Tohoku Math. J. 56 (2004), 501–522

A GENERALIZATION OF ROBERTS' COUNTEREXAMPLE TO THE FOURTEENTH PROBLEM OF HILBERT

SHIGERU KURODA

(Received February 28, 2003, revised July 17, 2003)

Abstract. We generalize Roberts' counterexample to the fourteenth problem of Hilbert, and give a sufficient condition for certain invariant rings not to be finitely generated. It shows that there exist a lot of counterexamples of this type. We also determine the initial algebra of Roberts' counterexample for some monomial order.

1. Introduction. The fourteenth problem of Hilbert asks whether the *K*-algebra $L \cap A$ is finitely generated. Here, *K* is a field, *A* is a polynomial ring over *K*, and *L* is a subfield of the quotient field of *A* containing *K*. The first counterexample to this problem was found by Nagata in 1958. It was given as the invariant subring of a polynomial ring in 32 variables for a linear action of the 13-dimensional additive group (cf. [12]). Recently, Mukai [11] showed that there exists a similar counterexample which is the invariant subring of a polynomial ring in 18 variables for a linear action of the three-dimensional additive group.

In 1990, Roberts gave a simple new counterexample of different type as follows.

THEOREM 1.1 (Roberts [14, Theorem 1]). Let $A = K[x_1, x_2, x_3, y_1, y_2, y_3, y_4]$ be a polynomial ring in seven variables over a field K of characteristic zero. For each nonnegative integer t, let L_t be the subfield of the quotient field of A generated by

(1.1) $x_1, x_2, x_3, x_1y_4 - x_2^t x_3^t y_1, x_2y_4 - x_1^t x_3^t y_2, x_3y_4 - x_1^t x_2^t y_3$ over K. If $t \ge 2$, then the K-algebra $L_t \cap A$ is not finitely generated.

Following this result, Deveney and Finston [2] showed that this counterexample can be obtained as the invariant subring of A for a nonlinear action of the one-dimensional additive group G_a . Kojima and Miyanishi [6] generalized Roberts' counterexample. They constructed a G_a -invariant subring of the polynomial ring of each dimension greater than or equal to seven which is not finitely generated. Furthermore, Freudenburg [4] gave a counterexample in dimension six, while Daigle and Freudenburg [1] gave one in dimension five.

In the present paper, we will generalize Roberts' counterexample further, and show that there exist a lot of counterexamples of this type. We give in Theorems 1.3 and 1.4 sufficient conditions for a certain kind of G_a -invariant subring of a polynomial ring not to be finitely generated. In Section 3, we will discuss Roberts' counterexample $L_t \cap A$ in terms of the theory

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A50; Secondary 13E15, 13N15, 13P10, 14R20.

Partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Science, Sports and Culture, Japan.

of SAGBI (Subalgebra Analogue to Gröbner Bases for Ideals) bases. As a consequence, we determine a generating set of it in Theorem 3.3. We also remark on a sufficient condition for finite generation in Section 4.

Throughout this paper, let *K* denote a field of characteristic zero. Assume that *R* is a commutative *K*-algebra, and *A* is a commutative *R*-algebra. An *R*-homomorphism $D : A \rightarrow A$ is called an *R*-derivation on *A* if D(ab) = D(a)b + aD(b) holds for any $a, b \in A$. Then, its kernel

$$A^{D} = \{a \in A \mid D(a) = 0\}$$

is an *R*-subalgebra of *A*. An *R*-derivation *D* on *A* is said to be *locally nilpotent* if, for each $a \in A$, there exists $r \in \mathbb{Z}_{\geq 0}$ such that $D^r(a) = 0$. Here, we denote by $\mathbb{Z}_{\geq 0}$ the set of nonnegative integers. We remark that a locally nilpotent *R*-derivation *D* on *A* defines an action $A \to A \otimes_R R[t]$ of the one-dimensional additive group scheme $G_a = \operatorname{Spec} R[t]$ over *R* on *A* by $a \mapsto \sum_{k\geq 0} D^k(a) \otimes (t^k/k!)$. The invariant subring A^{G_a} of *A* for this action of G_a is equal to A^D (cf. [10]).

Let $R = K[x] = K[x_1, ..., x_m]$ be the polynomial ring in *m* variables over *K*, and $A = K[x][y] = K[x][y_1, ..., y_n]$ that in *n* variables over K[x]. A K[x]-derivation *D* on K[x][y] is said to be *elementary* if $D(y_j)$ is in K[x] for each *j*. Note that an elementary K[x]-derivation is locally nilpotent. An elementary K[x]-derivation *D* on K[x][y] is said to be *monomial* if each $D(y_i)$ is a monomial, i.e., $x_1^{a_1} \cdots x_m^{a_n}$ for some $(a_1, \ldots, a_m) \in (\mathbb{Z}_{\geq 0})^m$. In this paper, we discuss the problem of finite generation of the kernel $K[x][y]^D$ of an elementary monomial K[x]-derivation *D*. As we remarked above, it is equal to the invariant subring of K[x][y] for an action of G_a , since *D* is locally nilpotent. Note that $K[x][y]^D$ is finitely generated over *K* if and only if it is so over K[x].

In the case of n = m + 1, the K[x]-derivation

(1.2)
$$D_{t,m} = x_1^{t+1} \frac{\partial}{\partial y_1} + \dots + x_m^{t+1} \frac{\partial}{\partial y_m} + (x_1 \cdots x_m)^t \frac{\partial}{\partial y_{m+1}}$$

on K[x][y] is elementary and monomial. The kernel $K[x][y]^{D_{t,m}}$ of this K[x]-derivation has been studied well. Deveney and Finston [2] showed that Roberts' *K*-algebra $L_t \cap A$ in Theorem 1.1 is equal to the kernel $K[x][y]^{D_{t,m}}$ for m = 3 (see also Maubach's result found in [3, Section 9.6]). Furthermore, Kojima and Miyanishi showed the following.

THEOREM 1.2 (Kojima-Miyanishi [6]). Assume that n = m + 1. If $t \ge 2$ and $m \ge 3$, then the kernel $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ of the $K[\mathbf{x}]$ -derivation $D_{t,m}$ is not finitely generated over K.

We will study the kernel $K[\mathbf{x}][\mathbf{y}]^D$ of an elementary monomial $K[\mathbf{x}]$ -derivation D on $K[\mathbf{x}][\mathbf{y}]$ of more general form. Let $D(y_i) = \mathbf{x}^{\delta_i}$ for each i = 1, ..., n. Here, we denote by \mathbf{x}^a the monomial $x_1^{a_1} \cdots x_m^{a_m}$ for $a = (a_1, ..., a_m) \in \mathbb{Z}^m$. Similarly, we denote by \mathbf{y}^b the monomial $y_1^{b_1} \cdots y_n^{b_n}$ for $b = (b_1, ..., b_n) \in \mathbb{Z}^n$. Put $\varepsilon_{i,j} = \delta_i - \delta_j$ for i, j, and for k = 1, ..., m, let $\varepsilon_{i,j}^k$ and δ_i^k be the k-th components of $\varepsilon_{i,j}$ and δ_i , respectively.

In Sections 1 and 2, we deal with the case where $n \ge 4$, $m \ge n - 1$ and $\varepsilon_{i,j}^i > 0$ for any $1 \le i \le n - 1$, $1 \le j \le n$ with $i \ne j$. The derivation $D_{t,m}$ satisfies this condition with

 $\varepsilon_{i,j}^i = t + 1$ if $j \neq m + 1$, and $\varepsilon_{i,j}^i = 1$ otherwise. We define

(1.3)
$$\eta = \frac{\varepsilon_{1,n}^1}{\min\{\varepsilon_{1,j}^1 \mid j = 2, \dots, n-1\}}$$

and

(1.4)
$$\eta_{k,i} = \eta \min\{\max\{\varepsilon_{1k}^{i}, \varepsilon_{2k}^{i}\}, 0\}$$

for i = 2, ..., n - 1 and k = 3, ..., n - 1. For each k = 3, ..., n - 1, we set $\mathcal{L}_{k,n-2}$ to be the system of linear inequalities

(1.5)
$$\begin{cases} u_1 + \dots + u_{n-2} = 1\\ u_1 \ge \eta, \ u_i \ge 0 \ (i = 2, \dots, n-2)\\ \sum_{j=1}^{n-2} \min\{\varepsilon_{n,1}^i, \varepsilon_{n,j+1}^i\} u_j + \eta_{k,i} \ge 0 \ (i = 2, \dots, n-1) \end{cases}$$

in the n-2 variables u_1, \ldots, u_{n-2} .

Here is our main result.

THEOREM 1.3. Assume that $n \ge 4$, $m \ge n - 1$ and $\varepsilon_{i,j}^i > 0$ for any $1 \le i \le n - 1$, $1 \le j \le n$ with $i \ne j$. If the system $\mathcal{L}_{k,n-2}$ of linear inequalities has a solution in \mathbb{R}^{n-2} for each k = 3, ..., n - 1, then $K[\mathbf{x}][\mathbf{y}]^D$ is not finitely generated over K.

By this theorem, we get the following simple criterion for n = 4.

THEOREM 1.4. Assume that $m \ge 3$, n = 4 and $\varepsilon_{i,j}^i > 0$ for any $1 \le i \le 3$, $1 \le j \le 4$ with $i \ne j$. If

(1.6)
$$\frac{\varepsilon_{1,4}^1}{\min\{\varepsilon_{1,2}^1, \varepsilon_{1,3}^1\}} + \frac{\varepsilon_{2,4}^2}{\min\{\varepsilon_{2,3}^2, \varepsilon_{2,1}^2\}} + \frac{\varepsilon_{3,4}^3}{\min\{\varepsilon_{3,1}^3, \varepsilon_{3,2}^3\}} \le 1,$$

then $K[\mathbf{x}][\mathbf{y}]^D$ is not finitely generated over K.

The examples of Roberts are included as special cases of this theorem for m = 3. In case (m, n) = (3, 4), there exist 2450001 derivations on $K[\mathbf{x}][\mathbf{y}]$ which satisfy (1.6) and $gcd\{\mathbf{x}^{\delta_1}, \mathbf{x}^{\delta_2}, \mathbf{x}^{\delta_3}, \mathbf{x}^{\delta_4}\} = 1$ even if we impose the restriction $\delta_i^k \le 10$ for all i, k.

In the following corollary, the case where $m \ge 4$ and t = 1 is new, while the case $m \ge 3$ and $t \ge 2$ was proved in [6].

COROLLARY 1.5. Assume that n = m + 1. If $m \ge 3$ and $t \ge 2$, or $m \ge 4$ and t = 1, then the kernel $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ of the $K[\mathbf{x}]$ -derivation $D_{t,m}$ is not finitely generated over K.

We will prove Theorems 1.3, 1.4 and Corollary 1.5 in Section 2.

We remark that, if t = 0, then the kernel $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ of $D_{t,m}$ is finitely generated for any *m* by Weitzenböck's theorem (cf. [12, Chapter IV]). In fact, it is isomorphic to a polynomial ring in 2m variables over *K* by the remark after Lemma 4.2 below. If $m \le 2$, then $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ is also isomorphic to a polynomial ring in 2m variables over *K* for any $t \ge 0$

by [5, Theorem 3.1]. For (t, m) = (1, 3), Kurano [7] showed that $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ is generated by nine elements over $K[\mathbf{x}]$.

The author would like to thank Professor Masanori Ishida for helpful comments and encouragement. He also thanks Professor Kazuhiko Kurano for informing him of the result on the kernel of $D_{1,3}$.

2. Construction of invariants. In this section, we prove Theorem 1.3, and show Theorem 1.4 and Corollary 1.5 as its consequences. Throughout this section, we assume that $n \ge 4$, $m \ge n-1$ and that D satisfies $\varepsilon_{i,j}^i > 0$ for any $1 \le i \le n-1$, $1 \le j \le n$ with $i \ne j$. We denote $K[\mathbf{x}, x_n^{-1}, \ldots, x_m^{-1}][\mathbf{y}] = K[\mathbf{x}][\mathbf{y}] \otimes_{K[x_n, \ldots, x_m]} K[x_n, \ldots, x_m, x_n^{-1}, \ldots, x_m^{-1}]$. Note that D is uniquely extended to a $K[\mathbf{x}]$ -derivation on each $K[\mathbf{x}]$ -subalgebra of $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$.

Theorem 1.3 follows from the following two lemmas.

LEMMA 2.1. If a monomial of the form $\mathbf{x}^a y_n^l$ with l > 0 appears in an element of $K[\mathbf{x}][\mathbf{y}]^D$, then at least one of the first n - 1 components of $a \in (\mathbf{Z}_{\geq 0})^m$ is positive.

