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Abstract. We generalize Roberts’ counterexample to the fourteenth problem of
Hilbert, and give a sufficient condition for certain invariant rings not to be finitely generated.
It shows that there exist a lot of counterexamples of this type. We also determine the initial
algebra of Roberts’ counterexample for some monomial order.

1. Introduction. The fourteenth problem of Hilbert asks whether theK-algebraL∩A

is finitely generated. Here,K is a field,A is a polynomial ring overK, andL is a subfield of
the quotient field ofA containingK. The first counterexample to this problem was found by
Nagata in 1958. It was given as the invariant subring of a polynomial ring in 32 variables for
a linear action of the 13-dimensional additive group (cf. [12]). Recently, Mukai [11] showed
that there exists a similar counterexample which is the invariant subring of a polynomial ring
in 18 variables for a linear action of the three-dimensional additive group.

In 1990, Roberts gave a simple new counterexample of different type as follows.

THEOREM 1.1 (Roberts [14, Theorem 1]).Let A = K[x1, x2, x3, y1, y2, y3, y4] be a
polynomial ring in seven variables over a field K of characteristic zero. For each nonnegative
integer t , let Lt be the subfield of the quotient field of A generated by

x1 , x2 , x3 , x1y4 − xt
2x

t
3y1 , x2y4 − xt

1x
t
3y2 , x3y4 − xt

1x
t
2y3(1.1)

over K . If t ≥ 2, then the K-algebra Lt ∩ A is not finitely generated.

Following this result, Deveney and Finston [2] showed that this counterexample can be
obtained as the invariant subring ofA for a nonlinear action of the one-dimensional additive
groupGa . Kojima and Miyanishi [6] generalized Roberts’ counterexample. They constructed
a Ga-invariant subring of the polynomial ring of each dimension greater than or equal to
seven which is not finitely generated. Furthermore, Freudenburg [4] gave a counterexample
in dimension six, while Daigle and Freudenburg [1] gave one in dimension five.

In the present paper, we will generalize Roberts’ counterexample further, and show that
there exist a lot of counterexamples of this type. We give in Theorems 1.3 and 1.4 sufficient
conditions for a certain kind ofGa-invariant subring of a polynomial ring not to be finitely
generated. In Section 3, we will discuss Roberts’ counterexampleLt ∩A in terms of the theory
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of SAGBI (Subalgebra Analogue to Gröbner Bases for Ideals) bases. As a consequence, we
determine a generating set of it in Theorem 3.3. We also remark on a sufficient condition for
finite generation in Section 4.

Throughout this paper, letK denote a field of characteristic zero. Assume thatR is a
commutativeK-algebra, andA is a commutativeR-algebra. AnR-homomorphismD : A →
A is called anR-derivation onA if D(ab) = D(a)b + aD(b) holds for anya, b ∈ A. Then,
its kernel

AD = {a ∈ A | D(a) = 0}
is anR-subalgebra ofA. An R-derivationD on A is said to belocally nilpotent if, for each
a ∈ A, there existsr ∈ Z≥0 such thatDr(a) = 0. Here, we denote byZ≥0 the set of
nonnegative integers. We remark that a locally nilpotentR-derivationD on A defines an
actionA → A ⊗R R[t] of the one-dimensional additive group schemeGa = SpecR[t] over
R onA by a �→ ∑

k≥0 Dk(a)⊗ (tk/k!). The invariant subringAGa of A for this action ofGa

is equal toAD (cf. [10]).
Let R = K[x] = K[x1, . . . , xm] be the polynomial ring inm variables overK, and

A = K[x][y] = K[x][y1, . . . , yn] that inn variables overK[x]. A K[x]-derivationD on
K[x][y] is said to beelementary if D(yj ) is in K[x] for eachj . Note that an elementary
K[x]-derivation is locally nilpotent. An elementaryK[x]-derivationD onK[x][y] is said to
bemonomial if eachD(yi) is a monomial, i.e.,xa1

1 · · · xan
m for some(a1, . . . , am) ∈ (Z≥0)

m.
In this paper, we discuss the problem of finite generation of the kernelK[x][y]D of an el-
ementary monomialK[x]-derivationD. As we remarked above, it is equal to the invariant
subring ofK[x][y] for an action ofGa, sinceD is locally nilpotent. Note thatK[x][y]D is
finitely generated overK if and only if it is so overK[x].

In the case ofn = m + 1, theK[x]-derivation

Dt,m = xt+1
1

∂

∂y1
+ · · · + xt+1

m

∂

∂ym

+ (x1 · · · xm)t
∂

∂ym+1
(1.2)

on K[x][y] is elementary and monomial. The kernelK[x][y]Dt,m of this K[x]-derivation
has been studied well. Deveney and Finston [2] showed that Roberts’K-algebraLt ∩ A in
Theorem 1.1 is equal to the kernelK[x][y]Dt,m for m = 3 (see also Maubach’s result found
in [3, Section 9.6]). Furthermore, Kojima and Miyanishi showed the following.

THEOREM 1.2 (Kojima-Miyanishi [6]). Assume that n = m + 1. If t ≥ 2 and m ≥ 3,
then the kernel K[x][y]Dt,m of the K[x]-derivation Dt,m is not finitely generated over K .

We will study the kernelK[x][y]D of an elementary monomialK[x]-derivationD on
K[x][y] of more general form. LetD(yi) = xδi for eachi = 1, . . . , n. Here, we denote
by xa the monomialxa1

1 · · · xam
m for a = (a1, . . . , am) ∈ Zm. Similarly, we denote byyb

the monomialyb1
1 · · · ybn

n for b = (b1, . . . , bn) ∈ Zn. Put εi,j = δi − δj for i, j , and for
k = 1, . . . ,m, let εk

i,j andδk
i be thek-th components ofεi,j andδi , respectively.

In Sections 1 and 2, we deal with the case wheren ≥ 4, m ≥ n − 1 andεi
i,j > 0 for

any 1≤ i ≤ n − 1, 1 ≤ j ≤ n with i �= j . The derivationDt,m satisfies this condition with
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εi
i,j = t + 1 if j �= m + 1, andεi

i,j = 1 otherwise. We define

η = ε1
1,n

min{ε1
1,j | j = 2, . . . , n − 1} ,(1.3)

and

ηk,i = η min{max{εi
1,k, ε

i
2,k}, 0}(1.4)

for i = 2, . . . , n − 1 andk = 3, . . . , n − 1. For eachk = 3, . . . , n − 1, we setLk,n−2 to be
the system of linear inequalities



u1 + · · · + un−2 = 1

u1 ≥ η, ui ≥ 0 (i = 2, . . . , n − 2)
n−2∑
j=1

min{εi
n,1, ε

i
n,j+1}uj + ηk,i ≥ 0 (i = 2, . . . , n − 1)

(1.5)

in then − 2 variablesu1, . . . , un−2.
Here is our main result.

THEOREM 1.3. Assume that n ≥ 4, m ≥ n − 1 and εi
i,j > 0 for any 1 ≤ i ≤ n − 1,

1 ≤ j ≤ n with i �= j . If the system Lk,n−2 of linear inequalities has a solution in Rn−2 for
each k = 3, . . . , n − 1, then K[x][y]D is not finitely generated over K .

By this theorem, we get the following simple criterion forn = 4.

THEOREM 1.4. Assume that m ≥ 3, n = 4 and εi
i,j > 0 for any 1 ≤ i ≤ 3, 1≤ j ≤ 4

with i �= j . If

ε1
1,4

min{ε1
1,2, ε

1
1,3}

+ ε2
2,4

min{ε2
2,3, ε

2
2,1}

+ ε3
3,4

min{ε3
3,1, ε

3
3,2}

≤ 1 ,(1.6)

then K[x][y]D is not finitely generated over K .

The examples of Roberts are included as special cases of this theorem form = 3. In
case(m, n) = (3, 4), there exist 2450001 derivations onK[x][y] which satisfy (1.6) and
gcd{xδ1, xδ2, xδ3, xδ4} = 1 even if we impose the restrictionδk

i ≤ 10 for all i, k.
In the following corollary, the case wherem ≥ 4 andt = 1 is new, while the casem ≥ 3

andt ≥ 2 was proved in [6].

COROLLARY 1.5. Assume that n = m + 1. If m ≥ 3 and t ≥ 2, or m ≥ 4 and t = 1,
then the kernel K[x][y]Dt,m of the K[x]-derivation Dt,m is not finitely generated over K .

We will prove Theorems 1.3, 1.4 and Corollary 1.5 in Section 2.
We remark that, ift = 0, then the kernelK[x][y]Dt,m of Dt,m is finitely generated

for any m by Weitzenböck’s theorem (cf. [12, Chapter IV]). In fact, it is isomorphic to a
polynomial ring in 2m variables overK by the remark after Lemma 4.2 below. Ifm ≤ 2, then
K[x][y]Dt,m is also isomorphic to a polynomial ring in 2m variables overK for any t ≥ 0
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by [5, Theorem 3.1]. For(t,m) = (1, 3), Kurano [7] showed thatK[x][y]Dt,m is generated
by nine elements overK[x].

