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MEROMORPHIC FIRST INTEGRALS: SOME EXTENSION RESULTS
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Abstract. We present sufficient conditions of extending a meromorphic function which is
defined outside an analytic compact curve in a complex surface. The function we deal with
is a first integral for a holomorphic foliation in the whole surface. The key to extension is the
study of singularities of the foliation on the complex curve.

1. Introduction. We consider a singular holomorphic foliationF in a complex sur-
faceM, equipped with a meromorphic first integral defined outside a compact complex curve
S. We are basically concerned with the following question: under which conditions doesF
admit a meromorphic first integral in the entire surfaceM?

Proposition 2 asserts that whenS is notF -invariant, then the first integral extends to the
wholeM. To study the case whereS isF -invariant, some necessary hypotheses are set on the
singularities ofF in S: we assume that any singularity contained inS has no saddle-nodes in
its desingularization. Such a singularity is called ageneralized curve. We have:

THEOREM A. Let F be a singular holomorphic foliation in a complex surface M

admitting a meromorphic first integral h in M \ S, where S is a compact, smooth, connected
complex curve. If some singularity of F in S is a non-dicritical generalized curve, then h

extends to a meromorphic first integral for F in M.

In the case where all singularities inS are dicritical (here, beingdicritical means having
an infinite number of separatrices), further hypothesis are set on the curveS:

THEOREM B. Let F be a singular holomorphic foliation in a complex surface M ad-
mitting a meromorphic first integral h in M \ S, where S is a compact, smooth, connected
complex curve with negative self-intersection number. If all singularities of F in S are gen-
eralized curves, then h extends to a meromorphic first integral defined in M.

WhenS has non-negative self-intersection number, the extension is still possible ifS

contains an adequate amount of specialdicritical singularities, which we callordinary dicrit-
ical:

THEOREM C. Let F be a singular holomorphic foliation in a complex surface M ad-
mitting a meromorphic first integral h outside a compact, smooth, connected complex curve S
with self-intersection number n ≥ 0 . Suppose that the singularities of F in S are generalized
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curves. If there are at least n + 1 ordinary dicritical singularities in S, then h extends to a
meromorphic first integral in M.

The basic tool for the proofs of Theorems A, B and C is Lemma 2, which is called
Extension Lemma. It asserts that a meromorphic first integral in a neighborhood of one of
the separatrices of a simple singularity extends to a neighborhood of the singularity. This,
along with some results on the extension of meromorphic functions, transforms our problem
into one of finding separatrices through the desingularization divisor.

Sections 5 and 6 are devoted to the situation whereM is a complex projective space
CPn. We study the problem in dimension two and then show how the problem inCPn

reduces to a two-dimensional one.
In Section 7 we give conditions upon that similar extension theorems apply to a foliation

by curves in a complex manifoldM of dimensionn. Finally, in Section 8, we produce variants
of Theorems A, B and C where we extend closed meromorphic one-forms defining a foliation
in a complex surface. With some adaptations, the techniques of the previous sections also
apply to this situation.

This work was developed as a Ph. D. thesis at IMPA, Brazil. I am grateful to my advisor
C. Camacho. I also thank P. Sad and B. Azevedo Scárdua for their valuable comments and
contributions.

2. Proofs of the main theorems. LetF be a singular holomorphic foliation defined
in a complex surfaceM, that is, a two-dimensional complex manifold. By a singular holo-
morphic foliation we mean a holomorphic foliation outside an analytic sets(F), thesingular
set of F , of codimension two or greater. We remark that, as a consequence of Levi’s exten-
sion theorem, a singular holomorphic foliation of dimension one is induced by a holomorphic
vector field in a neighborhood of eachpoint (see [L]). We say that a pointp ∈ s(F) is a re-
duced singularity if the eigenvaluesλ1 andλ2 of the linear part of a vector field which defines
F atp satisfy one of the following:

(i) λ1 �= 0, λ2 �= 0, λ2/λ1 �∈ Q+;
(ii) λ1 �= 0, λ2 = 0 orλ1 �= 0, λ2 = 0.

Singularities of type (i) are said to besimple. The special case in whichλ1/λ2 ∈ Q− is called
a resonance. Singularities of type (ii) are calledsaddle-nodes.

A meromorphic functionh is called ameromorphic first integral for F if its indetermi-
nacy set is contained ins(F) and its level curves contain the leaves ofF . Simple singularities
which admit meromorphic first integrals are linearizable resonances, as the following results
prove:

PROPOSITION 1. Let p be a reduced singularity of F admitting a meromorphic first
integral in some neighborhood. Then p is a resonance.

PROOF. Suppose first thatp is simple and non resonant. ThenF is formally lineariz-
able (see [CS1]); in formal coordinates atp, F is given byωp = xdy − λydx, λ ∈ C − Q.
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Write

F(x, y) =
∑

m≥m0,n≥n0

amnx
myn ,

the development in Laurent series of the (formal) first integral forF . We have

0 = ωp ∧ dF

= (xdy − λydx)∧
( ∑

m≥m0,n≥n0

mamnx
m−1yndx +

∑
m≥m0,n≥n0

namnx
myn−1dy

)

= −
∑

m≥m0,n≥n0

(m + λn)amnx
myndx ∧ dy .

Sinceλ �∈ Q, we must haveamn = 0 for any(m, n) �= (0, 0), contradicting the fact thatF is
non-constant.

Similar formal calculations employing Dulac’s normal form ([CS1]) show thatp cannot
be a saddle-node. �

We say that a one-dimensional analytic setS is a separatrix throughp ∈ s(F) if p ∈
S andS is invariant byF . We remark that a simple singularity admits a pair of smooth
separatrices. For a saddle node, we can assure the existence of one smooth separatrix (see
[CS1]). In general, a singularity always admits at least one separatrix ([CS]).

LEMMA 1 (Linearization lemma). Let p ∈ s(F) and S a separatrix for F at p.
Suppose that F admits a meromorphic first integral F in a neighborhood V of S∗ = S \ {p}.
Then the holonomy with respect to S is linearizable.

PROOF. Let γ : [0, 1] → S∗ be a simple closed path aroundp. Let q = γ (0) = γ (1)

andΣ a small complex disc centered atq, contained inV and transversal toF , provided
with a complex coordinatew. If hγ : Σ → Σ is the holonomy map associated toγ , then
F(hγ (w)) = F(w) for any w ∈ Σ. Setting a new complex coordinatez in which F |Σ
readsF |Σ(z) = zn, we have(hγ (z))n = zn. Therefore,hγ (z) = e2πik/ lz, wherek, l ∈ Z
andl|n. �

LEMMA 2 (Extension lemma).Let p ∈ s(F ) and S a separatrix for F at p. Suppose
that F admits a meromorphic first integral F in a neighborhood V of S∗ = S \ {p}. If p is a
simple singularity, then F extends meromorphically to a neighborhood of p.