PROOF. Suppose to the contrary that there appears in $f \in K[x][y]^D$ a monomial $x^a y_n^l$ with the first n-1 components of a zero with nonzero coefficient. Then, the monomial $x^a x^{\delta_n} y_n^{l-1}$ appears in D(f). Since D(f) = 0, its coefficient in D(f) is zero. Hence, $x^a x^{\delta_n} y_n^{l-1}$ appears as a monomial in $D(x^{a'}y^{b'})$ for some monomial $x^{a'}y^{b'} \neq x^a y_n^l$ of f. Such $x^{a'}y^{b'}$ must be equal to $x^a x^{\varepsilon_{n,i}} y_i y_n^{l-1}$ for some i < n. Since $\varepsilon_{n,i}^i < 0$ for i < n, we have $x^{a'}y^{b'} \notin K[x][y]$. This contradicts $f \in K[x][y]$. Thus, at least one of the first n-1 components of $a \in (\mathbb{Z}_{\geq 0})^m$ is positive.

The lemma below asserts the existence of an infinite system of invariants.

LEMMA 2.2. Under the assumption in Theorem 1.3, there exists a positive integer α such that a Laurent polynomial of the form

(2.1)
$$x_1^{\alpha} y_n^l + (\text{terms of lower degree in } y_n)$$

belongs to $K[\mathbf{x}, x_n^{-1}, \dots, x_m^{-1}][\mathbf{y}]^D$ for each l > 0.

First, we show Theorem 1.3 by assuming these lemmas. Suppose that $K[x][y]^D$ is generated by a finite number of elements g_1, \ldots, g_p . Then, by Lemma 2.1, there exists r > 0 such that each monomial appearing in g_i of the form $x_1^{\beta} \mathbf{x}^b y_n^l$ with l > 0 and the first n - 1 components of b zero satisfies $l/\beta < r$ for every i. Since every element of $K[x][y]^D$ is written as a sum of products of g_1, \ldots, g_p , a monomial appearing in an element of $K[x][y]^D$ is a product of monomials contained in g_1, \ldots, g_p . Hence, any monomial appearing in an element of $K[x][y]^D$ of the form $x_1^{\beta} \mathbf{x}^b y_n^l$ with l > 0 and the first n - 1 components of b zero also satisfies $l/\beta < r$. By Lemma 2.2, there appears in some $f \in K[x, x_n^{-1}, \ldots, x_m^{-1}][y]^D$ a monomial $x_1^{\alpha} y_n^l$ with $l/\alpha > r$. Since $\mathbf{x}^a f$ is in $K[x][y]^D$ for some $a \in (\mathbf{Z}_{\geq 0})^m$ whose first n - 1 components are zero, we are led to a contradiction. Thus, $K[x][y]^D$ is not finitely generated.

Let us denote by $K[y]_l$ the K-vector subspace of $K[y] = K[y_1, \ldots, y_n]$ of homogeneous *l*-forms in y_1, \ldots, y_n . For each $f = \sum_{b \in \mathbb{Z}^n} \lambda_b y^b \in K[y]$, we define the support supp(f) of f by

(2.2)
$$\operatorname{supp}(f) = \{ b \in \mathbf{Z}^n \mid \lambda_b \neq 0 \}.$$

For each $a \in \mathbb{Z}^m$, we define the *K*-linear map $\tau_{\mathbf{x}^a} : K[\mathbf{y}] \to K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$ by $\tau_{\mathbf{x}^a}(\mathbf{y}^b) = \mathbf{x}^{a'}\mathbf{y}^b$. Here, $b = (b_1, \ldots, b_n)$ and $a' = a + \sum_{j=1}^n b_j \varepsilon_{n,j}$. We define an elementary *K*-derivation *E* on $K[\mathbf{y}]$ by

(2.3)
$$E = \frac{\partial}{\partial y_1} + \dots + \frac{\partial}{\partial y_n}$$

Then, it follows that $D(\tau_{\mathbf{x}^a}(f)) = \mathbf{x}^{\delta_n} \tau_{\mathbf{x}^a}(E(f))$ for each $a \in \mathbf{Z}^m$ and $f \in K[\mathbf{y}]$. We set

(2.4)
$$B = K[y_2 - y_1, y_3 - y_1, \dots, y_n - y_1].$$

Then, $\tau_{\mathbf{x}^a}(B) \subset K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]^D$ for $a \in \mathbf{Z}^m$. Actually, $D(\tau_{\mathbf{x}^a}(f)) = \mathbf{x}^{\delta_n} \tau_{\mathbf{x}^a}(E(f)) = 0$ for $f \in B$, since E(f) = 0. We define *R*-linear maps $l_i : \mathbf{R}^n \to \mathbf{R}$ by

(2.5)
$$l_1((b_1, \dots, b_n)) = \varepsilon_{n,1}^1 b_1 + \min\{\varepsilon_{n,j}^1 \mid j = 2, \dots, n-1\} \sum_{j=2}^{n-1} b_j$$

and

(2.6)
$$l_i((b_1, \dots, b_n)) = \sum_{j=1}^{n-1} \min\{\varepsilon_{n,1}^i, \varepsilon_{n,j}^i\} b_j$$

for $i = 2, \ldots, n - 1$. We put $B_l = B \cap K[\mathbf{y}]_l$ for each $l \in \mathbb{Z}_{\geq 0}$.

We reduce Lemma 2.2 to the following lemma.

LEMMA 2.3. Under the assumption in Theorem 1.3, there exists a positive integer α such that, for each positive integer l, we may find $f \in B_l$ such that $(0, \ldots, 0, l) \in \text{supp}(f)$ and every $b \in \text{supp}(f)$ satisfies $l_1(b) + \alpha \ge 0$ and $l_i(b) \ge 0$ for $i = 2, \ldots, n - 1$.

Lemma 2.2 is proved by this lemma as follows. As we mentioned above, $\tau_{x_1^{\alpha}}(f)$ is in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]^D$. It has the form of (2.1). We show that it is in $K[\mathbf{x}, x_n^{-1}, \dots, x_m^{-1}][\mathbf{y}]$. By definition, every monomial appearing in $\tau_{x_1^{\alpha}}(f)$ is written as $x_1^{\alpha} \mathbf{x}^{a'} \mathbf{y}^{b}$, where $b = (b_1, \dots, b_n) \in \text{supp}(f)$ and $a' = \sum_{j=1}^n b_j \varepsilon_{n,j}$. By assumption, we have

$$\sum_{j=1}^{n} b_j \varepsilon_{n,j}^1 + \alpha \ge l_1(b) + \alpha \ge 0$$

and

$$\sum_{j=1}^{n} b_j \varepsilon_{n,j}^i \ge l_i(b) \ge 0$$

for i = 2, ..., n - 1. Hence, $x_1^{\alpha} x^{\alpha'} y^b$ does not have negative power in $x_1, ..., x_{n-1}$. Thus, $\tau_{x_1^{\alpha}}(f)$ is in $K[\mathbf{x}, x_n^{-1}, \dots, x_m^{-1}][\mathbf{y}]^D$. This proves Lemma 2.2. Let P_D be the set of $b = (b_1, \dots, b_n) \in (\mathbf{R}_{\geq 0})^n$ with

(2.7)
$$b_1 = b_n = 0, \quad b_2 + \dots + b_{n-1} = 1, \quad l_i(b) \ge 0 \quad (i = 2, \dots, n-1).$$

Here, we denote by $\mathbf{R}_{\geq 0}$ the set of nonnegative real numbers. For each $b = (b_1, \ldots, b_{n-2}) \in$ \mathbf{R}^{n-2} , we set $\iota(b) = (0, b_1, \dots, b_{n-2}, 0)$. Note that, if $b \in (\mathbf{R}_{\geq 0})^{n-2}$ is a solution of $\mathcal{L}_{k,n-2}$, then $l_i(\iota(b)) + \eta_{k,i} \ge 0$ for i = 2, ..., n-1. This condition is equivalent to the condition that $\iota(b), \iota(b) + \eta(e_k - e_2) \in P_D$, where e_1, \ldots, e_n are the coordinate unit vectors of \mathbb{R}^n . Indeed, if $\varepsilon_{n,k}^i < \varepsilon_{n,1}^i$, then

(2.8)
$$\eta_{k,i} = \eta \min\{\max\{\varepsilon_{1,k}^{i}, \varepsilon_{2,k}^{i}\}, 0\} \\ = \eta \min\{\varepsilon_{n,k}^{i} - \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,2}^{i}\}, 0\} \\ = \eta \min\{\min\{\varepsilon_{n,k}^{i}, \varepsilon_{n,1}^{i}\} - \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,2}^{i}\}, 0\} \\ = \min\{\eta l_{i}(\boldsymbol{e}_{k} - \boldsymbol{e}_{2}), 0\}.$$

If $\varepsilon_{n,k}^i \ge \varepsilon_{n,1}^i$, then $\varepsilon_{1,k}^i \ge 0$. The equality $\eta_{k,i} = \min\{\eta l_i(\boldsymbol{e}_k - \boldsymbol{e}_2), 0\}$ also holds in this case, since the right hand sides of the first and the third equality in (2.8) are zero.

For a convex subset $P \subset \mathbf{R}^n$, we denote $rP = \{rb \mid b \in P\}$ for $r \in \mathbf{R}_{>0}$.

LEMMA 2.4. Under the assumption in Theorem 1.3, there exists $\alpha' > 0$ such that, for any $r > \alpha'$ and $u_3, \ldots, u_{n-1} \ge 0$ with $\sum_{k=3}^{n-1} u_k \le \eta(r-\alpha')$, there exist $p_3, \ldots, p_{n-1} \in \mathbb{Z}_{\ge 0}$ such that

(2.9)
$$r e_2 + \sum_{k=3}^{n-1} (s_k u_k + p_k) (e_k - e_2) \in r P_D$$

for any $s_3, \ldots, s_{n-1} \in [0, 1]$.

PROOF. Since $\mathcal{L}_{k,n-2}$ has a solution, there exists $\boldsymbol{b}_k \in P_D$ with $\boldsymbol{b}_k + \eta(\boldsymbol{e}_k - \boldsymbol{e}_2) \in P_D$ for each k = 3, ..., n - 1. Let *P* be the convex hull of

$$\{\boldsymbol{b}_k, \boldsymbol{b}_k + \eta(\boldsymbol{e}_k - \boldsymbol{e}_2) \mid k = 3, \dots, n-1\}$$

in \mathbb{R}^n , and d a positive number such that the d-neighborhood of a point $a \in P$ is contained in P. Here, we consider the Euclidean topology induced from that on the affine subspace $H = \boldsymbol{e}_2 + \sum_{k=3}^{n-1} \boldsymbol{R}(\boldsymbol{e}_k - \boldsymbol{e}_2)$. Then, define $\alpha' = (1/d)\sqrt{(n-2)(n-3)}$. We show that this α' satisfies the desired property.

Take any $r > \alpha'$. Note that it suffices to show (2.9) for $u_3, \ldots, u_{n-1} \ge 0$ with $\sum_{k=3}^{n-1} u_k =$ $\eta(r - \alpha')$. We set $u'_k = u_k/(\eta(r - \alpha'))$ for each k. Then,

(2.10)
$$\sum_{k=3}^{n-1} u'_k (\boldsymbol{b}_k + s_k \eta (\boldsymbol{e}_k - \boldsymbol{e}_2)) \in P$$

for any $s_3, \ldots, s_{n-1} \in [0, 1]$. Actually, since P is convex,

$$\boldsymbol{b}_k + s_k \eta(\boldsymbol{e}_k - \boldsymbol{e}_2) = (1 - s_k)\boldsymbol{b}_k + s_k(\boldsymbol{b}_k + \eta(\boldsymbol{e}_k - \boldsymbol{e}_2))$$

is in P for each k. Since $\sum_{k=3}^{n-1} u'_k = 1$, we get (2.10).