The author would like to thank Professor Masanori Ishida for helpful comments and
encouragement. He alsothanks Professor Kazuhiko Kurano for informing him of the result
on the kernel ofD1,3.

2. Construction of invariants. In this section, we prove Theorem 1.3, and show The-
orem 1.4 and Corollary 1.5 as its consequences. Throughout this section, we assume thatn ≥
4, m ≥ n − 1 and thatD satisfiesεi

i,j > 0 for any 1≤ i ≤ n − 1, 1≤ j ≤ n with i �= j . We

denoteK[x, x−1
n , . . . , x−1

m ][y] = K[x][y] ⊗K[xn,...,xm] K[xn, . . . , xm, x−1
n , . . . , x−1

m ]. Note
thatD is uniquely extended to aK[x]-derivation on eachK[x]-subalgebra ofK[x, x−1][y].

Theorem 1.3 follows from the following two lemmas.

LEMMA 2.1. If a monomial of the form xayl
n with l > 0 appears in an element of

K[x][y]D, then at least one of the first n − 1 components of a ∈ (Z≥0)
m is positive.

PROOF. Suppose to the contrary that there appears inf ∈ K[x][y]D a monomial
xayl

n with the firstn − 1 components ofa zero with nonzero coefficient. Then, the mono-
mial xaxδnyl−1

n appears inD(f ). SinceD(f ) = 0, its coefficient inD(f ) is zero. Hence,
xaxδnyl−1

n appears as a monomial inD(xa′
yb′

) for some monomialxa′
yb′ �= xayl

n of f .
Suchxa′

yb′
must be equal toxaxεn,i yiy

l−1
n for somei < n. Sinceεi

n,i < 0 for i < n, we

havexa′
yb′ �∈ K[x][y]. This contradictsf ∈ K[x][y]. Thus, at least one of the firstn − 1

components ofa ∈ (Z≥0)
m is positive. �

The lemma below asserts the existence of an infinite system of invariants.

LEMMA 2.2. Under the assumption in Theorem 1.3, there exists a positive integer α

such that a Laurent polynomial of the form

xα
1 yl

n + (terms of lower degree inyn)(2.1)

belongs to K[x, x−1
n , . . . , x−1

m ][y]D for each l > 0.

First, we show Theorem 1.3 by assuming these lemmas. Suppose thatK[x][y]D is gen-
erated by a finite number of elementsg1, . . . , gp . Then, by Lemma 2.1, there existsr > 0

such that each monomial appearing ingi of the formx
β
1 xbyl

n with l > 0 and the firstn − 1
components ofb zero satisfiesl/β < r for every i. Since every element ofK[x][y]D is
written as a sum of products ofg1, . . . , gp, a monomial appearing in an element ofK[x][y]D
is a product of monomials contained ing1, . . . , gp. Hence, any monomial appearing in an

element ofK[x][y]D of the formx
β

1 xbyl
n with l > 0 and the firstn− 1 components ofb zero

also satisfiesl/β < r. By Lemma 2.2, there appears in somef ∈ K[x, x−1
n , . . . , x−1

m ][y]D
a monomialxα

1 yl
n with l/α > r. Sincexaf is in K[x][y]D for somea ∈ (Z≥0)

m whose
first n − 1 components are zero, we are led to a contradiction. Thus,K[x][y]D is not finitely
generated.
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Let us denote byK[y]l theK-vector subspace ofK[y] = K[y1, . . . , yn] of homoge-
neousl-forms in y1, . . . , yn. For eachf = ∑

b∈Zn λby
b ∈ K[y], we define thesupport

supp(f ) of f by

supp(f ) = {b ∈ Zn | λb �= 0} .(2.2)

For eacha ∈ Zm, we define theK-linear mapτxa : K[y] → K[x, x−1][y] by τxa (yb) =
xa′

yb. Here,b = (b1, . . . , bn) anda′ = a + ∑n
j=1 bj εn,j . We define an elementaryK-

derivationE onK[y] by

E = ∂

∂y1
+ · · · + ∂

∂yn

.(2.3)

Then, it follows thatD(τxa (f )) = xδnτxa (E(f )) for eacha ∈ Zm andf ∈ K[y]. We set

B = K[y2 − y1, y3 − y1, . . . , yn − y1] .(2.4)

Then,τxa (B) ⊂ K[x, x−1][y]D for a ∈ Zm. Actually, D(τxa (f )) = xδnτxa (E(f )) = 0 for
f ∈ B, sinceE(f ) = 0. We defineR-linear mapsli : Rn → R by

l1((b1, . . . , bn)) = ε1
n,1b1 + min{ε1

n,j | j = 2, . . . , n − 1}
n−1∑
j=2

bj(2.5)

and

li ((b1, . . . , bn)) =
n−1∑
j=1

min{εi
n,1, ε

i
n,j }bj(2.6)

for i = 2, . . . , n − 1. We putBl = B ∩ K[y]l for eachl ∈ Z≥0.
We reduce Lemma 2.2 to the following lemma.

LEMMA 2.3. Under the assumption in Theorem 1.3, there exists a positive integer α

such that, for each positive integer l, we may find f ∈ Bl such that (0, . . . , 0, l) ∈ supp(f )

and every b ∈ supp(f ) satisfies l1(b) + α ≥ 0 and li (b) ≥ 0 for i = 2, . . . , n − 1.

Lemma 2.2 is proved by this lemma as follows. As we mentioned above,τxα
1
(f ) is in

K[x, x−1][y]D. It has the form of (2.1). We show that it is inK[x, x−1
n , . . . , x−1

m ][y]. By def-
inition, every monomial appearing inτxα

1
(f ) is written asxα

1 xa′
yb, whereb = (b1, . . . , bn) ∈

supp(f ) anda′ = ∑n
j=1 bj εn,j . By assumption, we have

n∑
j=1

bj ε
1
n,j + α ≥ l1(b) + α ≥ 0

and
n∑

j=1

bj ε
i
n,j ≥ li(b) ≥ 0
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for i = 2, . . . , n − 1. Hence,xα
1 xa′

yb does not have negative power inx1, . . . , xn−1. Thus,
τxα

1
(f ) is in K[x, x−1

n , . . . , x−1
m ][y]D. This proves Lemma 2.2.

Let PD be the set ofb = (b1, . . . , bn) ∈ (R≥0)
n with

b1 = bn = 0, b2 + · · · + bn−1 = 1 , li (b) ≥ 0 (i = 2, . . . , n − 1) .(2.7)

Here, we denote byR≥0 the set of nonnegative real numbers. For eachb = (b1, . . . , bn−2) ∈
Rn−2, we setι(b) = (0, b1, . . . , bn−2, 0). Note that, ifb ∈ (R≥0)

n−2 is a solution ofLk,n−2,
thenli(ι(b))+ηk,i ≥ 0 for i = 2, . . . , n−1. This condition is equivalent to the condition that
ι(b), ι(b) + η(ek − e2) ∈ PD , wheree1, . . . , en are the coordinate unit vectors ofRn. Indeed,
if εi

n,k < εi
n,1, then

ηk,i = η min{max{εi
1,k, ε

i
2,k}, 0}

= η min{εi
n,k − min{εi

n,1, ε
i
n,2}, 0}

= η min{min{εi
n,k, ε

i
n,1} − min{εi

n,1, ε
i
n,2}, 0}

= min{ηli(ek − e2), 0} .

(2.8)

If εi
n,k ≥ εi

n,1, thenεi
1,k ≥ 0. The equalityηk,i = min{ηli(ek − e2), 0} also holds in this case,

since the right hand sides of the first and the third equality in (2.8) are zero.
For a convex subsetP ⊂ Rn, we denoterP = {rb | b ∈ P } for r ∈ R≥0.

LEMMA 2.4. Under the assumption in Theorem 1.3, there exists α′ > 0 such that, for
any r > α′ and u3, . . . , un−1 ≥ 0 with

∑n−1
k=3 uk ≤ η(r −α′), there exist p3, . . . , pn−1 ∈ Z≥0

such that

re2 +
n−1∑
k=3

(skuk + pk)(ek − e2) ∈ rPD(2.9)

for any s3, . . . , sn−1 ∈ [0, 1].
PROOF. SinceLk,n−2 has a solution, there existsbk ∈ PD with bk + η(ek − e2) ∈ PD

for eachk = 3, . . . , n − 1. LetP be the convex hull of

{bk, bk + η(ek − e2) | k = 3, . . . , n − 1}
in Rn, andd a positive number such that thed-neighborhood of a pointa ∈ P is contained
in P . Here, we consider the Euclidean topology induced from that on the affine subspace
H = e2 + ∑n−1

k=3 R(ek − e2). Then, defineα′ = (1/d)
√

(n − 2)(n − 3). We show that thisα′
satisfies the desired property.

