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Abstract. We compute the first variation of the functional that assigns each unit vector
field the volume of its image in the unit tangent bundle. It is shown that critical points are
exactly those vector fields that determine a minimal immersion. We also find a necessary and
sufficient condition that a vector field, definedan open manifold, must fulfill to be minimal,
and obtain a simpler equivalent condition when the vector field is Killing. The condition is
fulfilled, in particular, by the characteristiector field of a Sasakian manifold and by Hopf
vector fields on spheres.

1. Introduction. Let M be a Riemannian manifold such that the 8&(M) of unit
vector fields is not empty. In [GIZi], wher#/ is also assumed to be compact, oriented and
boundaryless, the volume of an elem&nt X'1(M) was defined to be the volume of the sub-
manifold V (M), which is the image of the immersidn: M — T1M, when the unit tangent
bundleT1M is equipped with the restriction of the Sasaki metric. There is a trivial absolute
minimum of the volume functional when unit parallel vector fields exist, but this is not always
the case, since such a vector field will determine two mutually orthogonal complementary
totally geodesic foliations.

On around unit odd-dimensional sphere, Gluck and Ziller ([GZi]) considered Hopf vec-
tor fields as the candidates for this absolute minimum and showed that it is the case for the
three-spheres®. Their method of calibrated geometries cannot be applied to higher dimen-
sional spheres and in fact, Johnson ([Jo]) showed that the Hopf vector fielsfs ane not
local minima of the volume. He used direct methods to show that for every deformation of a
Hopf vector field the first variation vanishes but that there are deformations on which the sec-
ond variation is negative. In both papers the results are derived using the specific properties
of Hopf vector fields and spheres.

For a givenM, unit vector fields of minimum volume, if they exist, are to be found among
the critical points of the volume functional restrictedtd(M). In order to characterize these
critical points we have computed the first variation of the functional and have associated to
eachV e xXY(M) a 1-form which vanishes when and only wheris critical. This 1-form
depends on the second covariant derivativ® of
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Itis clear that if a vector field defines a minimal immersion, it should be a solution of the
variational problem restricted t&1(M), but we have shown that the converse is also true:

Anelement V e X1(M) isacritical point of the volume functional restricted to X1(M)
ifandonlyif V: M — (T'M, ¢%) isaminimal immersion.

In[Pe], Pedersen constructed, for any dimension, unit vector fields of exceptionally small
volume, on the open manifold defined to be the sphere minus one point. In particular, for
§2m+1 with m > 2, their volume is lower than the volume of Hopf vector fields, and she
conjectured that this value is the infimum (not attained) of the volume of unit vector fields on
§2m+1 In this paper, we use a direct computation of the involved tensor field to show that
these vector fields define minimal immersions of U into its unit tangent bundle.

Hopf vector fields on spheres define a totally geodesic Riemannian foliation with bundle-
like metric or, equivalently, they are unit Killing vector fields; many results of this paper
concern this class of vector fields. For instance, we prove the following:

Let M be a manifold of constant sectional curvature k. Every unit Killing vector field is
minimal and its volumeis equal to (k + 1)*~Y/2vol(M), wheren = dim M.

It is worth noting that under the hypotheses, the curvature must be nonnegative; if the
manifold is flat, only the trivial case of a parallel vector field is admissible arid if 0,
the dimension of the manifold should be odd. Therefore, apart from flat spaces, the only
complete manifolds involved are the quotients of round spheres. Since it is known that Hopf
vector fields ons?"+1 have volume 2 vol(§2"+1) ([GIZi]) and that they are critical ([Jo]),
for complete manifolds, our result could bees as a slight generalization and an extremely
simple new proof of these results.

The merit is, however, that as we only use the properties of the curvature tensor, on a
manifold with such a vector field, the methodisrely local and no completeness assumption
is needed.

In a general manifold, the existence of a unit Killing vector field does not imply any
restriction on the dimension and only sectional curvatures of planes contdriage to be
nonnegative. We have found thidie necessary and sufficient condition for a unit Killing
vector field V to be minimal is the vanishing of certain 1-form given in terms of the covariant
derivative of V and the curvature tensor.

