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Abstract. The main purpose of this notes is to supplement the paper by Reid: De-
composition of toric morphisms, which treatdtinimal Model Program (also called Mori’s
Program) on toric varieties. We compute lengths of negative extremal rays of toric varieties.
As an application, a generalization of Fujitajecture for singular toric varieties is obtained.
We also prove that every toric variety has a small projective ©Q+actorialization.

0. Introduction. The main purpose of this notes is to supplement the paper by Reid
[Re]: Decomposition of toric morphisms, which treated Minimal Model Program (also called
Mori’s Program) on toric varieties. We compute lengths of negative extremal rays of toric
varieties. This is an answer to [Ma, Remark-Question 10-3-6] for toric varieties, which is an
easy exercise once we understand [Re]. As a corollary, we obtain a strong version of Fujita’s
conjecture for singular toric varieties. Related topics are [Ft], [Ka], [La] and [Mu, Section
4]. We will work, throughout this paper, over an algebraically closed ftelof arbitrary
characteristic.

The following is the main theorem of this paper, which is a sharp version of [Re, (1.7)
Corollary] (see also [Ma, Theorem 14-1-4]). tédhat [La, (2.1) Proposition] is a special case
of our theorem.

THEOREM 0.1 (Cone Theorem).Let X = X (A) be an n-dimensional (not necessarily
Q-factorial) projective toric variety over k. Let N1(X) denote the R-vector space formed by
1-cycles with real coefficients modulo numerical equivalence. The class of a 1-cycle C is
denoted by [C]. Wkite the cone of curves as

NE(X) =) R=0[C] C Ni(X),

where the summation above runs through all the effective 1-cycles, which is spanned as a
convex cone by a finite number of extremal rays (see[Re, (1.7) Corollary]) Let D = Zj d;D;
be a Q-divisor, where D; isan irreducible torus invariant divisor and 0 < d; < 1 for every
J. Assume that Kx + D is Q-Cartier. Then, for each extremal ray R>o[C], there exists an
(n — 1)-dimensional conet € A suchthat [V (7)] € R-o[C] and

—(Kx+D)-V(r) =n+1.

Moreover, we can choose T suchthat —(Kx + D) -V (r) < nunless X ~ P" and Z,. di <1
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Section 1 is a preliminary section. We recalhge basic results about toric varieties and
fix our notation. Section 2 deals wi@factorial toric Fano varietieswith Picard number one;
a generalization ofveighted projective spaces. The computations of intersection numbers in
this section are crucial for the proof of Theorem 0.1. In Section 3, we quickly review the main
results of [Re] and prove our main theorem: Theorem 0.1. We will discuss an application of
this theorem in Section 4. Professor Kajiwara informed the present author of [Mu] in Kinosaki
after he finished the preliminary version of this paper. The following formulation of Fujita’s
conjecture for toric varieties is due to Muttawho proved it on the assumption thétis
non-singular and is reduced as an application of his vanishing theorem (see [Mu, Theorem
0.3]). Our proof does not rely on vanishing theorems. The following corollary contains [La,
(0.3) Theorem].

COROLLARY 0.2 (Strong version of Fujita’s conjecturel.et X = X(A) be an n-
dimensional (not necessarily Q-factorial) projective toric variety over k and D = Z,,- djD;
be a Q-divisor, where D; isan irreducible torusinvariant divisor and 0 < d; < 1 for every
j. Assumethat Ky + D isQ-Cartier. Let L bealinebundieon X.

(1) Supposethat (L - C) > n for every torus invariant integral curve C C X. Then
Kx + D+ Lisnefunless X ~ P", Zjdj <land L >~ Opn(n).

(2) Supposethat (L - C) > n+ 1for everytorusinvariant integral curve C C X. Then
Kx + D+ LisampleunlessX ~P", D =0and L ~ Op»(n + 1).

Of course, we can recover [Mu, Theorem 0.3] easily if we assumektiigmnhon-singular
andD is reduced. See also Remark 3.3.

