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Abstract. The main purpose of this notes is to supplement the paper by Reid: De-
composition of toric morphisms, which treatedMinimal Model Program (also called Mori’s
Program) on toric varieties. We compute lengths of negative extremal rays of toric varieties.
As an application, a generalization of Fujita’s conjecture for singular toric varieties is obtained.
We also prove that every toric variety has a small projective toricQ-factorialization.

0. Introduction. The main purpose of this notes is to supplement the paper by Reid
[Re]: Decomposition of toric morphisms, which treated Minimal Model Program (also called
Mori’s Program) on toric varieties. We compute lengths of negative extremal rays of toric
varieties. This is an answer to [Ma, Remark-Question 10-3-6] for toric varieties, which is an
easy exercise once we understand [Re]. As a corollary, we obtain a strong version of Fujita’s
conjecture for singular toric varieties. Related topics are [Ft], [Ka], [La] and [Mu, Section
4]. We will work, throughout this paper, over an algebraically closed fieldk of arbitrary
characteristic.

The following is the main theorem of this paper, which is a sharp version of [Re, (1.7)
Corollary] (see also [Ma, Theorem 14-1-4]). Note that [La, (2.1) Proposition] is a special case
of our theorem.

THEOREM 0.1 (Cone Theorem).Let X = X(∆) be an n-dimensional (not necessarily
Q-factorial) projective toric variety over k. Let N1(X) denote the R-vector space formed by
1-cycles with real coefficients modulo numerical equivalence. The class of a 1-cycle C is
denoted by [C]. Write the cone of curves as

NE(X) :=
∑

R≥0[C] ⊂ N1(X) ,

where the summation above runs through all the effective 1-cycles, which is spanned as a
convex cone by a finite number of extremal rays (see [Re, (1.7) Corollary]). LetD = ∑

j djDj

be a Q-divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every
j . Assume that KX + D is Q-Cartier. Then, for each extremal ray R≥0[C], there exists an
(n− 1)-dimensional cone τ ∈ ∆ such that [V (τ)] ∈ R>0[C] and

−(KX +D) · V (τ) ≤ n+ 1 .

Moreover, we can choose τ such that −(KX+D) ·V (τ) ≤ n unlessX � Pn and
∑
j dj < 1.
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Section 1 is a preliminary section. We recall some basic results about toric varieties and
fix our notation. Section 2 deals withQ-factorial toric Fano varieties with Picard number one;
a generalization ofweighted projective spaces. The computations of intersection numbers in
this section are crucial for the proof of Theorem 0.1. In Section 3, we quickly review the main
results of [Re] and prove our main theorem: Theorem 0.1. We will discuss an application of
this theorem in Section 4. Professor Kajiwara informed the present author of [Mu] in Kinosaki
after he finished the preliminary version of this paper. The following formulation of Fujita’s
conjecture for toric varieties is due to Musta¸tǎ, who proved it on the assumption thatX is
non-singular andD is reduced as an application of his vanishing theorem (see [Mu, Theorem
0.3]). Our proof does not rely on vanishing theorems. The following corollary contains [La,
(0.3) Theorem].

COROLLARY 0.2 (Strong version of Fujita’s conjecture).Let X = X(∆) be an n-
dimensional (not necessarily Q-factorial) projective toric variety over k and D = ∑

j djDj

be a Q-divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every
j . Assume that KX +D is Q-Cartier. Let L be a line bundle on X.

(1) Suppose that (L · C) ≥ n for every torus invariant integral curve C ⊂ X. Then
KX +D + L is nef unless X � Pn,

∑
j dj < 1 and L � OP n (n).

(2) Suppose that (L ·C) ≥ n+ 1 for every torus invariant integral curve C ⊂ X. Then
KX +D + L is ample unless X � Pn, D = 0 and L � OP n (n+ 1).

Of course, we can recover [Mu, Theorem 0.3] easily if we assume thatX is non-singular
andD is reduced. See also Remark 3.3.

In Section 5, we collect several results obtained by Minimal Model Program on toric
varieties. We need Lemma 5.8 for the proof of Theorem 0.1. We prove that every toric variety
has a small projective toricQ-factorialization. For related topics, see [OP, Section 3]. After
the present author wrote this paper, the book [Ma] was published. Chapter 14 of [Ma] explains
Mori’s Program on toric varieties very nicely and corrects some errors in [Re]. The readers
interested in Mori’s Program on toric varieties are recommended to see [Ma].