For each $q \in H$, define a map $T_q : P \to rH$ by $T_q(c) = \alpha' q + (r - \alpha')c$. Since $0 < \alpha' < r$, we have $T_q(P) \subset rP$ if $q \in P$. Put $b' = T_a(\sum_{k=3}^{n-1} u'_k b_k)$, and choose $p'_k \in \mathbf{R}_{\geq 0}$ so that $b' = re_2 + \sum_{k=3}^{n-1} p'_k(e_k - e_2)$. Then, let p_k be the nonnegative integer we obtain by adding an element in (-1/2, 1/2] to p'_k for each k. Put $b = re_2 + \sum_{k=3}^{n-1} p_k(e_k - e_2)$ and $a' = a + (\alpha')^{-1}(b - b')$. Then,

$$|\boldsymbol{b} - \boldsymbol{b}'| = \sqrt{\left(\sum_{k=3}^{n-1} (p_k - p_k')\right)^2 + \sum_{k=3}^{n-1} (p_k - p_k')^2} \le \frac{\sqrt{(n-2)(n-3)}}{2}.$$

So, we have

$$|a - a'| = (\alpha')^{-1} |b - b'| \le d/2$$

By the choice of *a*, the point a' is in *P*. Hence, $T_{a'}(P) \subset rP$. Moreover,

$$T_{\boldsymbol{a}'}(c) - T_{\boldsymbol{a}}(c) = \alpha'(\boldsymbol{a}' - \boldsymbol{a}) = \boldsymbol{b} - \boldsymbol{b}'$$

for $c \in P$. Thus, we get

$$(2.11) (\boldsymbol{b} - \boldsymbol{b}') + T_{\boldsymbol{a}}(P) \subset rP$$

On the other hand, we have

$$(\boldsymbol{b} - \boldsymbol{b}') + T_{\boldsymbol{a}} \left(\sum_{k=3}^{n-1} u_k' (\boldsymbol{b}_k + s_k \eta (\boldsymbol{e}_k - \boldsymbol{e}_2)) \right) = \boldsymbol{b} + \sum_{k=3}^{n-1} s_k u_k (\boldsymbol{e}_k - \boldsymbol{e}_2)$$
$$= r \boldsymbol{e}_2 + \sum_{k=3}^{n-1} (p_k + s_k u_k) (\boldsymbol{e}_k - \boldsymbol{e}_2)$$

It is in $(\boldsymbol{b} - \boldsymbol{b}') + T_{\boldsymbol{a}}(P)$ for any $s_k \in [0, 1]$ by (2.10). Then, (2.9) follows from (2.11), since rP is contained in rP_D . Therefore, α' satisfies the desired property. \Box

Now, let us prove Lemma 2.3. First, we show that the assumption that each $\mathcal{L}_{k,n-2}$ has a solution implies that $\varepsilon_{n,1}^i \ge 0$ and $\varepsilon_{n,i}^1 > 0$ for i = 2, ..., n-1. Suppose to the contrary that $\varepsilon_{n,1}^i < 0$ for some $2 \le i \le n-1$. Then, for any $(u_1, ..., u_{n-2}) \in (\mathbf{R}_{\ge 0})^{n-2}$ with $\sum_{i=1}^{n-2} u_i = 1$, we have

$$\sum_{j=1}^{n-2} \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,j+1}^{i}\} u_{j} + \eta_{k,i} \le \varepsilon_{n,1}^{i} + \eta_{k,i} < 0.$$

This contradicts the assumption that $\mathcal{L}_{k,n-2}$ has a solution. Thus, $\varepsilon_{n,1}^i \ge 0$ for i = 2, ..., n-1. Suppose that $\varepsilon_{n,i}^1 \le 0$ for some $2 \le i \le n-1$. Then, it implies that $\eta \ge 1$, since $\varepsilon_{1,n}^1 - \min\{\varepsilon_{1,j}^1 \mid j = 2, ..., n-1\} = -\min\{\varepsilon_{n,j}^1 \mid j = 2, ..., n-1\} \ge -\varepsilon_{n,i}^1 \ge 0$.

If $\mathcal{L}_{k,n-2}$ has a solution $u = (u_1, \ldots, u_{n-2})$, then $\eta = u_1 = 1$ and $u_j = 0$ for $j = 2, \ldots, n-2$. For this u, it follows that

$$\sum_{j=1}^{n-2} \min\{\varepsilon_{n,1}^2, \varepsilon_{n,j+1}^2\} u_j + \eta_{k,2} = \min\{\varepsilon_{n,1}^2, \varepsilon_{n,2}^2\} + \eta_{k,2} \le \varepsilon_{n,2}^2 < 0$$

This is a contradiction. Thus, $\varepsilon_{n,i}^1 > 0$ for i = 2, ..., n - 1.

Take $\alpha' > 0$ as in Lemma 2.4, and set α to be an integer greater than or equal to $\alpha' \varepsilon_{1,n}^1$. Let *l* be an arbitrary positive integer, and \mathcal{F} the set of $f \in B_l$ such that $(0, \ldots, 0, l) \in \text{supp}(f)$ and every $b \in \text{supp}(f)$ satisfies $l_i(b) \ge 0$ for $i = 2, \ldots, n-1$. Since

$$l_i \left(j \boldsymbol{e}_1 + (l-j) \boldsymbol{e}_n \right) = j \varepsilon_{n,1}^l \ge 0$$

for i = 2, ..., n - 1 and j = 0, ..., l, we have $(y_n - y_1)^l \in \mathcal{F}$. Hence, $\mathcal{F} \neq \emptyset$. We show that there exists $F_0 \in \mathcal{F}$ such that $l_1(b) + \alpha \ge 0$ for each $b \in \text{supp}(F_0)$. Suppose the contrary. Then, for each $f \in \mathcal{F}$, an element O(f) = (d, e) in \mathbb{Z}^2 is defined by setting d to be the maximum among the *n*-th components of $b \in \text{supp}(f)$ with $l_1(b) + \alpha < 0$, and e to be the maximum among the first components of $b \in \text{supp}(f)$ whose *n*-th components are d. We define the total order \preceq on \mathbb{Z}^2 by $(d_1, e_1) \preceq (d_2, e_2)$ if $d_1 < d_2$ or $d_1 = d_2, e_1 \le e_2$. For $v_1, v_2 \in \mathbb{Z}^2$, we denote $v_1 \prec v_2$ if $v_1 \preceq v_2$ and $v_1 \neq v_2$. Choose $F \in \mathcal{F}$ with O(F) = (d, e)such that $(d, e) \preceq O(h)$ for any $h \in \mathcal{F}$, and set $f \in K[y_2, \ldots, y_{n-1}]$ to be the coefficient of $y_1^e y_n^d$ in F.

For $b \in \text{supp}(F)$ whose first and *n*-th components are *e* and *d*, respectively, we have

$$l_{1}(b) + \alpha = \varepsilon_{n,1}^{1}e + \min\{\varepsilon_{n,j}^{1} \mid j = 2, ..., n - 1\}(l - d - e) + \alpha$$

$$= \varepsilon_{n,1}^{1}e + (\varepsilon_{n,1}^{1} + \min\{\varepsilon_{1,j}^{1} \mid j = 2, ..., n - 1\})(l - d - e) + \alpha$$

$$(2.12) \qquad = \min\{\varepsilon_{1,j}^{1} \mid j = 2, ..., n - 1\}(l - d - e) - \varepsilon_{1,n}^{1}(l - d) + \alpha$$

$$\geq \min\{\varepsilon_{1,j}^{1} \mid j = 2, ..., n - 1\}(l - d - e) - \varepsilon_{1,n}^{1}(l - d - \alpha')$$

$$= \min\{\varepsilon_{1,j}^{1} \mid j = 2, ..., n - 1\}((l - d - e) - \eta(l - d - \alpha')).$$

Since $\varepsilon_{1,j}^1 > 0$ for $j \neq 1$, the right hand side of the third equality in (2.12) is negative by the maximality of *e*. By the last equality in (2.12) we get

(2.13)
$$l - d - e < \eta (l - d - \alpha').$$

LEMMA 2.5. In the above notation, E(f) = 0.

PROOF. Suppose that $E(f) \neq 0$. Let y^b be a monomial appearing in E(f) with nonzero coefficient. Let λ'_j be the coefficient of $y_j y^b$ in f, and b_j the *j*-th component of b for each j. Then, the coefficient μ' of y^b in E(f) is written as

$$\mu' = \sum_{j=2}^{n-1} (b_j + 1)\lambda'_j.$$

Let λ_j be the coefficient of $y_j \mathbf{y}^b(y_1^e y_n^d)$ in *F* for each *j*. Then, $\lambda_j = \lambda'_j$ for j = 2, ..., n - 1. The coefficient μ of $\mathbf{y}^b(y_1^e y_n^d)$ in E(F) is written as

$$\mu = (e+1)\lambda_1 + \sum_{j=2}^{n-1} (b_j+1)\lambda_j + (d+1)\lambda_n = (e+1)\lambda_1 + \mu' + (d+1)\lambda_n.$$

Since E(F) = 0, we have $\mu = 0$. Moreover, $\lambda_1 = 0$ by the maximality of *e*. Since $\mu' \neq 0$, we have $\lambda_n \neq 0$, that is,

$$b' = b + e\boldsymbol{e}_1 + (d+1)\boldsymbol{e}_n$$

is in supp(*F*). Note that $l_1(b' + e_2 - e_n) + \alpha$ is negative, since it is equal to the left hand side of the first equality in (2.12). Hence,

$$l_1(b') + \alpha = l_1(b' + e_2 - e_n) + \alpha + l_1(e_n - e_2)$$

$$< l_1(e_n - e_2) = -\min\{\varepsilon_{n,j}^1 \mid j = 2, \dots, n-1\} < 0.$$

This contradicts the maximality of d. Thus, we get E(f) = 0.

We claim that $K[y]^E \subset B$. This is a special case of Lemma 4.2 which we shall prove later. By Lemma 2.5, this fact implies that f is in B_{l-d-e} .

LEMMA 2.6. In the above notation, there exists $G \in B_l$ of the form $G = fy_1^e y_n^d + g$, where $g \in K[\mathbf{y}]_l$ such that every $b \in \text{supp}(g)$ satisfies the following. $l_i(b) \ge 0$ for i = 2, ..., n-1. If e' and d' are the first and n-th components of b, respectively, then $(d', e') \prec (d, e)$.

PROOF. Since f is in $B_{l-d-e} \cap K[y_2, \ldots, y_{n-1}]$, we have

$$f = \sum_{u} \lambda_u \prod_{k=3}^{n-1} (y_2 - y_k)^{u_k}$$

for some $\lambda_u \in K$. Here, the sum in the equality above is taken over $u = (u_3, \ldots, u_{n-1}) \in (\mathbb{Z}_{\geq 0})^{n-3}$ with $\sum_{k=3}^{n-1} u_k = l - d - e$. By (2.13), we get $\sum_{k=3}^{n-1} u_k < \eta(l - d - \alpha')$ for each u. Hence, there exist $p_3, \ldots, p_{n-1} \in \mathbb{Z}_{\geq 0}$ such that

(2.14)
$$(l-d)\mathbf{e}_2 + \sum_{k=3}^{n-1} (s_k u_k + p_k)(\mathbf{e}_k - \mathbf{e}_2) \in (l-d)P_D$$

for any $s_3, ..., s_{n-1} \in [0, 1]$ by Lemma 2.4. We set

$$h'_{u} = y_{2}^{e-p} \prod_{k=3}^{n-1} \left((y_{2} - y_{k})^{u_{k}} y_{k}^{p_{k}} \right)$$

where $p = \sum_{k=3}^{n-1} p_k$. Note that each element of $\operatorname{supp}(h'_u)$ is written as the left hand side of (2.14) for some $s_3, \ldots, s_{n-1} \in [0, 1]$. So, $\operatorname{supp}(h'_u)$ is contained in $(l - d)P_D$. In particular,

509

 $e - p \ge 0$. We set

$$h_{u} = (y_{1} - y_{2})^{e-p} \prod_{k=3}^{n-1} ((y_{2} - y_{k})^{u_{k}} (y_{1} - y_{k})^{p_{k}})$$

for each u, and define

$$G = \left(\sum_{u} \lambda_{u} h_{u}\right) (y_{n} - y_{1})^{d}$$

Put $g = G - fy_1^e y_n^d$. Then, the first and *n*-th components e' and d', respectively, of each $b \in \text{supp}(g)$ satisfy $(d', e') \prec (d, e)$. So, we verify that $l_i(b) \ge 0$ for i = 2, ..., n - 1 for each $b \in \text{supp}(g)$. Each element of $\text{supp}(h_u)$ is contained in $c + \sum_{j=2}^{n-1} \mathbb{Z}_{\ge 0}(e_1 - e_j)$ for some $c \in (l-d)P_D$. Indeed, h_u is equal to the polynomial obtained from h'_u by substituting $y_1 - y_k$ for y_k for each k, and $\text{supp}(h'_u) \subset (l-d)P_D$. Therefore, we may write each $b \in \text{supp}(g)$ as

$$b = d_1 \boldsymbol{e}_1 + d_2 \boldsymbol{e}_n + c + \sum_{j=2}^{n-1} v_j (\boldsymbol{e}_1 - \boldsymbol{e}_j)$$

where $d_1, d_2, v_2, ..., v_{n-1} \in \mathbb{Z}_{\geq 0}$ and $c \in (l-d)P_D$. Note that $l_i(e_n) = 0$ and $l_i(e_1), l_i(c) \geq 0$ for i = 2, ..., n - 1. Moreover,

$$l_{i}\left(\sum_{j=2}^{n-1} v_{j}(\boldsymbol{e}_{1} - \boldsymbol{e}_{j})\right) = -\sum_{j=2}^{n-1} \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,j}^{i}\}v_{j} + \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,1}^{i}\}\sum_{j=2}^{n-1} v_{j}$$
$$= \sum_{j=2}^{n-1} (\varepsilon_{n,1}^{i} - \min\{\varepsilon_{n,1}^{i}, \varepsilon_{n,j}^{i}\})v_{j} \ge 0.$$

Thus, we get $l_i(b) \ge 0$ for i = 2, ..., n - 1.