In Section 5, we collect several results obtained by Minimal Model Program on toric
varieties. We need Lemma 5.8 for the proof of Theorem 0.1. We prove that every toric variety
has a small projective toriQ-factorialization. For relatedpics, see [OP, Section 3]. After
the present author wrote this paper, the book [Ma] was published. Chapter 14 of [Ma] explains
Mori’s Program on toric varieties very nicelyd corrects some errors in [Re]. The readers
interested in Mori’s Program on toric varieties are recommended to see [Ma].

Part of this paper was obtained in 1999, when the author was a Research Fellow of the
Japan Society for the Promotion of Science. The essential parts were done during his visit to
Alfréd Rényi Institute of Mathematics. He would like to express his gratitude to Professors
Masanori Ishida, Shigefumi Mori, Tadao OdaKeshi Kajiwara and Hiromichi Takagi, who
gave him various advice and useful comments. He would like to thank Doctor Hiroshi Sato,
who gave him various advice and answered his questions. He would also like to thank Doctor
Takeshi Abe, who led him to this problem. Finally, the author thanks the referee, whose
comments made this paper more readable.

1. Preliminaries. In this section, we recall basic notions of toric varieties and fix our
notation. For the proofs, see [Od], [FI], [Re] or [Ma, Chapter 14].

1.1. LetN ~ Z" be a lattice of rank.. A toric variety X (A) is associated to fan, a
correction of convex cones C Nr = N ®z R satisfying the following:
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(i) Each convex cone is a rational polyhedral in the sense that there are finitely
manyvsi, ... ,vs € N C Nr such that

o={rivi+---+rovg; 1 =00 =1 (v, ..., v),
and it is strongly convex in the sense that
oN—o ={0}.

(i) Each facer of a convex cone € A is again an element iA.
(i) The intersection of two cones ia is a face of each cone.

DEFINITION 1.2. Thedimension dimo of o is the dimension of the linear space
R.0 =0 + (—0o) spanned by.

We define the sublattic¥, of N generated (as a subgroup)dy) N as follows:
Ng =0 NN+ (—0c NN).

If o is ak-dimensional simplicial cone, and, ... , v, are the first lattice points along
the edges of, themultiplicity of o is defined to be thendex of the lattice generated by the
{v;} in the latticeN,;

mult(o) := [Ny : Zvy + -+ - + Zvg].
We note thafX (o) is non-singular if and only if mult) = 1.
The following is a well-known fact. See, for example, [Ma, Lemma 14-1-1].

LEMMA 1.3. Atoric variety X (A) is Q-factorial if and only if each coneo € A is
simplicial.

1.4. Thestar of a coner can be defined abstractly as the set of canda A that
containt as a face. Such conesare determined by their imagesN(z) := N/N;, that is,
by

0 =0+ (Nr)r/(Nt)rR C N(T)R.

These cone$s; T < o} form a fan inN(t), which we denote by Star). We setV () =
X (Star(r)). It is well-known thatV () is an(n — k)-dimensional closed toric subvariety of
X (A), where dimr = k. If dim V(z) = 1 (respn — 1), then we callV (z) atorusinvariant
curve (resp.torusinvariant divisor). For the details about the correspondence betwesnd
V(t), see [FI, 3.1 Orbits].

1.5 (Intersection Theory). Assume thatis simplicial. If o, € A spany with
dimy =dimo + dimz, then

Vo) V(r) = mult(o) - mult(z) Viy)
mult(y)

in the Chow group A*(X)q. For the details, see [FI, 5.1 Chow groups]. olfand r are
contained in no cone ok, thenV (o) - V(z) = 0.
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2. Toric Fanovariety. In this section, we investiga@-factorial toric Fano varieties
with Picard number one. The computations in this section are crucial for the proof of the main
theorem: Theorem 0.1. Proposition 2.9 is the main result of this section.

2.1. First, let us recallveighted projective spaces. We adopt toric geometric descrip-
tions. This helps the readers to understanddrem 0.1, although it is not necessary for the
proof of Theorem 0.1.

2.2 (cf. [FI, p. 35]). LetP(d,...,d,+1) be aweighted projective space. To construct
this as a toric variety, we start with the fan whose cones are generated by proper subsets of
{v1, ..., vu41}, Wwhere any: of these vectors are linearly independent, and their sum is zero.
The latticeN is taken to be generated by the vectgrs= (1/d;) -v; forl1<i <n + 1. The
resulting toric variety is in fad® = P(dy, . .. , d,+1). We note that Pi® ~ Z.