Part of this paper was obtained in 1999, when the author was a Research Fellow of the
Japan Society for the Promotion of Science. The essential parts were done during his visit to
Alfréd Rényi Institute of Mathematics. He would like to express his gratitude to Professors
Masanori Ishida, Shigefumi Mori, Tadao Oda, Takeshi Kajiwara and Hiromichi Takagi, who
gave him various advice and useful comments. He would like to thank Doctor Hiroshi Sato,
who gave him various advice and answered his questions. He would also like to thank Doctor
Takeshi Abe, who led him to this problem. Finally, the author thanks the referee, whose
comments made this paper more readable.

1. Preliminaries. In this section, we recall basic notions of toric varieties and fix our
notation. For the proofs, see [Od], [Fl], [Re] or [Ma, Chapter 14].

1.1. LetN � Zn be a lattice of rankn. A toric varietyX(∆) is associated to afan, a
correction of convex conesσ ⊂ NR = N ⊗Z R satisfying the following:
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(i) Each convex coneσ is a rational polyhedral in the sense that there are finitely
manyv1, . . . , vs ∈ N ⊂ NR such that

σ = {r1v1 + · · · + rsvs; ri ≥ 0} =: 〈v1, . . . , vs〉 ,
and it is strongly convex in the sense that

σ ∩ −σ = {0} .
(ii) Each faceτ of a convex coneσ ∈ ∆ is again an element in∆.
(iii) The intersection of two cones in∆ is a face of each cone.

DEFINITION 1.2. Thedimension dimσ of σ is the dimension of the linear space
R · σ = σ + (−σ) spanned byσ .

We define the sublatticeNσ of N generated (as a subgroup) byσ ∩N as follows:

Nσ := σ ∩N + (−σ ∩N) .
If σ is ak-dimensional simplicial cone, andv1, . . . , vk are the first lattice points along

the edges ofσ , themultiplicity of σ is defined to be theindex of the lattice generated by the
{vi} in the latticeNσ ;

mult(σ ) := [Nσ : Zv1 + · · · + Zvk] .
We note thatX(σ) is non-singular if and only if mult(σ ) = 1.

The following is a well-known fact. See, for example, [Ma, Lemma 14-1-1].

LEMMA 1.3. A toric variety X(∆) is Q-factorial if and only if each cone σ ∈ ∆ is
simplicial.

1.4. Thestar of a coneτ can be defined abstractly as the set of conesσ in ∆ that
containτ as a face. Such conesσ are determined by their images inN(τ) := N/Nτ , that is,
by

σ̄ = σ + (Nτ )R/(Nτ )R ⊂ N(τ)R .

These cones{σ̄ ; τ ≺ σ } form a fan inN(τ), which we denote by Star(τ ). We setV (τ) =
X(Star(τ )). It is well-known thatV (τ) is an(n − k)-dimensional closed toric subvariety of
X(∆), where dimτ = k. If dim V (τ) = 1 (resp.n − 1), then we callV (τ) a torus invariant
curve (resp.torus invariant divisor). For the details about the correspondence betweenτ and
V (τ), see [Fl, 3.1 Orbits].

1.5 (Intersection Theory). Assume that∆ is simplicial. If σ, τ ∈ ∆ spanγ with
dimγ = dimσ + dimτ , then

V (σ) · V (τ) = mult(σ ) · mult(τ )

mult(γ )
V (γ )

in the Chow group A∗(X)Q. For the details, see [Fl, 5.1 Chow groups]. Ifσ and τ are
contained in no cone of∆, thenV (σ) · V (τ) = 0.
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2. Toric Fano variety. In this section, we investigateQ-factorial toric Fano varieties
with Picard number one. The computations in this section are crucial for the proof of the main
theorem: Theorem 0.1. Proposition 2.9 is the main result of this section.

2.1. First, let us recallweighted projective spaces. We adopt toric geometric descrip-
tions. This helps the readers to understand Theorem 0.1, although it is not necessary for the
proof of Theorem 0.1.

2.2 (cf. [Fl, p. 35]). LetP(d1, . . . , dn+1) be aweighted projective space. To construct
this as a toric variety, we start with the fan whose cones are generated by proper subsets of
{v1, . . . , vn+1}, where anyn of these vectors are linearly independent, and their sum is zero.
The latticeN is taken to be generated by the vectorsei = (1/di) · vi for 1 ≤ i ≤ n + 1. The
resulting toric variety is in factP = P(d1, . . . , dn+1). We note that PicP � Z.