We set H = F - G. Then, H is in \mathcal{F} . Moreover, $O(H) \prec O(F)$ by the definition of H. This contradicts the choice of F. Hence, there exists $F_0 \in \mathcal{F}$ such that $l_1(b) + \alpha \ge 0$ for each $b \in \text{supp}(F_0)$. We have thus proved Lemma 2.3. Therefore, the proof of Theorem 1.3 is completed.

Now, assume that $m \ge 3$ and n = 4. Then, we set

(2.15)
$$\xi_i = \xi_i(D) = \frac{\varepsilon_{i,4}^i}{\min\{\varepsilon_{i,j}^i, \varepsilon_{i,k}^i\}}$$

for distinct integers $1 \le i, j, k \le 3$, and put $\xi(D) = \xi_1(D) + \xi_2(D) + \xi_3(D)$.

We show Theorem 1.4 as a consequence of Theorem 1.3. We verify that $(1 - \xi_2, \xi_2)$ is a solution of $\mathcal{L}_{3,2}$. Note that $\xi_i > 0$ for $i = 1, 2, 3, \eta = \xi_1, \eta_{3,2} = 0$ and $\eta_{3,3} = -\xi_1 \min\{\varepsilon_{3,1}^3, \varepsilon_{3,2}^3\}$. So, $\xi_2 > 0$. By (1.6), we have $1 - \xi_2 \ge \xi_1 + \xi_3 > \xi_1 = \eta$. Moreover, it

510

follows that

$$\min\{\varepsilon_{4,1}^2, \varepsilon_{4,2}^2\}(1-\xi_2) + \min\{\varepsilon_{4,1}^2, \varepsilon_{4,3}^2\}\xi_2 + \eta_{3,2}$$

= $\min\{\varepsilon_{4,1}^2, \varepsilon_{4,2}^2\} + (\min\{\varepsilon_{4,1}^2, \varepsilon_{4,3}^2\} - \min\{\varepsilon_{4,1}^2, \varepsilon_{4,2}^2\})\xi_2 + \eta_{3,2}$
= $\varepsilon_{4,2}^2 + \min\{\varepsilon_{2,1}^2, \varepsilon_{2,3}^2\}\xi_2 = 0$,

and

$$\min\{\varepsilon_{4,1}^3, \varepsilon_{4,2}^3\}(1-\xi_2) + \min\{\varepsilon_{4,1}^3, \varepsilon_{4,3}^3\}\xi_2 + \eta_{3,3} \\ = \min\{\varepsilon_{4,1}^3, \varepsilon_{4,2}^3\} + (\min\{\varepsilon_{4,1}^3, \varepsilon_{4,3}^3\} - \min\{\varepsilon_{4,1}^3, \varepsilon_{4,2}^3\})\xi_2 + \eta_{3,3} \\ = (\varepsilon_{4,3}^3 + \min\{\varepsilon_{3,1}^3, \varepsilon_{3,2}^3\}) - \min\{\varepsilon_{3,1}^3, \varepsilon_{3,2}^3\}\xi_2 + \eta_{3,3} \\ = \min\{\varepsilon_{3,1}^3, \varepsilon_{3,2}^3\} (-\xi_3 + 1 - \xi_2 - \xi_1) \ge 0 .$$

Therefore, $(1 - \xi_2, \xi_2)$ is a solution of $\mathcal{L}_{3,2}$. Hence, $K[\mathbf{x}][\mathbf{y}]^D$ is not finitely generated by Theorem 1.3.

Finally, we show Corollary 1.5. As mentioned in Section 1, $\varepsilon_{i,j}^i > 0$ for any $i \neq j$, since $\varepsilon_{i,j}^i = t + 1$ if $j \neq m + 1$, and $\varepsilon_{i,j}^i = 1$ otherwise. Assume that m = 3 and $t \geq 2$. Then, $\xi(D_{t,m}) = 3/(t+1) \leq 1$. Hence, $K[\mathbf{x}][\mathbf{y}]^{D_{t,3}}$ is not finitely generated by Theorem 1.4.

Assume that $m \ge 4$ and $t \ge 1$. For $k = 3, \ldots, m-1$, we define $u_k = (u_k^1, \ldots, u_k^{m-1}) \in (\mathbf{R}_{\ge 0})^{m-1}$ as follows. Set $u_3^3, u_k^j = 1/2$ for j, k with j = 1 or k = j + 2, and set $u_k^j = 0$ otherwise. We show that u_k is a solution of $\mathcal{L}_{k,m-1}$ for each k. Since $m \ge 4$, we have $\sum_{j=1}^{m-1} u_k^j = 1$. Since $t \ge 1$, we get $u_k^1 = 1/2 \ge 1/(t+1) = \eta$. Clearly, $u_k^j \ge 0$ for $j = 2, \ldots, m-1$. For $i = 2, \ldots, m-1$, it follows that

(2.16)
$$\sum_{j=1}^{m-1} \min\{\varepsilon_{m+1,1}^{i}, \varepsilon_{m+1,j+1}^{i}\}u_{k}^{j} + \eta_{k,i} = t - (t+1)u_{k}^{i-1} + \eta_{k,i}$$

Note that $\eta_{k,i} = -1$ if i = k, and $\eta_{k,i} = 0$ otherwise. If i = k, then the right hand side of (2.16) is equal to t - 1, since $u_k^{k-1} = 0$. If $i \neq k$, then it is not less than (t - 1)/2, since $u_k^{i-1} \leq 1/2$ for any i, k. So, it is nonnegative for every i, k. Therefore, u_k is a solution of $\mathcal{L}_{k,m-1}$ for $k = 3, \ldots, m - 2$. By Theorem 1.3, $K[\mathbf{x}]^{D_{t,m}}$ is not finitely generated. Thus, we complete the proof of Corollary 1.5.

3. A SAGBI basis for the counterexample of Roberts. In this section, we consider the counterexample of Roberts. Recall that it is obtained as the kernel of the derivation $D_{t,m}$ on K[x][y] for (m, n) = (3, 4) and $t \ge 2$ by the result of Deveney and Finston [2]. We determine its initial algebra for some monomial order on K[x][y]. Consequently, it will turn out that the infinite system of invariants appearing in Roberts' proof of [14, Lemma 3] is a generating set of $K[x][y]^{D_{t,3}}$.

First, we review the notion of an initial algebra and a SAGBI (Subalgebra Analogue to Gröbner Bases for Ideals) basis. Let \leq be a monomial order on K[x][y], i.e., a total order on $Z^m \times Z^n$ such that $a \leq b$ implies $a + c \leq b + c$ for any $a, b, c \in Z^m \times Z^n$ and the zero

vector is the minimum among $(\mathbf{Z}_{\geq 0})^m \times (\mathbf{Z}_{\geq 0})^n$ for \leq . We denote $a \prec b$ if $a \neq b$ and $a \leq b$. We sometimes denote $\mathbf{x}^a \mathbf{y}^b \leq \mathbf{x}^{a'} \mathbf{y}^{b'}$ instead of $(a, b) \leq (a', b')$. For $f \in K[\mathbf{x}][\mathbf{y}] \setminus \{0\}$, we define the *initial term* $\operatorname{in}_{\leq}(f)$ of f by $\alpha \mathbf{x}^a \mathbf{y}^b$. Here, (a, b) is the maximal element of $\operatorname{supp}(f)$ for \leq , and α is the coefficient of $\mathbf{x}^a \mathbf{y}^b$ in f. Note that the maximum of $\operatorname{supp}(f)$ always exists, since it is a nonempty finite set. If f = 0, then we define $\operatorname{in}_{\leq}(f) = 0$. Then, it follows that

(3.1)
$$\operatorname{in}_{\preceq}(fg) = \operatorname{in}_{\preceq}(f) \operatorname{in}_{\preceq}(g)$$

for any $f, g \in K[\mathbf{x}][\mathbf{y}]$. Assume that A is a K-subalgebra of $K[\mathbf{x}][\mathbf{y}]$. We define the *initial algebra* $\text{in}_{\leq}(A)$ of A as the K-vector space generated by $\{\text{in}_{\leq}(f) \mid f \in A\}$. Then, $\text{in}_{\leq}(A)$ is a K-algebra by (3.1). We say that a generating set S of A is a *SAGBI basis* if the initial algebra $\text{in}_{\leq}(A)$ is generated by $\{\text{in}_{\leq}(f) \mid f \in S\}$ over K.

The following is a basic property of a SAGBI basis.

LEMMA 3.1 (Robbiano-Sweedler [13, Proposition 1.16]). Let \leq be a monomial order on $K[\mathbf{x}][\mathbf{y}]$. Assume that A is a K-subalgebra of $K[\mathbf{x}][\mathbf{y}]$, and S is a subset of A. If $\{in_{\leq}(f) \mid f \in S\}$ generates the initial algebra $in_{\leq}(A)$ over K, then S is a SAGBI basis for A. In particular, S generates A over K.

For any elementary monomial K[x]-derivation D on K[x][y], we set $\varepsilon_{i,j}^+$ to be the vector we obtain from $\varepsilon_{i,j}$ by replacing the negative components by zero, and define $L_{i,j} = x^{\varepsilon_{j,i}^+} y_i - x^{\varepsilon_{i,j}^+} y_i$ for each i, j. Then, $L_{i,j}$ is in $K[x][y]^D$ for i, j.

Now, let us consider the kernel $K[\mathbf{x}][\mathbf{y}]^{D_{t,m}}$ of $D_{t,m}$ on $K[\mathbf{x}][\mathbf{y}]$ for (m, n) = (3, 4). Note that the three elements

(3.2)
$$x_1^{t+1}y_2 - x_2^{t+1}y_1, \quad x_1^{t+1}y_3 - x_3^{t+1}y_1, \quad x_2^{t+1}y_3 - x_3^{t+1}y_2$$

are contained in $K[x][y]^{D_{t,3}}$. Indeed, they are equal to $L_{2,1}$, $L_{3,1}$ and $L_{3,2}$. Moreover, we know the following (see also [6, Lemma 2.1]).

THEOREM 3.2 (Roberts [14, Lemma 3]). For each $d \in \mathbb{Z}_{\geq 0}$ and i = 1, 2, 3, there exists an element of the form $x_i y_4^d + (\text{terms of lower degree in } y_4)$ in $K[\mathbf{x}][\mathbf{y}]^{D_{t,3}}$.

We take an arbitrary $I_{d,i} \in K[x][y]^{D_{t,3}}$ of the form in Theorem 3.2 for each (d, i). Note that $I_{0,i} = x_i$ for each *i*. Let \leq_{lex} be the monomial order on K[x][y] for (m, n) = (3, 4) which is the lexicographic order with

$$(3.3) x_1 \prec_{\text{lex}} x_2 \prec_{\text{lex}} x_3 \prec_{\text{lex}} y_1 \prec_{\text{lex}} y_2 \prec_{\text{lex}} y_3 \prec_{\text{lex}} y_4.$$

Namely, we define $a \leq_{\text{lex}} b$ if the last nonzero component of b - a is positive for $a, b \in \mathbb{Z}^3 \times \mathbb{Z}^4$, where we regard a, b as elements of \mathbb{Z}^7 .

The following is the main result of this section.

THEOREM 3.3. Assume that $t \ge 2$. Then, the initial algebra of $K[\mathbf{x}][\mathbf{y}]^{D_{t,3}}$ for \preceq_{lex} is generated by

(3.4)
$$\{x_1^{t+1}y_2, x_1^{t+1}y_3, x_2^{t+1}y_3\} \cup \{x_iy_4^d \mid d \in \mathbb{Z}_{\geq 0}, i = 1, 2, 3\}$$

over K. The set

(3.5)

$$\{x_1^{t+1}y_2 - x_2^{t+1}y_1, x_1^{t+1}y_3 - x_3^{t+1}y_1, x_2^{t+1}y_3 - x_3^{t+1}y_2\} \cup \{I_{d,i} \mid d \in \mathbb{Z}_{\geq 0}, i = 1, 2, 3\}$$

is a SAGBI basis for $K[\mathbf{x}][\mathbf{y}]^{D_{t,3}}$ for \leq_{lex} . In particular, it generates $K[\mathbf{x}][\mathbf{y}]^{D_{t,3}}$ over K.

