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Abstract. We find new examples of harmaonic maps between compact Riemannian
manifolds. A section of a Riemannian fibration is called harmonic if it is harmonic as a map
from the base manifold into the total space. When the fibres are totally geodesic, the Euler-
Lagrange equation for such sections is formulated. In the case of distributions, which are
sections of a Grassmannian bundle, this formula is described in terms of the geometry of base
manifolds. Examples of harmonic distributions are constructed when the base manifolds are
homogeneous spaces and the integral submanifolds are totally geodesic. In particular, we show
all the generalized Hopf-fibrations define harmonic maps into the Grassmannian bundles with
the standard metric.

1. Introduction. Let M andN be complete Riemannian manifolds. AssumeM is
compact. A smooth mapf : M → N is called harmonic if it is a critical point of the
energy functional. IfN has non-positive curvature, then there exists a harmonic map in each
homotopy class. However, ifN has positive curvature, this is no longer true and it always
has been meaningful to find examples of harmonic map between compact manifolds with
nonnegative curvature. In this paper, we produce some new type of harmonic maps between
compact Riemannian manifolds.

We consider the case whenN is a fibre bundle overM andf : M → N is a smooth
map which happens to be a section of this fibration. IfN is a vector bundle overM with a
connection type metric, thenf is a harmonic map if and only if it is a parallel section. We
will consider the case when the fibres are totally geodesic compact submanifolds, and hence
N is also a compact Riemannian manifold. In particular, ifN is a Grassmannian bundle
associated to the orthogonal bundleO(M), then the mapf defines a smooth distribution on
M. A distribution on a Riemannian manifoldM will be called harmonic if it is harmonic
as a map fromM into the total space of the Grassmannian bundle overM. We will find the
Euler-Lagrange equation of a harmonic mapf in a general setting and find a solution to this
equation to construct examples of harmonic distributions.

The definition of harmonic distributions, or harmonic sections in general, is used by
other authors [7], [8], [9], [13] in a similar context but for a different concept. They call a
section harmonic if its vertical energy is stationary with respect to vertical variations. If one
is looking for a better section, this notion of harmonic section makes more sense. A variation
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through sections is necessarily a vertical one and it is easy to see that the horizontal energy
does not change by the vertical variations. Therefore this vertically harmonic section will be
a critical point of energy functional among smooth sections. In our case, however, we are
more interested in the harmonic map itself, and therefore we have to consider both vertical
and horizontal parts.

In [6], it is proved that a unit vector field on the round sphereS3 is a harmonic map
into its unit tangent bundle if and only if it is tangent to the Hopf-fibration. In this case, a
unit vector field is considered as a one-dimensional distribution. This result was improved by
Gluck and Gu [5] that a unit vector field is tangent to the Hopf-fibration if it is stationary only
for the horizontal variations. They also gave an interesting interpretation of such horizontally
harmonic vector fields on the standard 3-sphere that it corresponds to the so-called Beltrami
field in fluid mechanics. This horizontal harmonicity apparently carries more geometry of
manifold, but its geometric meaning is not yet well-understood.

In the following sections, we will consider sections of a fibre bundle with totally geodesic
fibres, and find a formula of tension fields for sections as maps into the total space. In the
case of Grassmannian bundles, this tension field will be written in terms of geometry of the
base manifold. In the last section we will provide examples of harmonic distributions on
Riemannian manifolds. The only known example on which the horizontal distribution is
completely understood is the round sphereS3 we mentioned above. When a vector field is
harmonic onS3, it is invariant underSU(2)-action and its integral curves are necessarily
geodesics. Since it is extremely difficult to find a harmonic map for general Riemannian
manifolds, we follow this line of reasoning, and study invariant distributions on homogeneous
spaces with totally geodesic integral submanifolds. There is a standard way of constructing
such manifolds. In fact, for compact Lie groupsK ⊂ H ⊂ G with suitable metric, the natural
fibration

π : M = G/K → G/H

has the totally geodesic fibreH/K. It is known that some homogeneous Einstein spaces can
be constructed in this way, and in particular this construction includes distributions tangent to
fibres in all of the generalized Hopf-fibrations. We will be able to show that all the generalized
Hopf-fibrations define harmonic distributions in our sense.

We refer to [2], [3], [12] for basic tools and more detailed description of harmonic maps
between Riemannian manifolds.

2. Harmonicity of sections. In this section, we will describe the Euler-Lagrange
equation for the harmonic map, which is a section of a Riemannian fibration with totally
geodesic fibres.