Let fi be a unique primitive lattice point in the cone〈ei〉 with ei = uifi for ui ∈ Z>0.
We putd = gcd(u1d1, . . . , un+1dn+1) and defineci = (1/d)uidi for every i. Then we
obtain thatP(d1, . . . , dn+1) � P(c1, . . . , cn+1) and

∑
cifi = 0. By changing the order,

we can assume thatc1 ≤ c2 ≤ · · · ≤ cn+1. We note that−KP = ∑
V (fi). Let τ be the

(n− 1)-dimensional cone〈f1, . . . , fn−1〉. Then we have

−KP · V (τ) =
n+1∑
i=1

V (fi) · V (τ) = c

cncn+1

( n+1∑
i=1

ci

)
≤ n+ 1 ,

wherec = gcd(cn, cn+1). We note that

V (fi) · V (τ) = cci

cncn+1
.

For calculations of intersection numbers, we recommend the readers to see 1.5, [Fl, p.100]
and [Re, (2.7)]. We note that gcd(c1, . . . , ci−1, ci+1, . . . , cn+1) = 1 for everyi, which will
be proved in Proposition 2.3 below. If the equality holds in the above equation, thenci = 1
for everyi. Thus, we obtainP � Pn.

PROPOSITION 2.3. Let P(d1, . . . , dn+1) be a weighted projective space. We suppose
that gcd(d1, . . . , dn+1) = 1. Then, gcd(d1, . . . , di−1, di+1, . . . , dn+1) = 1 if and only if ei
is primitive in 〈ei〉 ∩N .

In particular, in 2.2, gcd(c1, . . . , cn+1) = 1 and gcd(c1, . . . , ci−1, ci+1, . . . , cn+1) =
1 for every i by the construction.

PROOF. We can assume thati = 1 without loss of generality.
First, we put gcd(d2, . . . , dn+1) = d and assume thate1 is primitive. Then we can write

−(1/d)(d2e2 + · · · + dn+1en+1) = ae1 for a non-zero integera. Thusd1 = da. By the
assumption gcd(d1, . . . , dn+1) = 1, we have thatd = 1.

Next, we assume thate1 is not primitive. Then we can writee1 = af1, wheref1 is
a primitive lattice point in〈ei〉 ∩ N anda is an integer witha ≥ 2. We can writef1 =
l1e1 + · · · + ln+1en+1, whereli ∈ Z. Thus(al1 − 1)e1 + al2e2 + · · · + aln+1en+1 = 0. Since
d1e1 +· · ·+dn+1en+1 = 0 and gcd(d1, . . . , dn+1) = 1, there exists a non-zero integerb such
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that {
bd1 = al1 − 1

bdi = ali for i ≥ 2 ,

from which we can easily check that gcd(d2, . . . , dn+1) �= 1. �

Let us give some examples, which are easy exercises of the formula in 2.2.
2.4. If n = 2, thenc = 1, sincef1 is primitive and

∑
cifi = 0. Therefore, we have

−KP · V (τ) = 1

c2c3

( 3∑
i=1

ci

)
≤ 1

2
+ 1

2
+ 1 ≤ 2 = n

whenP �� P2. So, we have that−KP · V (τ) ≤ n if n = 2 andP �� P2. If −KP · V (τ) = 2,
thenP � P(1,1,2).

2.5 (cf. Proposition 2.9 below). Whenn ≥ 3, the above inequality in 2.4 is not true.
Assume thatn ≥ 3. Let P be ann-dimensional weighted projective spaceP(l − 1, l − 1,
l, . . . , l), wherel ≥ 2. Then we obtain

−KP · V (τ) = n+ 1 − 2

l
.

So, we have−KP · V (τ) > n whenl ≥ 3. If we makel large, then−KP · V (τ) becomes
close ton+ 1.

2.6. LetP = P(1, . . . ,1, l − 1, l) be ann-dimensional weighted projective space with
l ≥ 2 andn ≥ 2. Then we have

−KP · V (τ) = n+ 2l − 2

l(l − 1)
.

Thus, if we makel large, then−KP · V (τ) becomes close to zero.
2.7. Next, we treatQ-factorial toric Fano varieties with Picard number one. This type

of varieties plays an important role for the analysis of extremal contractions. Here, we adopt
the following description 2.8 for the definition ofQ-factorial toric Fano varieties with Picard
number one. By this, it is easy to see that every extremal contraction contains them in the
fibers (see Proof of the theorem below). Of course, weighted projective spaces are in this
class.