To analyze $K[x][y]^D$ in greater detail, we define a grading structure on it. Let *D* be any elementary monomial K[x]-derivation on K[x][y]. We set

$$\Gamma = (\mathbf{Z}^m \times \mathbf{Z}^n) / \sum_{i=2}^n \mathbf{Z}(\varepsilon_{i,1}, \mathbf{e}_1 - \mathbf{e}_i),$$

and $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$ the *K*-vector space generated by monomials $\mathbf{x}^{a}\mathbf{y}^{b}$ for $(a, b) \in \mathbb{Z}^{m} \times (\mathbb{Z}_{\geq 0})^{n}$ with the image of (a, b) in Γ equal to γ for each $\gamma \in \Gamma$. Then, it defines a Γ -grading on $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$, i.e., $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}] = \bigoplus_{\gamma \in \Gamma} K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$ and $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma} K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\mu} \subset K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma+\mu}$ for any $\gamma, \mu \in \Gamma$. Moreover, it follows that

$$K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]^{D} = \bigoplus_{\gamma \in \Gamma} K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}^{D}.$$

Here, for a *K*-subalgebra *A* of $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$, we set $A_{\gamma} = A \cap K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$ for each γ . We say that $f \in K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$ is Γ -homogeneous if f is in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$ for some $\gamma \in \Gamma$. This γ is denoted by deg_{Γ}(f). Note that each $\gamma \in \Gamma$ is expressed as the image of (a, le_n) for some $a \in \mathbb{Z}^m$ and $l \in \mathbb{Z}_{\geq 0}$. Then, we have $\tau_{\mathbf{x}^a}(K[\mathbf{y}]_l) = K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$. Actually, $\tau_{\mathbf{x}^a}(\phi(f)) = f$ for $f \in K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}$, where $\phi : K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}] \to K[\mathbf{y}]$ is the homomorphism which substitutes one for each x_i . Since $E \circ \phi = \phi \circ D$, we have $\phi(f) \in K[\mathbf{y}]_l^E = B_l$ for $f \in K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}^D$. Hence, $\tau_{\mathbf{x}^a}(B_l) = K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]_{\gamma}^D$.

We remark that, for $f \in K[\mathbf{y}]$, $r \in \mathbf{Z}_{\geq 0}$ and $a \in \mathbf{Z}^m$, the condition that $(y_i - y_j)^r$ divides f implies that $L_{i,j}^r$ is a factor of $\tau_{\mathbf{x}^a}(f)$ in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$. This is proved as follows. Note that $\tau_{\mathbf{x}^a}(f) = \mathbf{x}^a \tau_1(f)$ for any $f \in K[\mathbf{y}]$, and $\tau_1(y_i - y_j) = \mathbf{x}^{\varepsilon_{n,i} - \varepsilon_{j,i}^+} L_{i,j}$ for i, j. Assume that $f = (y_i - y_j)^r f'$ for some $f' \in K[\mathbf{y}]$. Then,

$$\tau_{\mathbf{x}^{a}}(f) = \mathbf{x}^{a} \tau_{1}((y_{i} - y_{j})^{r} f') = \mathbf{x}^{a} \tau_{1}(y_{i} - y_{j})^{r} \tau_{1}(f') = \mathbf{x}^{a + r(\varepsilon_{n,i} - \varepsilon_{j,i}^{+})} L_{i,j}^{r} \tau_{1}(f'),$$

since τ_1 preserves multiplication. Thus, $L_{i,j}^r$ is a factor of $\tau_{\mathbf{x}^a}(f)$ in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$.

Assume that n = 3. Then, each $f \in B_l$ is written as

$$f = (y_2 - y_1)^s (y_3 - y_1)^t \sum_{i=0}^u \alpha_i (y_2 - y_1)^i (y_3 - y_1)^{u-i}.$$

Here, $s, t, u \in \mathbb{Z}_{\geq 0}$ with s + t + u = l and $\alpha_i \in K$ with $\alpha_0, \alpha_u \neq 0$. If $\beta_1, \ldots, \beta_u \in \overline{K}$ are the solutions of the equation $\sum_{i=0}^{u} \alpha_i X^i = 0$, then we get

(3.6)
$$f = \alpha_0 (y_2 - y_1)^s (y_3 - y_1)^t \prod_{i=1}^u (y_2 - \beta_i y_3 + (\beta_i - 1)y_1),$$

where \overline{K} is the algebraic closure of K.

PROPOSITION 3.4. Assume that n = 3, and D is any elementary monomial K[x]-derivation on K[x][y]. Then,

$$(3.7) \qquad \{x_1, \ldots, x_m, L_{2,1}, L_{3,1}, L_{3,2}\}$$

is a SAGBI basis for $K[x][y]^D$ with respect to any monomial order on K[x][y].

PROOF. Let \leq be any monomial order on K[x][y]. By Proposition 3.1, it suffices to show that $\text{in}_{\leq}(K[x][y]^D)$ is equal to

$$R = K[\mathbf{x}][\operatorname{in}_{\leq}(L_{2,1}), \operatorname{in}_{\leq}(L_{3,1}), \operatorname{in}_{\leq}(L_{3,2})].$$

First, we note that, since $\mathbf{x}^a \tau_1(y_i - y_j) \in K[\mathbf{x}][\mathbf{y}]$, its initial term is in R for $a \in \mathbf{Z}^m$ and i, j. Indeed, $\mathbf{x}^a \tau_1(y_i - y_j) = \mathbf{x}^{a+\varepsilon_{3,i}-\varepsilon_{j,i}^+} L_{i,j}$, which is in $K[\mathbf{x}][\mathbf{y}]$ if and only if $a + \varepsilon_{3,i} - \varepsilon_{j,i}^+ \in (\mathbf{Z}_{\geq 0})^m$. We show that $\mathbf{x}^a \tau_1(g) \in K[\mathbf{x}][\mathbf{y}]$ implies that $\mathrm{in}_{\leq}(\mathbf{x}^a \tau_1(g)) \in R \otimes_K \bar{K}$ for $a \in \mathbf{Z}^m$, where $g = y_2 - y_1 - \beta(y_3 - y_1)$ with $\beta \in \bar{K}$. If β is zero or one, then we are done. Assume that $\beta \neq 0, 1$. Then, there appears in $\mathbf{x}^a \tau_1(g)$ each monomial which appears in $\mathbf{x}^a(\tau_1(y_i - y_1))$ for i = 2, 3. Hence, if $\mathbf{x}^a \tau_1(g)$ is in $K[\mathbf{x}][\mathbf{y}]$, then $\mathbf{x}^a \tau_1(y_i - y_1)$ is also in $K[\mathbf{x}][\mathbf{y}]$ for i = 2, 3. Since $\mathrm{in}_{\leq}(\mathbf{x}^a \tau_1(g))$ is equal to $\mathrm{in}_{\leq}(\mathbf{x}^a \tau_1(y_i - y_1))$ for some $i \in \{2, 3\}$ up to scalar multiplication, it is in $R \otimes_K \bar{K}$.

To show $\operatorname{in}_{\leq}(K[\boldsymbol{x}][\boldsymbol{y}]^D) = R$, it suffices to verify that the initial term $\operatorname{in}_{\leq}(F)$ of every Γ -homogeneous element $F \in K[\boldsymbol{x}][\boldsymbol{y}]^D \setminus \{0\}$ is in R. Put $f = \phi(F)$. Then, it is in B_l for some $l \in \mathbb{Z}_{\geq 0}$. So, f is expressed as in (3.6). Since $\tau_{\boldsymbol{x}^a}(f) = F$ for some $a \in \mathbb{Z}^m$, we get

(3.8)
$$F = \tau_{\mathbf{x}^a}(f) = \alpha_0 \mathbf{x}^a \tau_1 (y_2 - y_1)^s \tau_1 (y_3 - y_1)^t \prod_{i=1}^a \tau_1 (y_2 - \beta_i y_3 + (\beta_i - 1)y_1)$$

Since *F* is in $K[\mathbf{x}][\mathbf{y}]$, there exist $a', a'', a_i \in \mathbf{Z}^m$ with $sa' + ta'' + \sum_{i=1}^u a_i = a$ such that $\mathbf{x}^{a'}\tau_1(y_2 - y_1), \mathbf{x}^{a''}\tau_1(y_3 - y_1)$ and $\mathbf{x}^{a_i}\tau_1(y_2 - \beta_i y_3 + (\beta_i - 1)y_1)$ are in $K[\mathbf{x}][\mathbf{y}]$. Hence, their initial terms are in $R \otimes_K \bar{K}$, as noted in the preceding paragraph. This implies that $\operatorname{in}_{\leq}(F) \in R$ by (3.8) and (3.1).

In particular, we have the following.

COROLLARY 3.5 (Khoury [5, Corollary 2.2]). Assume that n = 3, and D is any elementary monomial K[x]-derivation on K[x][y]. Then,

(3.9)
$$K[\mathbf{x}][\mathbf{y}]^{D} = K[\mathbf{x}][L_{2,1}, L_{3,1}, L_{3,2}].$$

As we mentioned before Proposition 3.4, each element $f \in B_l$ is factored into the product of l elements in $\overline{K} \otimes_K B_1$. We note that, if r is the maximal integer such that $(y_3 - y_2)^r$ divides f, then the expansion of f involves the monomials $y_1^{l-r} y_2^r$, $y_1^{l-r} y_3^r$ and does not involve $y_1^{l-r'} y_2^{r'}$, $y_1^{l-r'} y_3^{r'}$ for $0 \le r' \le r$.

LEMMA 3.6. Assume that (m, n) = (3, 3) and $\varepsilon_{i,j}^i > 0$ for any $1 \le i, j \le 3$ with $i \ne j$. If $\gamma = \deg_{\Gamma}(L_{2,1}^p L_{3,1}^q L_{3,2}^r)$ for $p, q, r \in \mathbb{Z}_{\ge 0}$, then $K[\mathbf{x}][\mathbf{y}]_{\gamma}^D$ is equal to the onedimensional K-vector space generated by $L_{2,1}^p L_{3,1}^q L_{3,2}^r$.

515

PROOF. Take any $0 \neq F \in K[\mathbf{x}][\mathbf{y}]_{\gamma}^{D}$, and put $f = \phi(F)$. Then, f is in B_l and $\tau_{\mathbf{x}^a}(f) = F$, where l = p+q+r and $a = p(\varepsilon_{2,3}+\varepsilon_{1,2}^+)+q\varepsilon_{1,3}^++r\varepsilon_{2,3}^+$. If $(y_2-y_1)^p$, $(y_3-y_1)^q$ and $(y_3-y_2)^r$ divide f, then F is in $K(L_{2,1}^pL_{3,1}^qL_{3,2}^r)$. Actually, it implies that $L_{2,1}^p, L_{3,1}^q$ and $L_{3,2}^r$ are factors of F. Suppose, say, that the maximal integer r' such that $(y_3-y_2)^{r'}$ divides f is less than r. Then, $y_1^{1-r'}y_2^{r'}$ and $y_1^{1-r'}y_3^{r'}$ appear in f with nonzero coefficient, as mentioned above. Hence, so do $\tau_{\mathbf{x}^a}(y_1^{1-r'}y_2^{r'})$ and $\tau_{\mathbf{x}^a}(y_1^{1-r'}y_3^{r'})$ in F. By definition, the first component of $\varepsilon_{2,3}^+$ or $\varepsilon_{3,2}^+$ is zero. If that of $\varepsilon_{2,3}^+$ is zero, then the power of x_1 in $\tau_{\mathbf{x}^a}(y_1^{1-r'}y_3^{r'})$ is negative. In fact, $\tau_{\mathbf{x}^a}(y_1^{1-r'}y_3^{r'}) = \mathbf{x}^{a'}y_1^{1-r'}y_3^{r'}$, where

$$a' = a + (l - r')\varepsilon_{3,1} = p\varepsilon_{2,1}^{+} + q\varepsilon_{3,1}^{+} + r\varepsilon_{2,3}^{+} - (r - r')\varepsilon_{1,3}$$

Since the first components of $\varepsilon_{2,1}^+$, $\varepsilon_{3,1}^+$, $\varepsilon_{2,3}^+$ are zero, that of a' is equal to $-(r - r')\varepsilon_{1,3}^1 < 0$. Similarly, the power of x_1 in $\tau_{\mathbf{x}^a}(y_1^{l-r'}y_2^{r'})$ is negative if the first component of $\varepsilon_{3,2}^+$ is zero. This is a contradiction. Therefore, F is in $K(L_{2,1}^pL_{3,1}^qL_{3,2}^r)$.