Let f; be a unique primitive lattice point in the cokg) with ¢; = u; f; for u; € Z-o.

We putd = gcduids, - .. , up+1dy+1) and definec; = (1/d)u;d; for everyi. Then we
obtain thatP(d1, ... ,dny1) >~ P(c1,...,cnt1) @and) ¢; fi = 0. By changing the order,
we can assume thaf < ¢z < --- < ¢y41. We note that-Kp = > V(f;). Lett be the
(n — 1)-dimensional conéfi, ..., f,—1). Then we have

n+1 c n+1
—Kp- V(@) =) V(i) V(r) = <ZCi)§n+1,

CnC,
i=1 nCn+l i=1

wherec = gcd(cy, ¢p41). We note that

CCi

V() V()=

CnCn+l

For calculations of intersection numbers, we recommend the readers to see 1.5, [Fl, p.100]
and [Re, (2.7)]. We note that ged, ..., ci—1, ¢it1, ..., cuy1) = 1 for everyi, which will

be proved in Proposition 2.3 below. If the equality holds in the above equationgtherl

for everyi. Thus, we obtaiP ~ P".

PrROPOSITION 2.3. Let P(d4, ... ,d,+1) be aweighted projective space. e suppose
that gcd(ds, ... ,dy,+1) = 1. Then, gcddy, ... ,di—1,d;y1, ... ,dy+1) = Llifand only if ¢;
isprimitivein (¢;) N N.

In particular, in 2.2, gcd(cq, ... ,cpr1) = land gcdicy, ..., Ci—1, Citly -+ » Cntl) =
1 for every i by the construction.

PrROOF. We can assume that= 1 without loss of generality.

First, we putgcddo, ... , d,+1) = d and assume thay is primitive. Then we can write
—(1/d)(doe2 + - -+ + dy+1en+1) = aeq for a non-zero integesi. Thusdi, = da. By the
assumption gads, ... , d,+1) = 1, we have thad = 1.

Next, we assume that is not primitive. Then we can write; = afi, where f1 is
a primitive lattice point in(e;) N N anda is an integer witha > 2. We can writef; =
lie1+ -+ -+ lyr1eq41, Wherel; € Z. Thus(aly — 1)ey + alzez + - - - + aly 41,41 = 0. Since
dier+---+dyr1e,41 = 0and geddy, . .. , dy+1) = 1, there exists a non-zero integesuch
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that
bdi=al1 -1
bd; = al; for i > 2,
from which we can easily check that ged, . . . , d,,+1) # 1. O

Let us give some examples, which are easy exercises of the formula in 2.2.
2.4. Ifn = 2,thenc = 1, sincef is primitive and)_ ¢; f; = 0. Therefore, we have

3
1 1 1
—KP'V(T)=—<E Ci)§—+§+1§2=”l

c2c3 \ 2

whenP % P2, So, we have thatKp - V(t) <nif n =2andP % P2 If —Kp - V(1) = 2,
thenP >~ P(1, 1, 2).

2.5 (cf. Proposition 2.9 below). When> 3, the above inequality in 2.4 is not true.
Assume thai > 3. LetP be ann-dimensional weighted projective spaed — 1,/ — 1,
l,...,D),wherel > 2. Then we obtain

2
~Kp- V(D) =n+1-7.

So, we have-Kp - V(t) > n when! > 3. If we makel large, then—Kp - V(1) becomes
close ton + 1.

2.6. LetP=P(1,...,1,[—1,1) beam-dimensional weighted projective space with
[ > 2 andn > 2. Then we have

n+2—2
-2

Thus, if we makd large, then-Kp - V(1) becomes close to zero.

2.7. Next, we trea@-factorial toric Fano varieties with Picard number one. This type
of varieties plays an important role for the analysis of extremal contractions. Here, we adopt
the following description 2.8 for the definition @-factorial toric Fano varieties with Picard
number one. By this, it is easy to see that every extremal contraction contains them in the
fibers (see Proof of the theorem below). Of course, weighted projective spaces are in this
class.

