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CLASSICAL TRANSCENDENTAL SOLUTIONSOF THE PAINLEVE
EQUATIONS AND THEIR DEGENERATION

TETSUMASUDA

(Received February 10, 2003, revised May 12, 2004)

Abstract. We present a determinant expression for a family of classical transcendental
solutions of the Painlevé V and the Painlevé VI equation. Degeneration of these solutions
along the process of coalescence for the Painlevé equations is discussed.

1. Introduction. Asis well-known, the Painlevé equations (except ford@imit two
classes of classical solutions. One is classi@idcendental solutions expressible in terms
of special functions of hypergeometric type. Anet one is algebraic or rational solutions.

It is also known that the Painlevé equations admit an action of the affine Weyl groups as
groups of the Backlund transformations. It is remarkable that classical solutions are located
on special places from a viewpoint of symmetnythe parameter spaces. A rough picture is
that classical transcendental solutions existire reflection hyperplanes of the affine Weyl
group and algebraic (or rational) solutions do on the fixed points with respect to the Backlund
transformations corresponding to automorphisms of the Dynkin diagram.

In this paper, we concentrate our attention on the classical transcendental solutions.
One of the important features of these solutions is that they can be expressed in terms of 2-
directional Wronskians or Casorati determinants whose entries are given by the corresponding
special functions of hypergeometric type. Thisas as a consequence that the Toda equation
describes Backlund (or Schlesinger) transformations of the Painlevé equations [11, 12, 13,
14]. Indeed, such determinant expressions forf; and Ry have been presented in [13, 14,
5,7].

The aim of this paper is to present a determinant expression for a family of classical
transcendental solutions of the Painlevé V equation

d?q 11 dg\?> 1ldg
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which is equivalent to the Hamiltonian system

oH oH d
1.2 : '=—, pP=——, '=t—,
(1.2) Sv =5, P o R

with the Hamiltonian

H=q(qg—1?p?—[kolg — D?+6q(q — D) +1q]p+x(g— 1),
(1.3) 1 ) 1 )
K:Z(Ko-i—@) —ZKOO,

and the Painlevé VI equation

d%q 1(1 1 1 dg\?> (1 1 1 \dg
— =5t —+— N5 |\t —*+— )5
dt 2\q q—1 gqg—t)\dt t t—1 gqg-—t/)dt

(1.4)
q@—D@—-0[ , 5t 5, t—1 S t(t—1)
|k — kg K ——— + (1—6 ,
T 2201y [K“ ot T T Tz
which is equivalent to the Hamiltonian system
oH oH d
1.5 : = — =, "=ttt -1)—,
(1.5) Svi q op p 0 ( )dt
with the Hamiltonian
H =q(q — (g — )p?
(1.6) —lxolg = D(g —1) +x19(q —1) + (O — Dg(g — DIp +«(q —1),
1 1
K= Z(K0+K1+9—1)2— Zicgo,

respectively.
Let us explain how one can construct a family of classical transcendental solutions of the
Painlevé equations. As an example, we take P

d?q 1
1.7 — =2¢%—21g 42 -,
(1.7) T2 =2 q+ (a + 2)
which is equivalent to the Hamiltonian system
oH oH d
(1.8) ST q = = =

w VT T Tar

with the Hamiltonian

(1.9) H=-p*—(g°—t)p+aq.

If « = 0, the right-hand side of the second equation of (1.8) is divisiblg byhich means
that §; admits the specialization gf = 0 if « = 0. The first equation of (1.8) yields the
Riccati equatiory’ = —g¢2 + ¢. Settingg = (logg)’, we get a linear equatiop” = t¢,
which coincides with Airy’s differential equation. Thus we find thgtd&mits, wherw = 0,

a particlar solution expressed by a rational function of the Airy function and its derivative.
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We now introduce the-function via the Hamiltonian (1.9) a8 («) = (logt(a))’. Then
it is known that a sequence effunctionsrt, = t(x + n) (n € Z) satisfies the Toda equation
(1.10) Tp1Tn—1 =T, Tn — (f,’,)z,
which corresponds to the Béacklund transformation
20
a+q*—t
Iteration of the Backlund transformation to tabove Riccati solution yields a family of clas-

sical transcendental solutions. What we have to do is reduced to solving the Toda equation
(1.10) with the initial conditions

(1.12) 7-1=0, 19=1, 11=0.