Assume that n = 4. We define a homomorphism $\tilde{l} : \mathbb{Z}^4 \to \mathbb{Z}$ of additive groups by

(3.10)
$$\tilde{l}((b_1, b_2, b_3, b_4)) = b_2 \varepsilon_{1,2}^1 + b_3 \varepsilon_{1,3}^1.$$

LEMMA 3.7. Assume that n = 4, $\varepsilon_{1,2}^1 \ge \varepsilon_{1,3}^1 > 0$ and F is an element of B_l for some $l \in \mathbb{Z}_{\ge 0}$. If every $b \in \text{supp}(F)$ satisfies $\tilde{l}(b) \ge p$ for some $p \in \mathbb{Z}_{\ge 0}$, then $(y_3 - y_2)^q$ divides F for the minimal $q \in \mathbb{Z}_{\ge 0}$ with $p \le q \varepsilon_{1,3}^1$.

PROOF. Write

$$F = f_0(y_4 - y_1)^l + f_1(y_4 - y_1)^{l-1} + \dots + f_l,$$

where $f_i \in K[y_2 - y_1, y_3 - y_1]_i$ for each *i*. Suppose that $(y_3 - y_2)^q$ did not divide *F*. Then, there exists *i* such that $(y_3 - y_2)^q$ does not divide f_i . Let *i* be the minimum among such indices *i*, and *q'* the maximal integer such that $(y_3 - y_2)^{q'}$ divides f_i . Then, f_i involves the monomial $y_1^{i-q'}y_3^{q'}$, as we noted before Lemma 3.6. We set b = (i - q', 0, q', l - i). Then, $\tilde{l}(b) = q'\varepsilon_{1,3}^1 < q\varepsilon_{1,3}^1$. It implies that $\tilde{l}(b) < p$ by the minimality of *q*. Hence, $b \notin \text{supp}(F)$.

On the other hand, $f_i(y_4 - y_1)^{l-i}$ involves y^b . If j > i, then $f_j(y_4 - y_1)^{l-j}$ does not involve y^b , since the exponent of y_4 in each monomial of it is less that l - i. Suppose that $f_j(y_4 - y_1)^{l-j}$ involved y^b for j < i. Then, f_j contains $y_1^{j-q'}y_3^{q'}$. Since q' < q, this contradicts the assumption that $(y_3 - y_2)^q$ divides f_j by the note above. Therefore, $f_j(y_4 - y_1)^{l-j}$ does not involve y^b if $j \neq i$. Hence, $b \in \text{supp}(F)$. This is a contradiction. Therefore, $(y_3 - y_2)^q$ divides F.

We remark that, if $F \in K[x][y]^D$ is expressed as

$$F = f_0 y_n^l + f_1 y_n^{l-1} + \dots + f_l$$

for $f_i \in K[\mathbf{x}][y_1, \ldots, y_{n-1}]$, then $D(f_0) = 0$. Actually, we get

 $0 = D(F) = D(f_0)y_n^l + (\text{terms of lower degree in } y_n).$

The following is the key proposition.

PROPOSITION 3.8. Assume that (m, n) = (3, 4) and $\varepsilon_{i,j}^i > 0$ for any $1 \le i, j \le 4$ with $i \ne j$. Then, the monomial $\mathbf{x}^a y_2^p y_3^{q+r} y_4^l$ is not contained in $\operatorname{in}_{\le \operatorname{lex}}(K[\mathbf{x}][\mathbf{y}]^D)$ for any $p, q, r, l \in \mathbb{Z}_{\ge 0}$, where we set $a = p\varepsilon_{1,2}^+ + q\varepsilon_{1,3}^+ + r\varepsilon_{2,3}^+$.

PROOF. Suppose that there existed $F \in K[\mathbf{x}][\mathbf{y}]^D$ such that $\inf_{\leq lex}(F) = \mathbf{x}^a y_2^p y_3^{q+r} y_4^l$. Then, without loss of generality, we may assume that F is Γ -homogeneous. Write

$$F = f_0 y_4^l + f_1 y_4^{l-1} + \dots + f_l$$

where $f_i \in K[\mathbf{x}][y_1, y_2, y_3]$ for i = 0, ..., l. Then, f_0 is in $K[\mathbf{x}][y_1, y_2, y_3]^D$, as we remarked above. Moreover, f_0 is Γ -homogeneous and $\deg_{\Gamma}(f_0) = \deg_{\Gamma}(L_{1,2}^p L_{1,3}^q L_{2,3}^r)$. Hence, f_0 is equal to $L_{1,2}^p L_{1,3}^q L_{2,3}^r$ up to scalar multiplication by Lemma 3.6.

It suffices to show that each of $L_{2,1}^p$, $L_{3,1}^q$ and $L_{3,2}^r$ must be a factor of F in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$. Indeed, it will imply that $F = L_{1,2}^p L_{1,3}^q L_{2,3}^r F'$ for some $F' \in K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$, since $L_{2,1}, L_{3,1}$ and $L_{3,2}$ are pairwise prime. Then, F' is an element in $K[\mathbf{x}][\mathbf{y}]^D$. However, F' involves the monomial y_4^l . This contradicts Lemma 2.1.

Since the arguments are similar, we only show that $L_{3,2}^r$ is a factor of F. We assume that $\varepsilon_{1,2}^1 \ge \varepsilon_{1,3}^1$. The proof is similar for the other case. We set $f = \phi(F)$, and claim that every $b = (b_1, b_2, b_3, b_4) \in \text{supp}(f)$ satisfies $\tilde{l}(b) \ge r\varepsilon_{1,3}^1$. This implies that $(y_3 - y_2)^r$ divides f by Lemma 3.7. Hence, $L_{3,2}^r$ is a factor of F in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]$, and the proof is completed. By straightforward computation, we may verify that $\deg_{\Gamma}(F)$ is equal to the image of $(c, (d+l)e_4)$, where d = p + q + r and

$$c = p\varepsilon_{2,1}^{+} + q\varepsilon_{3,1}^{+} + r\varepsilon_{2,3}^{+} + d\varepsilon_{1,4} + r\varepsilon_{3,1}.$$

Thus, it follows that $F = \tau_{\mathbf{x}^c}(f)$, as mentioned above. Hence, F involves $\tau_{\mathbf{x}^c}(\mathbf{y}^b)$ for $b \in \text{supp}(f)$. By simple computation, we get $\tau_{\mathbf{x}^c}(\mathbf{y}^b) = \mathbf{x}^d \mathbf{y}^b$, where

$$d = p\varepsilon_{2,1}^{+} + q\varepsilon_{3,1}^{+} + r\varepsilon_{2,3}^{+} + (l - b_4)\varepsilon_{4,1} + r\varepsilon_{3,1} + b_2\varepsilon_{1,2} + b_3\varepsilon_{1,3}.$$

Note that the first components of $p\varepsilon_{2,1}^+$, $q\varepsilon_{3,1}^+$, $r\varepsilon_{2,3}^+$ are zero and $b_4 \leq l$. Since $x^d y^b$ is in K[x][y], the first component of d is nonnegative. Thus, we have

$$0 \le (l - b_4)\varepsilon_{4,1}^1 + r\varepsilon_{3,1}^1 + b_2\varepsilon_{1,2}^1 + b_3\varepsilon_{1,3}^1 = (l - b_4)\varepsilon_{4,1}^1 - r\varepsilon_{1,3}^1 + \tilde{l}(b) \le -r\varepsilon_{1,3}^1 + \tilde{l}(b).$$

Therefore $\tilde{l}(b) \ge r\varepsilon_{1,3}^1$

Therefore, $l(b) \ge r\varepsilon_{1,3}^1$.

Now, let us prove Theorem 3.3. By Lemma 3.1, the last statement is a consequence of the first part. So, we will prove the first part.

We set *R* to be the *K*-algebra generated by (3.4). Clearly, $in_{\leq lex}(K[x][y]^{D_{t,3}})$ contains *R*. For the converse, it suffices to show that $in_{\leq lex}(F)$ is in *R* for any *Γ*-homogeneous element $F \in K[x][y]^{D_{t,3}}$. The remark before Proposition 3.8 implies that $in_{\leq lex}(F) = in_{\leq lex}(F')y_4^l$ for some $F' \in K[x][y_1, y_2, y_3]^{D_{t,3}}$ and $l \in \mathbb{Z}_{\geq 0}$. By Proposition 3.4, the set $\{x_1, x_2, x_3, L_{2,1}, L_{3,1}, L_{3,1}\}$

 $L_{3,2}$ is a SAGBI basis for $K[x][y_1, y_2, y_3]^{D_{t,3}}$ with respect to any monomial order. In particular,

$$in_{\leq lex}(K[\boldsymbol{x}][y_1, y_2, y_3]^{D_{t,3}}) = K[\boldsymbol{x}][x_1^{t+1}y_2, x_1^{t+1}y_3, x_2^{t+1}y_3].$$

Hence, there exist $a_1, a_2, a_3, p, q, r \in \mathbb{Z}_{\geq 0}$ such that

$$in_{\leq lex}(F) = (x_1^{t+1}y_2)^p (x_1^{t+1}y_3)^q (x_2^{t+1}y_3)^r x_1^{a_1} x_2^{a_2} x_3^{a_3} y_4^l.$$

Obviously, $\operatorname{in}_{\leq_{\operatorname{lex}}}(F)$ is in *R* if l = 0. Assume that l > 0. Then, $a_1 + a_2 + a_3 > 0$ by Proposition 3.8. Hence, it is also in *R*. Therefore, $\operatorname{in}_{\leq_{\operatorname{lex}}}(K[x][y]^{D_{t,3}})$ is contained in *R*. This completes the proof of Theorem 3.3.

4. A condition for finite generation. In this section, we investigate a condition for the finite generation of $K[x][y]^D$, where D is an elementary monomial K[x]-derivation. The main result of this section is the following.

THEOREM 4.1. Assume that (m, n) = (3, 4), and there exist $i \neq j$ and k such that $\varepsilon_{\tau(i),\tau(j)}^{\sigma(k)} \leq 0$ and $\sigma(k) = \tau(i)$ for every pair of permutations σ and τ on $\{1, 2, 3\}$ and $\{1, 2, 3, 4\}$, respectively. Then, $K[\mathbf{x}][\mathbf{y}]^D$ is generated by L_{k_i, l_i} for i = 1, 2, 3, 4 over $K[\mathbf{x}]$ for some integers $1 \leq k_i, l_i \leq 4$.

First, we look at general properties on the kernel of an elementary monomial K[x]-derivation. For each *i*, *j*, we set $\tilde{L}_{i,j} = y_i - x^{\varepsilon_{i,j}} y_j$. It is contained in $K[x, x^{-1}][y]^D$. To avoid confusion, we sometimes denote it by $\tilde{L}_{i,j}^D$ to emphasize *D*.

LEMMA 4.2. The kernel $K[\mathbf{x}][\mathbf{y}]^D$ is contained in $K[\mathbf{x}][\tilde{L}_{1,j}, \ldots, \tilde{L}_{n,j}]$ for each j.

PROOF. Take any $F \in K[\mathbf{x}][\mathbf{y}]^D$, and let f be the polynomial obtained from F by replacing y_j by zero. Then, define an element F' of $K[\mathbf{x}][\tilde{L}_{1,j}, \ldots, \tilde{L}_{n,j}]$ as the polynomial which we obtain from f by replacing y_k by $\tilde{L}_{k,j}$ for each k. We show that F = F'. Suppose that $F \neq F'$. Write

 $F - F' = (\text{terms of higher degree in } y_j) + gy_i^e$,

where *g* is an element of $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}] \setminus \{0\}$ not involving y_j . Since F - f and F' - f are in $K[\mathbf{x}, \mathbf{x}^{-1}][\mathbf{y}]y_j$, we have e > 0. However,

$$0 = D(F - F') = (\text{terms of higher degree in } y_i) + eg \mathbf{x}^{\delta_j} y_i^{e-1},$$

a contradiction, since $eq \mathbf{x}^{\delta_j} \neq 0$. Therefore, F = F'.

Assume that $\delta_j = 0$ for some *j*. Then, $\tilde{L}_{k,j}$ is in $K[\boldsymbol{x}][\boldsymbol{y}]^D$ for each *k*. By Lemma 4.2, it implies that $K[\boldsymbol{x}][\boldsymbol{y}]^D = K[\boldsymbol{x}][\tilde{L}_{1,j}, \dots, \tilde{L}_{n,j}]$. If this is the case, then $K[\boldsymbol{x}][\boldsymbol{y}]^D$ is isomorphic to $K[\boldsymbol{x}][y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_n]$ via the homomorphism which substitutes zero for y_j . In particular, the kernel $K[\boldsymbol{x}][\boldsymbol{y}]^{D_{t,m}}$ of the derivation $D_{t,m}$ for t = 0 is generated by $\tilde{L}_{1,m+1}, \dots, \tilde{L}_{m,m+1}$ over $K[\boldsymbol{x}]$, and is isomorphic to the polynomial ring in 2m variables over K.