Take anyr > α′. Note that it suffices to show (2.9) foru3, . . . , un−1 ≥ 0 with
∑n−1

k=3 uk =
η(r − α′). We setu′

k = uk/(η(r − α′)) for eachk. Then,

n−1∑
k=3

u′
k(bk + skη(ek − e2)) ∈ P(2.10)
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for anys3, . . . , sn−1 ∈ [0, 1]. Actually, sinceP is convex,

bk + skη(ek − e2) = (1 − sk)bk + sk(bk + η(ek − e2))

is in P for eachk. Since
∑n−1

k=3 u′
k = 1, we get (2.10).

For eachq ∈ H , define a mapTq : P → rH by Tq(c) = α′q + (r − α′)c. Since
0 < α′ < r, we haveTq(P ) ⊂ rP if q ∈ P . Putb′ = Ta(

∑n−1
k=3 u′

kbk), and choosep′
k ∈ R≥0

so thatb′ = re2 + ∑n−1
k=3 p′

k(ek − e2). Then, letpk be the nonnegative integer we obtain by

adding an element in(−1/2, 1/2] to p′
k for eachk. Putb = re2 + ∑n−1

k=3 pk(ek − e2) and
a′ = a + (α′)−1(b − b′). Then,

|b − b′| =
√√√√( n−1∑

k=3

(pk − p′
k)

)2

+
n−1∑
k=3

(pk − p′
k)

2 ≤
√

(n − 2)(n − 3)

2
.

So, we have

|a − a′| = (α′)−1|b − b′| ≤ d/2 .

By the choice ofa, the pointa′ is in P . Hence,Ta′(P ) ⊂ rP . Moreover,

Ta′(c) − Ta(c) = α′(a′ − a) = b − b′

for c ∈ P . Thus, we get

(b − b′) + Ta(P ) ⊂ rP .(2.11)

On the other hand, we have

(b − b′) + Ta

( n−1∑
k=3

u′
k(bk + skη(ek − e2))

)
= b +

n−1∑
k=3

skuk(ek − e2)

= re2 +
n−1∑
k=3

(pk + skuk)(ek − e2) .

It is in (b − b′) + Ta(P ) for anysk ∈ [0, 1] by (2.10). Then, (2.9) follows from (2.11), since
rP is contained inrPD . Therefore,α′ satisfies the desired property. �

Now, let us prove Lemma 2.3. First, we show that the assumption that eachLk,n−2 has
a solution implies thatεi

n,1 ≥ 0 andε1
n,i > 0 for i = 2, . . . , n − 1. Suppose to the contrary

that εi
n,1 < 0 for some 2≤ i ≤ n − 1. Then, for any(u1, . . . , un−2) ∈ (R≥0)

n−2 with∑n−2
j=1 uj = 1, we have

n−2∑
j=1

min{εi
n,1, ε

i
n,j+1}uj + ηk,i ≤ εi

n,1 + ηk,i < 0 .

This contradicts the assumption thatLk,n−2 has a solution. Thus,εi
n,1 ≥ 0 for i = 2, . . . ,

n − 1. Suppose thatε1
n,i ≤ 0 for some 2≤ i ≤ n − 1. Then, it implies thatη ≥ 1, since

ε1
1,n − min{ε1

1,j | j = 2, . . . , n − 1} = − min{ε1
n,j | j = 2, . . . , n − 1} ≥ −ε1

n,i ≥ 0 .
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If Lk,n−2 has a solutionu = (u1, . . . , un−2), thenη = u1 = 1 anduj = 0 for j = 2, . . . ,

n − 2. For thisu, it follows that

n−2∑
j=1

min{ε2
n,1, ε

2
n,j+1}uj + ηk,2 = min{ε2

n,1, ε
2
n,2} + ηk,2 ≤ ε2

n,2 < 0 .

This is a contradiction. Thus,ε1
n,i > 0 for i = 2, . . . , n − 1.

Takeα′ > 0 as in Lemma 2.4, and setα to be an integer greater than or equal toα′ε1
1,n.

Let l be an arbitrary positive integer, andF the set off ∈ Bl such that(0, . . . , 0, l) ∈ supp(f )

and everyb ∈ supp(f ) satisfiesli(b) ≥ 0 for i = 2, . . . , n − 1. Since

li (je1 + (l − j)en) = jεi
n,1 ≥ 0

for i = 2, . . . , n − 1 andj = 0, . . . , l, we have(yn − y1)
l ∈ F . Hence,F �= ∅. We show

that there existsF0 ∈ F such thatl1(b)+α ≥ 0 for eachb ∈ supp(F0). Suppose the contrary.
Then, for eachf ∈ F , an elementO(f ) = (d, e) in Z2 is defined by settingd to be the
maximum among then-th components ofb ∈ supp(f ) with l1(b) + α < 0, ande to be the
maximum among the first components ofb ∈ supp(f ) whosen-th components ared. We
define the total order on Z2 by (d1, e1)  (d2, e2) if d1 < d2 or d1 = d2, e1 ≤ e2. For
v1, v2 ∈ Z2, we denotev1 ≺ v2 if v1  v2 andv1 �= v2. ChooseF ∈ F with O(F) = (d, e)

such that(d, e)  O(h) for anyh ∈ F , and setf ∈ K[y2, . . . , yn−1] to be the coefficient of
ye

1y
d
n in F .
Forb ∈ supp(F ) whose first andn-th components aree andd, respectively, we have

l1(b) + α = ε1
n,1e + min{ε1

n,j | j = 2, . . . , n − 1}(l − d − e) + α

= ε1
n,1e + (ε1

n,1 + min{ε1
1,j | j = 2, . . . , n − 1})(l − d − e) + α

= min{ε1
1,j | j = 2, . . . , n − 1}(l − d − e) − ε1

1,n(l − d) + α

≥ min{ε1
1,j | j = 2, . . . , n − 1}(l − d − e) − ε1

1,n(l − d − α′)

= min{ε1
1,j | j = 2, . . . , n − 1}((l − d − e) − η(l − d − α′)) .

(2.12)

Sinceε1
1,j > 0 for j �= 1, the right hand side of the third equality in (2.12) is negative by the

maximality ofe. By the last equality in (2.12) we get

l − d − e < η(l − d − α′) .(2.13)

LEMMA 2.5. In the above notation, E(f ) = 0.

PROOF. Suppose thatE(f ) �= 0. Let yb be a monomial appearing inE(f ) with
nonzero coefficient. Letλ′

j be the coefficient ofyjy
b in f , andbj the j -th component of

b for eachj . Then, the coefficientµ′ of yb in E(f ) is written as

µ′ =
n−1∑
j=2

(bj + 1)λ′
j .
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Let λj be the coefficient ofyjy
b(ye

1y
d
n ) in F for eachj . Then,λj = λ′

j for j = 2, . . . , n − 1.

The coefficientµ of yb(ye
1y

d
n ) in E(F) is written as

µ = (e + 1)λ1 +
n−1∑
j=2

(bj + 1)λj + (d + 1)λn = (e + 1)λ1 + µ′ + (d + 1)λn .

SinceE(F) = 0, we haveµ = 0. Moreover,λ1 = 0 by the maximality ofe. Sinceµ′ �= 0,
we haveλn �= 0, that is,

b′ = b + ee1 + (d + 1)en

is in supp(F ). Note thatl1(b′ + e2 − en) + α is negative, since it is equal to the left hand side
of the first equality in (2.12). Hence,

l1(b
′) + α = l1(b

′ + e2 − en) + α + l1(en − e2)

< l1(en − e2) = − min{ε1
n,j | j = 2, . . . , n − 1} < 0 .

This contradicts the maximality ofd. Thus, we getE(f ) = 0. �

We claim thatK[y]E ⊂ B. This is a special case of Lemma 4.2 which we shall prove
later. By Lemma 2.5, this fact implies thatf is in Bl−d−e.

LEMMA 2.6. In the above notation, there exists G ∈ Bl of the form G = fye
1yd

n + g,
where g ∈ K[y]l such that every b ∈ supp(g) satisfies the following. li(b) ≥ 0 for i =
2, . . . , n − 1. If e′ and d ′ are the first and n-th components of b, respectively, then (d ′, e′) ≺
(d, e).

PROOF. Sincef is in Bl−d−e ∩ K[y2, . . . , yn−1], we have

f =
∑
u

λu

n−1∏
k=3

(y2 − yk)
uk

for someλu ∈ K. Here, the sum in the equality above is taken overu = (u3, . . . , un−1) ∈
(Z≥0)

n−3 with
∑n−1

k=3 uk = l − d − e. By (2.13), we get
∑n−1

k=3 uk < η(l − d − α′) for each
u. Hence, there existp3, . . . , pn−1 ∈ Z≥0 such that

(l − d)e2 +
n−1∑
k=3

(skuk + pk)(ek − e2) ∈ (l − d)PD(2.14)

for anys3, . . . , sn−1 ∈ [0, 1] by Lemma 2.4. We set

h′
u = y

e−p

2

n−1∏
k=3

(
(y2 − yk)

uky
pk

k

)
,

wherep = ∑n−1
k=3 pk. Note that each element of supp(h′

u) is written as the left hand side of
(2.14) for somes3, . . . , sn−1 ∈ [0, 1]. So, supp(h′

u) is contained in(l − d)PD. In particular,
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e − p ≥ 0. We set

hu = (y1 − y2)
e−p

n−1∏
k=3

(
(y2 − yk)

uk (y1 − yk)
pk

)

for eachu, and define

G =
(∑

u

λuhu

)
(yn − y1)

d .