(1.12) a—~oa—-1, g+ —q—

By using Darboux’s formula, we have the following [13].

PrRoPOSITION 1.1 (Okamoto). Define the functions z, (n € Z=o) by

RN

% 9 P d\*

1.13 = o= (L) .

(1.13) Tn : S : ¢ )¢
(p(nfl) (p(n) o (p(zizfz)

where ¢ isthe general solution of Airy’s differential equation ¢” = t¢. Then,

d Tn+1 Tn+1Th—1

1.14 =—Io , = —,

(1.14) 7= . p 2

(1.15) a=n,

giveriseto a family of classical transcendental solutions of 5.

By similar procedures, it is possible to obtain a determinant expression for a family of
classical transcendental solutions tp &d Ry, which are presented in Sections 2 and 3, re-
spectively. As is well known,? degeneratestoR. .., P by successive limiting procedures
[15, 3]. In Section 4, we discuss the degeneratbthe family of classical transcendental so-
lutions.

The author would like to thank Professors Y. Haraoka, K. Kajiwara and M. Noumi for
their helpful comments.

2. Classical transcendental solutions of the Painlevé V equation. Noumi and Ya-
mada have introduced the symmetric form of the Painlevé equations [6, 7, 8, 9, 10]. This
formulation provides us with a clear description of symmetry structures of Backlund transfor-
mations and a systematic tool of constructing special solutions.

First, we summarize the symmetric form of the Painlevé V equation [6, 8, 9]. Introducing
r-functions via Hamiltonians, we derive a bilinear equation of Toda type. As mentioned in the
example of 7, one can construct a Riccati solution by restricting the system to a reflection
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hyperplane of the affine Weyl group. In order to get a family of classical transcendental solu-
tions, we have to solve the bilinear equation of Toda type under the similar initial conditions
to (1.12). By using Darboux’s formula, we obtain the determinant expression for the family
of classical transcendental solutions.

2.1. The symmetric form of the Painlevé V equation. The symmetric form,oEP
given by

fo= fofe(f1— f3) + (% - az)fo + a0 f2,

fi= fifz(f2 — fo) + (% - as)fl +oa1f3,
(2.1) = —,

1
f3= fofo(fz — fu)+ (5 - ao)fz + a2 fo,

1
f3= fafilfo— fo) + (5 - Oll)f3 +a3f1,

with normalization conditionsg + a1 + a2 + a3 = Landfo + fo = f1 + f3 = +/t. The
correspondences to the canonical variables and to parameteysaoé §iven by

/3 1
2.2 =22 - ’
(2.2) q nP ﬁfl(fofl + o)
and
(2.3) Koo =01, ko=o03, O=arx—ap—1,

respectively. The Backlund transformations gf&e described as follows:
si(ei) = —ai,  silaj)=aj+o; (j=ixl), silej)=a;(#iixt]),
24 si(f)=rfi si(fj) = fi £ % (G=ixD, si(fPp=rf;G#i,i£D,
me)) = a1, T = fiaas

where the subscripis= 0, 1, 2, 3 are understood as elementZg¥4Z. The Hamiltoniang;
of the system (2.1) are given by

o1 + 202 — a3 o1 + 202 + 33
ho= fofifafs+ ffofl + fflfz
(2.5) ,
3a1 + 2000 + a3 a1 — 202 — a3 (21 + a3)
- = 7 fofs+ = 7 fafo+ ——=20 ) ,

andh; = 7' (hg). Then we have

(2.6) sithj) =hj (i # ). s,-<h,»)=h,-+~/2%, (hi) = hiy1.

1
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Introducingz-functionst; ask; = (logzt;)’, we find that the Backlund transformations for
r-functions are described as

(2.7) si(r)) =71 (0 #J), si(fi)zfi%: (i) = Tit1.

1
The canonical variables of/Sare recovered from-functions by

__ 13s3(3) _ 1 nsi(ry)sosa(zy)

2.8 ,
28) T151(71) NG 1213

Let us define the translation operat@is(i = 0,1, 2,3) by 71 = ms3sos1 andnT; =
T; +17, which commute with each other and act on parametebsy

(2.9 Ti(ei—) =ai—1+1, Ti(w)=o; —1, Ti(aj)=a; (j#i—211).