Let M andN be complete Riemannian manifolds. AssumeM is compact. A smooth
mapπ : N → M is called a Riemannian submersion ifπ is a submersion and for each
x ∈ N , the horizontal subspace ofTxN (orthogonal to the fibre overπ(x) in N) is mapped
isometrically bydπ |x to Tπ(x)M. We denote byH andV the horizontal and the vertical
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distribution, respectively. Then we can decompose the tangent bundleT N = T NH ⊕ T NV ,
where we denote byT NH andT NV the horizontal and the vertical subbundle, respectively.

We now consider a Riemannian submersion with totally geodesic fibreF , that is, for
eachx in N with p = π(x), π−1(p) = Fx is a totally geodesic submanifold ofN. Then
all the fibres are isometric to each other andπ is a Riemannian fibration [1]. Furthermore,
the horizontal distribution defines a connection on this fibre bundle. Letf : M → N be a
smooth map which happens to be a section. The sectionf is a harmonic map if and only if
it is a critical point of the energy functionalE(f ) = ∫

M
e(f )dv, wheree(f ) = (1/2)‖df ‖2

is the energy density off . The differential mapdf is a differential 1-form with values in the
pull-back bundlef −1(T N) and hence a section ofT ∗M ⊗ f −1(T N). Decomposef −1(T N)

asf −1(T NH) ⊕ f −1(T NV ). We then havedf = dfH + df V , wheredfH ∈ Γ (T ∗M ⊗
f −1(T NH)), df V ∈ Γ (T ∗M ⊗f −1(T NV )), andΓ (·) denotes the set of all smooth sections
of the corresponding bundle. Then the energyE(f ) is given by

E(f ) = EH(f ) + EV (f ) = 1

2

∫
M

‖dfH‖2
dv + 1

2

∫
M

‖df V‖2
dv .

Sincef is a section of a Riemannian fibration, the linear mapdfH
p : TpM → (TxN)H is an

isometry for eachp = π(x), and hence we haveEH(f ) = (m/2)Vol(M) (m = dim(M)).
In the case of a vector bundle with metric connection, it is easy to see that a section

is harmonic if and only if it is parallel. In fact, for a sectionf : M → N, consider a
variation off given byft (p) = tf (p), p ∈ M. For an orthonormal basis{ei} of TpM,

df (ei) = ẽi + ∇ei f, whereẽi is the horizontal lift ofei . Hencedft (ei) = ẽi + t∇ei f, and

E(ft ) = 1

2

∫
M

‖dft‖2dv = 1

2

(
mVol(M) + t2

∫
M

‖∇ei f ‖2dv

)
.

Therefore(d/dt)|t=1E(ft ) = 0 implies∇f ≡ 0 (In the case of tangent bundle, see [9].).
Forf : M → N we now consider the Euler-Lagrange equation of the energy functional.

Let ∇ and ∇̃ be the Levi-Civita connection onM and N , respectively, and let̄∇ be the
induced connection on the pull-back bundlef −1(T N). Then we havē∇(df ) ∈ Γ ((S2M ⊗
f −1(T NH)) ⊕ (S2M ⊗ f −1(T NV ))), whereS2M is the space of symmetric covariant 2-
tensors. Taking trace of the second fundamental form gives the tension field,

τ (f ) = −∇̄∗(df ) = Tr(∇̄df ) ∈ Γ (f −1(T N)) .

Thenf : M → N is a harmonic map if and only ifτ (f ) = 0. In fact, for a vector fieldV
alongf , letΣ : (−ε, ε)×M → N be a variation such thatΣ(0, p) = f (p), (∂Σ/∂t)(0, p) =
V (p), andft (p) := Σ(t, p). Then

d

dt

∣∣∣∣
t=0

E(ft ) = −
∫

M

〈V, τ(f )〉Ndv ,

where〈·, ·〉N denotes the Riemannian metric onN . We decomposeτ (f ) asτ (f ) = τH(f )+
τV (f ), whereτH(f ) ∈ Γ (f −1(T NH)) andτV (f ) ∈ Γ (f −1(T NV )). Then we have
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τH(f ) = (Tr∇̄dfH)H + (Tr∇̄df V )H ,

τV (f ) = (Tr∇̄dfH)V + (Tr∇̄df V )V .

LEMMA 1. For a smooth section f : M → N, we have

(Tr∇̄dfH)V = 0 , (Tr∇̄df V )H = (Tr∇̄dfH)H .

PROOF. For a vector fieldX on M let X̃ denote the basic vector field which is a hori-
zontal lift of X. Then for a local orthonormal frame field{ei} of M, dfH(ei) = ẽi and

Tr∇̄dfH =
∑

i

(∇̄ei df
H)(ei) =

∑
i

(∇̄ei ẽi − (̃∇ei ei)) .