PROOF. The previous Lemma and [MM] show thatF is a linearizable resonance at
p; there exists a system of coordinates(x, y) centered atp such thatF is defined byω =
xdy − λydx, λ ∈ Q+. Write λ = −p/q, p, q ∈ N, (p, q) = 1. Suppose thatS has the local
equation{y = 0}. DevelopingF in the Laurent series

F(x, y) =
∑
n≥n0

amnx
myn,



88 R. MOL

we have

0 = dF ∧ ω =
∑
n≥n0

(mq − np)amnx
myndx ∧ dy.

We see thatamn �= 0 if and only if mq − np = 0, which occurs if and only if there exists
l ∈ Z such thatm = lp andn = lq. It is then possible to rewrite

F(x, y) =
∑
l≥l0

alp,lq(x
pyq)l

for somel0 ∈ Z. This shows thatF extends meromorphically to a neighborhood of 0. �

Levi’s extension theorem, which provides the extension of a meromorphic function de-
fined in a Hartogs’ domain to its holomorphic closure ([Siu]), allows us to prove the follow-
ing:

LEMMA 3. Let M be a complex surface and S a smooth, compact, connected complex
curve. Suppose that h is a meromorphic function defined in M \S. If h extends as a meromor-
phic function to (M \ S) ∪ Vp, where Vp is a neighborhood of a point p ∈ S, then it extends
meromorphically to M.

PROOF. LetW be the union of the pointsq ∈ S for which there exists a neighborhood
Vq , q ∈ Vq , such thath extends meromorphically to(M \ S) ∪ Vq . W is non-empty by
hypothesis and open from its definition. Let us show that it is closed. Takep0 ∈ S in the
closure ofW . This means that there exists a sequenceqn ∈ W such thatqn → p0. Chose
a coordinate neighborhoodUp0 aroundp0 , Φ = (x, y) : Up0 → C2 a coordinate chart,
such thatP := Φ(Up0) is a polydisc andΦ(S0 ∩ Up0) = {y = 0}. Taken0 sufficiently
large so thatqn0 ∈ Up0. ThenP \ {y = 0} ∪ Φ(Up0 ∩ Vqn0

) is a Hartogs’ domain. Levi’s
theorem assures thath extends meromorphically toUp0. Therefore,p0 ∈ W and the result
follows. �

Let F be a foliation in a complex surfaceM admitting a meromorphic first integral in
M \ S, whereS is a smooth, compact, connected complex curve. We are concerned with
finding conditions for extending the meromorphic function to the wholeM. First of all, if S

is notF -invariant, then extension is immediate:

PROPOSITION 2. Let M be a complex surface with a singular holomorphic foliation
F admitting a meromorphic first integral h in M \S, where S is a smooth, connected complex
curve. If S is not F -invariant, then h extends to M as a meromorphic first integral for F .

PROOF. Let p ∈ S be a regular point ofF where the foliation is transversal toS.
Choose a coordinate neighborhoodUp aroundp andΦ = (x, y) : Up → C2 a coordinate
chart such thatP := Φ(Up) is a polydisc,Φ(S ∩ Up) = {y = 0} andF |Up is a foliation
with vertical leaves given bydx = 0. Sinceh is a first integral, we have thath(x, y) = h(x)

for (x, y) ∈ P \ {y = 0}. Therefore,h extends meromorphically to{y = 0} by setting
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h(x, 0) = h(x). This yields the extension ofh to S outsides(F) ∩ S and the points of
tangency betweenF andS. They constitute, however, a codimension two analytic set, and
the meromorphic extension to them is straight. �

Suppose now thatS is invariant byF . From Proposition 1, it is reasonable to assume
that the singularities ofF overS do not have saddle-nodes in their desingularization; they are
generalized curves, according to the definition in [CLS].

Let π : M̃ → M be a sequence of blow-ups that desingularizess(F) ∩ S (see [Sei]).
We consider the desingularization divisorD = π−1(S) = ⋃n

i=0 Pi , whereP0 = π∗(S) is
the strict transform ofS and

⋃n
i=1 Pi = π−1(s(F) ∩ S) are the projective lines associated

to the blow-ups. Let̃F be the foliation induced inM̃ andh̃ = h ◦ π its meromorphic first
integral defined inM̃ \ D. AmongP1, . . . , Pn there are perhaps some non-invariant lines.
By the previous proposition,̃h automatically extends to these lines outside their intersection
with other invariant lines.

Let D̃ be the set of invariant curves inD. We decomposẽD = ⋃k
j=0 Dj , where eachDj

is connected andDi ∩ Dj = ∅ if i �= j . D0 is taken to be the component which containsP0.

Our job is now reduced to searching separatrices through eachDj which are not contained
in Dj . Since we are dealing with generalized curves, this is equivalent to the existence of
a singularity ofF̃ outside a corner. Suppose such a separatrix exists at a pointp contained
in some componentDj0. Denote byS0 the separatrix and byPi0 the line which containsp.
Sincep is not a saddle-node and a meromorphic first integral is defined in a neighborhood
of S0 \ {p}, by applying Extension Lemma 2, it is possible to extendh̃ to a neighborhood of
p. Lemma 3 allows us to extend̃h to Pi0 \ {q1, . . . , ql}, the points of intersection ofPi0 with
other lines inDj0. Now we apply the same process and extendh̃ to a neighborhood of each
qj and, as a consequence, to the lines which contain them. This procedure is repeated untilh̃

is extended throughoutDj0.
Next we show that it is always possible to find a separatrix throughD1, . . . ,Dn. We do

not always assure the existence of a separatrix throughD0. However, some conditions may
be given so that this occurs.

Let M be a complex surface andF a singular holomorphic foliation. Thealgebraic
multiplicity (or simply themultiplicity) of F at p ∈ M, denoted bymp(F), is the lowest
order of the terms appearing in the Taylor series ofωp , some holomorphic one-form which
gives the foliation atp. Let S be a smooth separatrix throughp. Choose a local system of
coordinates(x, y) atp such thatS = {y = 0} andωp = p(x, y)dx + q(x, y)dy is a defining
one-form forF . Thetangent multiplicity of F andS atp, mp(F , S), is the order ofq(x, 0)
at x = 0. If S is one of the separatrices of a simple singularity, or the strong separatrix of
a saddle node, thenmp(F , S) = 1. We also have thatp is a regular point if and only if
mp(F , S) = 0.

Let π : M̃ → M be a sequence of blow-ups starting atp ∈ M andD = π−1(p) the
associated divisor. It is proved in [CLS] that

mp(F) + 1 =
∑

q∈P⊂D

(ρ(P ))m∗
q(F , P ) ,
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where

m∗
q(F , P ) =

{
mq(F , P ) if q is not a corner,
mq(F , P ) − 1 if q is a corner

andρ(P ) is a weight associated toP . For our purposes, it is sufficient to know thatρ(P ) = 1
whenP is associated to the first blow-up.

LEMMA 4. Let p be a singularity of a singular holomorphic foliation F admitting a
smooth separatrix S. Suppose that p is a generalized curve. Then p admits another separa-
trix distinct from S.

PROOF. If p is dicritical, there is nothing to prove. Suppose thatp admits a finite
number of separatrices. Ifp is already reduced, then it is simple and has two transversal
smooth separatrices. Ifp is not reduced, we desingularize it and prove by induction in the
number of blow-ups.