Noting thatT1 T»T3Tp = 1, we setr ;. ,n = TXT) T3 (v0) (k, 1, m € Z). Then, from (2.7) and
(2.8), we have

Tk, |, m Tk+2,1+1,m+1 Tk+1,0,mTh,I+1,
T T (fo) = =2 gkl () = Sl
(2 10) Tk+1,1+1,m+1Tk+1,1,m Tk, l,mTk+1,1+1,m
' Tk LI+ L, m Th4-1,0,m+1 Tk LI+ L, m 1Tk, Lm—1
TETITY (fp) = = monle | T (fy) = — et
Tk+1,1,m Tk+1,1+1,m+1 Tk+1,14+1mTk,l,m
and
Tk+1,04+1,m+1Tk,l,m—1
kol A+, A,
1,13 (q) = — ;
Tk+1,0,mTh,I+1,m
(2.11) 1 1 T T
kol k+1,1,mTk I+1,mTk+2,1+2,m+1
Ty (p) = — ,

2
\/; Tk, 14+1,m Tk+L14+1m+1

respectively. It is possible to derive a bilinear equation of Toda type with respect to each
translation operator. For th&-direction, we have

Tk+1,l,mTk—1,l,m
(2.12) 301+ 200 +a3 —3k+1+m

4

1 Vi
= — | (log Tk im)” + | Ttm - Thodm -

Jt
2.2. A Riccati solution. lfxg = 0, the right-hand side of the first equation of (2.1)
is divisible by fo, which means that the system (Raldmits the specialization ofy = O if
ap = 0. Then, setting’; = /7 f, we see thay satisfies a Riccati equatiofl = ¢f(1— f) —
(a1 + a3) f + 1. By a dependent variable transformatign= (d/dt) loge, we have forp
the linear equation

d? d
(2.13) tﬁ+(a1+a3—t)a—a1 =0,
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which is nothing but the confluent hypergeometric differential equation. Wejset a and
a3 = ¢ — a. The general solution of (2.13) is expressed as

I'a)I'(c—a)

) F(a,c;t)

(2.14) L

e el 2=

1 Fla—c+1,2—c:t),
whereF (a, c; t) denotes Kummer's confluent hypergeometric function,and = 1, 2) are
arbitrary complex constants. For simplicity, we denote

fij=Fa+ic+j1),
(2.15) leeei o
gij =t JFla—c+14i—j2—c—jit) (i,j€Z).
By making use of the contiguity relations of Kummer's function, we obtain the following.
ProPOSITION 2.1. Definethe functions ¢; ; by

I'a+i)['(c—a—i+}))

pij=c1 - fij
I'(c+j)
(2.16) X L .
CSintc—a—i+ HIQ2—c—j)i-
Then,
1,1 0,1
(fo. 1, for f3) = (o, NA<EENA ﬁ¢—) ,
(2.17) %0,0 %0,0
(o, @1, 000, 03) = (0,a,1—c,c—a),
and
(2.18) q:—@ p=0, kw=a, ko=c—a, 6=-—c,

P11’
give a Riccati solution of the symmetric form of Py and the Hamiltonian system Sy, respec-
tively.

2.3. A Determinant formula for a family of assical transcendental solutions. First,
we calculate the Hamiltonians andfunctions for the Riccati solution in Proposition 2.1.
Under the specialization (2.17), the Hamiltonians arfdnctions are calculated as

/ 20 —c+2 2 20 —c—1 ,_12
hozﬁ_%fﬁ‘%, hl=— ; I+(C4),
(2.19) v0.0 , ,
2a—c ¢ 2a—c+1 (c—1
hy = — ct+c_ h3=_a c+ t+(c )

4 4’ 4 4
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and
2a — 2
70 = 70,00 = 0,0 1 /4 exp( B %t) .
2a —c—1
T1 = 71,00 = t(c_1)2/4 exp( AT 2 I) )
20 —
T2 =1T110= /4 exp< -= ct> ’
4
2a — 1
(2.20) 4
so(to) = 12,1,1 =0,
2a —c+3
s1(11) = 10,1,0 = <P1,1t(6+1)2/4 exp( - %O ,

