-
parts, Theorems A, B and C.

THEOREMA'’. Let F beasingular holomorphic foliation in a complex surface M in-
duced by a closed meromor phic one-formin M\ S, where S isa compact, smooth, connected
complex curve. If some singularity of F in S is a non-dicritical generalized curve, then w
extends to a closed meromor phic one-formin M.

THEOREM B’. Let F be a singular holomorphic foliation in a complex surface M
induced by a closed meromorphic one-formin M \ S, where S is a compact, smooth, con-
nected complex curve with negative self-intersection number. If all singularitiesof 7 in S are
generalized curves, then w extendsto a closed meromor phic one-form defined in M.

THEOREM C'. Let F be a singular holomorphic foliation in a complex surface M
induced by a closed meromor phic one-form e outside a compact, smooth, connected complex
curve Swith self-intersection number n > 0. Suppose that the singularities of 7 in S are
generalized curves. If there are at least n + 1 ordinary dicritical singularitiesin S, then w
extends to a closed meromor phic one-form defined in M.
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