Suppose first that one blow-up desingularizesF . Denote byP the projective line in-
troduced, byS̃ the strict transform ofS (which is smooth and transversal toP ), and set
p0 = P ∩ S̃. If there exists another singularity ofF̃ in P , it is reduced and has a separatrix
transversal toP . So, let us examine the case wherep0 is a unique singularity inP . It is
reduced and hasP andS̃ as the set of its separatrices. We have

mp(F) + 1 = mp0(F̃ , P ) = 1 ,

which impliesmp0 = 0, an absurdity.
Suppose now thatn > 1 is the number of blow-ups necessary to desingularization and

that the result is already proved for singularities which desingularize in less thann steps.
Let us perform a first blow-up atp, introducingP , S̃ andp0 as above. If there exists a
singularity q ∈ P , distinct fromp0, then the induction hypothesis applies to assure the
existence of a separatrix throughq distinct fromP . It remains to consider the case where the
only singularity inP is p0, havingP andS̃ as the set of its separatrices. However, according
to [CLS], a generalized curve having exactly two transversal smooth separatrices is reduced.
The argument of the preceding paragraph applies here to achieve a contradiction. �

REMARK 1. Lemma 4 may be false ifS is not smooth. For instance, takep = (0, 0) ∈
C2, S : x2 − y3 = 0 andF : d(x2 − y3) = 2xdx − 3y2dy = 0. p is a generalized curve
havingS as its unique separatrix.

At this point, we are ready to prove Theorem A:

PROOF OFTHEOREM A. We suppose thatS is F -invariant, since the other case was
already proved. Applying Lemma 4, we extendh to S \ {p1, . . . , pn}, wherep1, . . . , pn are
the other singularities ofF in S. Since these points form a codimension two analytic set,h

extends through them, yielding a meromorphic first integral forF defined inM. �

Remark that the conclusion of the theorem implies that all singularities ofF in S are
generalized curves.
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Let M be a complex surface. LetS = ⋃n
i=1 Si ⊂ M be a finite union of compact

complex curves. The matrixMS = (sij )1≤i,j≤n, wheresij = Si ·Sj , is called theintersection
matrix associated toS. Notice thatMS is symmetric and has real entries.

Observe that ifM0 ∈ Mn(R) is symmetric andQ ∈ Mn(R) is non-singular, thenM0

is negative definite if and only ifQtM0Q is. As a consequence, a permutation of columns
followed by the corresponding permutation of lines of a negative definite, symmetric, real
matrix yields a negative definite, symmetric, real matrix. This means that the negative defi-
niteness of the intersection matrix of a curve is independent from the enumeration associated
to its components. The following is proved in [La]:

THEOREM 1. Let π : M̃ → M be a sequence of a finite number of blow-ups at p ∈ M

and D = π−1(p), D = ⋃n
i=1 Pi, where Pi are projective lines. Then the intersection matrix

MD is negative definite.

We establish now a connection between the negative definiteness of the intersection
matrixMS and the existence of separatrices through a divisorS.

Let S = ⋃n
i=1 Si be a union of complex curves in a complex surfaceM. To S we asso-

ciate a graphΓS constructed in the following way: The set of verticesVΓS = {V1, . . . , Vn}
corresponds bijectively to the set of components ofS; to each point inSi ∩ Sj we define an
edge connectingVi andVj . We have the following proposition:

PROPOSITION 3 ([C]). Let M be a complex surface with a singular holomorphic fo-
liation F . Let S = ⋃m

i=1 Si be a union of F -invariant compact smooth complex curves.
Suppose that the singularities of F in S are non-dicritical and

(i) The associated graph ΓS is a tree,
(ii) MS is negative definite.

Then, there exists a separatrix through S.

LEMMA 5. Let M0 ∈ Mn(R) be a symmetric negative-definite matrix. If M1 ∈
Mn1(R) is a submatrix of M0 in its diagonal, then M1 is negative-definite.

PROOF. We may suppose thatM0 has the form

M0 =
(

M1 Nt

N M2

)
,

whereM2 ∈ Mn−n1(R) andN ∈ M(n−n1)×n1(R). If v ∈ Rn1, v �= 0, then we have

vM1vt = (v, 0)M0(v, 0)t < 0 ,

sinceM0 is negative definite. This accomplishes the proof. �

Suppose thatM carries a singular holomorphic foliationF . Let π be a sequence of
blow-ups that desingularizesp ∈ s(F) andD = π−1(p) the associated divisor. Denote by
D̃ the union of all invariant lines inD. Write D̃ = ⋃n

i=1 Di , where eachDi is a connected
set coposed by union of projective lines andDi ∩ Dj = ∅ if i �= j . We have
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PROPOSITION 4. There exists a separatrix through each Di .

PROOF. In fact, after renumbering the projective lines inD if necessary, eachMDi will
be a submatrix in the diagonal ofMD. The result follows from the fact thatMD is negative
definite. �

We are at the point of proving Theorem B:

PROOF OFTHEOREM B. WhenS is notF -invariant, the result is already proved. If
S is F -invariant, perform the desingularization ofs(F) ∩ S. Denote byπ the sequence of
blow-ups. Easy calculations show that blowing up a divisor with negative definite intersection
matrix yields a divisor with negative definiteintersection matrix. The proof of Proposition 4.
shows that a divisor contained in a larger divisor with negative definite intersection matrix
also has negative definite intersection matrix. Since we depart from a curveS with negative
self-intersection number, these facts show that the largest connected set containingπ∗(S)

composed by the union of invariant curves ofπ−1(S) has negative definite intersection ma-
trix. This assures that it is crossed by a separatrix. It is therefore possible to extendh to M.

�

We remark that Theorem B may be proved through more general results. A divisor with
negative definite intersection matrix may be blown down to a complex surface having normal
singularities ([La], Theorem 4.9 and Proposition 4.6). On the other hand, a theorem of Levi
assures the extension of a meromorphic function defined outside a codimension-two variety
in a normal complex space ([N], Theorem VII-4). The proof we present here has a virtue of
relying on properties of foliated surfaces.

In the following lines we make an attempt to extend a meromorphic first integral through
a smooth complex curve with non-negative self-intersection number.

Let p be a non-reduced singularity ofF in an invariant curveS, which is smooth atp.
A linear chain atp (with respect toS) (see [CS]) is a sequence of blow-ups performed in the
following way: Letπ1 be a blow-up atp andP1 = π−1

1 (p). If p1 = π∗
1 (S) ∩ P1 is reduced,

then the linear chain atp1 is π1. If p1 is non-reduced, then make another blow-upπ2 at p1

and, if necessary, successive blow-ups at the corners, until all of them are reduced; the linear
chain atp consists of the compositionπn ◦ . . .◦π1 of these blow-ups. We make the following
definition:

DEFINITION 1. Letp be a singularity of a germ of holomorphic foliationF admitting
a germ of smooth separatrixS. We say thatp is an ordinary dicritical singularity if the
desingularization ofp has one non-invariant projective line lying in the divisor associated to
the first linear chain with respect toS.