Since∇̄ei ẽi = ∇̃ẽi
ẽi + ∇̃dfV (ei )

ẽi and∇̃ẽi
ẽi = (̃∇ei ei ) by O’Neill’s formula ([10]), we have

Tr∇̄dfH = ∑
i ∇̃dfV (ei )

ẽi . Since fibres are totally geodesic, we have∇̃dfV (ei )
ẽi ∈ H, and

hence
(Tr∇̄dfH)V = 0 , (Tr∇̄dfH)H =

∑
i

∇̃dfV (ei )
ẽi .

For the vertical component, we locally extenddf V (ei), a vector field alongf , to a
vertical vector field onN , which we also denote bydf V (ei). We then have

Tr∇̄df V =
∑

i

(∇̄ei df
V )(ei) =

∑
i

(∇̄ei df
V (ei) − df V (∇ei ei ))

=
∑

i

(∇̃ẽi
df V (ei) + ∇̃dfV (ei )

df V (ei) − df V (∇ei ei)) ,

wheredf V (∇ei ei ) and∇̃dfV (ei )
df V (ei) are inV because the fibres are totally geodesic. Fur-

thermore, sincẽei is a basic vector field anddf V (ei) is vertical, we have[ẽi , df
V (ei)] ∈ V .

Therefore
(∇̄ei df

V (ei))
H = (∇̃ẽi

df V (ei))
H = ∇̃dfV (ei )

ẽi .

Thus we conclude that(Tr∇̄df V )H = ∑
i ∇̃dfV (ei )

ẽi = (Tr∇̄dfH)H. �

Denote byH∇̄ andV ∇̄ the horizontal and the vertical component of∇̄, respectively.
Since Tr(H∇̄dfH) = (Tr∇̄dfH)H and Tr(V ∇̄df V ) = (Tr∇̄df V )V , we use the rough Lapla-
cian notation of the induced connections.

DEFINITION 1. Forf : M → N as above, we denote

�H(f ) = H∇̄∗
(dfH) = −Tr(H∇̄dfH) ,

�V (f ) = V ∇̄∗
(df V ) = −Tr(V ∇̄df V ) .

Then Lemma 1 implies the following theorem.
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THEOREM 1. For f : M → N as above, we have

τ (f ) = τH(f ) + τV (f ) = −(2�H(f ) + �V (f )) .

This result is intriguing in the sense that the vertical tension coincides with the vertical
Laplacian, but the horizontal one has the factor 2. Nonetheless,f is harmonic if and only if it
is harmonic with respect to both Laplacians.

SinceE(f ) = EH(f )+EV(f ) andEH(f ) is constant as long asf is a section, we see
thatτV (f ) = 0 if and only ifEV (f ) is stationary with respect to vertical variations (compare
[13], Theorem 2). The horizontal tension field alongf is a horizontal lift of a vector field on
M, and it apparently carries more geometry ofM than the vertical one. In the remainder of
this section we will try to find a more geometric description of the horizontal tension fields.

Let π̄ : P → M be the principalG-bundle associated toN , F the fibre space on which
G acts, andϕ : P ×F → N the principal map. Letω andΩ be the corresponding connection
form and the curvature form onP. For p ∈ M, choose(u, ξ) ∈ P × F such thatϕ(u, ξ) =
f (p). We then fixξ and consider the mapϕξ : P → N defined byϕξ (α) = ϕ(α, ξ). The
connection onN is associated to that ofP , and therefore the horizontal space ofN is, by
definition, the image of the horizontal space ofP by ϕξ . Let ēi be the horizontal vector
field onP such thatdϕξ (ēi) = ẽi . Then by the structure equation we haveωu([ēi , ēj ]) =
−Ωu(ēi , ēj ), and hence

[ẽi , ẽj ]V = dϕξ ([ēi , ēj ]V ) = −dϕξ ((ωu|V )−1(Ωu(ēi, ēj ))) .

We use this fact to prove the following proposition.

PROPOSITION 1. Let π : N → M be a Riemannian submersion with totally geodesic
fibres and f : M → N a section. Then

τH(f ) =
∑
i,j

〈dϕξ ((ωu|V )−1(Ωu(ēi , ēj ))), df
V (ei)〉N ẽj ,

where {ẽi} and {ēi} are the horizontal lifts to P and N of an orthonormal frame field {ei} of
M .

PROOF. For a local orthonormal frame field{ei} onM, by Lemma 1, we have

�H(f ) = −
∑

i

(∇̃ẽi
df V (ei))

H = −
∑
i,j

〈∇̃ẽi
df V (ei), ẽj 〉N ẽj

=
∑
i,j

〈df V (ei), ∇̃ẽi
ẽj 〉N ẽj .

Since∇̃ẽi
ẽj = (∇̃ẽi

ẽj )
H + Aẽi

ẽj , whereA is the O’Neill tensor (see [10]) andAẽi
ẽj =

(1/2)[ẽi, ẽj ]V for horizontal vector fields, we have

�H(f ) = 1

2

∑
i,j

〈[ẽi , ẽj ]V , df V (ei)〉N ẽj .