2 —
s2(t2) = 11,01 = 1~2%/4 eXp( B a4 Ct) :
2a —c + 1t
4 9

up to multiplication by some constants, respectively. For skallm, we observe thaty ; ,,
are expressed in the form

(le—k+l—m)2/A—k(k—1)/2 exp( 2a—c+2 :1 3k +1+ mt) ’

s3(13) = 10,01 = (ﬂo)ll(c+l)2/4 exp( _

(221) Tk,l,m = Ok,l,m

with o2;m = 0, o11.m = const. antso; ,, = (const) x ¢;;—,. Assume thaty; , are
expressed as (2.21) for akyl, m € Z. Then the bilinear equation of Toda type (2.12) yields

2
(2.22) Okt 11mOk—L1m = Of | mOkdom — (OF 1 )" -

Moreover, we set

(2.23) Oklim = Ok lmPhlm > Oklm = Ok lm(d,c),

with p1.7.,,» = 1 andpg.m = ¢1.1-m, and impose that the constaaig; ,, satisfy
(2.24) Wk+1,1,mWk—1,1,m = wf,l,m .

Then the functiongy ; ,, are determined by the recurrence relation

Vi / 2
(2.25) Pk+1,1,mPk=11m = Pk mPhLm — (P1.m) >

with the initial conditions

(2.26) P2,l,m = 0, PLil,m = 1, PO, L,m = Pll—m -
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By Darboux’s formula, the functionsi— i » forn € Z>o are expressed as

(O] @ (n—=1)
Li-m Pli-m 0 Pli-m
@ @ . » _ g\
(2.27) Pl-nlm = (pl’lim q)l’lim (pl’lim , (Pl(,ll)_m = (IE> @ll—m -
n-1 @ @2
Pri-m Pri—m " Pli-m
Note that the constants ; ,, are determined by the recurrence relations (2.24) and
(2.28)
OLIH1m®11-1m = —(a+1 — 1)60%,,,,,, y WL m+10Lm-1 = (¢ —a — m)wil,m ,
@0141m@01-1m = —(@+1 =D, .. ©01mi1001m-1=(C—a—1—maf, . .

with initial conditions
®1,00=w1,1,0=w101=w111=1,
(2.29)
®0,0,0 = ®0,1,0 = w0,0,—1 = wo,1,-1 = 1.
Since it is possible to sét= m = 0 without loss of generality, we obtain the following.
THEOREM 2.2. Definethe functions r,i’j by
© (€Y (n—=1)

bij Py %
@ (2) () k
(230) t’lll — l.,,l l..,] . l:] s (pl'(,j) = <[E) Di,j
n-) (@2
bij o P T i
where ¢; ; are given by (2.16). Then,
1 700,10 ;0.0 11
1T 1 n 1
fo=— "Io%w A=Vt oonfl’
\/; T Tn T, 1Tn
(2 31) n+1
) (11,01 a1\ Tnl,O_L,O,ll
n n
fo=t 5510 f3=ﬁ( ) T ’6—5 ,
Tn Tn c—a Tn Tyi1
(2.32) (a0, 01, 02,03) = (—n,a+n,1—c,c—a),
and
c—a—1\" T;}’OT,?;,]-]_ a 1 T}?’Ot;}:kllrnz.;ll
(2.33) 9="\"4C 0011 P=7._,_17 111110
¢c—a T Ty ¢c—a T T T
(2.34) Keo=a+n, kop=c—a, 0=-c+n,

giveafamily of classical transcendental solutions of the symmetric formof P, and the Hamil-
tonian system Sy, respectively.
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REMARK 2.3. Noting that (2.6) implies
a; d 5i (Ti)

2.35 t—=t—Io ,
(2.35) NG 7 =109
we obtain another expression of the solutions in Theorem 2.2. For example, we have
1,1
t d T,
(2.36) (a+n)£=t—|og e RPN

1 dt r,?’o
REMARK 2.4. The symmetric form of\Padmits the following symmetry:
o(t) = —t,
(2.37) o(fo) =v-1f2, o(f=~-1fo, o(f1)=v-1f1, o(fs)=+-1f3,
o(ap) =a2, o(az2)=ao, o(a1)=a1, o(x3)=o03.