EXAMPLE 1. LetS1 andS2 be two smooth algebraic curves inCP 2. Choose an affine
planeCP 2 \L∞ such thatL∞ does not intersectS1 ∩S2. Letp1(x, y) = 0 andp2(x, y) = 0
be irreducible polynomial equations forS1 andS2 in CP 2 \ L∞. Let F be the foliation
in CP 2 induced byω(x, y) = p2

2d(p1/p2) = p1dp2 − p2dp1 = 0. ThenS1 ∩ S2 is
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composed by dicritical singularities ofF which are ordinary dicritical with respect to both
S1 andS2. We remark that ifS1 andS2 are transversal, then, by Bezout’s theorem,S1 ∩ S2

has degree(S1)degree(S2) points. In particular, if degree(S1) < degree(S2), thenS1 contains
more than(degree(S1))

2 = S1 · S1 ordinary dicritical singularities.

The above definition explains the statement of Theorem C, which we prove now:

PROOF OF THEOREM C. We prove by induction in the intersection number ofS.
Suppose firstS · S = 0. Letp ∈ S be an ordinary dicritical singularity. If, in the sequence of
blow-ups that producesthe linear chain fromp, a dicritical line intersects the strict transform
of S, then, at this moment, this will have negative self-intersection number. Theorem C
applies to this case. Otherwise, we will reach the following situation: The strict transform
S̃ of S will have self-intersection number at most−2, while the intersection number of the
projective lineP (intersectingS) will be −1. The intersection matrix associated to the divisor
S̃∪P will clearly be negative definite. Further steps in the desingularization process will take
this to a divisor with negative definite intersection matrix.

Suppose now thatS · S = n > 0 and the result is valid for curves with self-intersection
number less thann. We may suppose that alln + 1 ordinary dicritical singularities lie in the
second case of the previous paragraph. Otherwise we reduce to a curve of smaller intersection
number and apply the induction hypothesis. After an appropriate sequence of blow-ups, we
reach the situation wherẽS has self-intersection number at mostn − 2(n + 1) = −n − 2 and
Pi ·Pi = −1 for i = 1, . . . , n+1 (eachPi is a projective line intersecting̃S belonging to the
first linear chain of one of the singularities related above). The divisorD = S̃ ∪P1∪. . .∪Pn+1

has the following(n + 2) × (n + 2) intersection matrix

MD =




S̃ · S̃ 1 . . . 1
1 −1 . . . 0

. . .

1 0 −1


 ,

which is negative definite. This concludes the proof. �

3. Some Consequences. We present in this section several situations where Theo-
rems A, B and C apply.

COROLLARY 1. Let F be a parabolic foliation on CP 2 whose leaves are proper out-
side some algebraic invariant curve S ⊂ CP 2. Assume that the singularities of F along S

satisfy the hypothesis of Theorem A, B or C. Then F exhibits a rational first integral.

PROOF. A theorem of Suzuki ([Su]) implies thatF admits a meromorphic first integral
on CP 2 \ S, sinceS is a Stein manifold. �

COROLLARY 2. Let X be a polynomial vector field on C2. Suppose that the orbits of
X have total finite curvature and are complete for the Euclidean metric on C2 (this implies
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that the line at infinity,l∞, is invariant). If there are no affine invariant lines for X and
if the singularities of the corresponding projective foliation on CP 2 are as in Theorem A,

we conclude that X admits a rational first integral and its orbits are contained in algebraic
curves.

PROOF. A well-known theorem of Osserman on minimal surfaces assures that each
orbit is a parabolic Riemann surface ([W]), so thatF is parabolic. According to [Sc] the fact
that the total curvature is finite also implies that the orbits are properly embedded inC2. The
result then follows from the corollary above. �

COROLLARY 3. Let F and F1 be projective foliations on CP 2. Assume that F is a
pencil by algebraic curves of genus g ≥ 2, and that there exists some analytic automorphism
T : C2 → C2 that conjugates F and F1 on C2. Assume also that the singularities of F1

along the line at infinity are as in Theorem A. Then F1 admits a rational first integral and T

is algebraic.

PROOF. First we observe thatF1 admits a meromorphic first integral and therefore
a rational first integral by Theorem A. ThereforeT is an analytic automorphism ofC2 that
takes algebraic curves into algebraic curves. Since the algebraic curves involved have genus
g ≥ 2 it follows from a result of Kizuka ([K]) thatT must be algebraic. �

4. Examples. We give some examples where there are obstructions to extend a
meromorphic first integral.

EXAMPLE 2. Consider the foliationF in CP 2 induced by

ω = dy − (a(x)y + b(x))dx = 0 ,

wherea(x) andb(x) are polynomials. LetA(x) be a primitive fora(x) andB(x) a primitive
for b(x)/exp(A(x)). The meromorphic function

F(x, y) = y

exp(A(x))
− exp(B(x))

is a first integral forF in CP 2 \ L∞. All singularities ofF are contained inL∞. We have
the following cases:

(i) If degree(a) < degree(b), thens(F) consists of a single point atL∞ ∩ {x = 0}. It
is a non-reduced singularity, giving rise to a saddle-node by a single blow-up.

(ii) If degree(a) ≥ degree(b), then the crossingL∞ ∩ {x = 0} is also a non-reduced
singularity, which produces a saddle-node after one blow-up. In this case,L∞ contains an-
other singularity, which is a saddle-node.

The above example does not admit a rational first integral, since it contains saddle-nodes
in L∞ (see Proposition 1).
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EXAMPLE 3. The following construction is carried out by means of the techniques of
[L]. We construct a surfaceM0 provided with a foliationF0, having an invariant projective
line P0 such thatP0 ·P0 = −1, with two singularitiesp1 andp2, both of them are linearizable
with index−1/2 with respect toP0. We also construct a surfaceM1 provided with a foliation
F1, having an invariant projective lineP1 such thatP1 · P1 = −1, with a linearizable singu-
larity q1 with index−2 with respect toP1, and a second singularityr1, which is radial. We
defineM2 to be a copy ofM1. Similarly, defineF2 to be the foliation inM2, P2 the invariant
projective line,q2 andr2 the singularities.

We glue a neighborhood ofP0 in M0 with a neighborhood ofP1 in M1 by identifying the
local models ofF0 in p1 andF1 in q1, and with a neighborhood ofP2 in M2 by identifying
the local models ofF0 in p2 andF2 in q2. The result is a complex surfaceM with a foliation
F havingP0 ∪ P1 ∪ P2 as an invariant divisor.