Then the proposition follows from Theorem 1 and the above remark. �
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3. Distributions on Riemannian manifolds. In this section, we apply the results in
Section 2 to smooth distributions on Riemannian manifolds. We note that in general it is not
very difficult to find an equation for harmonic maps between two Riemannian manifolds as
long as Riemannian metrics are given. In fact, an explicit formula for the tension field of
distributions in terms of local coordinates appears in [14] (This result has not been published
to the best of author’s knowledge), and the vertical component was also studied in [13]. For
the sake of completeness, we will show how they can be derived from the general formula we
found in the previous section. We also need the equation in a specific form so that we can find
solutions in the next section.

A k-dimensional distribution on ann-dimensional manifoldM is a smooth section of the
Grassmannian bundleGk(M) of k-dimensional planes in tangent spaces ofM. Throughout
this section we use the index convention,

1 ≤ i, j ≤ k , k + 1 ≤ α, β ≤ n , 1 ≤ A,B ≤ n .

The Grassmannian bundleGk(M) is associated to the orthogonal bundleO(M), which is a
principal O(n)-bundle, and has the fibreGk(Rn) = O(n)/(O(k) × O(n − k))(= G/K).
An invariant metric onGk(Rn) is determined by an AdG(K)-invariant inner product on a
subspacem ⊂ o(n), which is an AdG(K)-invariant complement to(o(k) × o(n − k)) and is
identified withT(eK)Gk(Rn) by the projection map. LetEA

B denote the(n × n)-matrix such
that(A,B)-th entry is 1 and others are all zero. Then for the standard metric onGk(Rn), we
takem(Rn) as a subspace with the orthonormal basis{ei

α := Eα
i − Ei

α}.
Consider the principal mapϕ : O(M) × Gk(Rn) → Gk(M). Let ξ be the origin of

Gk(Rn), i.e., the cosetO(k) × O(n − k). Thenϕξ : O(M) → Gk(M) is nothing but the
projectionO(TpM) → Gk(TpM) on fibre over eachp ∈ M, anddϕξ : o(TpM) → m(TpM)

is the corresponding projection in Lie algebra.
Let D be ak-dimensional distribution onM, which we also denote by a mapf : M →

Gk(M). Denote byD⊥ the orthogonal complement toD. Choose a local orthonormal frame
field {eA} on an open subsetU of M such that

ei ∈ D , 1 ≤ i ≤ k , eα ∈ D⊥ , k + 1 ≤ α ≤ n .

Then this frame field defines a local sectionσ : U → O(U) such thatϕξ ◦ σ = f |U .
With respect to this frame field, we can locally trivializeO(U) asU × O(n), and through
ϕξ we obtain a local trivializationU × Gk(Rn) of Gk(U). Then the distributionD appears
as the origin inGk(Rn). Let ω andΩ be the connection form and curvature form of this
principal bundle. Forp ∈ M let u ∈ O(M) denote the orthonormal basis{eA} of TpM. Then
for v ∈ TpM, dσV (v) = (ωu|V )−1(ωu(dσ(v)) is a skew-symmetric matrix whose(A,B)-
th entry is given by〈∇veB, eA〉, where〈·, ·〉 is the metric ofM. Note that with respect to
our trivialization,(ωu|V ) is simply the identification of the tangent space ofO(n) to its Lie
algebra. We now improve Proposition 1 to have a more explicit formula for the horizontal
tension field of a distribution. We denote by(·)� and(·)⊥ the projections ontoD andD⊥,
respectively.
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PROPOSITION 2. For a distribution D on M, let {eA} be a local orthonormal frame
field such that ei ∈ D. Then

τH(D) =
∑
i,A

R((∇eAei)
⊥, ei )eA ,

where R is the curvature tensor of M, and τH(D) is identified with its image on M by the
isometry dfH : TpM → Tf (p)N

H.

PROOF. Since dϕξ : o(TpM) → m(TpM) is a projection such thatdf V (v) =
dϕξ (dσV (v)), we have

df V (v) =
∑
i,α

〈∇vei, eα〉Eα
i + 〈∇veα, ei〉Ei

α =
∑
i,α

〈∇vei , eα〉ei
α .

Furthermore, for the horizontal lift{ēA} of {eA} in O(M), we see that(ωu|V )−1Ωu(ēA, ēB)

is the skew-symmetric endomorphismR(eA, eB) : TpM → TpM, and hence

dϕξ ((ωu|V )−1Ωu(ēA, ēB)) =
∑
i,α

〈R(eA, eB)ei, eα〉ei
α .