2.8 (Q-factorial toric Fano varieties with Picard number one). Now we fixN � Zn.
Let {v1, . . . , vn+1} be a set of primitive vectors such thatNR = ∑

i R≥0vi . We definen-
dimensional cones

σi := 〈v1, . . . , vi−1, vi+1, . . . , vn+1〉
for 1 ≤ i ≤ n+ 1. Let∆ be the complete fan generated byn-dimensional conesσi and their
faces for everyi. Then we obtain a complete toric varietyX = X(∆) with Picard number
ρ(X) = 1. We call it aQ-factorial toric Fano variety with Picard number one. We define
(n − 1)-dimensional conesµi,j = σi ∩ σj for i �= j . We can write

∑
i aivi = 0, where

ai ∈ Z>0, gcd(a1, . . . , an+1) = 1, anda1 ≤ a2 ≤ · · · ≤ an+1 by changing the order. Then
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we obtain

0< V (vn+1) · V (µn,n+1) = mult(µn,n+1)

mult(σn)
≤ 1 ,

V (vi) · V (µn,n+1) = ai

an+1
· mult(µn,n+1)

mult(σn)
,

and

−KX · V (µn,n+1) =
n+1∑
i=1

V (vi) · V (µn,n+1)

= 1

an+1

( n+1∑
i=1

ai

)
mult(µn,n+1)

mult(σn)
≤ n+ 1 .

For the procedure to compute intersection numbers, see 1.5 or [Fl, p. 100]. If−KX·
V (µn,n+1) = n+ 1, thenai = 1 for everyi and mult(µn,n+1) = mult(σn).

PROPOSITION 2.9. If X �� Pn, then there exists some pair (l,m) such that −KX ·
V (µl,m) ≤ n.

PROOF. Assume the contrary. Then we obtain

−KX · V (µk,n+1) = 1

an+1

( n+1∑
i=1

ai

)
mult(µk,n+1)

mult(σk)
> n

for 1 ≤ k ≤ n. Thus

(n+ 1)an+1 ≥
n+1∑
i=1

ai >
mult(σk)

mult(µk,n+1)
nan+1

for everyk. Since
mult(σk)

mult(µk,n+1)
∈ Z>0 ,

we have that mult(σk) = mult(µk,n+1) for everyk. This implies thatak dividesan+1 for all
k.

CLAIM . a1 = · · · = an+1 = 1.

PROOF OFCLAIM . If a1 = an+1, then we obtain the required results. So, we assume
thata1 �= an+1. It follows from this assumption thata2 �= an+1, sincev1 is primitive and∑
i aivi = 0. In this case, we have

−KX · V (µk,n+1) = 1

an+1

( n+1∑
i=1

ai

)
≤ n .

We note that
ai

an+1
≤ 1

2

for i = 1,2, which is a contradiction. So we obtain thata1 = · · · = an+1 = 1. �
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In this case,−KX ·V (µi,j ) > n implies that−KX ·V (µi,j ) = n+1 for every pair(i, j).
Then mult(µi,j ) = mult(σi) for i �= j . So, we have that mult(σi) = 1 for everyi (cf. [Fl,
p. 48 Exercise]). Therefore, we obtainX � Pn. This is a contradiction. �

REMARK 2.10. The usual definition of Fano varieties is the following:X is Fano if
−KX is an ampleQ-Cartier divisor. It is easy to check that the notion ofQ-factorial toric
Fano varieties with Picard number one by the usual definition coincides with ours.

3. Proof of the main theorem. In this section, we prove our main theorem: Theorem
0.1.

3.1. Let us recall the main results of [Re] without proofs. For the proofs, see the origi-
nal article [Re] or [Ma, Chapter 14].

LetX = X(∆) be aQ-factorial projective toric variety. Then the cone of curvesNE(X)
is spanned by a finite number of extremal rays (see [Ma, Proposition 14-1-2]). LetR be an
extremal ray ofNE(X). Then there exists an(n − 1)-dimensional conew = 〈e1, . . . , en−1〉
in ∆ such thatR = R≥0[V (w)]. Since∆ is simplicial,w separates twon-dimensional cones
∆n and∆n+1 in ∆. We write∆n = 〈e1, . . . , en−1, en+1〉 and∆n+1 = 〈e1, . . . , en〉. We
assume thatei is a primitive lattice point in〈ei〉 ∩N . We can write

n+1∑
i=1

aiei = 0

with an+1 = 1; sinceen anden+1 lie on opposite sides ofw, it follows thatan > 0. By
reordering theei , we can assume that


ai < 0 for 1 ≤ i ≤ α

ai = 0 for α + 1 ≤ i ≤ β

ai > 0 for β + 1 ≤ i ≤ n+ 1 ;
here 0≤ α ≤ β ≤ n − 1. By [Re], there is a toric morphismϕR : X → Y : ϕR∗OX � OY