2.8 (Q-factorial toric Fano varieties with Picard number one). Now weNix> Z".
Let {v1, ..., vu41} be a set of primitive vectors such th&lk = ), R-ov;. We definen-
dimensional cones

—Kp-V(r) =

0; = (V1, ..., Vi—1, Vigl, ... , Uny1)

forl <i <n+ 1. LetA be the complete fan generated/ygimensional cones; and their
faces for every. Then we obtain a complete toric varieky = X (A) with Picard number
o(X) = 1. We call it aQ-factorial toric Fano variety with Picard number one. We define
(n — 1)-dimensional coneg; ; = o; No; fori # j. We can write)_; q;v; = 0, where
aj € Z-o, 9cdazy, ... ,an+1) = 1,anda; < az < --- < ay4+1 by changing the order. Then
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we obtain it )
MUIt(iLn,n4-1
0 < V@it1) - V(inns1) = W <1,
n
ai mUII(,U«n n+l)
V)V = . ’
(vi) (Mnn+1) P mult(o,,)
and

n+1

—Kx - V(1) = Y V@) - V(itnnt1)
i=1

1 /N mult
_ S a L
an+1 iz1 mult(oy,)

For the procedure to compute intersection numbers, see 1.5 or [Fl, p. 100k K if
V(nn+1) = n + 1, thena; = 1 for everyi and multw, ,+1) = mult(o,).

PROPOSITION 2.9. If X % P”", then there exists some pair (I, m) such that —Kx -
Vwrm) < n.

PrROOF. Assume the contrary. Then we obtain

<'§ ) mult(zex,n+1)
aj |——————>n
mult(oy)

i=1

—Kx - V(H«k,n—i—l) =
an+1
forl <k <n. Thus
n+1

mult(o
(n+ Dapy1 > Zai > (o)
i=1

————————Nay41
mUIt(l'Lk,n-i-l)

for everyk. Since
mult(oy)
MUlt(zex,n41)
we have that mulby) = mult(u ,+1) for everyk. This implies thawy dividesa,1 for all
k.

EZ>0,

CLAM. a1=---=ap+1 = 1.

PROOF OFCLAIM . If a1 = a,+1, then we obtain the required results. So, we assume
thatay # a,41. It follows from this assumption that, # a,41, Sincewvs is primitive and

> ;aiv; = 0. In this case, we have
n+1
(Za,-> <n.

i=1

—Kx - V(i) =
an+1

We note that
aj

1
< =
an+1 2

fori = 1, 2, which is a contradiction. So we obtain that=--- = a,,11 = 1. O



TORIC VARIETIES FROM MORI THEORETIC VIEWPOINT 557

Inthis case—Kyx - V(u; ;) > nimplies that-Kx - V(u; j) = n+ 1 for every pair(, j).
Then multu, ;) = muli(s;) fori # j. So, we have that mut;) = 1 for everyi (cf. [Fl,
p. 48 Exercise]). Therefore, we obtath~ P”. This is a contradiction. O

REMARK 2.10. The usual definition of Fano varieties is the followirdgis Fano if
—Kx is an ampleQ-Cartier divisor. It is easy to check that the notion@factorial toric
Fano varieties with Picard number one by the usual definition coincides with ours.

3. Proof of themain theorem. In this section, we prove our main theorem: Theorem
0.1.

3.1. Let us recall the main results of [Re] without proofs. For the proofs, see the origi-
nal article [Re] or [Ma, Chapter 14].

Let X = X (A) be aQ-factorial projective toric vaety. Then the cone of curvégE (X)
is spanned by a finite number of extremal rays (see [Ma, Proposition 14-1-2]R bhetan

extremal ray ofV E(X). Then there exists afm — 1)-dimensional cone = (e1, ... , ey—1)
in A such thatR = R>o[V (w)]. SinceA is simplicial,w separates twa-dimensional cones
Ay, andA,1in A, We write A, = (e1,...,ey—1,¢e441) @aNd A, 11 = (e1,...,e,). We

assume that; is a primitive lattice point ine;) N N. We can write

n+1

Z ae; = 0
i=1

with a,+1 = 1; sincee, ande,1 lie on opposite sides ab, it follows thata, > 0. By
reordering the;, we can assume that

a; <0 forl<i<a
ai=0 fora+1<i<§p
ai>0 forp+1<i<n+1;

here 0< o < 8 < n — 1. By [Re], there is a toric morphisgr : X — Y: ¢pOx ~ Oy
and for a curveC C X, pr(C) = pt € Y ifand only if [C] € R. Furthermore, let