Applying o to the family of solutions in Theorem 2.2, we get another family of solutions
expressed in terms df(a, ¢; —1).

3. Classical transcendental solutionsof the Painlevé VI equation.  In this section,
we construct a determinant formula for a family of classical transcendental solutions of the
Painlevé VI equation by following the same recipe as in the previous section.

3.1. The symmetric form of the Painlevé VI equation. Here, we give a brief review of
the symmetric form of the\R [10, 4]. We set

(3.1) fo=q—t, fa=q-1, fa=q, fo=p,
and
(3.2 ag =0, o1=~Ke, Q3=Ki, 0O4=KQ.

Then the Hamiltonian (1.6) is written as

(3.3) H = fZfofsfa— (o —1) fafa+azfofa+ aafofslfo+ aaler + a2) fo
with ap + o1 + 202 + @3 + a4 = 1 and the Hamilton equation (1.5) is written as
Joa=2f2fofsfa— (a0 —1) fafa—azfofs —asfofs,
(3:4)  f3=—(fofa+ fofa+ fafa) f3
+(xo — D(f3+ fa) + a3(fo + fa) + aa(fo+ f)]f2 — a2(a1 + a2) .

The fundamental Backlund transformations ¢f Bre given in Table 1. We define the Hamil-
toniansh; (i =0, 1, 2, 3,4) by

t r—1
h0=H0+Z, h1=S5(H0)—T,
(3.5)

1
h3 = se(Ho) + 7 hg =s7(Ho), hz = hy+s1(h1),
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TABLE 1. Backlund transformations of/.

ag a1 oo a3 g fa f2
ao
so| —oo a1 o2+ o3 ag Ja fo——
fo
51 ao —a1 ax+o1 a3 ag Ja f2
oz
s2 || o +a2 a1 +a2 —a2 a3+ ag+or f4+7 f2
2
as
53 ao a1 az+az —as ag Ja fo——
f3
Qs
54 ao a1 ap+as a3 —oy fa fo——
Ja
f3 fo(f2fo+ a2)
S5 a1 (070) o2 o4 o3 11— —_
fo t(t—1)
t fa(faf2 +a2)
56 o3 o4 o o0 o1 — 22
fa t
Jo f3(fafz +a2)
§7 oq a3 a2 o1 Qo — —_—
f3 t—1

where an auxiliary Hamiltonia#/g is given by

t
Ho=H + 4_1[1 + 4oy + 405% — (a3 + a4)2]
(3.6) L
+ gl + @g)? + (a3 4 a4)? + 4azay] .

Introducingz-functionst; ash; = (logt;)’, we find that the Backlund transformations for
t-functions are described as follows:

si(tj))=1; (#Jj,i,j=01,2234),

3.7 2. 2 2 TOTLT3T
(=7) sit)=fi— (=034, s1(11) =—, SZ(TZ)ZL#’
Ti T1 \/; 2
s5: o> [t — D], 1 [t — 1] Y,
(3.8) 3> YA — DY,y YA — 1) g,

2> [t(t — DI Y2 fora,
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S6:. ToH> it1/413, 3 > —it’l/“to,

(3.9 71— Y4, 74— 147,

1> Y2 fats

sttt (D70 - DYy, wue (DY - 1) Y,

(3.10) > (—D¥40 - 1) V4, e ()74 — )Yy,

o —i(t — 1)_1/2f37:2.

Let us define the following translation operators

(3.10) T13 = 51525054525157,, 140 = 54525153525457 ,
T34 = 53525051525355, 114 = 51545250535256 ,

which act on parametets as

Tas(ao, a1, a2, a3, aa) = (a0, a1, &2, a3, aa) + (0,1,0, —1,0),
(3.12) i“o(“o’ a1, a2, a3, aa) = (a0, a1, @2, a3, a4) + (—1,0,0,0, 1),
Tsaloto, 1, 02, 03, 24) = (@0, @1, 02, @3, €a) + (0.0,0. 1, =1).
T14(oo, 01, a2, a3, ag) = (g, 1, o2, a3, oe4) + (0,1, —1,0, 1) .