Put g = G − fye
1y

d
n . Then, the first andn-th componentse′ andd ′, respectively, of each

b ∈ supp(g) satisfy(d ′, e′) ≺ (d, e). So, we verify thatli (b) ≥ 0 for i = 2, . . . , n − 1 for
eachb ∈ supp(g). Each element of supp(hu) is contained inc+∑n−1

j=2 Z≥0(e1−ej ) for some
c ∈ (l −d)PD. Indeed,hu is equal to the polynomial obtained fromh′

u by substitutingy1−yk

for yk for eachk, and supp(h′
u) ⊂ (l − d)PD. Therefore, we may write eachb ∈ supp(g) as

b = d1e1 + d2en + c +
n−1∑
j=2

vj (e1 − ej ) ,

whered1, d2, v2, . . . , vn−1 ∈ Z≥0 andc ∈ (l −d)PD. Note thatli(en) = 0 andli(e1), li (c) ≥
0 for i = 2, . . . , n − 1. Moreover,

li


n−1∑

j=2

vj (e1 − ej )


 = −

n−1∑
j=2

min{εi
n,1, ε

i
n,j }vj + min{εi

n,1, ε
i
n,1}

n−1∑
j=2

vj

=
n−1∑
j=2

(εi
n,1 − min{εi

n,1, ε
i
n,j })vj ≥ 0 .

Thus, we getli (b) ≥ 0 for i = 2, . . . , n − 1. �

We setH = F − G. Then,H is in F . Moreover,O(H) ≺ O(F) by the definition of
H . This contradicts the choice ofF . Hence, there existsF0 ∈ F such thatl1(b) + α ≥ 0 for
eachb ∈ supp(F0). We have thus proved Lemma 2.3. Therefore, the proof of Theorem 1.3 is
completed.

Now, assume thatm ≥ 3 andn = 4. Then, we set

ξi = ξi(D) = εi
i,4

min{εi
i,j , ε

i
i,k}

(2.15)

for distinct integers 1≤ i, j, k ≤ 3, and putξ(D) = ξ1(D) + ξ2(D) + ξ3(D).
We show Theorem 1.4 as a consequence of Theorem 1.3. We verify that(1 − ξ2, ξ2)

is a solution ofL3,2. Note thatξi > 0 for i = 1, 2, 3, η = ξ1, η3,2 = 0 andη3,3 =
−ξ1 min{ε3

3,1, ε
3
3,2}. So,ξ2 > 0. By (1.6), we have 1− ξ2 ≥ ξ1 + ξ3 > ξ1 = η. Moreover, it
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follows that

min{ε2
4,1, ε

2
4,2}(1 − ξ2) + min{ε2

4,1, ε
2
4,3}ξ2 + η3,2

= min{ε2
4,1, ε

2
4,2} + (min{ε2

4,1, ε
2
4,3} − min{ε2

4,1, ε
2
4,2})ξ2 + η3,2

= ε2
4,2 + min{ε2

2,1, ε
2
2,3}ξ2 = 0 ,

and

min{ε3
4,1, ε

3
4,2}(1 − ξ2) + min{ε3

4,1, ε
3
4,3}ξ2 + η3,3

= min{ε3
4,1, ε

3
4,2} + (min{ε3

4,1, ε
3
4,3} − min{ε3

4,1, ε
3
4,2})ξ2 + η3,3

= (ε3
4,3 + min{ε3

3,1, ε
3
3,2}) − min{ε3

3,1, ε
3
3,2}ξ2 + η3,3

= min{ε3
3,1, ε

3
3,2} (−ξ3 + 1 − ξ2 − ξ1) ≥ 0 .

Therefore,(1 − ξ2, ξ2) is a solution ofL3,2. Hence,K[x][y]D is not finitely generated by
Theorem 1.3.

Finally, we show Corollary 1.5. As mentioned in Section 1,εi
i,j > 0 for anyi �= j , since

εi
i,j = t + 1 if j �= m + 1, andεi

i,j = 1 otherwise. Assume thatm = 3 andt ≥ 2. Then,

ξ(Dt,m) = 3/(t + 1) ≤ 1. Hence,K[x][y]Dt,3 is not finitely generated by Theorem 1.4.
Assume thatm ≥ 4 andt ≥ 1. Fork = 3, . . . ,m − 1, we defineuk = (u1

k, . . . , u
m−1
k ) ∈

(R≥0)
m−1 as follows. Setu3

3, u
j
k = 1/2 for j, k with j = 1 or k = j + 2, and setuj

k =
0 otherwise. We show thatuk is a solution ofLk,m−1 for eachk. Sincem ≥ 4, we have∑m−1

j=1 u
j

k = 1. Sincet ≥ 1, we getu1
k = 1/2 ≥ 1/(t + 1) = η. Clearly, uj

k ≥ 0 for
j = 2, . . . ,m − 1. Fori = 2, . . . ,m − 1, it follows that

m−1∑
j=1

min{εi
m+1,1, ε

i
m+1,j+1}uj

k + ηk,i = t − (t + 1)ui−1
k + ηk,i .(2.16)

Note thatηk,i = −1 if i = k, andηk,i = 0 otherwise. Ifi = k, then the right hand side of
(2.16) is equal tot − 1, sinceuk−1

k = 0. If i �= k, then it is not less than(t − 1)/2, since
ui−1

k ≤ 1/2 for anyi, k. So, it is nonnegative for everyi, k. Therefore,uk is a solution of
Lk,m−1 for k = 3, . . . ,m − 2. By Theorem 1.3,K[x]Dt,m is not finitely generated. Thus, we
complete the proof of Corollary 1.5.

3. A SAGBI basis for the counterexample of Roberts. In this section, we consider
the counterexample of Roberts. Recall that it is obtained as the kernel of the derivationDt,m

on K[x][y] for (m, n) = (3, 4) and t ≥ 2 by the result of Deveney and Finston [2]. We
determine its initial algebra for some monomial order onK[x][y]. Consequently, it will turn
out that the infinite system of invariants appearing in Roberts’ proof of [14, Lemma 3] is a
generating set ofK[x][y]Dt,3.

First, we review the notion of an initial algebra and a SAGBI (Subalgebra Analogue to
Gröbner Bases for Ideals) basis. Let be a monomial order onK[x][y], i.e., a total order on
Zm × Zn such thata  b impliesa + c  b + c for anya, b, c ∈ Zm × Zn and the zero
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vector is the minimum among(Z≥0)
m × (Z≥0)

n for . We denotea ≺ b if a �= b anda  b.
We sometimes denotexayb  xa′

yb′
instead of(a, b)  (a′, b′). Forf ∈ K[x][y] \ {0}, we

define theinitial term in(f ) of f by αxayb. Here,(a, b) is the maximal element of supp(f )

for , andα is the coefficient ofxayb in f . Note that the maximum of supp(f ) always exists,
since it is a nonempty finite set. Iff = 0, then we define in(f ) = 0. Then, it follows that

in(f g) = in(f ) in(g)(3.1)

for anyf, g ∈ K[x][y]. Assume thatA is aK-subalgebra ofK[x][y]. We define theinitial
algebra in(A) of A as theK-vector space generated by{in(f ) | f ∈ A}. Then, in(A) is a
K-algebra by (3.1). We say that a generating setS of A is aSAGBI basis if the initial algebra
in(A) is generated by{in(f ) | f ∈ S} overK.

The following is a basic property of a SAGBI basis.

LEMMA 3.1 (Robbiano-Sweedler [13, Proposition 1.16]).Let  be a monomial order
on K[x][y]. Assume that A is a K-subalgebra of K[x][y], and S is a subset of A. If {in(f ) |
f ∈ S} generates the initial algebra in(A) over K, then S is a SAGBI basis for A. In
particular, S generates A over K .

For any elementary monomialK[x]-derivationD onK[x][y], we setε+
i,j to be the vector

we obtain fromεi,j by replacing the negative components by zero, and defineLi,j = x
ε+
j,i yi −

x
ε+
i,j yj for eachi, j . Then,Li,j is in K[x][y]D for i, j .

Now, let us consider the kernelK[x][y]Dt,m of Dt,m on K[x][y] for (m, n) = (3, 4).
Note that the three elements

xt+1
1 y2 − xt+1

2 y1 , xt+1
1 y3 − xt+1

3 y1 , xt+1
2 y3 − xt+1

3 y2(3.2)

are contained inK[x][y]Dt,3. Indeed, they are equal toL2,1, L3,1 andL3,2. Moreover, we
know the following (see also [6, Lemma 2.1]).

THEOREM 3.2 (Roberts [14, Lemma 3]).For each d ∈ Z≥0 and i = 1, 2, 3, there
exists an element of the form xiy

d
4 + (terms of lower degree in y4) in K[x][y]Dt,3 .