It is commonly said concerning this probleimat best organized vector fields are re-
warded with small volume; we can see now that even for a well-organized vector field it is
necessary, at least, to be well-adapted to the ambient.

The curvature condition is satisfied by parallel vector fields and for every unit Killing
vector field in a constant curvature spatksing our characterization we show tllag char-
acteristic vector field of a Sasakian manifold is always minimal.

In general, every unit Killing vector fiel# such that the curvature tensefrverifies
R(X,Y,V) = 0 for all vector fieldsX, Y orthogonal toV is minimal. The necessary and
sufficient condition is more general, as we show with an example of an invariant vector field
in the generalized Heisenberg group.
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We have devoted the last part of the paper to show how the condition can be written for
three-dimensional and four-dimensional manifolds; in both cases it is equivalenti =
{0} for all vector fieldsX orthogonal toV, wherepy is the 1-form related to the Ricci tensor
o by py(X) = p(X, V). The proof makes use of the hypothesis on the dimension in a very
specific form, so the result cannot be generalized to higher dimensions.

These characterizations have been used by several authors in [BoVal], [BoVaz2],
[GMGDVa], [GDVal], [GDVa2], [GDVa3], [TsVal], [TsVa2] [TsVa3], to obtain many ex-
amples of minimal unit vector fields.

The authors want to express their gratitude to Fabiano Brito, Antonio Ros and Lieven
Vanhecke for helpful comments.

2. First variation of the volume functional in the space of unit vector fields. If
(M, g) is a smooth, connected, closed Riemannian manifold, then thé'#f) of all smooth
unit vector fields, if nonempty, can be endowed with a structure of Fréchet manifold, com-
patible with itsC*°-topology, such that eachi € X1(M) is contained in a chart modeled in
H" , the space of smooth vector fields in the horizontal distribution determinétdd the
metric. In fact,X1(M) is a Fréchet submanifold of the Fréchet spad@/) (see [GM]).

The volumeF (V) of an elemenv € X1(M) is defined to be the volume of the subman-
ifold V (M), which is the image of the immersiori : M — T1M, when inT1M the usual
metric ¢%, defined by Sasaki, is considered. It can be described as the volubfievith the
induced metridiy = V*¢5, which is related withy and the(1, 1)-tensor fieldV V' as follows:

hy(X,Y) = (V¢ )X, Y)=¢(TVoX, TVoY)
=gTnoTVoX, TnoTVoY)+gkoTVoX, koTVoY)
=g9(X,Y)+ g(VxV,VyV) = g(X,Y) + g((VV) o (VV))(X),Y),
wherer : T1M — M is the projection and denotes the connection map of the Levi-Civita
connection ofg. If we consider thei-symmetric(1, 1)-tensor fieldLy = Id +(VV) o VV,
thenhy (X, Y) = g(Ly(X), Y).

Amap f : XX(M) - C®(M) can be defined ag(V) = /detLy, by which the
volume functionalF : X1(M) — Ris given by

F(V) = / FVydv,
M

wheredv is the density o defined byg.
Let us compute the first variation @. We will denote the differential, or the tangent
map, of F atV asTy F.

PROPOSITION 1. LetV e X1(M) beaunit vector fieldand A € Ty X1(M) = HV be
a tangent vector. The tangent map of F at V acting on A is given by

(Ty F)(A) =/ (va)(A)dv=/ Fr(Ly o (VV) 0 VA)dv.
M M
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PROOF LetV : I — X1(M) be a curve for some open intendaktontaining 0, such
thatV(0) = V andV’(0) = A. TakeL(t) = Ly. ThenL’(0) = (VA oVV +(VV) o VA
and therefore

1
(Tv f)(A) = (foV)(0) = Ef(V)tf(L'(O) o L7H0) = f(V) (L o (VV) 0 VA).
(]

To write the tangent map, and therefore the condition for a vector field to be critical, in
a simpler form, we will use the following Lemma, the proof of which is a straightforward
application of the definitions.