and for a curveC ⊂ X, ϕR(C) = pt ∈ Y if and only if [C] ∈ R. Furthermore, let

A −→ B

∩ ∩
ϕR : X −→ Y

be the loci on whichϕR is not an isomorphism;A andB are the irreducible toric strata corre-
sponding to the cones〈e1, . . . , eα〉 and〈e1, . . . , eα, eβ+1, . . . , en+1〉 respectively; dimA =
n − α, dimB = β − α andϕR|A : A → B has equi-dimensional fibers, all of whose fibers
areQ-factorial toric Fano varieties of dimensionn− β. See Remark 3.2 below.

We note that the contractionϕR corresponds to the operation “removing” all the wallsw
with [V (w)] ∈ R. For the details, see [Re, §2] and [Ma, 14.1, 14.2]. We putσ = 〈e1, . . . , eβ〉.
We can check thatP := V (σ) ⊂ X is a Q-factorial toric Fano variety with Picard number
ρ(P ) = 1. This is an easy consequence of the fact that∆j := 〈e1, . . . , ej−1, ej+1, . . . , en+1〉
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is ann-dimensional cone in∆ for β + 1 ≤ j ≤ n + 1 and
∑
aj ej = 0. We define(n − 1)-

dimensional coneswkl := ∆k ∩∆l for k �= l. Then[V (wkl)] ∈ R for β+ 1 ≤ k < l ≤ n+ 1.
So, we can see thatϕR contractsP to a point. This is sufficient for our purpose. For more
detailed discussions aboutϕR|A : A → B, see [Ma, Corollary 14-2-2].

REMARK 3.2. In [Re, (0.1)], it is stated that any fiber of an extremal contraction is a
weighted projective space. That is,P is a weighted projective space as in the above notation
3.1. However, this is not true, since there exists aQ-factorial toric Fano variety with Picard
number one that is not a weighted projective space.Matsuki explains this error nicely in [Ma,
Remark 14-2-3].

PROOF OF THE THEOREM. Step 1. We assume thatX is Q-factorial. Let R =
R≥0[C] be an extremal ray. Then there exists an elementary contractionϕR : X → Y ,
which corresponds to the extremal rayR. TheQ-factorial toric Fano varietyP = V (σ) ⊂ X

with Picard numberρ(P ) = 1, which corresponds to the coneσ = 〈e1, . . . , eβ〉, is a fiber of
ϕR|A : A → B (see 3.1). We note that

KP = −
n+1∑
i=β+1

V (ρ̃i) ,

whereρ̃i = 〈e1, . . . , eβ , ei〉 for β+1 ≤ i ≤ n+1. On the other hand,V (ρ̃i) = biV (ei)·V (σ)
for somebi ∈ Z>0, since the cones are simplicial (see 1.5 or [Fl, p. 100]).

Let τ̃ be an(n− 1)-dimensional cone containingσ . Then we have that

KP · V (τ̃ ) = −
n+1∑
i=β+1

V (ρ̃i ) · V (τ̃ )

= −V (τ̃) ·
( n+1∑
i=β+1

biV (ei) · V (σ)
)

= V (τ̃ ) ·
(
KX +

∑
every ray

V (ei)−
n+1∑
i=β+1

biV (ei)

)

= V (τ̃ ) ·
(
KX +

n+1∑
i=β+1

(1 − bi)V (ei)+
∑

others

V (ei)

)

≤ (KX +D) · V (τ̃ ) .
We now note that

KX +
∑

every ray

V (ei) ∼ 0 ,

andD can be written as
∑
j djV (ej ) with 0 ≤ dj ≤ 1 by the assumption. Also, note that

V (τ̃) · V (ei) > 0 if and only ifβ + 1 ≤ i ≤ n + 1 by [Re, (2.2)] (see also [Re, (2.4), (2.7),
(2.10)]). Choosẽτ as in the above argument 2.8, that is,−KP · V (τ̃ ) ≤ n − β + 1, where



TORIC VARIETIES FROM MORI THEORETIC VIEWPOINT 559

dimP = n− β. Then, by the above argument and the choice ofτ̃ ,

−(KX +D) · V (τ̃ ) ≤ −KP · V (τ̃ ) ≤ n− β + 1 .