We take an arbitraryId,i ∈ K[x][y]Dt,3 of the form in Theorem 3.2 for each(d, i). Note
that I0,i = xi for eachi. Let lex be the monomial order onK[x][y] for (m, n) = (3, 4)

which is the lexicographic order with

x1 ≺lex x2 ≺lex x3 ≺lex y1 ≺lex y2 ≺lex y3 ≺lex y4 .(3.3)

Namely, we definea lex b if the last nonzero component ofb − a is positive fora, b ∈
Z3 × Z4, where we regarda, b as elements ofZ7.

The following is the main result of this section.

THEOREM 3.3. Assume that t ≥ 2. Then, the initial algebra of K[x][y]Dt,3 for lex is
generated by

{xt+1
1 y2, xt+1

1 y3, xt+1
2 y3} ∪ {xiy

d
4 | d ∈ Z≥0, i = 1, 2, 3}(3.4)

over K . The set
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{xt+1
1 y2 − xt+1

2 y1 , xt+1
1 y3 − xt+1

3 y1 , xt+1
2 y3 − xt+1

3 y2} ∪ {Id,i | d ∈ Z≥0, i = 1, 2, 3}
(3.5)

is a SAGBI basis for K[x][y]Dt,3 for lex. In particular, it generates K[x][y]Dt,3 over K .

To analyzeK[x][y]D in greater detail, we define a grading structure on it. LetD be any
elementary monomialK[x]-derivation onK[x][y]. We set

Γ = (Zm × Zn)
/ n∑

i=2

Z(εi,1, e1 − ei ) ,

and K[x, x−1][y]γ the K-vector space generated by monomialsxayb for (a, b) ∈
Zm × (Z≥0)

n with the image of(a, b) in Γ equal to γ for each γ ∈ Γ . Then, it
defines aΓ -grading onK[x, x−1][y], i.e., K[x, x−1][y] = ⊕

γ∈Γ K[x, x−1][y]γ and

K[x, x−1][y]γ K[x, x−1][y]µ ⊂ K[x, x−1][y]γ+µ for anyγ,µ ∈ Γ . Moreover, it follows
that

K[x, x−1][y]D =
⊕
γ∈Γ

K[x, x−1][y]Dγ .

Here, for aK-subalgebraA of K[x, x−1][y], we setAγ = A∩K[x, x−1][y]γ for eachγ . We
say thatf ∈ K[x, x−1][y] isΓ -homogeneous iff is in K[x, x−1][y]γ for someγ ∈ Γ . This
γ is denoted by degΓ (f ). Note that eachγ ∈ Γ is expressed as the image of(a, len) for some
a ∈ Zm andl ∈ Z≥0. Then, we haveτxa (K[y]l) = K[x, x−1][y]γ . Actually,τxa (φ(f )) = f

for f ∈ K[x, x−1][y]γ , whereφ : K[x, x−1][y] → K[y] is the homomorphism which
substitutes one for eachxi . SinceE ◦ φ = φ ◦ D, we haveφ(f ) ∈ K[y]El = Bl for

f ∈ K[x, x−1][y]Dγ . Hence,τxa (Bl) = K[x, x−1][y]Dγ .
We remark that, forf ∈ K[y], r ∈ Z≥0 anda ∈ Zm, the condition that(yi − yj )

r

dividesf implies thatLr
i,j is a factor ofτxa (f ) in K[x, x−1][y]. This is proved as follows.

Note thatτxa (f ) = xaτ1(f ) for any f ∈ K[y], andτ1(yi − yj ) = x
εn,i−ε+

j,i Li,j for i, j .
Assume thatf = (yi − yj )

rf ′ for somef ′ ∈ K[y]. Then,

τxa (f ) = xaτ1((yi − yj )
rf ′) = xaτ1(yi − yj )

rτ1(f
′) = x

a+r(εn,i−ε+
j,i )Lr

i,j τ1(f
′) ,

sinceτ1 preserves multiplication. Thus,Lr
i,j is a factor ofτxa (f ) in K[x, x−1][y].

Assume thatn = 3. Then, eachf ∈ Bl is written as

f = (y2 − y1)
s(y3 − y1)

t

u∑
i=0

αi(y2 − y1)
i(y3 − y1)

u−i .

Here,s, t, u ∈ Z≥0 with s + t + u = l andαi ∈ K with α0, αu �= 0. If β1, . . . , βu ∈ K̄ are
the solutions of the equation

∑u
i=0 αiX

i = 0, then we get

f = α0(y2 − y1)
s(y3 − y1)

t

u∏
i=1

(y2 − βiy3 + (βi − 1)y1) ,(3.6)

whereK̄ is the algebraic closure ofK.
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PROPOSITION 3.4. Assume that n = 3, and D is any elementary monomial K[x]-
derivation on K[x][y]. Then,

{x1, . . . , xm,L2,1, L3,1, L3,2}(3.7)

is a SAGBI basis for K[x][y]D with respect to any monomial order on K[x][y].
PROOF. Let  be any monomial order onK[x][y]. By Proposition 3.1, it suffices to

show that in(K[x][y]D) is equal to

R = K[x][in(L2,1), in(L3,1), in(L3,2)] .

First, we note that, sincexaτ1(yi − yj ) ∈ K[x][y], its initial term is inR for a ∈ Zm

and i, j . Indeed,xaτ1(yi − yj ) = x
a+ε3,i−ε+

j,i Li,j , which is inK[x][y] if and only if a +
ε3,i − ε+

j,i ∈ (Z≥0)
m. We show thatxaτ1(g) ∈ K[x][y] implies that in(xaτ1(g)) ∈ R ⊗K K̄

for a ∈ Zm, whereg = y2 − y1 − β(y3 − y1) with β ∈ K̄. If β is zero or one, then we are
done. Assume thatβ �= 0, 1. Then, there appears inxaτ1(g) each monomial which appears
in xa(τ1(yi − y1)) for i = 2, 3. Hence, ifxaτ1(g) is in K[x][y], thenxaτ1(yi − y1) is also in
K[x][y] for i = 2, 3. Since in(xaτ1(g)) is equal to in(xaτ1(yi − y1)) for somei ∈ {2, 3}
up to scalar multiplication, it is inR ⊗K K̄.

To show in(K[x][y]D) = R, it suffices to verify that the initial term in(F ) of every
Γ -homogeneous elementF ∈ K[x][y]D \ {0} is in R. Putf = φ(F). Then, it is inBl for
somel ∈ Z≥0. So,f is expressed as in (3.6). Sinceτxa (f ) = F for somea ∈ Zm, we get

F = τxa (f ) = α0x
aτ1(y2 − y1)

sτ1(y3 − y1)
t

u∏
i=1

τ1(y2 − βiy3 + (βi − 1)y1) .(3.8)

SinceF is in K[x][y], there exista′, a′′, ai ∈ Zm with sa′ + ta′′ + ∑u
i=1 ai = a such that

xa′
τ1(y2 − y1), x

a′′
τ1(y3 − y1) andxai τ1(y2 − βiy3 + (βi − 1)y1) are inK[x][y]. Hence,

their initial terms are inR ⊗K K̄, as noted in the preceding paragraph. This implies that
in(F ) ∈ R by (3.8) and (3.1). �

In particular, we have the following.

COROLLARY 3.5 (Khoury [5, Corollary 2.2]). Assume that n = 3, and D is any ele-
mentary monomial K[x]-derivation on K[x][y]. Then,

K[x][y]D = K[x][L2,1, L3,1, L3,2] .(3.9)

As we mentioned before Proposition 3.4, each elementf ∈ Bl is factored into the prod-
uct of l elements inK̄ ⊗K B1. We note that, ifr is the maximal integer such that(y3 − y2)

r

dividesf , then the expansion off involves the monomialsyl−r
1 yr

2, y
l−r
1 yr

3 and does not in-

volveyl−r ′
1 yr ′

2 , yl−r ′
1 yr ′

3 for 0 ≤ r ′ ≤ r.

LEMMA 3.6. Assume that (m, n) = (3, 3) and εi
i,j > 0 for any 1 ≤ i, j ≤ 3 with

i �= j . If γ = degΓ (L
p
2,1L

q
3,1L

r
3,2) for p, q, r ∈ Z≥0, then K[x][y]Dγ is equal to the one-

dimensional K-vector space generated by L
p

2,1L
q

3,1L
r
3,2.
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PROOF. Take any 0 �= F ∈ K[x][y]Dγ , and putf = φ(F). Then,f is in Bl and

τxa (f ) = F , wherel = p+q+r anda = p(ε2,3+ε+
1,2)+qε+

1,3+rε+
2,3. If (y2−y1)

p, (y3−y1)
q

and(y3−y2)
r dividef , thenF is in K(L

p
2,1L

q
3,1L

r
3,2). Actually, it implies thatLp

2,1, L
q
3,1 and

Lr
3,2 are factors ofF . Suppose, say, that the maximal integerr ′ such that(y3−y2)

r ′
dividesf

is less thanr. Then,yl−r ′
1 yr ′

2 andyl−r ′
1 yr ′

3 appear inf with nonzero coefficient, as mentioned

above. Hence, so doτxa (yl−r ′
1 yr ′

2 ) andτxa (yl−r ′
1 yr ′

3 ) in F . By definition, the first component

of ε+
2,3 or ε+

3,2 is zero. If that ofε+
2,3 is zero, then the power ofx1 in τxa (yl−r ′

1 yr ′
3 ) is negative.