LEMMA 2. Givena (1, 1)-tensor field K, let wg be the 1-form defined by wg (X) =
tr(Z — (VzK)(X)). For each A € X(M) we have

wg(A)=—tr(K oVA) — éa,
where § represents the divergence operator of g and a(X) = g(K (A), X).

COROLLARY 3. LetV e X1(M) beaunit vector fildand A € Ty XY(M) = H" be
a tangent vector. The tangent map of F at V acting on A can bewritten as

(TvF)(A) = —/ wy (A)dv,
M

where wy (X) =tr(Z — (VzKy)(X)) and Ky = f(V)L;lo (VV)L

PROPOSITION 4. A unit vector field V e X1(M) isa critical point of F if and only
if the 1-form wy annihilates 1", or equivalently, if and only if the vector field Xy, given by
wy(X) = g(Xvy, X), isinthedistribution V determined by V.

PrRoOOFE If V is a critical point and if we represent b;’/", the projection ofXy onto
HV, then
0= (TyF)(X") = —/ wy (X)dv.
M
Now, wy(X%) = g(X%,Xy) = gX% X% > 0, and then forV to be critical,
Xy — g(Xvy, V)V must vanish. The other implication is immediate. O
The condition above means th@ty f)(A) = —daya, whereay 4(X) = g(Ky(A), X)

and so, ifM is compact with nonempty boundary, thep(#") = {0} if and only if for each
AeHY

(TvF)(A) = /azw F(VgA, (VV o LY (m))dv.

If M is noncompact, we denote [Gy* the family of open sets i with compact closure;
for eachU € 7*, we also represent biytl‘ﬁ the subset of{" consisting of those elements
with support inU. We then have the following

LEMMA 5. wy(H") = {0} if and only if (Ty FV)(H},) = {0} for all U € T*, where
FY : X1 (M) — R mapseach X to the volume of X (U).
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It is well-known that an immersiop : M — (T1M, ¢°) is minimal if and only if its
mean curvature vector fielf vanishes and that this condition is equivalen(fgﬁ”)(g) =
0 for all U € 7* and for all vector fieldt on 71M alonge with support inU. Here FU :
Imm(M, T*M) — R mapsy to the volume ofp(U).

PROPOSITION 6. For a unit vector field V on a general manifold M, the map V :
M — (T*M, ¢%) isaminimal immersion if and only if wy (H") = {0}.
PrROOF. It is clear, using Lemma 5, that evely € X1(M) which gives rise to a

minimal immersion must satistyy (") = {0}. Conversely, for such &, the mean curvature
n" is a vector field of"1 M, alongV, having the property that

/Ugs(nv, £)dvs = (Ty FY)(£) =0

for all U € 7* and for all vector field¢ alongV, with support inU, that are tangent to
variations in the submanifold (M) of the manifold of all immersions a¥f into 7M. Here
dvg is the density in defined byV*gS.

Itis not difficult to show that such a vector field is just a section, alBngf the vertical
bundle of the bundler : 7'M — M; that is, for eachp € M, &, € Ty, (TyM) =
ker(Ty,ym) = Verty (). Thereforewy (H") = {0} if and only if the mean curvature vector

1 ifiesnV L
field verifiesn, € Vertv(p) forall p e M.

Since for every unit vector fielm*v(p)(TlM) = (mT,V) & ker(Ty,m) and for every
immersion, € IM T, V)=, if oy (1Y) = {0}, thenn, must vanish. O

It will be useful to write the condition for a unit vector field to be minimal in terms of lo-
cal adapted orthonormal frames. Here for a giVea X1(M), a locally defined orthonormal
frame field{ E;}7_, will be said to be adapted i, = V.

If we denoteG¥, = (Vi E;, Ex), then(VV)! = G/

in’

and using the fact thzﬁfj -
—G{k, we obtain(VV)? = 0. Since the 1-fornmwy can be computed as

wv(X) =Y g(Ve,Kv)(X), Ej),
J

it is easy to see that; = wy (E;) = Zj{Ej(Kl:j) + Zk(Gkaf - G’;iK,f)}, wherek/
9(Kv(E;), Ej). Hence we have proved

PROPOSITION 7. A unit vector field isminimal if and only if

Y UE(K) + ) (Gl k- Gh k) =0,
j k

J
foralli e{l,...,n—1}.