Therefore, if the minimal length of a(KX +D)-negative extremal ray is greater thann, then
β = α = 0. Thus we haveX � Pn and

∑
j dj < 1 by Proposition 2.9. Hence, we obtain the

required result whenX is Q-factorial.
Step 2 (cf. [La, (2.4) Lemma]). We assume thatX is notQ-factorial. Letf : (X̃, D̃) →

(X,D) be a projective modification constructed in Lemma 5.8 below. We note thatX �� Pn.
Let R = R≥0[C] be a(KX + D)-negative extremal ray. TakeV (τ) ∈ R>0[C] such that
−(KX + D) · V (τ) is minimal. Also, takeV (τ̃ ) on X̃ such thatf∗V (τ̃ ) = V (τ). We
can writeV (τ̃ ) = ∑

aiV (τ̃i) in NE(X̃) for ai ∈ R>0 such thatV (τ̃i ) is extremal and
−(KX̃ + D̃) · V (τ̃i) ≤ n for every i by Step 1, sinceX̃ is not a projective space. Since∑
i aif∗V (τ̃i) = V (τ) ∈ R, we have thatf∗V (τ̃i) ∈ R for everyi. So, there exists some

i such that 0�= f∗V (τ̃i) = bV (τ) in R for b ≥ 1, since−(KX + D) · V (τ) is minimal.
Therefore,

−(KX +D) · V (τ) = −1

b
(KX̃ + D̃) · V (τ̃i) ≤ n .

Thus we complete the proof. �

REMARK 3.3. In Step 1 of the proof of the theorem, we assume thatX is non-singular.
Then we obtain thatbi = 1 andV (τ̃) · V (ei) ∈ Z. We note thatV (τ̃ ) · V (ei) > 0 if and only
if β + 1 ≤ i ≤ n + 1. It is easy to check thatP is an(n − β)-dimensional projective space
Pn−β andKP · V (τ̃ ) = −(n − β + 1). Thus, Proposition 4.3, Lemma 4.4 and Propositions
4.5, 4.6 in [Mu] can be checked easily by the above computation (see also [Re, (2.10) (i)]).
Therefore, we can recover [Mu, Section 4] without using vanishing theorems.

4. Applications to Fujita’s conjecture on toric varieties. In this section, we discuss
some applications of Theorem 0.1. Corollary 0.2 follows from Theorem 0.1 directly.

First, we recall some results used in this section. The following lemma is more or less
well-known to specialists. For the proof, see [Mu, Theorems 3.1, 3.2].

LEMMA 4.1. LetX be a projective toric variety andD a Q-Cartier divisor onX. Then
the following are equivalent:

(i) D is ample (resp. nef ).
(ii) D is positive (resp. non-negative) on NE(X) \ {0}.

Moreover, if D is Cartier, then D is nef if and only if OX(D) is generated by its global
sections.

PROOF OFCOROLLARY 0.2. It is obvious by Theorem 0.1 and Lemma 4.1. �

COROLLARY 4.2. In Corollary 0.2 (1), assume further that KX + D is Cartier. Then
KX +D + L is generated by global sections unless X � Pn, D = 0 and L � OPn(n).

PROOF. It is obvious by Corollary 0.2 (1) and Lemma 4.1. �
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By combining Corollary 0.2 with Demazur’s theorem: Every ample divisor on a smooth
complete toric variety is very ample ([Od, §2.3 Corollary 2.15]), we obtain the following
result, which is the original version of Fujita’s conjecture on toric varieties.

COROLLARY 4.3 (Fujita’s conjecture for toric varieties).Let X be a non-singular pro-
jective toric variety over k and L an ample line bundle on X. Then KX + (n + 1)L is
generated by global sections andKX + (n+ 2)L is very ample, where n = dimX. Moreover,
if (X,L) �� (Pn,OPn(1)), thenKX + nL is generated by global sections andKX + (n+ 1)L
is very ample.

REMARK 4.4. For very ampleness on singular toric varieties, see [La, 3. Very ample-
ness]. In [La],Q-very ample divisors are defined.

5. Remarks on Minimal Model Program for toric varieties. In this section, we use
the basic notation in [KM] and [Ut]. For the details about Minimal Model Program (MMP,
for short), see [KM] and [Ut]. Let us first recall the definition of singularities.

DEFINITION 5.1 (cf. [KM, Definition 2.34]). LetX be a normal variety andD a Q-
divisor onX such thatKX + D is Q-Cartier. Letg : Y → X be a resolution of singularities
such thatg −1∗ D ∪ Exc(g ) is a simple normal crossing divisor, whereg −1∗ D is the strict trans-
form ofD and Exc(g ) is the exceptional locus ofg . Write

KY = g ∗(KX +D)+
∑

aiEi ,

whereEi is a divisor contained in Supp(g −1∗ D ∪ Exc(g )). If ai ≥ −1 for everyi, we say that
the pair(X,D) is log-canonical. If D = 0 andai > −1 for everyi, we say that(X,0) is
log-terminal.