In fact,τxa (yl−r ′
1 yr ′

3 ) = xa′
yl−r ′

1 yr ′
3 , where

a′ = a + (l − r ′)ε3,1 = pε+
2,1 + qε+

3,1 + rε+
2,3 − (r − r ′)ε1,3 .

Since the first components ofε+
2,1, ε

+
3,1, ε

+
2,3 are zero, that ofa′ is equal to−(r − r ′)ε1

1,3 < 0.

Similarly, the power ofx1 in τxa (yl−r ′
1 yr ′

2 ) is negative if the first component ofε+
3,2 is zero.

This is a contradiction. Therefore,F is in K(L
p

2,1L
q

3,1L
r
3,2). �

Assume thatn = 4. We define a homomorphism̃l : Z4 → Z of additive groups by

l̃((b1, b2, b3, b4)) = b2ε
1
1,2 + b3ε

1
1,3 .(3.10)

LEMMA 3.7. Assume that n = 4, ε1
1,2 ≥ ε1

1,3 > 0 and F is an element of Bl for some

l ∈ Z≥0. If every b ∈ supp(F ) satisfies l̃(b) ≥ p for some p ∈ Z≥0, then (y3 − y2)
q divides

F for the minimal q ∈ Z≥0 with p ≤ qε1
1,3.

PROOF. Write

F = f0(y4 − y1)
l + f1(y4 − y1)

l−1 + · · · + fl ,

wherefi ∈ K[y2 − y1, y3 − y1]i for eachi. Suppose that(y3 − y2)
q did not divideF . Then,

there existsi such that(y3 − y2)
q does not dividefi . Let i be the minimum among such

indicesi, andq ′ the maximal integer such that(y3 − y2)
q ′

dividesfi . Then,fi involves the

monomialyi−q ′
1 y

q ′
3 , as we noted before Lemma 3.6. We setb = (i − q ′, 0, q ′, l − i). Then,

l̃(b) = q ′ε1
1,3 < qε1

1,3. It implies thatl̃(b) < p by the minimality ofq. Hence,b �∈ supp(F ).

On the other hand,fi(y4 − y1)
l−i involvesyb. If j > i, thenfj (y4 − y1)

l−j does
not involveyb, since the exponent ofy4 in each monomial of it is less thanl − i. Suppose

that fj (y4 − y1)
l−j involved yb for j < i. Then,fj containsy

j−q ′
1 y

q ′
3 . Sinceq ′ < q,

this contradicts the assumption that(y3 − y2)
q divides fj by the note above. Therefore,

fj (y4 − y1)
l−j does not involveyb if j �= i. Hence,b ∈ supp(F ). This is a contradiction.

Therefore,(y3 − y2)
q dividesF . �

We remark that, ifF ∈ K[x][y]D is expressed as

F = f0y
l
n + f1y

l−1
n + · · · + fl

for fi ∈ K[x][y1, . . . , yn−1], thenD(f0) = 0. Actually, we get

0 = D(F) = D(f0)y
l
n + (terms of lower degree inyn) .
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The following is the key proposition.

PROPOSITION 3.8. Assume that (m, n) = (3, 4) and εi
i,j > 0 for any 1 ≤ i, j ≤ 4

with i �= j . Then, the monomial xay
p

2 y
q+r

3 yl
4 is not contained in inlex(K[x][y]D) for any

p, q, r, l ∈ Z≥0, where we set a = pε+
1,2 + qε+

1,3 + rε+
2,3.

PROOF. Suppose that there existedF ∈ K[x][y]D such that inlex(F ) = xay
p

2 y
q+r

3 yl
4.

Then, without loss of generality, we may assume thatF is Γ -homogeneous. Write

F = f0y
l
4 + f1y

l−1
4 + · · · + fl ,

wherefi ∈ K[x][y1, y2, y3] for i = 0, . . . , l. Then, f0 is in K[x][y1, y2, y3]D, as we
remarked above. Moreover,f0 is Γ -homogeneous and degΓ (f0) = degΓ (L

p

1,2L
q

1,3L
r
2,3).

Hence,f0 is equal toLp

1,2L
q

1,3L
r
2,3 up to scalar multiplication by Lemma 3.6.

It suffices to show that each ofL
p

2,1, Lq

3,1 andLr
3,2 must be a factor ofF in K[x, x−1][y].

Indeed, it will imply thatF = L
p

1,2L
q

1,3L
r
2,3F

′ for someF ′ ∈ K[x, x−1][y], sinceL2,1, L3,1

andL3,2 are pairwise prime. Then,F ′ is an element inK[x][y]D. However,F ′ involves the
monomialyl

4. This contradicts Lemma 2.1.
Since the arguments are similar, we only show thatLr

3,2 is a factor ofF . We assume

that ε1
1,2 ≥ ε1

1,3. The proof is similar for the other case. We setf = φ(F), and claim that

everyb = (b1, b2, b3, b4) ∈ supp(f ) satisfiesl̃(b) ≥ rε1
1,3. This implies that(y3 − y2)

r

dividesf by Lemma 3.7. Hence,Lr
3,2 is a factor ofF in K[x, x−1][y], and the proof is

completed. By straightforward computation, we may verify that degΓ (F ) is equal to the image
of (c, (d + l)e4), whered = p + q + r and

c = pε+
2,1 + qε+

3,1 + rε+
2,3 + dε1,4 + rε3,1 .

Thus, it follows thatF = τxc (f ), as mentioned above. Hence,F involvesτxc (yb) for b ∈
supp(f ). By simple computation, we getτxc (yb) = xdyb, where

d = pε+
2,1 + qε+

3,1 + rε+
2,3 + (l − b4)ε4,1 + rε3,1 + b2ε1,2 + b3ε1,3 .

Note that the first components ofpε+
2,1, qε+

3,1, rε
+
2,3 are zero andb4 ≤ l. Sincexdyb is in

K[x][y], the first component ofd is nonnegative. Thus, we have

0 ≤ (l − b4)ε
1
4,1 + rε1

3,1 + b2ε
1
1,2 + b3ε

1
1,3 = (l − b4)ε

1
4,1 − rε1

1,3 + l̃(b) ≤ −rε1
1,3 + l̃(b) .

Therefore,̃l(b) ≥ rε1
1,3. �

Now, let us prove Theorem 3.3. By Lemma 3.1, the last statement is a consequence of
the first part. So, we will prove the first part.

We setR to be theK-algebra generated by (3.4). Clearly, inlex(K[x][y]Dt,3) contains
R. For the converse, it suffices to show that inlex(F ) is in R for anyΓ -homogeneous element
F ∈ K[x][y]Dt,3. The remark before Proposition 3.8 implies that inlex(F ) = inlex(F

′)yl
4 for

someF ′ ∈K[x][y1, y2, y3]Dt,3 andl∈Z≥0. By Proposition 3.4, the set{x1, x2, x3, L2,1, L3,1,
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L3,2} is a SAGBI basis forK[x][y1, y2, y3]Dt,3 with respect to any monomial order. In par-
ticular,

inlex(K[x][y1, y2, y3]Dt,3) = K[x][xt+1
1 y2, x

t+1
1 y3, x

t+1
2 y3] .

Hence, there exista1, a2, a3, p, q, r ∈ Z≥0 such that

inlex(F ) = (xt+1
1 y2)

p(xt+1
1 y3)

q(xt+1
2 y3)

rx
a1
1 x

a2
2 x

a3
3 yl

4 .

Obviously, inlex(F ) is in R if l = 0. Assume thatl > 0. Then,a1 + a2 + a3 > 0 by
Proposition 3.8. Hence, it is also inR. Therefore, inlex(K[x][y]Dt,3) is contained inR. This
completes the proof of Theorem 3.3.

4. A condition for finite generation. In this section, we investigate a condition for
the finite generation ofK[x][y]D, whereD is an elementary monomialK[x]-derivation. The
main result of this section is the following.

THEOREM 4.1. Assume that (m, n) = (3, 4), and there exist i �= j and k such that
ε
σ(k)
τ (i),τ (j) ≤ 0 and σ(k) = τ (i) for every pair of permutations σ and τ on {1, 2, 3} and

{1, 2, 3, 4}, respectively. Then, K[x][y]D is generated by Lki ,li for i = 1, 2, 3, 4 over K[x]
for some integers 1 ≤ ki, li ≤ 4.

First, we look at general properties on the kernel of an elementary monomialK[x]-
derivation. For eachi, j , we setL̃i,j = yi − xεi,j yj . It is contained inK[x, x−1][y]D. To
avoid confusion, we sometimes denote it byL̃D

i,j to emphasizeD.

LEMMA 4.2. The kernel K[x][y]D is contained in K[x][L̃1,j , . . . , L̃n,j ] for each j .