3. Minimal unit vector fields in constant curvature spaces. The first example of
these vector fields is given by a vector field defined only on a noncomplete manifold consisting
of the spheres” minus one point.
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In [Pe], forvg € T,,5", a vector fieldV is defined by taking/ (p) as the element of
T,S" obtained by parallel translating along the great circle o” passing througlpo and
p. Then,V is defined only onM = S" — {—po}. To compute the tensor field involved in the
condition for a vector field to be minimal, it will be useful to have the explicit expression of
V. To this end, we may assume, without lost of generality, that N = (0, ..., 1) and so
M =S8"—{S}withS =(0,...,—1). Thenitis easy to see the following

LEMMA 8. Letwvg € TyS" bea unit vector. Then the corresponding vector field V in
M isgiven by

V() = (w0 7) (107 — (1) )+ v0.

where {r'}"* represent the usual coordinates on R™*%, i(p) = —(1 + ppr1) L and p =
> i1 Pe(@/0rF) .
PrROPOSITION 9. Any vector field defined as aboveis minimal.

PROOF.  Let {¢;}""} be the canonical basis &'+%. We assume, for simplicity, that
vo = e,. The vector field§E;}?_;, obtained by the procedure described above, give rise to a
local adapted orthonormal frame. According to Proposition 7, we need to show;tkal
fori € {1,...,n — 1}, where
n . n . .
wi =Y (Ej(K{)+ > (G’ K} - Gr kD).
j=1 k=1
By elementary computations using that

0
arntl

n
. 9 )
Ej =Y —i—hr/rk)—ark —r
k=1

and thati? Y}_, (r*)2 + 1 = —2h on M, we have
Gi; =h@ur! —8ijr") with i, jke{l,... n}.

As a consequence, we obtain
n . n n n
(1) o =Y Ej(K})+h{n =1 Kk —r' Y Kf+ Y Kjrt).
j=1 k=1 k=1 k=1
Let us compute the expression Kfwith respect to this frame. The matrix afis given by
gld her'at
h?ra  h?|al>+1) "

whereg = (hr")? + 1anda = —(r, ..., /"),
Itis easy to see that for a matrix of the form

Ald b
b &
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with A, ¢ € Randb € R*1, we have dett = A"2(x¢ — ||b||?) and

a1 1 (e — b1 Id+b'b) /A —b'
~ xe—Ib)2 —b a )

Thenf = ¢"=2/2(—2n)Y2 and, sincek = fL~1 0o (VV)', we obtain by a straightforward

computation that, for, j € {1,...,n — 1},

fhr? hriri
(‘3’7 T2

Moreover, on every point aff we haved ;_; K." k=o,

. fhr" hlla)? ; fhr hlla)?
;K}jz p ((n—1)+ > ) and ZK k= (1+ > )

Now, using(1), we get

fr
Vl__
) and K = > -

K =

1

SHor"

ZE(K])+(2—n)

j=1
To conclude, we only need to compdie;_; E.,'(Kij). Let us define the vector field
n
P 1—"tH2
p=y 4l 1m0 .
ork prtl o gpntl
k=1

Since this is tangent to the sphefe(y";_; Kfrk) = 0 and alsoy_}_, r*E(KF) = 0. Fur-
thermore,

r/ 0 r/ E
ori  pntlgpntl Q4 opntl

Ej:

and then

n ' noog ' 1 2 3

. Jy — . Jy _ j J
Z E/ (Ki )= Z ari (Ki ) pn+l r grntl (Kl )
j=1 j=1 Jj=1

By differentiation using thak?||a||?> = —(2h + g), itis easy to see that

n 2..0,.n
d(h 2h oh h
Sy = (L2 W @y Oh g S
e~ grntl 2h 9rntl 2hg  orntl g
Since
n 2..0,.n
B h
Z— ki) = -2
— or/ g
we obtainw; = 0. O

REMARK. In[Pe], itis shown that the generalized Pontryagin cycle is minimal at each
smooth point as a submanifold of the corresponding Stiefel manifold. From this fact, the
minimality of V can be also obtained bydifferent method.
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In general, the minimality condition is difficult to handle. However, it becomes simpler

if we assume that the vector field verifies some additional property.
LEMMA 10. A unit vector field with totally geodesic flow is minimal if and only if

n—1 n—1
D UE (KD + Y (GhKf -GN kD=0
= k=1

foralli e {1,...,n—1}.