A — B
N N
pr: X — Y

be the loci on whiclyg is not an isomorphismd andB are the irreducible toric strata corre-
sponding to the conegy, ... , ey) and(es, ... , ey, €41, ... , en41) respectively; dimt =
n—aoa, dmB = —a andpgr|s : A — B has equi-dimensional fibers, all of whose fibers
areQ-factorial toric Fano varieties of dimensian- 8. See Remark 3.2 below.

We note that the contractiarg corresponds to the operation “removing” all the wails
with [V (w)] € R. For the details, see [Re, §2] and [Ma, 14.1, 14.2]. Wespsit (e1, . .. , eg).
We can check thaP := V(o) C X is aQ-factorial toric Fano variety with Picard number
p(P) = 1. Thisis an easy consequence of the factthat= (e1, ... ,¢j_1,€j41, ..., €n41)
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is ann-dimensional cone im for f +1 < j <n+1land) aje; = 0. We defingn — 1)-
dimensional conesy; := Ay NA;fork #1. Then[V(wy)] € Rfor+1<k <l <n+1.
So, we can see thatz contractsP to a point. This is sufficient for our purpose. For more
detailed discussions abapk|4 : A — B, see [Ma, Corollary 14-2-2].

REMARK 3.2. In[Re, (0.1)], it is stated that any fiber of an extremal contraction is a
weighted projective space. That iB,is a weighted projective space as in the above notation
3.1. However, this is not true, since there exist3-factorial toric Fano variety with Picard
number one that is not a weighted projective spatatsuki explains this error nicely in [Ma,
Remark 14-2-3].

PROOF OF THE THEOREM Sep 1. We assume thak is Q-factorial. LetR =
R-0[C] be an extremal ray. Then there exists an elementary contragfion X — Y,
which corresponds to the extremal rRy TheQ-factorial toric Fano variety?> = V(o) C X
with Picard numbep (P) = 1, which corresponds to the coae= (e1, ... , ¢g), is a fiber of
¢Yrla : A — B (see 3.1). We note that

n+1
Kp=— Y V@),
i=p+1
wherep; = (e1, ..., e, ¢;) for B+1 <i < n+1. Onthe otherhand](p;) = b;V(e;)- V(o)
for someb; € Z. o, since the cones are simplicial (see 1.5 or [FI, p. 100]).
Let 7 be an(n — 1)-dimensional cone containirg. Then we have that

n+1
Kp- V@) == Y V() V(@)
i=p+1
n+1
=—V(f)-< > b,-V(ei)~V(a>)
i=B+1
n+1
=V(7)- <KX + Z Viei) — Z biV(ei)>
every ray i=p+1
n+1
= V(D) <Kx+ D A=b)Vien+ ) v<e,->)
i=p+1 others

IA

(Kx +D)- V(7).

We now note that
Kx+ Y V()~0,
every ray
and D can be written a$_; d;V (ej) with 0 < d; < 1 by the assumption. Also, note that
V() -V(e) > 0ifandonlyifB+1<i <n+1by|[Re, (2.2)] (see also [Re, (2.4), (2.7),
(2.10)]). Choose as in the above argument 2.8, that4sKp - V(7) < n — B + 1, where
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dim P = n — 8. Then, by the above argument and the choicg,of
—(Kx+D)- V@) <—-Kp-V(T)<n-p+1.

Therefore, if the minimal length of & x + D)-negative extremal ray is greater thanthen
B = a = 0. Thus we haveX ~ P”" ande d; < 1 by Proposition 2.9. Hence, we obtain the
required result whelx is Q-factorial.