PROOF. Take anyF ∈ K[x][y]D , and letf be the polynomial obtained fromF by
replacingyj by zero. Then, define an elementF ′ of K[x][L̃1,j , . . . , L̃n,j ] as the polynomial
which we obtain fromf by replacingyk by L̃k,j for eachk. We show thatF = F ′. Suppose
thatF �= F ′. Write

F − F ′ = (terms of higher degree inyj ) + gye
j ,

whereg is an element ofK[x, x−1][y] \ {0} not involvingyj . SinceF − f andF ′ − f are in
K[x, x−1][y]yj , we havee > 0. However,

0 = D(F − F ′) = (terms of higher degree inyj ) + egxδj ye−1
j ,

a contradiction, sinceegxδj �= 0. Therefore,F = F ′. �

Assume thatδj = 0 for somej . Then,L̃k,j is in K[x][y]D for eachk. By Lemma 4.2,
it implies thatK[x][y]D = K[x][L̃1,j , . . . , L̃n,j ]. If this is the case, thenK[x][y]D is iso-
morphic toK[x][y1, . . . , yj−1, yj+1, . . . , yn] via the homomorphism which substitutes zero
for yj . In particular, the kernelK[x][y]Dt,m of the derivationDt,m for t = 0 is generated
by L̃1,m+1, . . . , L̃m,m+1 overK[x], and is isomorphic to the polynomial ring in 2m variables
overK.
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Now, we fix 1≤ i ≤ m and 1≤ j ≤ n. Assume thatεi
k,j ≥ 0 for everyk = 1, . . . , n.

Then, put µ = min {εi
k,j | k �= j }, and setxε′

k,j = x
−µ
i xεk,j for each k. Let D′ be an

elementary monomialK[x]-derivation onK[x][y] such thatD′(yk)/D
′(yj ) = x

ε′
k,j for each

k. Forf ∈ K[x][y]D, we defineTj,i (f ) to be the polynomial obtained fromf by replacing
yj by x

−µ
i yj . Then, it follows that

Tj,i (L̃
D
k,j ) = yk − xεk,j (x

−µ
i yj ) = yk − x

ε′
k,j yj = L̃D′

k,j

for eachk.

LEMMA 4.3. Let i, j be integers with 1 ≤ i ≤ m and 1 ≤ j ≤ n. If εi
k,j ≥ 0 for every

k = 1, . . . , n, then Tj,i is an injective homomorphism with the image K[x][y]D′
.

PROOF. Suppose thatTj,i(f ) were not inK[x][y]D′
for somef ∈ K[x][y]D. By

Lemma 4.2,f is in K[x][{L̃D
k,j | k}]. SinceTj,i sendsL̃D

k,j to L̃D′
k,j , we haveTj,i(f ) ∈

K[x][{L̃D′
k,j | k}]. In particular,D′(Tj,i (f )) = 0. Hence, there appears inTj,i (f ) a monomial

with negative power in some variable. By the definition ofTj,i(f ), the variable must bexi .
However,L̃D′

k,j does not have negative power inxi for eachk. Hence, such a monomial cannot

appear inTj,i (f ). This is a contradiction. Thus,Tj,i (f ) is in K[x][y]D′
.

Conversely, a homomorphismK[x][y]D′ → K[x][y]D is defined by the substitution
yj �→ x

µ
i yj . Indeed, it sends each̃LD′

k,j to L̃D
k,j . It is the inverse ofTj,i : K[x][y]D →

K[x][y]D′
. �

We use the following proposition to reduce problems on the kernel ofD to a lower
dimensional case.

PROPOSITION 4.4. Let D be any elementary monomial K[x]-derivation on K[x][y],
and 1 ≤ j, k ≤ m distinct integers. For each 1 ≤ i ≤ m, we assume that either εi

j,k ≥ 0 or

εi
l,k ≥ 0 for all l �= j . Then,

K[x][y]D = K[x][y1, . . . , yj−1, yj+1, . . . , yn]D[Lj,k] .(4.1)

PROOF. Clearly, the right hand side of (4.1) is contained in the left hand side. We show
the converse. LetS be the set of elements ofK[x][y]D not contained in the right hand side of
(4.1). Suppose thatS were not empty. Takef ∈ S with the minimal degree inyj , and write

f = gd (x
ε+
k,j yj )

d + gd−1(x
ε+
k,j yj )

d−1 + · · · + g 0 ,(4.2)

wheregi ∈ K[x, x−1][y1, . . . , yj−1, yj+1, . . . , yn] with gd �= 0. To complete the proof, it
suffices to show thatgd is in K[x][y]D. Indeed, it implies thatf − gd (Lj,k)

d is in S, but the
degree off − gd(Lj,k)

d in yj is less thand. This is a contradiction, and we getS = ∅.
Similarly to the remark before Proposition 3.8, we haveD(gd ) = 0. We show that every

monomial appearing ingd does not have negative power inxi for eachi. First, assume that the
i-th component ofε+

k,j is not zero. Then, it is equal toεi
k,j > 0, and soεi

j,k is negative. Hence,

εi
l,k ≥ 0 for anyl �= j by assumption. Sinceεi

l,j = εi
l,k + εi

k,j , we have 0< εi
k,j ≤ εi

l,j
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for l �= j . Thus, the substitutionyj �→ xi
−εi

k,j yj sendsf to Tj,i (f ). If there appeared
in gd a monomialxayb with negative power inxi , thenTj,i (f ) would have the monomial
xaybyd

j . It also has negative power inxi . This is a contradiction, sinceTj,i (f ) is in K[x][y]
by Lemma 4.3. If thei-th component ofε+

k,j is zero, then the expression (4.2) also implies
that no monomial appearing ingd has negative power inxi . Therefore,gd is in K[x][y]. �

As a corollary to Proposition 4.4, we have the following.

COROLLARY 4.5 (Khoury [5, Theorem 3.1]).If m = 2, then there exist 1 ≤ l ≤ n and
1 ≤ kj ≤ n with kj �= j for each j �= l such that

K[x][y]D = K[x][L1,k1, . . . , Ll−1,kl−1 , Ll+1,kl+1, . . . , Ln,kn ] .(4.3)

PROOF. We prove this by induction onn. If n = 1, thenK[x][y]D = K[x] by
Lemma 4.2. Hence, the assertion is true. Assume thatn > 1. Then, by change of indices
if necessary, we may assume thatδ1

1 ≤ · · · ≤ δ1
n. If there exist 1≤ k < j ≤ n such that

δ2
k ≤ δ2

j , thenεi
j,k ≥ 0 for i = 1, 2. Hence,

K[x][y]D = K[x][y1, . . . , yj−1, yj+1, . . . , yn]D[Lj,k]
by Proposition 4.4. Thus, the assertion followsfrom the induction assumption. Assume that
suchk, j do not exist, i.e.,δ2

n < · · · < δ2
1. Then,ε2

l,n−1 > 0 for anyl �= n. Sinceε1
n,n−1 ≥ 0,

we haveK[x][y]D = K[x][y1, . . . , yn−1]D[Ln,n−1] by Proposition 4.4. Hence, the assertion
follows similarly. �

Let φ1 : K[x][y] → K[x2, . . . , xm][y] be the homomorphism which substitutes one
for x1, andD1 the elementaryK[x2, . . . , xm]-derivation onK[x2, . . . , xm][y] defined by
D1(f ) = φ1(D(f )) for eachf . Then,D1 is a monomial derivation. By definition, it follows
thatφ1◦D = D1 ◦φ1 onK[x][y]. Recall theΓ -grading structure onK[x][y] defined in Sec-
tion 3. LetΓ1 be the set of the images of(a, len) in Γ for l ∈ Z anda = (a1, . . . , am) ∈ Zm

with a1 = 0. Then,Γ1 is a subgroup ofΓ , and
⊕

γ∈Γ1
K[x][y]γ is a K[x2, . . . , xn]-

subalgebra ofK[x][y].
LEMMA 4.6. Assume that ε1

n,j ≥ 0 for j = 1, . . . , n. Then, φ1 induces an isomor-
phism ⊕

γ∈Γ1

K[x][y]Dγ → K[x2, . . . , xm][y]D1 .(4.4)

PROOF. SetR = ⊕
γ∈Γ1

K[x][y]γ andR′ = K[x2, . . . , xm][y]. It suffices to show

thatφ1 induces an isomorphismR → R′. Indeed, it implies thatφ1(R
D) = (R′)D1, since

φ1 ◦ D = D1 ◦ φ1.
First, we show the injectivity. Suppose that there existedf ∈ R\{0} such thatφ1(f ) = 0.

Then,f = (x1 − 1)f ′ for somef ′ ∈ K[x][y] \ {0}. Let p andq be the maximal and the
minimal integersl with degΓ (xl

1f
′′) ∈ Γ1 for some nonzeroΓ -homogeneous componentf ′′

of f ′, respectively. Clearly, we havep ≥ 1 or q ≤ 0. If p ≥ 1, then degΓ (f ′′) �∈ Γ1

for a Γ -homogeneous componentf ′′ of f ′ with degΓ (x
p

1 f ′′) ∈ Γ1. However,−f ′′ is a
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Γ -homogeneous component off by the maximality ofp. Hence,−f ′′ is in R. This is a
contradiction. Similarly, we get a contradiction ifq ≤ 0. Therefore,φ1(f ) �= 0 for any
f ∈ R \ {0}.