The following lemma, which may help the readers to understand this section, is well-
known to specialists.

LEMMA 5.2. Let X be a complete toric variety over k and D the complement of the
big torus in X as a reduced divisor. Then the pair (X,D) is log-canonical. Furthermore, if
KX is Q-Cartier, then the pair (X,0) is log-terminal.

PROOF. Let g : Y → X be a toric resolution of singularities. Then we have

KY + E = g ∗(KX +D) ,

whereD (resp.E) is the complement of the big torus inX (resp.Y ) as a reduced divisor.
Thus, the pair(X,D) is log-canonical by Definition 5.1. IfKX is Q-Cartier, thenD is Q-
Cartier, sinceKX +D ∼ 0. Note that Suppg ∗D = SuppE andg ∗D is an effectiveQ-divisor.
Therefore, the pair(X,0) is log-terminal by Definition 5.1. �

We now briefly review Minimal Model Program for toric varieties. We recommend the
readers interested in MMP to see [KM, §3.7]. In the proof of Theorem 5.5, we explain how
to use this process.
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5.3 (Minimal Model Program for toric varieties). We start withX0 := X a Q-factorial
projective toric variety and aQ-divisor G0 := G on X. The aim is to set up a recursive
procedure which creates intermediateXi andGi . After finitely many steps, we obtain a
final objectsX∗ andG∗. Assume that we already constructedXi andGi with the following
properties:

1. Xi is Q-factorial and projective.
2. Gi is aQ-divisor onXi .
If Gi is nef, then we setX∗ := Xi andG∗ = Gi . Assume now thatGi is not nef. Then

we can take an extremal rayR of NE(Xi) such thatR ·Gi < 0. Thus we have a contraction
morphismϕR : Xi → Yi . If dim Yi < dimXi (in this case, we callϕR a Fano contraction),
then we setX∗ := Xi andG∗ := Gi and stop the process. IfϕR is birational and contracts a
divisor (we call this adivisorial contraction), then we putXi+1 := Yi , Gi+1 := ϕR∗Gi and
repeat this process. In the case whenϕR is birational and an isomorphism in codimension
one (we call this aflipping contraction), then there exists the log-flipψ : Xi ��� X+

i . Here,
a log-flip means anelementary transformation with respect toR (see [Re, (0.1)]). See also
[KMM, §5-2]. Note thatψ is an isomorphism in codimension one. We putXi+1 := X+

i ,
Gi+1 := ψ∗Gi and repeat this process. By counting the Picard number ofXi , divisorial
contractions can occur finitely many times. By [Ma, Proposition 14-2-11], every sequence
of log-flips terminates after finitely many steps. So, this process always terminates and we
obtainX∗ andG∗. We call this process (G-)Minimal Model Program, whereG is a divisor
used in the process.

REMARK 5.4. LetX be aQ-factorial complete toric variety andX → Y be a projective
surjective toric morphism to a complete toric varietyY . Then the above process worksover
Y with minor modifications. For example, we userelative contraction theorem instead of
contraction theorem, and so on. We call this processMinimal Model Program over Y or
relative Minimal Model Program. For the details, see [Ma, Chapter 14] or [KMM, §5-2].

The following is a variant of [Ut, 17.10 Theorem] for toric varieties.

THEOREM 5.5. Let X be a complete toric variety over k and g : Y → X a projective
birational toric morphism from a Q-factorial toric variety Y . Let E be a subset of the g -
exceptional divisors. Then there is a factorization

g : Y ��� X̃ −→ X

with the following properties:
(1) h : Y ��� X̃ is a local isomorphism at every generic point of the divisor that is not

in E ;
(2) h contracts every exceptional divisor in E ;
(3) h−1 : X̃ ��� Y contracts no divisor ;
(4) X̃ is projective over X and Q-factorial.
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Of course, the pair (X̃,0) is log-terminal by Lemma 5.2. In particular, if E is the set of all
the g -exceptional divisors, then f : X̃ → X is small, that is, an isomorphism in codimension
one. We call this a small projective toricQ-factorialization.

PROOF. Let g : Y → X be as above andE = ∑
Ei (resp.D) the complement of the

big torus inY (resp.X). We note that

KY + E = g ∗(KX +D) ∼ 0 .