Note that the action of these operatorsmofunctions is not commutative. For example, we
have

T13Tao(t0) = —TaoT13(t0),  T13T34(t0) = —iT34T13(10) ,
(3.13) T13T14(t0) = i T1aT13(t0),  TaoT34(t0) = i T34Ta0(0) ,

TaoT14(t0) = —i T1aTao(r0) ,  T34T14(t0) = i T14T34(T0) .
Settingte 1. m.n = Ty T3 TaoTha(v0) (k, 1, m,n € Z), we have

2 Tk dmnTk—1,1-2,m—1,n+1
Tk—1,1—-1m—1,nTk,I—1,m n+1

T ThoTs(fo) = —itY/2(t — 1)

mmal o . Tk, l-1,m—1,nTk—1,1-1,m,n+1
Ty T Tho Tl f3) = i (¢ — Y222t mtl
(3 14) Tk—1,1-1,m—1,nTk,I-1,mn+1
namal ok . 1/2Tk,l—l,m,ntk—l,l—l,m—l,n+l
1aT32TaoT13(fa) =1

)
Tk—1,1—-1,m—1,nTk,I—1,m n+1

=1 _1/2 Tk—1,1-1,m—1L,nTk,l-1,m,n+1Tk+1,l,m,n—1
ml Tk 1/2 » ) > s ,m, WLy,
3alaoliz(f2) = —(t =~ :

Tk, l,m,nTk,I-1,m—1nTk,I-1,m,n
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It is possible to derive a bilinear equation of Toda type with respect to each translation opera-
tor. For theTy4-direction, we get

B d
Tedmnt ATk fmn—1 = —1 /2 |:(t - DE(IOQ T tmn) — (109 Tk 1.m.n)
(3.15)

(@1 +as+k+l—m+2n)2 17 ,
+ 4 +§ e l,mn -

3.2. ARiccatisolution. & = 0, itis possible to specializ& = 0. Then the Hamil-
ton equation (3.4) yields a Riccati equatigri = a1q2 + [(a3z + aa)t + (co+
ag — 1)]g — aat. We setag = —b, @1 = a, a3 = c—a andag = b—c+ 1. Bya
dependent variable transformationp = —(logg) — (b + 1)t + ¢, we have forp the linear
equation

d2<p
dt?
which is nothing but the hypergeometric differential equation. The general solution of (3.16)

is expressed as
F'a+1HIro+1)
= F 1Lb+1 1
c1 Tt D (@a+1,0+1,c+11)
F(a—c+1)F(b—c+1)t_CF(a_
I'l-o)

(3.16) t(t—1) +[(a+b+3)t—(C—i—l)]cji—(f—i-(a—i-l)(b—i—l)(p:0,

(3.17)

+c2 c+1b—c+11—c;1),

whereF (a, b, c; t) denotes Gauss's hypergeometric function and = 1, 2) are arbitrary
complex constants. For simplicity, we denote

kl __ .
m =Fa+kb+lc+mt),

(3'18) kl 1—c—m
gm =1 Fa—-c+1l+k—-mb—c+1+1—m2—c—m;t),

for k,I,m € Z. By using the contiguity relations of Gauss’s hypergeometric function, we
obtain the following.

ProPOSITION 3.1. Define the function ¢y ., by
Fa+k+DIG+14+2) 411042

k,l.m = C1

(3.19) Pk.l,m Tc+m+1) m+1

. +C F(a—c+1+k—m)F(b—c+2+l—m) k+l,l+2

2 F(l_c_m) gm+1 .
Then,
$-1,-2-1 ®-1,-10 $-1,-1-1
o=b—"—"—, fa=(c—a)———, fa=——", =0,
(3.20) %0,-1,0 $0,-1,0 %0,-1,0
ag=-b, a1=a, az=c—a, asr=b-—c+1,

give a Riccati solution of the symmetric formof Py, .
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3.3. A Determinant formula for a family of asical transcendental solutions. First,
we calculate the Hamiltonians andfunctions for the Riccati solution in Proposition 3.1.
Under the specialization (3.20), the Hamiltonians are calculated as