Then by Proposition 1 and the fact that{ei
α} is an orthonormal basis ofTpM, which is identi-

fied withm, we have

τH(D) =
∑
i,A,B

〈(R(eA, eB)ei)
⊥, (∇eB ei)

⊥〉eA .

Then the proposition follows from the symmetry of the curvature tensor. �

As an example, we consider the case whenM = Sn is a round sphere with constant
curvatureK > 0 andD is a unit vector fieldξ . Then the curvature tensorR is given by
R(X, Y )Z = K(〈X,Z〉Y − 〈Y,Z〉X). Choose an orthonormal frame{eA}, i = 1, . . . , n.
Since〈∇vξ, ξ〉 = 0 for any vectorv, the horizontal tension field ofξ is

τH(ξ) =
n∑

A=1

R((∇eAξ)⊥, ξ)eA

= K

n∑
A=1

(〈∇eAξ, eA〉ξ − 〈ξ, eA〉∇eAξ)

= K((div ξ)ξ − ∇ξ ξ) ,

where divξ denotes the divergence of the vector fieldξ . Thereforeξ is horizontally harmonic
if and only if divξ = ∇ξ ξ = 0, which means the flow is volume preserving and the integral
curves are geodesics.

The vertical tension field for distributions has been studied extensively [13] and we will
only mention a few facts. From the equation fordf V (v) in the above proof, it is now easy to
see that for anyX ∈ TpM, we have (compare [13], Theorem 3)

df V (v)(X) = Pv(X) + Qv(X) := (∇vX
�)⊥ + (∇vX

⊥)� ,
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wherePv(X) andQv(X) are independent of any extension ofX to a vector field and hence
df V (v) is a tensor. MoreoverPv|D ∈ Hom(D,D⊥) andQv |D⊥ ∈ Hom(D⊥,D) satisfy
Pv |D = −(Qv |D⊥)∗.

In the case of Grassmannian bundles, the induced vertical connectionV ∇̄ applied to
the vertical vector fielddf V (eA) in fact coincides with the covariant derivative of the local
tensor fielddf V (eA). SinceτV (D) ∈ m(TpM), by the same argument asdf V (v), we can
decomposeτV (D). Therefore

τV (D) = −V ∇̄∗(df V ) = −∇∗(df V ) := P + Q,

whereP |D ∈ Hom(D,D⊥) andQ|D⊥ = −(P |D)∗ ∈ Hom(D⊥,D). It is then an easy
computation of tensor derivation to see the following.

PROPOSITION 3. Suppose that we identify m(TpM) as the space of skew-symmetric
operators on TpM, which can be decomposed as Hom(D,D⊥) ⊕ Hom(D⊥,D). Then for
each v ∈ D, we have

τV (D)(v) = P |D(v)

=
∑
A

((∇eA(∇eAv)⊥)⊥ − (∇eA(∇eAv)�)⊥ − (∇∇eA
eAv)⊥) ,

and τV (D)|D⊥ = −(τV (D)|D)∗.

An immediate consequence of our discussion above is that we can obtain the tension field
of the complementary distributionD⊥ by simply reordering the indices, and henceτ (D) =
τ (D⊥).

4. Examples of harmonic distributions. In this section, we will find examples of
Riemannian manifolds with harmonic distributions.

In [6], it is shown that on the 3-dimensional unit sphere, a smooth unit vector field is
a harmonic map into the unit tangent bundle with the Sasaki metric if and only if it is the
tangent vector field of the Hopf-fibration. A crucial fact about the Hopf vector field is that it
is invariant underSU(n + 1) action onS2n+1 = SU(n + 1)/SU(n) and the integral curves
are geodesics. Here we note that in this case the metric onSU(n + 1) is not the standard bi-
invariant metric. In general,an irreducible symmetric spaceG/K presented by a symmetric
pair (G,K) does not carry anyG-invariant distribution.

Let M = G/K be a reductive homogeneous space with transitive action by a Lie group
G. Let g be the Lie algebra ofG andk ⊂ g the corresponding subalgebra forK, and choose
an AdG(K)-invariant complementm to k in g. A distributionD is calledG-invariant if
dγ (Dp) = Dγ (p) for eachp ∈ M andγ ∈ G. It is then easy to see that by the isomorphism
m → T(eK)M there is a one-to-one correspondence between AdG(K)-invariant subspaces of
m andG-invariant distributions onM.