Apply (KY + ∑
Ei �∈E Ei + ∑

Ej∈E 2Ej)-MMP overX. We repeat the procedure of MMP
briefly for emphasis. Note that divisorial contractions and log-flips always exist overX by
[Re, (0.1)] (see also [KMM, §5-2]). Here, a log-flip means anelementary transformation with
respect to a(KY+∑

Ei �∈E Ei+
∑
Ej∈E 2Ej)-negative extremal ray in the terminology of [Re].

Since the relative Picard numberρ(Y/X) is finite, divisorial contractions can occur finite
times. Note that Fano contractions can not occur, since we apply Minimal Model Program
overX. So it is enough to check the termination of log-flips.

Assume that there exists an infinite sequence of log-flips:

Y0 ��� Y1 ��� · · · ��� Ym ��� · · · .
Let∆ be the fan corresponding toY0. Since the log-flips do not change one-dimensional cones
of∆, there are numbersk < l such thatYk � Yl overX. This is a contradiction because there
is a valuationv such that the discrepancies satisfy

a

(
v, Yk,

∑
Ei �∈E

Ei +
∑
Ej∈E

2Ej

)
< a

(
v, Yl ,

∑
Ei �∈E

Ei +
∑
Ej∈E

2Ej

)

(see [KM, Lemma 3.38]), where
∑
Ei �∈E Ei + ∑

Ej∈E 2Ej means the proper transform of it
onYk or Yl . Therefore, we obtainf : X∗ → X. ThisX∗ has the required properties by [KM,
Lemma 3.39]. So we set̃X := X∗. �

REMARK 5.6. Since we can take a projective toric desingularization asg : Y → X in
Theorem 5.5, there exists at least one small projective toricQ-factorialization forX.

The following is an application of relative Minimal Model Program. The proof is a
standard argument in the higher dimensional birational geometry.

PROPOSITION 5.7. Let X be a complete toric variety and fi : Xi → X be small
projective toric Q-factorialization for i = 1,2. Then X1 and X2 can be obtained from each
other by a finite succession of elementary transformations1.

SKETCH OF THE PROOF. Let H be a relatively ample divisor onX2 overX. Let H ′
be the strict transform ofH onX1. Apply H ′-MMP overX. Sincef1 : X1 → X is small,

1Thiselementary transformation was calledflop in [OP] (see [OP, p. 397 Remark]). However, it might be better
to call it log-canonical flop from the log Minimal Model Theoretic viewpoint (cf. Lemma 5.2). See also [Ut, 6.8
Definition].
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we obtain a sequence of log-flips (elementary transformations with respect toH ′-negative
extremal rays) overX and finally we haveX∗:

X1 ��� · · · ��� X∗

such thatH ∗, the strict transform ofH ′ is nef overX (see 5.3). By applying [KM, Lemma
6.39], we obtain thatX∗ � X2 overX. This means thatX1 andX2 can be obtained from each
other by a finite succession of elementary transformations. �

By Theorem 5.5, we obtain the next lemma, which was already used in the proof of
Theorem 0.1.

LEMMA 5.8. Let X be a projective toric variety over k and D = ∑
j djDj be a Q-

divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every j .
Assume that KX + D is Q-Cartier. Then there exists a projective birational toric morphism
f : X̃ → X such that X̃ has only Q-factorial singularities and KX̃ + D̃ = f ∗(KX + D),
where D̃ = ∑

i d̃iD̃i is a Q-divisor such that D̃i is an irreducible torus invariant divisor and
0 ≤ d̃i ≤ 1 for every i.

By Sumihiro’s equivariant embedding theorem, we can remove the assumption thatX is
complete.

COROLLARY 5.9 (Small projective toricQ-factorialization). Let X be a toric variety
over k. Then there exists a small projective toric morphism f : X̃ → X such that X̃ is
Q-factorial.

PROOF. We can compactifyX by Sumihiro’s theorem [Od, §1.4]. So, this corollary
follows from Theorem 5.5 and Remark 5.6 easily. �

The existence of a small projective toricQ-factorialization implies the following.

COROLLARY 5.10. Let ∆ be a fan. Then there exists a projective simplicial subdivi-
sion ∆̃ of ∆, that is, the morphism X(∆̃) → X(∆) is projective and X(∆̃) is Q-factorial,
such that the set of one-dimensional cones of ∆̃ coincides with that of ∆.

REMARK 5.11. The above corollary seems to follow from the theory of Gelfand-
Kapranov-Zelevinskij decompositions. Fordetails about GKZ-decompositions, see [OP, Sec-
tion 3], in particular, [OP, Corollary 3.8]. We note that [OP] generalized and reformulated
results on [Re].
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