PrROOF. Ifthe flow of V is totally geodesic, thetV V) (1Y) c H" and consequently
Ky (H") c H". Hence the result follows from Proposition 7. O

Let R be the(1, 3)-curvature tensor defined by
R(X,Y,Z) = —VxVyZ +VyVxZ + Vixy|Z.
We will use the same symbol for tl{6, 4)-tensor fieldR(X, Y, Z, W) = g(R(X, Y, Z), W).
LEMMA 11. If VisaunitKilling vector field, then (VV) o VV = R(V, -, V).

PrROOF It is easy to see that, for a unit Killing vector field, tk@& 2)-tensor fieldh
defined asi(X, Y) = g(R(V, X, V), Y) is given by

h(X,Y) = g(VxV,VyY) = V(g(VxV,Y)) — g(VyV, Vv X) + g(Vy V, Vx V).

Sinceh is symmetric,k(X, Y) must be equal tg(VxV, VyV) and therefore, for alk in
X(M),R(V,X, V)= (VV) o (VV)(X) as claimed. O

LEMMA 12. With respect to any local orthonormal frame, the components of the cur-
vature tensor are given by
Rjikr = Ei(G") — E;(Gy) + Z{G — G},Gp + GGl
In particular, if V is a unit Killing vector field and the frame is adapted, then, for i, j, k €
{1,...,n—1},
Rjitn = — E~<<VV)’f> +E;(VV)))

+Z{ GH(VV), + GY (Y V)L + Gl (VV)f = GL(V V)T

ProPOSITION 13. Let M be an n-dimensional manifold of constant sectional curva-
ture k. Then every unit Killing vector field on M isminimal. Moreover, £ (V) = (k+1)—D/2
and F(V) = (k + 1)"~D/2yol(M).

PrROOF. It follows from Lemma 11 that for every local adapted orthonormal frame,
(VV)' o VV)! = k(8! — 8,;8,;) and thenf = (k + 1)*~/2. Moreover,

K = (k + 1) 32vy) .
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Under the hypothesis, if we plt= j in the equality in Lemma 12, we obtain

n—1
E; (V) =Y (G V), = G2 vyl = G (v vy + GL(v vy
=1
n—1 ) i
=Y (G (V)] - G{,I(VV)ﬁ}
=1

and then Lemma 10 gives us the result. O

REMARK. The condition forV to be a unit Killing vector field is equivalent to that
of V being a totally geodesic, Riemannian foliation with bundle-like metric. If a Riemannian
manifold of constant curvatuéeadmits such a foliatio, thenk > 0, andk = 0 would imply
that " is also involutive; therefore the manifold would be, locally, a Riemannian product
([Ca]). On the other hand, the existence of a unit Killing vector field in a manifold of positive
curvature implies that the dimension must be odd. Consequently, apart from the trivial case
of parallel vector fields, the hypotheses of Proposition 13 imiply0 andn = 2m + 1. If we
assume, moreoved to be complete, the should be a quotient "+ and, according
to [GrGr], the lift of the vector field must be a Hopf vector field. In view of the corresponding
results in [GIZi] and [Jo], Proposition 13 essiatly provides new information only in the
case where the manifold is not complete.

4. Minimal unit Killing vector fields. We have seen in Proposition 13 that every
unit Killing vector field is minimal if the manifold has constant curvature. In this section we
will show a necessary and sufficient condition for a unit Killing vector field to be minimal in
a general manifold; the condition involv&s/ and the curvature af/.