For the surjectivity, it suffices to show thatφ1(R) contains every monomial inR′. Take
any monomialxayb ∈ R′, and putl = ∑n

j=1 bjε
1
n,j , whereb = (b1, . . . , bn). Then,l is

nonnegative, sinceε1
n,j ≥ 0 for all j by assumption. Hence,xl

1x
ayb is in K[x][y]. Note that

degΓ (xl
1x

ayb) = degΓ

(
xl

1x
ayb

n∏
j=1

(xεj,ny−1
j yn)

bj

)
= degΓ

(
xcy

∑n
j=1 bj

n

)
,

wherec = (l, 0, . . . , 0) + a + ∑n
j=1 bj εj,n. Since the first component ofa is zero, that of

c is equal tol + ∑n
j=1 bj ε

1
j,n = 0. Thus,xl

1x
ayb is in R. Sincexayb = φ1(x

l
1x

ayb), the
surjectivity is proved. �

LEMMA 4.7. Assume that n = 4 and ε1
1,3, ε

1
1,2 > 0, ε1

1,4 = 0. Then, K[x][y]D is

generated by x1 and L3,2 over
⊕

γ∈Γ1
K[x][y]Dγ .

PROOF. Without loss of generality, we may assume thatε1
1,3 ≥ ε1

1,2. It suffices to

show that eachΓ -homogeneous elementF ∈ K[x][y]D is written asF = x
p

1 L
q

3,2F
′, where

p, q ∈ Z≥0 andF ′ ∈ K[x][y]γ ′ for someγ ′ ∈ Γ1. Indeed, it also implies thatD(F ′) = 0,
since 0= D(F) = x

p

1 L
q

3,2D(F ′).
Assume that degΓ (F ) is equal to the image of(a, le4), wherea = (a1, . . . , am) ∈ Zm

and l ∈ Z≥0. We setf = φ(F). Then,F = τxa (f ), as we noted before Proposition 3.4.
Take anyb = (b1, b2, b3, b4) ∈ supp(f ). Then, by straightforward computation, we get
τxa (yb) = xcyb, where

c = a + (l − b4)ε4,1 + b2ε1,2 + b3ε1,3 .(4.5)

Sinceε1
4,1 = 0, the first component ofc is equal toa1 + l̃(b). On the other hand, we have

l̃(b) ≥ 0, sinceε1
1,2, ε

1
1,3 > 0. Hence,x−a1

1 xcyb does not have negative power. Thus,x
−a1
1 F

is in K[x][y]. Clearly, degΓ (x
−a1
1 F) is in Γ1. Therefore, ifa1 ≥ 0, then we are led to the

desired expressionF = x
a1
1 (x

−a1
1 F).

Assume thata1 < 0. Let q be the minimal integer such thatqε1
1,3 ≥ −a1. Since the

first component of (4.5) is nonnegative, we havel̃(b) ≥ −a1 for everyb ∈ supp(f ). Hence,
(y3 − y2)

q dividesf by Lemma 3.7. It implies thatF = F ′Lq

3,2 for someF ′ ∈ K[x][y]D .

Note that degΓ (L
q
3,2) is equal to the image ofq(ε+

2,3 + ε3,4, e4) in Γ . Hence, degΓ (F ′) is
equal to that of(a′, (l − q)e4), where

a′ = a − q(ε+
2,3 + ε3,4) = a + qε1,3 − q(ε+

2,3 + ε1,4) .

Since the first components ofε+
2,3 andε1,4 are zero, that ofa′ is equal toa1 + qε1

1,3. By

the choice ofq, this is nonnegative. Hence, we haveF ′ = x
p

1 F ′′ for somep ∈ Z≥0 and
F ′′ ∈ K[x][y]γ ′ with γ ′ ∈ Γ1, as we showed in the preceding paragraph. Therefore, we get a
desired expression. �
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Now, let us prove Theorem 4.1. Note that the assumption fails if and only if we can
exchange the rows and columns of the matrix(δ

j
i )i,j so thatδi

i is the maximum among the
components of thei-th column for eachi. Under the assumption, we are reduced to one of
the following two cases by such operations:

(i) δ1
i ≤ δ1

1 andδ2
i ≤ δ2

1 for i = 1, 2, 3, 4.
(ii) δ1

i < δ1
1 = δ1

4 for i = 2, 3.
In fact, if we are not reduced to (ii), then there exists 1≤ kj ≤ 4 for eachj = 1, 2, 3 such

thatδj
i < δ

j
kj

for anyi �= kj . If further we were not reduced to (i), thenkj �= kl for anyj �= l.

In this case, we can exchange the rows of(δ
j

i )i,j so thatkj = j for j = 1, 2, 3. This implies

thatδj

i < δi
i for anyi �= j .

First, consider the case (i). By exchanging the row vectorsδ2, δ3 and δ4 of (δ
j
i )i,j if

necessary, we may assume thatδ3
4 ≤ δ3

j , that is,ε3
j,4 ≥ 0 for j = 2, 3, 4. Sinceδ1

4 ≤ δ1
1 and

δ2
4 ≤ δ2

1 by assumption, we haveε1
1,4, ε

2
1,4 ≥ 0. Hence,K[x][y]D = K[x][y1, y2, y3]D[L4,1]

by Proposition 4.4. Therefore,K[x][y]D is generated byL2,1, L3,1, L3,2 andL4,1 overK[x]
by Corollary 3.5.

Now, consider the case (ii). Sinceε1
2,1, ε

1
3,1 < 0 andε1

4,1 = 0 follow from the condition,

K[x][y]D is generated byx1, L
D
3,2 over

⊕
γ∈Γ1

K[x][y]Dγ by Lemma 4.7. By Lemma 4.6,⊕
γ∈Γ1

K[x][y]Dγ is isomorphic toK[x2, x3][y]D′
via φ1, sinceε1

4,j ≥ 0 for anyj . Then, by
Corollary 4.5, there exist 1≤ l ≤ 4, and 1≤ ki ≤ 4 with ki �= i for i ∈ {1, 2, 3, 4} \ {l}
such thatK[x2, x3][y]D′

is generated byLD′
ki ,i

for i ∈ {1, 2, 3, 4} \ {l} overK[x2, x3]. Since

φ1(L
D
i,j ) = LD′

i,j for i, j , the K[x2, x3]-algebra
⊕

γ∈Γ1
K[x][y]Dγ is generated byLD

ki ,i
for

i ∈ {1, 2, 3, 4}\{l}. Therefore,K[x][y]D is generated byLD
3,2 andLD

ki ,i
for i ∈ {1, 2, 3, 4}\{l}

overK[x]. This completes the proof of Theorem 4.1.
Let D be any elementary monomialK[x]-derivation onK[x][y] for (m, n) = (3, 4). By

Theorems 1.4 and 4.1, we settled the problem of finite generation ofK[x][y]D except in the
caseεi

i,j > 0 for anyi �= j andξ(D) > 1.

CONJECTURE 4.8. Assume that (m, n) = (3, 4), and εi
i,j > 0 for any i �= j . If

ξ(D) > 1, then K[x][y]D is finitely generated.

Note that the conjecture is true if there exist distinctr, s ∈ {1, 2, 3} such thatξr (D) ≥ 1
andξs(D) ≥ 1. We show this for(r, s) = (2, 3). The conditionsξ2(D) ≥ 1 andξ3(D) ≥ 1
imply, respectively, thatε2

3,4 ≥ 0 orε2
1,4 ≥ 0, andε3

1,4 ≥ 0 orε3
2,4 ≥ 0. Furthermore, we have

ε1
1,4 > 0, ε2

2,4 > 0 andε3
3,4 > 0 by assumption. Hence, for eachi = 1, 2, 3, we haveεi

1,4 ≥ 0

or εi
l,4 ≥ 0 for l = 2, 3, 4. Thus,K[x][y]D = K[x][y2, y3, y4]D[L4,1] by Proposition 4.4.

Therefore,K[x][y]D is generated byL3,2, L4,1, L4,2 andL4,3 overK[x] by Corollary 3.5.
There exists an example of an elementary monomialK[x]-derivation onK[x][y] for

(m, n) = (3, 4) whose kernel is finitely generated, andξi(D) < 1 for i = 1, 2, 3. Kurano [7]
showed that the kernel ofD1,3 is finitely generated. In fact, he showed that it is generated by
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x1, x2, x3, Li,j for (i, j) ∈ Z × Z with 1 ≤ j < i ≤ 4 and

xiy
2
4 − 2xjxkyiy4 + xix

2
k yiyj + xix

2
j yiyk − x3

i yj yk(4.6)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) overK. Moreover, [7, Lemma 3.2] implies that the
set of these polynomials is a SAGBI basis for the lexicographic orderlex with (3.3). For this
derivation, we haveξi(D1,3) = 1/2 for i = 1, 2, 3.
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