Blow up r1 andr2, giving rise to dicritical linesL̃1 andL̃2. Denote byP̃0, P̃1, P̃2 and
F̃ the strict transforms ofP0, P1, P2 andF , respectively. Choosing a points1 ∈ L̃1, we
provideL̃1 \ {s1} with a complex coordinatez such thatP̃1 ∩ L̃1 corresponds toz = 0. We
define a holomorphic functionH in L̃1 \ {z = 0} in the coordinatez by H(z) = exp(1/z).
H may be extended to a first integral forF̃ in a neighborhood of̃L1 outsideP̃1 by following
the leaves ofF̃ . Similarly, we extendH to a neighborhood ofP̃1 outsideP̃1 ∪ P̃0 and
then to a neighborhood of̃P0 outsideP̃0 ∪ P̃1 ∪ P̃2. Carrying out the same construction
starting fromL̃2, we will have, by symmetry, a meromorphic first integralh defined in a
neighborhoodP̃0 ∪ P̃1 ∪ L̃1 ∪ P̃2 ∪ L̃2 outsideP̃0 ∪ P̃1 ∪ P̃2. If we blow downL̃1, P̃1

andL̃2, P̃2, then the result will be a foliationG in a complex surface with an invariant line
P such thatP · P = 1, having two dicritical singularities and admitting a meromorphic first
integral outsideP . This does not extend toP . Notice that these singularities are not ordinary
dicritical with respect toP , according to our definition. Considering the foliationF̃ and the
complex curveP̃0 ∪ P̃1 ∪ P̃2, we have an example where theorem A fails when the curve in
question is singular.

EXAMPLE 4. Let G be the group of Möbius maps generated byg(z) = z/(z + 1). Let
T be a complex torus,α andβ the generators ofπ1(T ) andΦ : π1(T ) → G the homomor-
phism such thatΦ(α) = g, Φ(β) = g. We make the suspension of this homomorphism, that
is, we build a complex fiber bundleE with baseT and fiberC and a holomorphic foliation
F in E transversal to the fibers such that the holonomy ofF in a fiber is given byΦ (see
[CL]). F admits a meromorphic first integral inE \ E0, whereE0 � T is the null section,
constructed in the following way: Letz be a complex coordinate in a fixed fiberF0 such that
the generator of the holonomy group is written asg(z) = z/(z + 1). H(z) = exp(2πi/z) is
holomorphic outside{z = 0} and satisfiesH(g(z)) = H(z) for z �= 0. Therefore, by follow-
ing the leaves ofF , we may extendH to a holomorphic first integralh for F defined outside
E0. Of course,h does not extend toE0. Notice that the obstruction for the extension is the
existence of a map in the holonomy with respect toE0 which has the structure of a flower,
which implies that its orbits acummulate in the origin (see [C1]).
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EXAMPLE 5. In this example we follow the construction of Riccati foliations with
given holonomy, as done in [L]. LetG be the group of Möbius maps generated byf1(z) = −z

andf2(z) = z/(z + j), wherej = exp(2πi/3). G is non-abelian and its generators satisfy
f 2

1 = f 3
2 = (f1 ◦ f2)

6 = id. The functionH(z) = P ′(1/z)2, whereP is the Weierstrass
function, is meromorphic inC \ {z = 0} and satisfiesH(f (z)) = H(z) for f ∈ G (see [F],
Section VII-II). We build a fiber bundleP : E → C with fiber C and a singular holomorphic
foliationF in E with three invariant vertical fibers,F0, F1 andF2, transversal to the fibers in
E \ (F0 ∪ F1 ∪ F2). Let E0 � C be the null section. For a fixed fiberF �= F0, F1, F2, with a
complex coordinatez ({z = 0} = F ∩ E0), the holonomy map corresponding to a loop inE0

aroundp1 = P(F1) is given byf1, whilef2 is the holonomy map associated to a loop around
p2 = P(F2). The holonomy map associated to a loop aroundp0 = P(F0) is (f1 ◦f2)

−1. We
obtain a meromorphic first integralh for F defined outsideE0 ∪ F0 ∪ F1 ∪ F2 by extending
the functionH defined inF \ {z = 0} by following the leaves ofF . In a neighborhood
Vi × C of Fi , with coordinates(xi, zi ), (xi, ẑi ), whereẑi = 1/zi (the fibers correspond to the
equationsxi = c andpi corresponds to(xi, zi ) = (0, 0)), F is given by the equations

ωi(x, zi) = αizidx + xidzi = 0 ,

ω̂i (x, zi) = −αiẑidx + xidẑi = 0 ,

whereα0 = 6, α1 = 2, α2 = 3. Sinceipi (F , E0) = −1/αi , we have thatc(E0) =∑3
i=1 ipi (F , E0) = −1. It is therefore possible to blow downE0 by a mapπ : E →

Ê � CP 2. The foliationπ∗F has a meromorphic first integral outside the linesπ∗F0, π∗F1

andπ∗F2. This does not extend toCP 2 and the obstruction lies once again in the existence of
a map in the holonomy ofF with respect toE0 which has a structure of flower (for instance,
[f1, f2] = f1 ◦ f2 ◦ f −1

1 ◦ f −1
2 = z/(1 − 2z)). Notice that all the singularities ofπ∗F are

generalized curves.

5. Foliations in CP 2. In this section we study foliations inCP 2 which admit a
meromorphic first integralh defined inCP 2 \ S, whereS is a smooth algebraic curve. We
remark that meromorphic functions inCP 2 are rational, that is, they are given by quotients
of polynomial functions. We have the following:

PROPOSITION 5. Let S be an algebraic curve invariant by a foliation F in CP 2 with
a rational first integral h. Then S contains a dicritical singularity.

PROOF. We supposeh(x, y) = p(x, y)/q(x, y), wherep andq are non-constant poly-
nomials. Without loss of generality, we may suppose thatS is irreducible. Take{f (x, y) = 0}
to be an irreducible polynomial equation definingS. The foliationF is defined by

p(x, y) − λq(x, y) = 0, λ ∈ C .(1)

SinceS is invariant and irreducible, there existsλ0 ∈ C such thatf dividesp − λ0q; there
exists a polynomialg such that

f (x, y)g(x, y) = p(x, y) − λ0q(x, y) .(2)
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Substituting (2) in (1), we have the following set of equations:

f (x, y)g(x, y) − (λ − λ0)q(x, y) = 0, λ ∈ C .(3)

Choose a pointp in the intersection of{q = 0} and{f = 0}. This is a dicritical singularity for
F . In fact, assuming that it lies in the affine plane in question (otherwise simply perform an
appropriate change of coordinates), (3) gives an infinite number of algebraic curves through
p. �

Let us suppose that a foliationF in CP 2 admits a meromorphic first integral inCP 2 \S,
whereS is a smooth algebraic curve. Theorem A applies to this case if there exists a non-
dicritical generalized curve inS. As a consequence of this theorem and the preceding result,
we have

COROLLARY 4. Let F be a singular holomorphic foliation in CP 2 admitting a mero-
morphic first integral outside some smooth algebraic curve S. Suppose that a singularity of
F in S is a generalized curve. Then F has a dicritical singularity in S.

PROOF. Let p ∈ s(F ) ∩ S be a generalized curve. If it is non-dicritical, Theorem A
says thatF has a rational first integral. Proposition 5 then assures the existence of a dicritical
singularity inS. �

6. Foliations in CPn of codimension 1. LetF be a codimension one singular holo-
morphic foliation inCPn, n ≥ 3. Suppose thatF admits a meromorphic first integral outside
some smooth hypersurfaceS. This n-dimensional case can be handled by reducing it to a
two-dimensional problem.