For a Killing vector fieldV, the rank ofVV must be even, and for each point of an open
dense subset we can find a local adapted orthonormal frame

{Eis Ei*, E2m+lv cee En = V}zﬂzl ’

with 2m the rank ofVV, suchthaWV(E;) = —X; Ei+, VV(Ej+x) = M E;fori € {1, ..., m}
andVV(Ey) =0fora € 2m +1,...,n}. From Lemma 11),»12 is the common value of the
sectional curvatures of the planes generate®f andE; and byV andE;.

THEOREM 14. Let V be a unit Killing vector field, then wy = f 5y, where gy (X) is
defined to be

D (RULG o VVY(X), (Lt o VVI(E), V, Ej) + RILYY(X), LYNE), V. E)).
j=1
Consequently, V isminimal if and only if the 1-form gy annihilates 1V .

PROOF It is clear thatLy (E;) = (1 + A?)E;, Ly(Ex) = (14 A)Eq fori e
{1,...,m},andLy (Ey) = Eqfora e {2m + 1, ..., n}.
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SinceKy = fL;l o (VV)I, it follows thatKy (E;) = fi/(1+ )Ll.z))Ei*, Ky (Eix) =
—f(i/(1+ A?)E; andKy(Ey) = 0, fori € {1,...,m} anda € {2m + 1,... ,n}. From
Lemma 10, we get

n—1
(2) wy (E;) =Ei(K! )+ZG”*K Z G K/,
j=1 j.1=1
n—1 i
€) wv(Ei) =Ei(K]. >+ZG’ Ki.— > GlikKj,
jil=1
(4) wy (Eq) = — Z Gl K]
j, =1
Since, forallk € {1, ..., n},
fEk(detLv)
E Er(h;
KN =3 Ger fZ Az 0)
we have

A A Aj — 22
Ei(fm) _2f1+x221 AZE( ’)+fﬁEm

B (1) =2 S LB + k)
B R et R A C PV R

and then
Ao A 1-22

1
_ E)=2 Ex(Ai)+ ——LFEi«();
Fov(E) 1+A,?Zl+x2. PO+ B O
2)
J
1 Ai Yy 1—)\.2
— Esx)= —2 EOh))— ———LY E-(\:
Fov(Er) 1+x,?§1+x2. 10) = G B0
3)
Gl — Gl
1+)»12]2; Z1 )\2( jiv)
1 m . .
J . J’
@) Fov(Ea) = =) 775Gy = Gl
j=1 J
On the other hand, fare {1, ..., m}, we have that

(LYo VV)(E;) = —(hi /(L4 22) Ep
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and(Ly o VV)(Ei) = (A /(1 +A2)E;. Fora € {2m +1,... ,n}, we have that
(Lyt o VV)(E,) = 0, and consequently

m
pv(E) =——— Y ———=(R(Ei, Ej, Ej, V) + R(E;, Ejs, Ej=, V)
1427 4 1+23
Ai “ Aj
(5) + 5 Y —IR(Ej Ej, Eis, V)
R
1 n
- R(E;, Eg,Ep, V),
132 Z (Ei, Eg, Eg. V)

1 B=2m+1

1 «— 1
oy (Ejx) = — E R(E«,E;,E;,V)+ R(Eix, Eix, Ej+,V
pv(Eix) 1+)»l-2j=11+)\§( (E; Jo B ) (E; J J )

Ao A
+ R(Ej+ Ej, E;,V
© 1+x,.2;1+)\§ Ejer By i V)

1 n
EEERY; Z R(Ei+, Eg, Eg, V),
+ i f=2m+1
m

/5V(Eoz) = Z

(7) =
— Y R(Es. Ep.Ep.V).
B=2m+1
Iterated use of Lemma 12 gives us the equality between the right-hand membe€js of (2
and (5). Similarly, for (8 and (6) and for (9 and (7). d

The curvature conditiomzy (X) = 0 for all X € H", is trivially satisfied whervVV = 0
and whenM has constant curvature. It is known thavifis the characteristic vector field of
a Sasakian manifold, then it is a unit Killing vector field and that for all vector fi&ldE the
curvature tensor field satisfiég X, Y, V) = g(¥, V)X — g(X, V)Y ; in fact, every unit Killing
vector field on an odd-dimensional manifold with this curvature property is the characteristic
vector field of a Sasakian manifold (see [BI], p.75). Consequently, we have the following

172 (R(Eq, Ej, Ej, V) + R(Eq, Ejx, Ej=, V))
j

COROLLARY 15. Thecharacteristic vector field of a Sasakian manifold is minimal.