In order to produce examples with harmonic distributions, we now recall a standard
technique to construct homogeneous Riemannian fibration with totally geodesic fibres (see
[1]).
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Let G be a compact Lie group,H,K two compact subgroups ofG with K ⊂ H. Then
we have the natural fibration

π : M = G/K → G/H

with fibre H/K. We further assume thatG/H is an irreducible symmetric space with the
symmetric pair(G,H). Let k ⊂ h ⊂ g be the Lie algebras ofK, H , andG, respectively. We
choose an AdG(H)-invariant complementn to h in g, and an AdG(K)-invariant complement
p to k in h. Thenm := p ⊕ n is an AdG(K)-invariant complement tok in g, and we have
[h, n] ⊂ n, [k, p] ⊂ p. Furthermore, since(G,H) is a symmetric pair we have[n, n] ⊂ h. An
AdG(H)-invariant scalar product onn defines aG-invariant Riemannian metričg on G/H,

and an AdG(K)-invariant scalar product onp defines aH -invariant Riemannian metriĉg on
H/K. Finally, the orthogonal direct sum for these scalar products onm = p ⊕ n defines
a G-invariant Riemannian metricg on G/K. Then we see that the mapπ is a Riemannian
submersion from(G/K, g ) to (G/H, ǧ ) with totally geodesic fibres isometric to(H/K, ĝ ).

For example, letG = SU(n + 1),H = S(U(1) × U(n)) andK = SU(n). Then we
see that the corresponding fibration isπ : S2n+1 → CP n, which is called the Hopf-fibration.
Notice that the standardSU(n + 1)-invariant metricg on S2n+1 is not the round metric.
However by re-scaling the metricg along the fibre we can produce the standard round sphere,
and obtain anSU(n + 1)-invariant distributionD tangent to the Hopf-fibration. In general,
for the homogeneous spacesM = G/K as above, we need to changethe bi-invariant metric
onG in order to obtain interesting metrics onM. We show that this type of modification can
be done in a general setting.

Let 〈〈·, ·〉〉 be a bi-invariant metric onG and let〈·, ·〉 a new left invariant metric defined
by re-scaling〈〈·, ·〉〉 onh such that〈·, ·〉|� = λ〈〈·, ·〉〉 for a constantλ > 0. It is easy to see that
this new metric onG is still H -biinvariant, and hence its restriction onm is AdG(K)-invariant.
Therefore, it determines an invariant metric onM = G/K that we also denote by〈·, ·〉. The
projectionπ : G → M is a Riemannian submersion. By choosingλ > 0, we produce a
family of new metrics onM, and it is known that some homogeneous Einstein manifolds can
be produced in this way [1]. In particular, this construction includes all of the generalized
Hopf-fibrations. Since this new metric onG is not bi-invariant andM is not necessarily a
normal homogeneous space, it takes some effort to understand the geometry ofM in terms of
the algebraic structures.

Let M = G/K be a homogeneous space with the metric〈·, ·〉 defined as above. The
compact Lie groupG acts onM by isometries and hence also acts on the Grassmannian
bundleGk(M), k = dim(p), with the standard metric as in Section 3. The AdG(K)-invariant
spacep generates aG-invariant distribution onM, which we denote byD, and henceD⊥
is generated byn. SinceD is G-invariant, so is the tension vector fieldτ (D) on Gk(M).
Since theG-action onGk(M) clearly preserves the horizontal and vertical spaces, we see
that τV (D) and τH(D) are bothG-invariant. Moreover,τH(D) can be identified with its
image onM by the isometryT Gk(M)H → T M, and hence it is aG-invariant vector field on
M. Therefore there exists a corresponding AdG(K)-invariant element inm, which we again
denote byτH(D). We will not distinguish these vector fields because no confusion will be
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caused. We claim that forM = G/K with a metric modified by anyλ > 0, this distribution
D defines a harmonic map fromM to Gk(M).

LEMMA 2. Let G be a compact Lie group with the modified metric 〈·, ·〉 and the Levi-
Civita connection ∇̄. We then have the following facts about the covariant derivatives of left
invariant vector fields in m.

(1) If X, Y ∈ p, or X, Y ∈ n, then ∇̄XY = (1/2)[X,Y ].
(2) If X ∈ p and Y ∈ n, then ∇̄XY and ∇̄Y X are in n.

PROOF. Since〈·, ·〉 is AdG(H)-invariant, for anyV , W ∈ g andX ∈ h, we have

〈[V,X],W 〉 = 〈V, [X,W ]〉 .

For anyX, Y ∈ p = h ∩ m andV ∈ g, by the Koszul formula, we have

2〈∇̄XY, V 〉 = −〈X, [Y, V ]〉 − 〈Y, [X,V ]〉 + 〈[X,Y ], V 〉
= 〈[X,Y ], V 〉 .

Similarly, for anyX, Y , V ∈ n, since[n, n] ⊂ h andn ⊥ h, the Koszul formula gives

2〈∇̄XY, V 〉 = −〈X, [Y, V ]〉 − 〈Y, [X,V ]〉 + 〈[X,Y ], V 〉 = 0 .