Sep 2 (cf.[La, (2.4) Lemma]). We assume thais notQ-factorial. Letf : (X, D) —
(X, D) be a projective modification constructed in Lemma 5.8 below. We notexthatP”.
Let R = R>o[C] be a(Kx + D)-negative extremal ray. Tak&(r) € R.o[C] such that
—(Kx + D) - V() is minimal. Also, takeV () on X such thatf,V(f) = V(r). We
can writeV(¥) = Y a; V(%) in NE(X) for q; € R-g such thatV (%) is extremal and
—(Kz + D) - V(i) < n for everyi by Step 1, sinceX is not a projective space. Since
Y iaifxV(%) = V(r) € R, we have thatf,V(7;) € R for everyi. So, there exists some
i such that 0# f.V(%;) = bV(r) in Rforb > 1, since—(Kx + D) - V() is minimal.
Therefore,

1 -
—(Kx+ D) -V(r)= —Z(K;( +D)- V() <n.
Thus we complete the proof. O

REMARK 3.3. In Step 1 of the proof of the theorem, we assumeXhatnon-singular.
Then we obtain tha; = 1 andV (7) - V(¢;) € Z. We note thaV (7) - V(e;) > 0 if and only
if B+1<i<n+1. Itiseasyto checkthat isan(n — B)-dimensional projective space
P"# andKp - V() = —(n — B + 1). Thus, Proposition 4.3, Lemma 4.4 and Propositions
4.5, 4.6 in [Mu] can be checked easily by the above computation (see also [Re, (2.10) (i)]).
Therefore, we can recover [Mu, Section 4] without using vanishing theorems.

4. Applicationsto Fujita’s conjectureon toricvarieties. In this section, we discuss
some applications of Theorem 0.1. Corollary 0.2 follows from Theorem 0.1 directly.

First, we recall some results used in thixson. The following lemma is more or less
well-known to specialists. For the proof, see [Mu, Theorems 3.1, 3.2].

LEMMA 4.1. Let X beaprojectivetoricvariety and D a Q-Cartier divisor on X. Then
the following are equivalent:

(i) D isample (resp. nef).

(i) D ispositive (resp. non-negative) on N E(X) \ {0}.
Moreover, if D is Cartier, then D is nef if and only if Ox (D) is generated by its global
sections.

PROOF OFCOROLLARY 0.2. ltis obvious by Theorem 0.1 and Lemma 4.1. O

COROLLARY 4.2. InCorollary 0.2 (1) assume further that Kx + D is Cartier. Then
Kx + D + L isgenerated by global sectionsunless X ~ P*, D = 0and L >~ Op: (n).

PROOF. Itis obvious by Corollary 0.2 (1) and Lemma 4.1. O



560 0. FUJINO

By combining Corollary 0.2 with Demazur’s theorem: Every ample divisor on a smooth
complete toric variety is very ample ([Od, §2.3 Corollary 2.15]), we obtain the following
result, which is the original version of Fujita’s conjecture on toric varieties.

CoROLLARY 4.3 (Fujita’s conjecture for toric varieties)Let X be a non-singular pro-
jective toric variety over k and L an ample line bundle on X. Then Kx + (n + 1)L is
generated by global sectionsand Ky + (n + 2) L isvery ample, wheren = dim X. Moreover,
if (X,L) % (P*, Op:(1)), then Kx + nL isgenerated by global sectionsand Kx + (n + 1)L
isvery ample.

REMARK 4.4. For very ampleness on singular toric varieties, see [La, 3. Very ample-
ness]. In [La],Q-very ample divisors are defined.

5. Remarkson Minimal Model Program for toricvarieties. In this section, we use
the basic notation in [KM] and [Ut]. For the details about Minimal Model Program (MMP,
for short), see [KM] and [Ut]. Let us first recall the definition of singularities.

DEFINITION 5.1 (cf. [KM, Definition 2.34]). LetX be a normal variety an® a Q-
divisor onX such thatky + D is Q-Cartier. Letg : Y — X be a resolution of singularities
such thayy ;1D UExc(g) is a simple normal crossing divisor, wheyg! D is the strict trans-
form of D and Ex¢g) is the exceptional locus af. Write

Ky = g*(Kx + D) + ZaiEi ,

whereE; is a divisor contained in Sugp; 1D UExc(g)). If a; > —1 for everyi, we say that

the pair(X, D) is log-canonical. If D = 0 anda; > —1 for everyi, we say that X, 0) is
log-terminal.

The following lemma, which may help the readers to understand this section, is well-
known to specialists.