517

Now, we fix $1 \le i \le m$ and $1 \le j \le n$. Assume that $\varepsilon_{k,j}^i \ge 0$ for every k = 1, ..., n. Then, put $\mu = \min \{\varepsilon_{k,j}^i \mid k \ne j\}$, and set $\mathbf{x}^{\varepsilon_{k,j}^i} = x_i^{-\mu} \mathbf{x}^{\varepsilon_{k,j}}$ for each k. Let D' be an elementary monomial $K[\mathbf{x}]$ -derivation on $K[\mathbf{x}][\mathbf{y}]$ such that $D'(y_k)/D'(y_j) = \mathbf{x}^{\varepsilon_{k,j}^i}$ for each k. For $f \in K[\mathbf{x}][\mathbf{y}]^D$, we define $T_{j,i}(f)$ to be the polynomial obtained from f by replacing y_j by $x_i^{-\mu} y_j$. Then, it follows that

$$T_{j,i}(\tilde{L}_{k,j}^D) = y_k - \boldsymbol{x}^{\varepsilon_{k,j}}(x_i^{-\mu}y_j) = y_k - \boldsymbol{x}^{\varepsilon_{k,j}^{\prime}}y_j = \tilde{L}_{k,j}^{D'}$$

for each k.

LEMMA 4.3. Let *i*, *j* be integers with $1 \le i \le m$ and $1 \le j \le n$. If $\varepsilon_{k,j}^i \ge 0$ for every k = 1, ..., n, then $T_{j,i}$ is an injective homomorphism with the image $K[\mathbf{x}][\mathbf{y}]^{D'}$.

PROOF. Suppose that $T_{j,i}(f)$ were not in $K[\mathbf{x}][\mathbf{y}]^{D'}$ for some $f \in K[\mathbf{x}][\mathbf{y}]^{D}$. By Lemma 4.2, f is in $K[\mathbf{x}][\{\tilde{L}_{k,j}^{D} \mid k\}]$. Since $T_{j,i}$ sends $\tilde{L}_{k,j}^{D}$ to $\tilde{L}_{k,j}^{D'}$, we have $T_{j,i}(f) \in$ $K[\mathbf{x}][\{\tilde{L}_{k,j}^{D'} \mid k\}]$. In particular, $D'(T_{j,i}(f)) = 0$. Hence, there appears in $T_{j,i}(f)$ a monomial with negative power in some variable. By the definition of $T_{j,i}(f)$, the variable must be x_i . However, $\tilde{L}_{k,j}^{D'}$ does not have negative power in x_i for each k. Hence, such a monomial cannot appear in $T_{j,i}(f)$. This is a contradiction. Thus, $T_{j,i}(f)$ is in $K[\mathbf{x}][\mathbf{y}]^{D'}$.

Conversely, a homomorphism $K[\mathbf{x}][\mathbf{y}]^{D'} \to K[\mathbf{x}][\mathbf{y}]^D$ is defined by the substitution $y_j \mapsto x_i^{\mu} y_j$. Indeed, it sends each $\tilde{L}_{k,j}^{D'}$ to $\tilde{L}_{k,j}^D$. It is the inverse of $T_{j,i} : K[\mathbf{x}][\mathbf{y}]^D \to K[\mathbf{x}][\mathbf{y}]^{D'}$.

We use the following proposition to reduce problems on the kernel of D to a lower dimensional case.

PROPOSITION 4.4. Let D be any elementary monomial $K[\mathbf{x}]$ -derivation on $K[\mathbf{x}][\mathbf{y}]$, and $1 \leq j, k \leq m$ distinct integers. For each $1 \leq i \leq m$, we assume that either $\varepsilon_{j,k}^i \geq 0$ or $\varepsilon_{l,k}^i \geq 0$ for all $l \neq j$. Then,

(4.1)
$$K[\mathbf{x}][\mathbf{y}]^{D} = K[\mathbf{x}][y_{1}, \dots, y_{j-1}, y_{j+1}, \dots, y_{n}]^{D}[L_{j,k}].$$

PROOF. Clearly, the right hand side of (4.1) is contained in the left hand side. We show the converse. Let *S* be the set of elements of $K[x][y]^D$ not contained in the right hand side of (4.1). Suppose that *S* were not empty. Take $f \in S$ with the minimal degree in y_i , and write

(4.2)
$$f = g_d (\mathbf{x}^{\varepsilon_{k,j}^+} y_j)^d + g_{d-1} (\mathbf{x}^{\varepsilon_{k,j}^+} y_j)^{d-1} + \dots + g_0,$$

where $g_i \in K[\mathbf{x}, \mathbf{x}^{-1}][y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_n]$ with $g_d \neq 0$. To complete the proof, it suffices to show that g_d is in $K[\mathbf{x}][\mathbf{y}]^D$. Indeed, it implies that $f - g_d(L_{j,k})^d$ is in S, but the degree of $f - g_d(L_{j,k})^d$ in y_j is less than d. This is a contradiction, and we get $S = \emptyset$.

Similarly to the remark before Proposition 3.8, we have $D(g_d) = 0$. We show that every monomial appearing in g_d does not have negative power in x_i for each *i*. First, assume that the *i*-th component of $\varepsilon_{k,j}^+$ is not zero. Then, it is equal to $\varepsilon_{k,j}^i > 0$, and so $\varepsilon_{j,k}^i$ is negative. Hence, $\varepsilon_{l,k}^i \ge 0$ for any $l \ne j$ by assumption. Since $\varepsilon_{l,j}^i = \varepsilon_{l,k}^i + \varepsilon_{k,j}^i$, we have $0 < \varepsilon_{k,j}^i \le \varepsilon_{l,j}^i$

for $l \neq j$. Thus, the substitution $y_j \mapsto x_i^{-\varepsilon_{k,j}^i} y_j$ sends f to $T_{j,i}(f)$. If there appeared in g_d a monomial $\mathbf{x}^a \mathbf{y}^b$ with negative power in x_i , then $T_{j,i}(f)$ would have the monomial $\mathbf{x}^a \mathbf{y}^b y_j^d$. It also has negative power in x_i . This is a contradiction, since $T_{j,i}(f)$ is in $K[\mathbf{x}][\mathbf{y}]$ by Lemma 4.3. If the *i*-th component of $\varepsilon_{k,j}^+$ is zero, then the expression (4.2) also implies that no monomial appearing in g_d has negative power in x_i . Therefore, g_d is in $K[\mathbf{x}][\mathbf{y}]$. \Box

As a corollary to Proposition 4.4, we have the following.

COROLLARY 4.5 (Khoury [5, Theorem 3.1]). If m = 2, then there exist $1 \le l \le n$ and $1 \le k_j \le n$ with $k_j \ne j$ for each $j \ne l$ such that

(4.3)
$$K[\mathbf{x}][\mathbf{y}]^{D} = K[\mathbf{x}][L_{1,k_{1}}, \dots, L_{l-1,k_{l-1}}, L_{l+1,k_{l+1}}, \dots, L_{n,k_{n}}]$$

PROOF. We prove this by induction on *n*. If n = 1, then $K[\mathbf{x}][\mathbf{y}]^D = K[\mathbf{x}]$ by Lemma 4.2. Hence, the assertion is true. Assume that n > 1. Then, by change of indices if necessary, we may assume that $\delta_1^1 \leq \cdots \leq \delta_n^1$. If there exist $1 \leq k < j \leq n$ such that $\delta_k^2 \leq \delta_j^2$, then $\varepsilon_{i,k}^i \geq 0$ for i = 1, 2. Hence,

$$K[\mathbf{x}][\mathbf{y}]^{D} = K[\mathbf{x}][y_{1}, \dots, y_{j-1}, y_{j+1}, \dots, y_{n}]^{D}[L_{j,k}]$$

by Proposition 4.4. Thus, the assertion follows from the induction assumption. Assume that such k, j do not exist, i.e., $\delta_n^2 < \cdots < \delta_1^2$. Then, $\varepsilon_{l,n-1}^2 > 0$ for any $l \neq n$. Since $\varepsilon_{n,n-1}^1 \ge 0$, we have $K[\mathbf{x}][\mathbf{y}]^D = K[\mathbf{x}][y_1, \ldots, y_{n-1}]^D[L_{n,n-1}]$ by Proposition 4.4. Hence, the assertion follows similarly.

Let $\phi_1 : K[\mathbf{x}][\mathbf{y}] \to K[x_2, \ldots, x_m][\mathbf{y}]$ be the homomorphism which substitutes one for x_1 , and D_1 the elementary $K[x_2, \ldots, x_m]$ -derivation on $K[x_2, \ldots, x_m][\mathbf{y}]$ defined by $D_1(f) = \phi_1(D(f))$ for each f. Then, D_1 is a monomial derivation. By definition, it follows that $\phi_1 \circ D = D_1 \circ \phi_1$ on $K[\mathbf{x}][\mathbf{y}]$. Recall the Γ -grading structure on $K[\mathbf{x}][\mathbf{y}]$ defined in Section 3. Let Γ_1 be the set of the images of (a, le_n) in Γ for $l \in \mathbf{Z}$ and $a = (a_1, \ldots, a_m) \in \mathbf{Z}^m$ with $a_1 = 0$. Then, Γ_1 is a subgroup of Γ , and $\bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}$ is a $K[x_2, \ldots, x_n]$ subalgebra of $K[\mathbf{x}][\mathbf{y}]$.

LEMMA 4.6. Assume that $\varepsilon_{n,j}^1 \ge 0$ for j = 1, ..., n. Then, ϕ_1 induces an isomorphism

(4.4)
$$\bigoplus_{\gamma \in \Gamma_1} K[\boldsymbol{x}][\boldsymbol{y}]^D_{\gamma} \to K[x_2, \dots, x_m][\boldsymbol{y}]^{D_1}.$$

PROOF. Set $R = \bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}$ and $R' = K[x_2, \dots, x_m][\mathbf{y}]$. It suffices to show that ϕ_1 induces an isomorphism $R \to R'$. Indeed, it implies that $\phi_1(R^D) = (R')^{D_1}$, since $\phi_1 \circ D = D_1 \circ \phi_1$.

First, we show the injectivity. Suppose that there existed $f \in R \setminus \{0\}$ such that $\phi_1(f) = 0$. Then, $f = (x_1 - 1)f'$ for some $f' \in K[\mathbf{x}][\mathbf{y}] \setminus \{0\}$. Let p and q be the maximal and the minimal integers l with $\deg_{\Gamma}(x_1^l f'') \in \Gamma_1$ for some nonzero Γ -homogeneous component f'' of f', respectively. Clearly, we have $p \ge 1$ or $q \le 0$. If $p \ge 1$, then $\deg_{\Gamma}(f'') \notin \Gamma_1$ for a Γ -homogeneous component f'' of f' with $\deg_{\Gamma}(x_1^p f'') \in \Gamma_1$. However, -f'' is a

 Γ -homogeneous component of f by the maximality of p. Hence, -f'' is in R. This is a contradiction. Similarly, we get a contradiction if $q \leq 0$. Therefore, $\phi_1(f) \neq 0$ for any $f \in R \setminus \{0\}$.

For the surjectivity, it suffices to show that $\phi_1(R)$ contains every monomial in R'. Take any monomial $\mathbf{x}^a \mathbf{y}^b \in R'$, and put $l = \sum_{j=1}^n b_j \varepsilon_{n,j}^1$, where $b = (b_1, \dots, b_n)$. Then, l is nonnegative, since $\varepsilon_{n,j}^1 \ge 0$ for all j by assumption. Hence, $x_1^l \mathbf{x}^a \mathbf{y}^b$ is in $K[\mathbf{x}][\mathbf{y}]$. Note that

$$\deg_{\Gamma}(x_1^l \boldsymbol{x}^a \boldsymbol{y}^b) = \deg_{\Gamma}\left(x_1^l \boldsymbol{x}^a \boldsymbol{y}^b \prod_{j=1}^n (\boldsymbol{x}^{\varepsilon_{j,n}} y_j^{-1} y_n)^{b_j}\right) = \deg_{\Gamma}\left(\boldsymbol{x}^c y_n^{\sum_{j=1}^n b_j}\right),$$

where $c = (l, 0, ..., 0) + a + \sum_{j=1}^{n} b_j \varepsilon_{j,n}$. Since the first component of *a* is zero, that of *c* is equal to $l + \sum_{j=1}^{n} b_j \varepsilon_{j,n}^1 = 0$. Thus, $x_1^l \mathbf{x}^a \mathbf{y}^b$ is in *R*. Since $\mathbf{x}^a \mathbf{y}^b = \phi_1(x_1^l \mathbf{x}^a \mathbf{y}^b)$, the surjectivity is proved.