(3.21) hi =A;(t—1) +Bit, (i=0134),
with
Ao=—Z(a+b—c+12—a—b-12, Bo=gla+b—c+1?+3
0= 4a c 4a s o—4a c 5"
1 1 1 1 1
A1=—Z(a+b—c)2—z(a—b—1)2—z, Blzz(a+b—C')2+Z,
(3.22)
1 1 1 1 1
A3=—Z(a+b—c+1)2—z(a—b)2—Z, B3=Z(a+b—c+1)2+§,
A= —2(a+b -0 - Z(a—b)? Ba=a+b—0?+
4= 4a c 4a s 4—4a c R
Then we have
(3.23) 5 =tY0t -1, ssi(1;)=0 (i=0,1,34)),

so(to) = bo_1,_o 1140+t (1 — 1)Bo

51(11) = 9o, 1,0t ATV (¢t — 1)Brtlatb—ctD
(3.24) S
53(13) = (c — a)p_1,—1,0t43T(t — 1)B3

s4(t4) = ¢71’71’71tA4*(b*C+1) (t — 1)B4+(a+b7c+l) ’

up to multiplication by some constants. For small, m,n, we observe thaty ; ., are
expressed in the form

(3.25)
RPN 2 Ao ~ P 2
Tedmn = O_k’l’m’ntf(a+b7c+2n) /4—(a—b—n) /4+n(b+n)7n(nfl)/2(t _ 1)(a+b7c+2n) /4+l/2,

with ok 1.m.—1 = 0, ok1.m,0 = const. anty ;,,1 = (const) x ¢k .., where we denote
d=a+k,b=>b+1+1andé = c+m. Assume thaty ; .., are expressed as (3.25) for any
k,l,m,n € Z. Then the bilinear equation of Toda type (3.15) yields

(3-26) Ok l,mn+10k I,mn—1 = _[(azak,l,m,n)ak,l,m,n - (&Tk,l,m,n)z] , 6= t% .
Moreover, we set

(327) Ok, l,mn = Wkl mnPk,lmn, Dklmn = Okl mn (a,b,c),

With px.1.m.0 = 1 andpx i.m.1 = ¢r.1.m, and impose that the constaaig; ,, , satisfy
(3.28) @k I, m,n+1Pk,l,mn—1 = _wlg,l,m,n :

Then the functiom ;.. » are determined by the recurrence relation

(3-29) Pk,l,m,n+1Pk,l,mn—1 = (azpk,l,m,n)pk,l,m,n - (aiok,l,m,n)2
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with initial conditions

(3.30) Piim—-1=0, pkimo=1, prim1=@kim-

By Darboux’s formula, the functions ; .., for n € Z-¢ are expressed as

(O] @ (n—1)
Ceim  Prim 0 Prim
&) @ _ A\
(3.31) o (pk,'l,m €0k,.z,m wk,.l,m ’ ﬁ"/gl,;,m = (15) Oklm -
n-1  m 2
Cetom Prim T Prim

Note that the constants ; ;. » are determined by recurrence relations (3.28) and

A AN 2
Ok41,1,m,i Ok=1,1,m,i = 1a(C —a)wp,; .,
RN ~O2 .
(3.32) Ok 14+1,m,i Wk, I-Lm,i = —ib(C — D)WL, (i=01

A ANA P2
Ok, L m+1,i @k L, m—1,i = (¢ —a)(c —b)wg, .

with initial conditions

w-1-2-11=(=1)"Y4, wo—2-11=0>,
w_1-1-11=1, wo-1-11= (=174,
(3.33) s .
w-1001=—(-1)"*c—a), woo01=—i,
w_1-101=—i(c—a), wo,-1,01 = (—=1)~%4,
and
w-1-2-10= (=1, w0,—2,-1,0 = —b,
w-1,-1,-10=1, wo,—1,-10 = (=1)~¥4,
(3.34) e
w-1000= (-D"¥*c—a), wooo0=1,
-3/4

w_1,-100=C—a, wo,-1,00 = (=1

Since it is possible to sét=/ = m = 0 without loss of generality, we obtain the following.

THEOREM 3.2. Definethefunctionsnf’l”” by

©) D (n—1)

Cetom Prim T Prim

@ @ .. , g\
(3.35) ghtm = | Petm Cielm Petm | wiﬁ?,m=<fg> Dl »

-1 () (-2
Ceim  Prim k.l,m
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where ¢ ;. are given by (3.19) Then,

(000 -1-2-1 0-1,-1_—1,-1.0
_ n n+1 o n n+1
fo=b—— 705 f3=C—-a) 75707106
336 Tn Tt Tn Tht1
(3.36) 0-1,0_—1,-1,-1 ~1,-1,-1_0,-1,0_1,0,0
f _ Tn Tn+l f _ at’l Tn Tn+l -1
4= ~"3°1-10-10° J2% 0,00 0,-1,-1_0,-1,0 °
T, Tyi1 T, Ty T,
(3.37) (a0, @1, 02, 03, 04) = (=b,a +n,—n,c —a,b—c+1+n),

give a family of classical transcendental solutions of the symmetric form of Py, .