LEMMA 5.2. Let X be a complete toric variety over k and D the complement of the
big torusin X as a reduced divisor. Then the pair (X, D) islog-canonical. Furthermore, if
K x isQ-Cartier, then the pair (X, 0) islog-terminal.

PROOF. Letg : Y — X be atoric resolution of singularities. Then we have
Ky +E=g¢"(Kx + D),

where D (resp.E) is the complement of the big torus i (resp.Y) as a reduced divisor.
Thus, the pairX, D) is log-canonical by Definition 5.1. 1Ky is Q-Cartier, thenD is Q-
Cartier, sinceKx + D ~ 0. Note that Supp* D = SuppE andg* D is an effectiveQ-divisor.
Therefore, the pai¢X, 0) is log-terminal by Definition 5.1. |

We now briefly review Minimal Model Program for toric varieties. We recommend the
readers interested in MMP to see [KM, §3.7]. In the proof of Theorem 5.5, we explain how
to use this process.
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5.3 (Minimal Model Program for toric varieties). We start witly := X a Q-factorial
projective toric variety and &-divisor Go := G on X. The aim is to set up a recursive
procedure which creates intermedidfe and G;. After finitely many steps, we obtain a
final objectsX* andG*. Assume that we already construct&dandG; with the following
properties:

1. X;isQ-factorial and projective.

2. G;isaQ-divisor onX;.

If G; is nef, then we seX* := X; andG* = G;. Assume now tha&; is not nef. Then
we can take an extremal ra&/of N E(X;) such thatR - G; < 0. Thus we have a contraction
morphismgg : X; — Y;. IfdimY; < dimX; (in this case, we calpr a Fano contraction),
then we seX* := X; andG* := G; and stop the process. ¢k is birational and contracts a
divisor (we call this adivisorial contraction), then we putX; 1 := Y;, Gi11 := ¢gr+«G; and
repeat this process. In the case whgnis birational and an isomorphism in codimension
one (we call this dlipping contraction), then there exists the log-flip : X; --» Xjr Here,

a log-flip means amlementary transformation with respect tor (see [Re, (0.1)]). See also
[KMM, 85-2]. Note thaty is an isomorphism in codimension one. We pit1 := Xl.+,

Gi+1 := ¥,G; and repeat this process. By counting the Picard numbé¥; ptiivisorial
contractions can occur finitely many times. By [Ma, Proposition 14-2-11], every sequence
of log-flips terminates after finitely many steps. So, this process always terminates and we
obtainX* andG*. We call this process-)Minimal Model Program, whereG is a divisor

used in the process.

REMARK 5.4. LetX be aQ-factorial complete toric variety andd — Y be a projective
surjective toric morphism to a complete toric variéty Then the above process worbeer
Y with minor modifications. For example, we usgative contraction theorem instead of
contraction theorem, and so on. We call this proddgsimal Model Program over Y or
relative Minimal Model Program. For the details, see [Ma, Chapter 14] or [KMM, §5-2].

The following is a variant of [Ut, 17.10 Theorem] for toric varieties.

THEOREM 5.5. Let X beacompletetoric variety over k and g : Y — X a projective
birational toric morphism from a Q-factorial toric variety Y. Let £ be a subset of the ¢-
exceptional divisors. Then thereis a factorization

g:Y——-)f(—)X

with the following properties:

(1) h:Y --» X isalocal isomorphism at every generic point of the divisor that is not
in&;

(2) h contracts every exceptional divisor in &;

(3) h~1:X --»Y contracts no divisor ;

(4) X isprojective over X and Q-factorial.
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Of course, thepair (X, 0) islog-terminal by Lemma 5.2 In particular, if £ isthe set of all
the g-exceptional divisors, then f : X — X issmall, that is, an isomorphismin codimension
one. We call thisa small projective tori€-factorialization

PROOF. Letyg : Y — X be as above anfi = ) E; (resp.D) the complement of the
big torus inY (resp.X). We note that

Ky +E=g¢"(Kx+ D)~0.