LEMMA 4.7. Assume that n = 4 and $\varepsilon_{1,3}^1, \varepsilon_{1,2}^1 > 0, \varepsilon_{1,4}^1 = 0$. Then, $K[\mathbf{x}][\mathbf{y}]^D$ is generated by x_1 and $L_{3,2}$ over $\bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}^D$.

PROOF. Without loss of generality, we may assume that $\varepsilon_{1,3}^1 \ge \varepsilon_{1,2}^1$. It suffices to show that each Γ -homogeneous element $F \in K[\mathbf{x}][\mathbf{y}]^D$ is written as $F = x_1^p L_{3,2}^q F'$, where $p, q \in \mathbb{Z}_{\ge 0}$ and $F' \in K[\mathbf{x}][\mathbf{y}]_{\gamma'}$ for some $\gamma' \in \Gamma_1$. Indeed, it also implies that D(F') = 0, since $0 = D(F) = x_1^p L_{3,2}^q D(F')$.

Assume that deg_{Γ}(F) is equal to the image of (a, le_4) , where $a = (a_1, \ldots, a_m) \in \mathbb{Z}^m$ and $l \in \mathbb{Z}_{\geq 0}$. We set $f = \phi(F)$. Then, $F = \tau_{\mathbf{x}^a}(f)$, as we noted before Proposition 3.4. Take any $b = (b_1, b_2, b_3, b_4) \in \text{supp}(f)$. Then, by straightforward computation, we get $\tau_{\mathbf{x}^a}(\mathbf{y}^b) = \mathbf{x}^c \mathbf{y}^b$, where

(4.5)
$$c = a + (l - b_4)\varepsilon_{4,1} + b_2\varepsilon_{1,2} + b_3\varepsilon_{1,3}.$$

Since $\varepsilon_{4,1}^1 = 0$, the first component of *c* is equal to $a_1 + \tilde{l}(b)$. On the other hand, we have $\tilde{l}(b) \ge 0$, since $\varepsilon_{1,2}^1, \varepsilon_{1,3}^1 > 0$. Hence, $x_1^{-a_1} \mathbf{x}^c \mathbf{y}^b$ does not have negative power. Thus, $x_1^{-a_1} F$ is in $K[\mathbf{x}][\mathbf{y}]$. Clearly, $\deg_{\Gamma}(x_1^{-a_1}F)$ is in Γ_1 . Therefore, if $a_1 \ge 0$, then we are led to the desired expression $F = x_1^{a_1}(x_1^{-a_1}F)$.

Assume that $a_1 < 0$. Let q be the minimal integer such that $q\varepsilon_{1,3}^1 \ge -a_1$. Since the first component of (4.5) is nonnegative, we have $\tilde{l}(b) \ge -a_1$ for every $b \in \text{supp}(f)$. Hence, $(y_3 - y_2)^q$ divides f by Lemma 3.7. It implies that $F = F'L_{3,2}^q$ for some $F' \in K[\mathbf{x}][\mathbf{y}]^D$. Note that $\deg_{\Gamma}(L_{3,2}^q)$ is equal to the image of $q(\varepsilon_{2,3}^+ + \varepsilon_{3,4}, \mathbf{e}_4)$ in Γ . Hence, $\deg_{\Gamma}(F')$ is equal to that of $(a', (l-q)\mathbf{e}_4)$, where

$$a' = a - q(\varepsilon_{2,3}^{+} + \varepsilon_{3,4}) = a + q\varepsilon_{1,3} - q(\varepsilon_{2,3}^{+} + \varepsilon_{1,4}).$$

Since the first components of $\varepsilon_{2,3}^+$ and $\varepsilon_{1,4}$ are zero, that of a' is equal to $a_1 + q\varepsilon_{1,3}^1$. By the choice of q, this is nonnegative. Hence, we have $F' = x_1^p F''$ for some $p \in \mathbb{Z}_{\geq 0}$ and $F'' \in K[\mathbf{x}][\mathbf{y}]_{\gamma'}$ with $\gamma' \in \Gamma_1$, as we showed in the preceding paragraph. Therefore, we get a desired expression.

Now, let us prove Theorem 4.1. Note that the assumption fails if and only if we can exchange the rows and columns of the matrix $(\delta_i^j)_{i,j}$ so that δ_i^i is the maximum among the components of the *i*-th column for each *i*. Under the assumption, we are reduced to one of the following two cases by such operations:

- (i) $\delta_i^1 \le \delta_1^1$ and $\delta_i^2 \le \delta_1^2$ for i = 1, 2, 3, 4. (ii) $\delta_i^1 < \delta_1^1 = \delta_4^1$ for i = 2, 3.

In fact, if we are not reduced to (ii), then there exists $1 \le k_j \le 4$ for each j = 1, 2, 3 such that $\delta_i^j < \delta_{k_i}^j$ for any $i \neq k_j$. If further we were not reduced to (i), then $k_j \neq k_l$ for any $j \neq l$. In this case, we can exchange the rows of $(\delta_i^j)_{i,j}$ so that $k_j = j$ for j = 1, 2, 3. This implies that $\delta_i^j < \delta_i^i$ for any $i \neq j$.

First, consider the case (i). By exchanging the row vectors δ_2, δ_3 and δ_4 of $(\delta_i^J)_{i,j}$ if necessary, we may assume that $\delta_4^3 \leq \delta_j^3$, that is, $\varepsilon_{j,4}^3 \geq 0$ for j = 2, 3, 4. Since $\delta_4^1 \leq \delta_1^1$ and $\delta_4^2 \leq \delta_1^2$ by assumption, we have $\varepsilon_{1,4}^1, \varepsilon_{1,4}^2 \geq 0$. Hence, $K[\boldsymbol{x}][\boldsymbol{y}]^D = K[\boldsymbol{x}][y_1, y_2, y_3]^D[L_{4,1}]$ by Proposition 4.4. Therefore, $K[\mathbf{x}][\mathbf{y}]^D$ is generated by $L_{2,1}, L_{3,1}, L_{3,2}$ and $L_{4,1}$ over $K[\mathbf{x}]$ by Corollary 3.5.

Now, consider the case (ii). Since $\varepsilon_{2,1}^1$, $\varepsilon_{3,1}^1 < 0$ and $\varepsilon_{4,1}^1 = 0$ follow from the condition, $K[\mathbf{x}][\mathbf{y}]^D$ is generated by $x_1, L_{3,2}^D$ over $\bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}^D$ by Lemma 4.7. By Lemma 4.6, $\bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}^D \text{ is isomorphic to } K[x_2, x_3][\mathbf{y}]^{D'} \text{ via } \phi_1, \text{ since } \varepsilon_{4,j}^1 \ge 0 \text{ for any } j. \text{ Then, by } Corollary 4.5, \text{ there exist } 1 \le l \le 4, \text{ and } 1 \le k_i \le 4 \text{ with } k_i \ne i \text{ for } i \in \{1, 2, 3, 4\} \setminus \{l\} \text{ such that } K[x_2, x_3][\mathbf{y}]^{D'} \text{ is generated by } L_{k_i,i}^{D'} \text{ for } i \in \{1, 2, 3, 4\} \setminus \{l\} \text{ over } K[x_2, x_3]. \text{ Since } K[x_2, x_3][\mathbf{y}]^{D'} \text{ is generated by } L_{k_i,i}^{D'} \text{ for } i \in \{1, 2, 3, 4\} \setminus \{l\} \text{ over } K[x_2, x_3].$ $\phi_1(L_{i,j}^D) = L_{i,j}^{D'}$ for i, j, the $K[x_2, x_3]$ -algebra $\bigoplus_{\gamma \in \Gamma_1} K[\mathbf{x}][\mathbf{y}]_{\gamma}^D$ is generated by $L_{k_i,i}^D$ for $i \in \{1, 2, 3, 4\} \setminus \{l\}$. Therefore, $K[x][y]^D$ is generated by $L_{3,2}^D$ and $L_{k_i,i}^D$ for $i \in \{1, 2, 3, 4\} \setminus \{l\}$ over K[x]. This completes the proof of Theorem 4.1.

Let *D* be any elementary monomial K[x]-derivation on K[x][y] for (m, n) = (3, 4). By Theorems 1.4 and 4.1, we settled the problem of finite generation of $K[x][y]^D$ except in the case $\varepsilon_{i,i}^i > 0$ for any $i \neq j$ and $\xi(D) > 1$.

CONJECTURE 4.8. Assume that (m, n) = (3, 4), and $\varepsilon_{i,i}^i > 0$ for any $i \neq j$. If $\xi(D) > 1$, then $K[\mathbf{x}][\mathbf{y}]^D$ is finitely generated.

Note that the conjecture is true if there exist distinct $r, s \in \{1, 2, 3\}$ such that $\xi_r(D) \ge 1$ and $\xi_s(D) \ge 1$. We show this for (r, s) = (2, 3). The conditions $\xi_2(D) \ge 1$ and $\xi_3(D) \ge 1$ imply, respectively, that $\varepsilon_{3,4}^2 \ge 0$ or $\varepsilon_{1,4}^2 \ge 0$, and $\varepsilon_{1,4}^3 \ge 0$ or $\varepsilon_{2,4}^3 \ge 0$. Furthermore, we have $\varepsilon_{1,4}^1 > 0, \varepsilon_{2,4}^2 > 0$ and $\varepsilon_{3,4}^3 > 0$ by assumption. Hence, for each i = 1, 2, 3, we have $\varepsilon_{1,4}^i \ge 0$ or $\varepsilon_{l,4}^i \ge 0$ for l = 2, 3, 4. Thus, $K[\mathbf{x}][\mathbf{y}]^D = K[\mathbf{x}][y_2, y_3, y_4]^D[L_{4,1}]$ by Proposition 4.4. Therefore, $K[\mathbf{x}][\mathbf{y}]^D$ is generated by $L_{3,2}, L_{4,1}, L_{4,2}$ and $L_{4,3}$ over $K[\mathbf{x}]$ by Corollary 3.5.

There exists an example of an elementary monomial K[x]-derivation on K[x][y] for (m, n) = (3, 4) whose kernel is finitely generated, and $\xi_i(D) < 1$ for i = 1, 2, 3. Kurano [7] showed that the kernel of $D_{1,3}$ is finitely generated. In fact, he showed that it is generated by

 $x_1, x_2, x_3, L_{i,j}$ for $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ with $1 \le j < i \le 4$ and

(4.6)
$$x_i y_4^2 - 2x_j x_k y_i y_4 + x_i x_k^2 y_i y_j + x_i x_j^2 y_i y_k - x_i^3 y_j y_k$$

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) over *K*. Moreover, [7, Lemma 3.2] implies that the set of these polynomials is a SAGBI basis for the lexicographic order \leq_{lex} with (3.3). For this derivation, we have $\xi_i(D_{1,3}) = 1/2$ for i = 1, 2, 3.

REFERENCES

- D. DAIGLE AND G. FREUDENBURG, A counterexample to Hilbert's fourteenth problem in dimension 5, J. Algebra 221 (1999), 528–535.
- [2] J. DEVENEY AND D. FINSTON, G_a -actions on C^3 and C^7 , Comm. Algebra 22 (1994), 6295–6302.
- [3] A. VAN DEN ESSEN, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, Vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.
- [4] G. FREUDENBURG, A counterexample to Hilbert's fourteenth problem in dimension six, Transform. Groups 5 (2000), 61–71.
- [5] J. KHOURY, On some properties of elementary monomial derivations in dimension six, J. Pure Appl. Algebra 156 (2001), 69–79.
- [6] H. KOJIMA AND M. MIYANISHI, On Roberts' counterexample to the fourteenth problem of Hilbert, J. Pure Appl. Algebra 122 (1997), 277–292.
- [7] K. KURANO, Positive characteristic finite generation of symbolic Rees algebra and Roberts' counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), 473–496.
- [8] S. KURODA, The infiniteness of the SAGBI bases for certain invariant rings, Osaka J. Math. 39 (2002), 665– 680.
- [9] S. KURODA, A condition for finite generation of the kernel of a derivation, J. Algebra 262 (2003), 391–400.
- [10] M. MIYANISHI, Lectures on Curves on Rational and Unirational Surfaces, Tata Institute of Fundamental Research, Springer, Berlin, 1978.
- [11] S. MUKAI, Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group, Preprint 1343, Research Institute for Mathematical Sciences, Kyoto University, 2001.
- [12] M. NAGATA, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
- [13] L. ROBBIANO AND M. SWEEDLER, Subalgebra bases, in Commutative Algebra (W. Bruns and A. Simis, eds.) 61–87, Lecture Notes in Math. 1430, Springer, Berlin, Heidelberg, New York, Tokyo, 1988.
- [14] P. ROBERTS, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461–473.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY KYOTOI 606–8502 JAPAN

E-mail address: kuroda@kurims.kyoto-u.ac.jp