Let H ⊂ CPn be anm-dimensional complex plane, 2≤ m ≤ n. We say thatH is in
general position with respect toF if H is notF -invariant ands(F) ∩ H is a codimension
two analytic set. The proof of the following proposition is adapted from Lemma 5 in [CLS1]:

PROPOSITION 6. Let F be a singular holomorphic foliation in CPn and H ⊂ CPn a
hyperplane in general position with F . Then F admits a rational first integral if and only if
F |H does.

PROOF. The “only if" part of the proof is straightforward. Let us prove the opposite
implication. It is enough to build a meromorphic first integral forFV , whereV is an open
neighborhood ofH . SinceCPn \H is a Stein manifold, it extends toCPn ([Siu]). Letf be a
meromorphic first integral forF |H . Takep ∈ H a regular point forF . It is possible to find a
sufficiently small neighborhoodWp of p and a holomorphic coordinate chartΨ : Wp → ∆,
where∆ ⊂ Cn is a polydisc, such that:

(i) Ψ (H ∩ Wp) = {zn = 0} ∩ ∆,
(ii) Ψ∗(F) is given bydz1 = 0.

Let f̃p = f ◦ Ψ −1|∆∩{zn=0}. This extends naturally to a meromorphic function defined in
∆, which we still callf̃p , by settingf̃p(z1, . . . , zn) = f̃p(z1, . . . , zn−1, 0). This is a first
integral forΨ∗(F). We definefp = f̃p ◦ Ψ .
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Notice that, if Wp ∩ Wq �= ∅, p and q being regular points forF , then we have
fp |Wp∩Wq = fq |Wp∩Wq . This follows easily from the identity principle for meromorphic
functions. LetW = ⋃

p∈H\s(F) Wp. W is a neighborhood ofH \ s(F), whereF admits
a meromorphic first integral, which we callfW . All we have to do is extendingfW to a
neighborhood ofH ∩ s(F). SinceH is in general position with respect toF , H ∩ s(F)

is a codimension two analytic set inH . Let p ∈ H ∩ s(F). It is possible to find a neigh-
borhoodVp of p, a change of coordinatesΦ such thatΦ(p) = 0, Φ(Vp) = ∆1 × D and
Φ−1((∆1 \ ∆2) × D) ⊂ W ∩ Vp, where∆2 ⊂ ∆1 ⊂ Cn−1 are polydiscs andD ⊂ C
is a disc, all of which centered in the origin.(∆1 \ ∆2) × D is a Hartogs’ domain whose
holomorphic closure is∆1 × D. Levi’s theorem then allows us to extendfW to Vp. The
result is a meromorphic first integralF defined inV , the neighborhood ofH consisting of
W

⋃
p∈s(F)∩H Vp. �

It is proved in [CLS1] that the set of hyperplanes in general position with respect to a
foliationF in CPn, n ≥ 3, is generic in the set of all hyperplanes.

We can apply the above facts to reduce the extension problem in dimensionn to a prob-
lem in dimension two. We find a sequence of linear subspacesH2 ⊂ . . . ⊂ Hn−1 ⊂ Hn =
CPn, where eachHi is a linear subspace of dimensioni, transversal toHi+1 ∩ S, and in gen-
eral position with respect toF |Hi+1, for i = 2, . . . , n− 1 (Hn = CPn). Choosing eachHi in
such a way that the meromorphic first integral forF is non-constant over it,H2 � CP 2 will
be provided with a foliationF |H2 which admits a meromorphic first integral outsideH2 ∩ S.
FurthermoreF |H2 admits a rational first integral if and only ifF does.

7. Foliations by curves in higher dimension. LetM be ann-dimensional complex
manifold with a foliationF whose leaves are curves (F is locally induced by a holomorphic
vector field). In this section we consider the problem of extending a meromorphic function
F defined outside a compact subvarietyS, whose level surfaces contain the leaves ofF .
Such a function will still be called afirst integral for F . We first remark that ifS is of
codimension two or greater,F extends meromorphically toM as a consequence of Levi’s
theorem. Therefore, it is enough to consider the case whereS is of codimension one. When
S is notF -invariant, the extension is automatic and the proof proceeds as that of Proposition
2:

PROPOSITION 7. Let M, S, F and F be as above. If S is not F -invariant, then F

extends to M as a meromorphic first integral for F .

For the case whereS isF -invariant, a higher dimensional version of Extension Lemma
2 is required:

LEMMA 6. Let F be a meromorphic first integral for the linear vector field
X(z1, . . . , zn) = λ1z1∂/∂z1 + · · · + λnzn∂/∂zn, where λi �= 0 for i = 1, . . . , n, defined
outside the hyperplane {z1 = 0}. If X admits a finite number of separatrices at 0 (outside
{z1 = 0}), then F extends to a neighborhood of 0 as a meromorphic first integral for X.



MEROMORPHIC FIRST INTEGRALS 99

PROOF. We consider the development ofF in the Laurent series:

F(z1, . . . , zn) =
∑

i1∈Z,i2≥l2,... ,in≥ln

ai1...inz
i1
1 . . . zin

n .

SinceF is a first integral forX outside{z1 = 0}, we have

0 = dF(z1, . . . , zn)X(z1, . . . , zn)

=
∑

i1∈Z,i2≥l2,... ,in≥ln

(λ1i1 + · · · + λnin)ai1...inz
i1
1 . . . zin

n .

Wheneverai1...in �= 0 , we have

λ1i1 + · · · + λnin = 0 ,

which is equivalent to

i1 = −λ2

λ1
i2 − · · · − λn

λ1
in .

Restricting the fieldX to invariant two dimensional planesz1 × zi, i = 2, . . . , n, we see
thatλi/λ1 ∈ Q (since there exists a meromorphic first integral outsidez1 = 0). On the other
hand, the hypothesis on the finite number of separatrices implies that, in fact,λi/λ1 ∈ Q+.
This means thati1 is bounded from below byl1 = −(λ2/λ1)l2−· · ·−(λn/λ1)ln, which gives
the meromorphic extension ofF to the hyperplane{z1 = 0}. �

The hypothesis on the number of separatrices is necessary. For instanceF(z1, z2, z3) =
exp(z2

2/z1) is a first integral forX(z1, z2, z3) = 2z1∂/∂z1 + z2∂/∂z2 + z3∂/∂z3, which does
not extend meromorphically to{z1 = 0}. In view of the previous lemma, we may state the
following:

THEOREM 2. Let M, S, F and F be as in the beginning of this section. Assume that
S is F -invariant. If p ∈ S is a linearizable singularity of F , which is a saddle (only non-zero
eigenvalues)admitting a finite number of separatrices outside S. Then F extends to M as a
meromorphic first integral for F .

PROOF. We apply the previous lemma to extendF to a neighborhood ofp, and Levi’s
theorem to obtain an extension to the wholeM. �

8. Closed meromorphic one-forms. In this section we seek conditions for extend-
ing a closed meromorphic one-form which defines a foliationF outside a compact complex
curve. We remark that inC2 closed meromorphic one-forms with simple poles correspond
to foliations admitting as a first integral a multiform function of the kindf

λ1
1 . . . f

λp
p , where

f1, . . . , fp are holomorphic andλ1, . . . , λp ∈ C (see [CM]). We will see that the techniques
developed above also apply to this situation.
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PROPOSITION 8. Let M be a complex surface and S ⊂ M a compact complex curve.
Let F be a singular holomorphic foliation in M, which is induced in M \ S by a closed
meromorphic one-form ω. If S is not F -invariant, then ω extends to a meromorphic closed
one-form in M .