Therefore, we havē∇XY ∈ h for X, Y ∈ n and it is easy to see again by the AdG(H)-
invariance of the metric that 2〈∇̄XY, V 〉 = 〈[X,Y ], V 〉 for V ∈ h.

Since the covariant derivative of an invariant vector field with respect to an invariant
vector field is again invariant, it is also easy to verify the statement (2) with the Koszul formula
and the fact that[h, h] ⊂ h andn ⊥ h. �

COROLLARY 1. For X ∈ p or X ∈ n, the one-parameter subgroup α(t) = exptX is
a horizontal geodesic with respect to the Riemannian submersion π : G → M . Furthermore,
each element X ∈ p generates a horizontal Killing vector field on G.

PROOF. For X ∈ p or X ∈ n, since∇̄XX = (1/2)[X,X] = 0, the one-parameter
subgroupα(t) = exptX is a geodesic.

A left invariant vector fieldX ∈ m is certainly a horizontal vector field, and its flow
is given by the right multiplication byα(t) = exptX. Since the modified metric is still
H -biinvariant, this flow is an isometry as long asX is in h. �

Since the one-parameter subgroupα(t) = exptX, X ∈ p or n, is a horizontal geodesic
with respect to the Riemannian submersionπ : G → M, its imageπ ◦ α(t) is a geodesic in
M.

We now take a small neighborhoodU of 0 in m, and letΣ = expU be then-dimensional
submanifold near the identity inG, wheren = dim(m) = dim(M). Let {ēA} ⊂ m, 1 ≤ A ≤
n, be an orthonormal frame field alongΣ such that{ēi} ⊂ p, 1 ≤ i ≤ k and {ēα} ⊂ n,
k + 1 ≤ α ≤ n. Note that we are using the same index convention as in Section 3,
and this leftG-invariant frame field is not necessarily tangent toΣ but horizontal with re-
spect to the Riemannian submersion. Denote by{eA} the image of{ēA} by the projection
π : G → M. It is then clear that{eA} is an orthonormal frame ofM near the point(eK) such
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thatdπ(∇̄ēA ēB) = ∇eAeB , where∇ is the Levi-Civita connection onM. All these covariant
derivatives of invariant vector fields inm have invariant horizontal components inG, which
correspond to covariant derivatives inM via the projection. We plan to carry out the compu-
tation of covariant derivatives inM in terms of horizontal invariant fields inG up to second
order.

PROPOSITION 4. For M and D as above, we have τV (D) = 0.

PROOF. SinceτV (D) is G-invariant, it suffices to show this vector vanishes at the point
(eK). We take a frame field{eA} as above. Since∇eAeA = 0, by Proposition 3, for anyei we
have

τV (D)(ei) =
∑
A

((∇eA(∇eAei)
⊥)⊥ − (∇eA(∇eAei)

�)⊥) ,

whereτV (D) is identified as an element in Hom(D,D⊥) ⊕ Hom(D⊥,D).
For the first term in the right hand side of the above equation, we observe that the fibres

are totally geodesic and hence for allej ∈ D we have(∇ej ei )
⊥ = 0, where(·)⊥ denotes as

before the projection ontoD⊥ = dπ(n). Moreover, by Lemma 2 (2), we havē∇ēα ēi ∈ n, and
hence(∇eα ei)

⊥ = ∇eα ei is the image of an element inn. Since[n, n] ⊂ h, we now see that
(∇eα (∇eα ei)

⊥)⊥ = 0.
For the second term, again by Lemma 2 (2), we see that(∇eα ei)

� = 0. Since[p, p] ⊂ h,
we have(∇̄ēj ēi )

� ∈ p and hence for the same reason(∇ej (∇ej ei)
�)⊥ = 0. Therefore

τV (D)|D = 0, and sinceτV (D)|D⊥ = −(τV (D)|D)∗, we can now conclude thatD is verti-
cally harmonic. �

By Lemma 2, we see that the covariant derivative∇̄XY coincides with the Lie bracket as
long asX andY are both inp or n. For other cases, although it is more complicated, we could
still carry out the computation through algebraic operations and it would be possible to write
down the curvature ofG or M. But, for this type of modified metric onM, we already have a
nice formula for the curvature ofM.