Apply (Ky + > g, q¢ Ei + ZEjeg 2E;)-MMP over X. We repeat the procedure of MMP
briefly for emphasis. Note that divisorial contractions and log-flips always existXousy
[Re, (0.1)] (see also [KMM, 8§5-2]). Here, a log-flip meanssbamentary transfor mation with
respectto &Ky -+ g 4¢ Ei +ZE]_65 2E j)-negative extremal ray in the terminology of [Re].
Since the relative Picard numbg(Y/X) is finite, divisorial contractions can occur finite
times. Note that Fano contractions can not occur, since we apply Minimal Model Program
over X. So itis enough to check the termination of log-flips.

Assume that there exists an infinite sequence of log-flips:

YO**‘)Y]_**‘)"'**‘)Y”, —— e

Let A be the fan corresponding . Since the log-flips do not change one-dimensional cones
of A, there are numbeds < [ such thatt;, ~ Y; over X. This is a contradiction because there
is a valuatiorw such that the discrepancies satisfy

a(v, Yo, Y Ei+ Yy 2Ej> < a(u, Yo, Y Ei+ Y. 2Ej>

Ei g€ E;e& Ei g€ E;e&

(see [KM, Lemma 3.38]), wher®_; ¢ Ei + ZE_/eg 2E; means the proper transform of it
onY; orY;. Therefore, we obtairf : X* — X. This X* has the required properties by [KM,
Lemma 3.39]. So we sef := X*. o

REMARK 5.6. Since we can take a projective toric desingularization a§ — X in
Theorem 5.5, there exists at least one small projective @ifiactorialization forX.

The following is an application of relative Minimal Model Program. The proof is a
standard argument in the higher dimensional birational geometry.

PROPOSITION 5.7. Let X be a complete toric variety and f; : X; — X be small
projective toric Q-factorialization for i = 1, 2. Then X1 and X can be obtained from each
other by a finite succession of elementary transformatiohs

SKETCH OF THE PROOF Let H be a relatively ample divisor oX, over X. Let H’
be the strict transform off on X1. Apply H'-MMP overX. Sincef; : X1 — X is small,

1This elementary transformation was calledlop in [OP] (see [OP, p. 397 Remark]). However, it might be better
to call it log-canonical flop from the log Minimal Model Theoretic viepoint (cf. Lemma 5.2). See also [Ut, 6.8
Definition].
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we obtain a sequence of log-flips (elementary transformations with respéttnegative
extremal rays) ovek and finally we havex*:

X1 - - X¥

such thatH*, the strict transform of’ is nef overX (see 5.3). By applying [KM, Lemma
6.39], we obtain thak™* ~ X, overX. This means thaX1 andX» can be obtained from each
other by a finite succession of elementary transformations. O

By Theorem 5.5, we obtain the next lemma, which was already used in the proof of
Theorem 0.1.

LEMMA 5.8. Let X be a projective toric variety over k and D = Zj d;D; bea Q-
divisor, where D; is an irreducible torus invariant divisor and 0 < d; < 1 for every ;.
Assume that Kx + D is Q-Cartier. Then there exists a projective birational toric morphism
f: X — X suchthat X has only Q-factorial singularitiesand Ky + D = f*(Kx + D),
where D = ", d; D; isa Q-divisor such that D; isan irreducible torusinvariant divisor and
0<d; < 1foreveryi.

By Sumihiro’s equivariant embedding theorem, we can remove the assumptidh ithat
complete.

COROLLARY 5.9 (Small projective toriQ-factorialization). Let X be a toric variety
over k. Then there exists a small projective toric morphism f : X — X such that X is
Q-factorial.

PROOF We can compactifyX by Sumihiro’s theorem [Od, 81.4]. So, this corollary
follows from Theorem 5.5 and Remark 5.6 easily. O

The existence of a small projective toffefactorialization implies the following.

COROLLARY 5.10. Let A be afan. Then there exists a projective simplicial subdivi-
sion A of A, that is, the morphism X(A) — X (A) is projective and X (A) is Q-factorial,
such that the set of one-dimensional cones of A coincides with that of A.

REMARK 5.11. The above corollary seems to follow from the theory of Gelfand-
Kapranov-Zelevinskij decompositions. Fietails about GKZ-decompositions, see [OP, Sec-
tion 3], in particular, [OP, Corollary 3.8]. We note that [OP] generalized and reformulated
results on [Re].
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