PROOF. The proof is similar to that of Proposition 2. Letp be a regular point inS, also
regular forF , where the foliation is transversal toS. ChooseUp a coordinate neighborhood
aroundp andΦ = (x, y) : Up → C2 a coordinate chart such thatP := Φ(Up) is a polydisc,
Φ(S ∩ Up) = {y = 0} andF |Up is the foliation with vertical leaves given bydx = 0. Let
ω̃ = Φ∗ω|Up\S . We haveω̃(x, y) = a(x, y)dx, (x, y) ∈ P \ {y = 0}, wherea(x, y) is
meromorphic inP \ {y = 0}. Sinceω is closed, we have thata(x, y) is a function ofx only.
The extension ofω to S is achieved by noticing that the singular points ofS, the tangencies
of F andS, and the singularities ofF in S form a codimension two analytic set. �

The following is a generalization of Lemma 1:

LEMMA 7. Let p ∈ s(F) be a simple singularity and S a separatrix for F at p.
Suppose that F is given in a neighborhood V of S∗ = S \ {p} by a closed meromorphic
one-form ω with simple poles. Then the holonomy with respect to S is linearizable.

PROOF. Let γ : [0, 1] → S∗ be a closed path such that[γ ] ∈ H1(S
∗) is a generator.

ChooseΣ a small disk such thatγ × Σ is contained inV . Suppose first thatS ⊂ (ω)∞.
Fix q ∈ γ . There exists a neighborhoodU of q and a local chart(X, Y ) in whichF is

given bydY = 0 andS ∩ U = {Y = 0}. Sinceω is closed and has simple poles, it follows
thatω = adY/Y + dφ, whereφ ∈ O(U) anda ∈ C is the residue ofω with respect toS∗
(hence, independent fromq). Fromω ∧ dY = 0, we havedφ ∧ dY = 0, so thatφ = φ(Y ).
In a new system of coordinates(x, y) = (X, Yexp(φ(Y ))), F is given bydy = 0, while
ω = ady/y.

It follows that we may cover a neighborhood ofγ ×{0} with a finite number of coordinate
charts(xj , yj ) such thatS ∩ Uj = {yj = 0}, F |Uj : dyj = 0 andω|Uj = adyj/yj .
WheneverUi ∩ Uj �= ∅, we have

a
dyi

yi

= a
dyj

yj

,

so thatyi = cij yj , wherecij is locally constant inUi ∩ Uj . It follows that the holonomy
mapping associated to[γ ] is linear.

Suppose now thatS �⊂ (ω)∞. As above, we produce a covering ofγ × {0} with a finite
number of open setsUj provided with coordinates(xj , yj ) such thatF |Uj : dyj = 0. We
can thus writeω|Uj = aj (yj )dyj , whereaj (yj ) is holomorphic. LetAj(yj ) be a primitive
of aj (yj ) such thatAj(0) = 0. Aj is a holomorphic first integral forF |Uj . If Ui ∩ Uj �= ∅,
we havedAi = ω|Ui∩Uj = dAj , which givesAi = Aj in Ui ∩ Uj . The functionA :
U = ⋃

j Uj → C such thatA|Uj = Aj is a holomorphic first integral forF |U . If hγ is the
holonomy map associated toγ , we have thatA|Σ ◦ hγ = A|σ . Therefore,hγ is linearizable.

�
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LEMMA 8 (Extension Lemma I). Let p ∈ s(F) be a simple singularity and S a
separatrix for F at p. Suppose that F is given in a neighborhood V of S∗ = S \ {p} by
a closed meromorphic one-form ω with simple poles. Then ω extends to a meromorphic
one-form defined in a neighborhood of p.

PROOF. Lemma 7 and [MM] give thatF is linearizable atp, that is, there are coordi-
nates(x, y) such that the one-formη = xdy − λydx, λ ∈ C \ Q+, induces the foliation in
a neighborhood ofp = (0, 0). Suppose thatS = {y = 0} in this coordinate system. Let us
write

ω = a(x, y)dx + b(x, y)dy

=

 ∑

j≥−1,i∈Z
aij x

iyj


 dx +


 ∑

j≥−1,i∈Z
bij x

iyj


 dy .

Sinceω is closed, we have∑
j≥−1,i∈Z

ibi,j x
i−1yj −

∑
j≥−1,i∈Z

jai,j x
iyj−1 = 0 .

Therefore

(i + 1)bi+1,j = (j + 1)ai,j+1 for j ≥ −1, i ∈ Z .(4)

On the other hand, sinceω∧η = 0 in a neighborhood where both forms are defined, we have∑
j≥−1,i∈Z

aij x
i+1yj + λ

∑
j≥−1,i∈Z

bij x
iyj+1 = 0 ,

which gives

ai,j+1 = −λbi+1,j for j ≥ −1, i ∈ Z .(5)

Suppose that somebi0,j0 �= 0, wherej0 �= −1. From relations (4) and (5) we have

λ = −ai0−1,j0+1

bi0,j0

= − i0

j0 + 1
= −p

q
,

wherep, q ∈ Z+ are such that(p, q) = 1. This means that wheneverbi,j �= 0 with j �= −1,
we have

− i

j + 1
= −p

q
.

That is, there existsl ∈ Z such thati = lp andj = −1 + lq. Whenbi,−1 �= 0, equation (4)
implies thati = 0. Therefore the set of indices(i, j) such thatbi,j is possibly non-zero is of
the form {

i = lp ,

j = −1 + lq ,
l ≥ 0 .
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This means thatb(x, y) extends meromorphically to a neighborhood ofp, possibly having a
simple pole in{y = 0}. From equation (5) we see that

ai,j �= 0 ⇒ bi+1,j−1 �= 0

⇒
{

i = −1 + lp ,

j = lq ,
l ≥ 0 .

Thereforea(x, y) also extends meromorphically top. �

In the case of closed forms with poles of higher order we have:

LEMMA 9 (Extension Lemma II). Let p ∈ s(F ) be a simple singularity and S a
separatrix for F at p. Suppose that F is given in a neighborhood V of S∗ = S \ {p} by a
closed meromorphic one-form ω with a pole of order k + 1 ≥ 2 in S. Then ω extends to a
meromorphic one-form defined in a neighborhood of p.

PROOF. If the holonomy ofS atp is linearizable, then the proof goes as that of Lemma
8. We therefore suppose that the holonomy is not linearizable. We first remark (see [LSc])
that sinceS is a pole of orderk + 1 ≥ 2 of the closed formω, the holonomy group ofS is
conjugated to a subgroup ofGk,λ for someλ in C, where

Gk,λ = {Rθ ◦ gz,k,λ; z ∈ C, λk = 1} ,

and

gz,k,λ = exp

(
z

xk+1

1 + λxk

∂

∂x

)
.