LEMMA 3 ([11], Lemma 3.6). Let A : g → g be a linear transformation such that
〈X,Y 〉 := 〈〈AX,Y 〉〉. Then the curvature of the invariant metric 〈·, ·〉 on the compact homo-
geneous space M = G/K is given by

〈R(X, Y )Z,W 〉 =1

2
{〈〈B−(X, Y ), [Z,W ]〉〉 + 〈〈[X,Y ], B−(Z,W)〉〉}

+ 1

4
{〈[X,W ], [Y,Z]�〉 − 〈[X,Z], [Y,Z]�〉 − 2〈[X,Y ], [Z,W ]�〉}

+ {〈〈B+(X,W),A−1B+(Y,Z)〉〉 − 〈〈B+(X,Z),A−1B+(Y,W)〉〉} ,

where B+(X, Y ) = (1/2)([X,AY ]+[Y,AX]), B−(X, Y ) = (1/2)([AX,Y ]+[X,AY ]), and
[·, ·]� denotes the m-component.
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Note that in the above formula for the curvature ofG/K the second line with them-
components accounts for the O’Neill’s term of the Riemannian submersionG → G/K, and
all the computations are done ing with invariant vector fields inm.

COROLLARY 2. For all W ∈ D⊥, we have 〈τH(D),W 〉 = 0. In particular, τH(D) ∈
p.

PROOF. Let {eA} be the same local orthonormal frame field ofM as in Proposition
4. Since the fibres are totally geodesic, for allei , ej ∈ D we have(∇ej ei)

⊥ = 0. Thus by
Proposition 2,

τH(D) =
∑
i,A

R((∇eAei)
⊥, ei)eA

=
∑
i,β

R((∇eβ ei)
⊥, ei)eβ

=
∑
α,β

R((∇eβ eα)�, eα)eβ = τH(D⊥) .

The Riemannian metric onM = G/K is determined by〈·, ·〉 with 〈·, ·〉|� = λ〈〈·, ·〉〉,
that is,A|� = λ · Id andA|� = Id. For anyX ∈ p, Y, Z,W ∈ n, we obtain

B−(X, Y ) = 1

2
([AX,Y ] + [X,AY ]) = 1

2
(λ + 1)[X,Y ] ,

and similarly we haveB−(Z,W) = [Z,W ], B+(X,W) = (1/2)(1 − λ)[X,W ], B+(Y,W)

= B+(Y,Z) = 0. Since, [n, n] ⊂ h = k ⊕ p, [h, n] ⊂ n and [p, n] ⊂ n, by
Lemma 3, we have

〈R(X, Y )Z,W 〉 =1

4
(3 + λ)〈〈[X,Y ], [Z,W ]〉〉

+ 1

4
{〈[X,W ], [Y,Z]�〉 − 〈[X,Z], [Y,W ]�〉

− 2〈[X,Y ], [Z,W ]�〉} = 0 .

PutX = (∇eβ eα)�, Y = eα, Z = eβ. Then we haveτH(D) ∈ D. SinceτH is aG-invariant

vector field tangent toD, we conclude thatτH(D) is an AdG(K)-invariant element inp by
the canonical identification ofTpM with m. �

By the above corollary, we see that then-component ofτH(D) ∈ m vanishes. However,
thep-component can not be controlled in this way and we need a direct approach.

PROPOSITION 5. For M and D as above, we have τH(D) = 0.

PROOF. It suffices to show thatτH(D) = 0 at (eK). Let f : M → Gk(M) be a
section given by the distributionD, and letΣ : (−ε, ε) × M → Gk(M) be a horizon-
tal variation such thatΣ(0, p) = f (p), (∂Σ/∂t)(0, p) = τH(D), andft (p) := Σ(t, p).
Along f the horizontal vector fieldτH(f ) is a horizontal lift of its image onM, which we do
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not distinguish. Denote byϕt the flow of τH(f ) on M, i.e., ϕt = π ◦ ft . SinceτH(f ) is
lifted to an AdG(K)-invariant vector fieldτH(f ) ∈ p on G with respect to the Riemannian
submersionG → G/K, by Corollary 1, it is a Killing field onG. Furthermore, the image of
this horizontal vector field by the projectionπ : G → M gives rise to a Killing vector field
τH(f ) onM.

Sincet �→ ft (p) is a horizontal lift of the curvet �→ ϕt(p), it represents the parallel
transport off (p) along the curve. Furthermore, by Corollary 1, forp = (eK) ∈ M the
flow ϕt(p) = π exp(tτH(f )) is a geodesic and hence is contained in a totally geodesic fibre.
Therefore the tangent space of fibre is invariant under the parallel transport along the flow.
Thus we haveft = f ◦ϕt . Sinceϕt is an isometry for eacht , we see that‖ dft‖2 is a constant.
Therefore ∫

M

〈τH, τH〉dv = − d

dt

∣∣∣∣
t=0

E(ft ) = 0 ,

and henceτH = 0. �

Combining Propositions 4 and 5, we now have the following.

THEOREM 2. Let M be a manifold constructed as above. Then the G-invariant distri-
bution D is a harmonic map into the Grassmannian bundle Gk(M).

As we mentioned, all of the generalized Hopf-fibrations are constructed in this way,
and hence distributions tangent to the Hopf fibre are harmonic maps into the Grassmannian
bundle.
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