In those three cases mentioned abd¥eatisfies the curvature conditid(X, Y, V) =0
forall X, Y € HV. However, our conditioiy (") = {0} is more general as can be seen in
the next example.

Let us consider the generalized Heisenberg gréi, ). This is the Lie group, of
dimension 2 + 1, consisting of all real matrices of the form
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I,
a=1]0
0

oOr >
= %O

wherel, is ther x r unit matrix.
A system of global coordinates @i(1, r) is given by

x'(a)=A", Z(a)=C', y@ =B, ie{l, ... r}.

H (1, r) is equipped with an invariant metricfor which we have the following orthonormal
frame of invariant vector fields:

a a

U[Z—., I =
ax! a7

-
for 1<i<r and W:ini.+i.
= a7 ady

If we consider the subgroup (1, r) of H (1, r) consisting of those elements &f(1, r) with
entries inZ, then we obtain the compact manifaWi(1, r) = H(1,r)/I"(1, r). The metric in
M (1, r) is chosen so as to the projectipn H(1,r) — M(1,r) is a local isometry.

Since{Us, ... ,U,, Ti,...,T,, W} are invariant vector fields, we obtain afi(1, r)
the correspondingUs, ... , U, Tx,...,T,, W}. The results concerning the former frame
are also valid for the latter one.

PrROPOSITION 16. Foreachi € {1,...,r}, T; (resp. T,») isa minimal vector field of
H(@,r) (resp. M(1,r)).
PROOF It is not difficult to see that, foi € {1,...,r}, T; andT; are Killing vector
fields. Hence we can use Theorem 14 to show by straightforward computations that they are
minimal. In fact, we have
—8;j 1

Vy,Uj =0, Vy, T; = w, VUiWZET,',
VU = 200y Vi, T; =0 Ve W = 1y,
LYj = 2 ’ iy =Y T; - 2 L
-1 1
Vij=7T,’, VWTjZEUj VwW =0,
and then
1
RWU;,U;, T) = 2 (8;:Ti — 8t Tj) ,
-1

1
R(Ev Wv T]) = ZSUW’

R(Ul7 W7 T/) = R(Ea Tj7 T[) = Oa
from which the result follows. O

From (8), ifr > 1 andi # j, thenR(U;, U;, T;) = —(T;/4) # 0. A detailed study of
the minimality ofU; andW can be found in [GDVa1l].
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For a better understanding of the condition(") = {0} and to end the section, we
study how it can be written for = 3 andn = 4.

PrRopPoOsSITION 17. If V isaunit Killing vector field such that therank of VV is2, then
V isminimal if and only if

pv(E1) =py(E2) =0 and

—A
pV(EOl) :m (R(Eou Els E17 V) + R(Eou E21 E27 V)) 5
where py isthe 1-formrelated to the Ricci tensor p by py (X) = p(X, V).
PROOF  This follows from (5), (6) and (7). O

COROLLARY 18. Let V bea unit Killing vector field in a manifold of dimension 3 or
4. Then V isminimal if and only if py annihilates " .

PrROOFE If V is a parallel vector field, then it clearly satisfies the both conditions. If
rank of VV is equal to 2, then the result follows easily for dimension 3. If the dimension is 4,
we also need to use tha{ (E3) = R(E1, E3, E1, V) + R(E2, E3, E>, V). O

REMARK. Forn = 3, since the conditiopy (H") = {0} is equivalent taR123, = 0 =
R»131, We can conclude that is minimal if and only ifR(X, Y, V) = Oforall X, Y € HV.
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