It follows from formal calculations thatp must be a resonance. We then have atp the
following Martinet-Ramis normal form ([MaR, p. 597]): There are formal coordinates atp

such thatF is given in a unique way by a form of the model

ωp/q,k,λ = p(1 + (λ − 1)(xpyq)k)ydx + q(1 + λ(xpyq)k)xdy ,

where(p, q) = 1. The holonomy maps at{y = 0} and{x = 0} are given respectively by

exp(−2πip/q) ◦ g2πi,qk,λq/p

and

exp(−2πiq/p) ◦ g2πi,pk,(λ−1)p/q .

Since each germ of diffeomorphism in(C, 0) tangent to the identity is formally conjugated
to a unique modelgz,k,λ ([MaR, p. 580]), we see that the holonomy ofS atp is analytically
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normalizable, that is, the coordinates in question are holomorphic. Therefore the Martinet-
Ramis normal form is in fact holomorphic.

On the other hand,ωp/q,k,λ hash(x, y) = pqxy(xpyq)k as an integrating factor. That
is, ω̄p/q,k,λ = h(x, y)−1ωp/q,k,λ is closed. Therefore, there exists a meromorphic functiong
defined inV such thatω = gω̄p/q,k,λ. If g were non-constant, it would be a first integral for
F in V , sinceω andω̄p/q,k,λ are closed. Then the holonomy ofS atp would be linearizable,
which is not the case. Therefore,g is constant andω extends to a neighborhood ofp as
gω̃p/q,k,λ. This completes the proof. �

We also have:

LEMMA 10. Let M be a complex surface and S a compact connected complex curve.
Suppose that ω is a meromorphic one form defined in M \ S. If ω extends as a meromorphic
one form to (M \ S) ∪ Vp, where Vp is a neighborhood of a point p ∈ S, then it extends
meromorphically to M .

PROOF. The proof is similar to that of Lemma 3, noticing that a meromorphic one-
form defined in a Hartogs’ domain extends to its holomorphic closure. �

The proofs of theorems A′, B′ and C′, stated below, proceed as those of their counter-
parts, Theorems A, B and C.

THEOREM A ′. Let F be a singular holomorphic foliation in a complex surface M in-
duced by a closed meromorphic one-form in M \S, where S is a compact, smooth, connected
complex curve. If some singularity of F in S is a non-dicritical generalized curve, then ω

extends to a closed meromorphic one-form in M .

THEOREM B′ . Let F be a singular holomorphic foliation in a complex surface M

induced by a closed meromorphic one-form in M \ S, where S is a compact, smooth, con-
nected complex curve with negative self-intersection number. If all singularities of F in S are
generalized curves, then ω extends to a closed meromorphic one-form defined in M .

THEOREM C′ . Let F be a singular holomorphic foliation in a complex surface M

induced by a closed meromorphic one-form ω outside a compact, smooth, connected complex
curve S with self-intersection number n ≥ 0. Suppose that the singularities of F in S are
generalized curves. If there are at least n + 1 ordinary dicritical singularities in S, then ω

extends to a closed meromorphic one-form defined in M .

REFERENCES

[C] C. CAMACHO, Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann. 282 (1988),
177–184.

[C1] C. CAMACHO, On the local structure of conformal mappings and holomorphic vector fields inC2, Journéss
Sirgulières de Dijon (Univ. Dijon, Dijon, 1978), 83–94, Astérisque 60, Société Mathématique de
France, Paris, 1978.

[CLS] C. CAMACHO,A. L INS NETO AND P. SAD, Topological invariants and equidesingularization for holo-
morphic vector fields, J. Differential Geom. 20 (1984), 143–174.



104 R. MOL

[CLS1] C. CAMACHO, A. L INS NETO AND P. SAD, Foliations with algebraic limit sets, Ann.of Math.136 (1992),
429–446.

[CL] C. CAMACHO AND A. L INS NETO, Geometric theory of foliations, Birkhauser, Boston, 1985.
[CS] C. CAMACHO AND P. SAD, Invariant varieties through singularities of holomorphic vector fields, Ann.

of Math. 115 (1982), 579–595.
[CS1] C. CAMACHO AND P. SAD, Pontos singulares de equações diferenciais analíticas, 16 Colóquio Brasileiro

de Matematica, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1987.
[CM] D. CERVEAU AND J-F. MATTEI, Formes intégrables holomorphes singulières, Astérisque 97, Société

Mathématique de France, Paris, 1982.
[F] L. FORD, Automorphic functions, Chelsea Publ. Co., New York, 1951.
[GH] P. GRIFFITHS AND J. HARRIS, Principles of algebraic Geometry, John Wiley, New York, 1994.
[Gun] R. GUNNING, Introduction to holomorphic functions of several variables, Vol II, Local theory, Wadsworth

& Brooks/Cole Math. Ser., Pacific Grove, 1990.
[K] T. K IZUKA , Analytic automorphisms and algebraic automorphisms ofC2, Tôhoku Math. J. 31 (1979),

553–565.
[La] H. B.LAUFER, Normal two-dimensional singularities, Princeton Univ. Press, Princeton, 1971.
[L] A. L INS NETO, Construction of singular holomorphic vector fields and foliations in dimension two, J.

Differential Geom. 26 (1987), 1–31.
[LSc] A. L INS NETO AND B. AZEVEDO SCÁRDUA, Folheações algébricas complexas, 21 Colóquio Brasileiro

de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1997.
[MM] J-F. M ATTEI AND R. MOUSSU, Holonomie et intégrales prémières, Ann. Sci. École Norm. Sup. (4) 13

(1980), 469–523.
[MaR] J.MARTINET AND RAMIS, J-P., Classification analytique des équations différentielles non linéaires ré-

sonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16, 571–621.
[N] R. NARASIMHAN, Introduction to the theory of analytic spaces, Lecture Notes in Math. 25, Springer-

Verlage, Berlin-New York, 1966.
[Sc] B. AZEVEDO SCÁRDUA, Complex vector fields having orbits with bounded geometry, IMPA, 1998,

Preprint.
[Sei] A. SEIDENBERG, Reduction of singularities of the differential equationAdy = Bdx, Amer. J. Math. 90

(1968), 248–269.
[Siu] Y-T. SIU, Techniques of extension of analytic objects, Marcel Dekker, New York, 1974.
[Su] M. SUZUKI , Sur les opérations holomorphes deC et deC∗ sur un space de Stein, Fonctions de plusieurs

variables complexes, III (Sém. François Norguet, 1975–1977), 80–88, 394, Lecture Notes in Math.
670, Springer-Verlag, Berlin, 1978.

[W] B. W HITE, Complete surfaces of finite total curvature, J. Differential Geom. 26 (1987), 315–226.

DEPARTAMENTO DE MATEMÁTICA –ICEX

UNIVERSIDADE FEDERAL DE MINAS GERAIS

AV. ANTÔNIO CARLOS, 6627
30123–970 BELO HORIZONTE MG
BRAZIL

E-mail address: rsmol@mat.ufmg.br