4. Degeneration of classical transcendental solutions. It is well-known that, start-
ing from Ry, one can obtain\?, ..., P by successive limiting procedures in the following
diagram [15, 3],
P — Pv — By
(4.1) ! !
Pv — Py — P,
which corresponds to the degeneration diagram of the special functions of hypergeometric
type
Gauss— Kummer— Bessel
(4.2) \ 4
Hermite-Weber— Airy .
In this section, we show that, starting from the family of special function solutiong dji?en
in Theorem 3.2, we obtain classical transcendental solutions to other Painlevé equations by
degeneration.
4.1. From R, to R,. As is known, the Hamiltonian systeny,Sis reduced to $ by
putting

(4.3) t—1—et, K1»—>£_1+9+1, 9!—>—8_1,

and taking the limit=: — 0. We consider the degeneratiohtbe family of classical tran-
scendental solutions given in Theorem 3.2. It is known tRatd@lmits an outer symmetry
as

(4.4 034: a3z aa, t=>1—t, far—>—fz, fo—>—fo.

Applying o34 to the family of solutions in Theorem 3.2, we get another family of solutions
for parametersag, a1, a2, @3, @4) = (=b,a+n,—n,b—c+1+n,c —a)or

(4.5) Kco=a+n, kp=c—a, ki1=b—c+1+n, 6=-b.

Then it is easy to see that by putting> ¢ andb = ¢, the Hamiltonian system§ with
(4.5) is reduced to\pwith

(4.6) Keo=a+n, kpo=c—a, 6O=-c+n,
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in the limite — 0. It is obvious that Gauss’s functiafi(a, b, c; t) is reduced to Kummer’s
function F (a, c; t) by this process. Thus we get

4.7) Okim — € T He—a—k+m) Gritmet

wheregy; ; are given by (2.16). Note that we redefine the constangdc, appropriately. It
is easy to see that we have

(4.8) thbm s e=Inp=n —a — k4 m)gttm+l,

Therefore, we obtain the family of classical transcendental solutiong of $heorem 2.2.
4.2. FromR toR;,. From R/, we can obtain two coalescence limits. First, we con-
sider the Painlevé Ill equation

d%q _1(dg\* 1dq 4 2 2 3_ 40
4.9 —=—|—) ——— — —[ncb o+ D]+ 4 -—,
(4.9) T q(dt> gy~ 7 ecbood” + mo(bo + DI + 4nZeq p
which is equivalent to the Hamiltonian system
oH oH d
4.10 : =, =, '=t—,
(4.10) Siii q op P 9q 7

with the Hamiltonian
(4.11)  H =2¢%p* — [2n0etq® + 200+ D + 210t1p + oo (60 + O0)tq -
This system can be derived frony By putting

1

1
g+ 1+ ¢etq, p|—>8’t’lp, tr—)nogtz, H+—>§(H+qp)

(4.12)

Koo > _noogil +0x, ko> 77008717 0 — 6o,

and taking the limit — 0.

Let us apply the limiting procedure to the family of classical transcendental solutions of
Sv given in Theorem 2.2. Itis easy to see that by putting —n..c 1 + ¢, the Hamiltonian
system § with (2.34) is reduced top with

(4.13) 0o =v+n+1, OG=-v+n-—-1,

in the limite — 0, where we denote = v + 1. Without loss of generality, it is possible to
seto := 4neono = £1. Then we find that

(4.14) F(a,c;t) - F(v—i—l)(%) Zy(1),

whereZ, = Z,(r) denotes

Jy: Bessel o=+1,
(4.15) Z, =

I, : modified Bessel o = —1.
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This means that Kummer's function is reduced to the (modified) Bessel function in this limit.
Thus we get

, .t —v=J
(4.16) @i.j = (=1 (Nt 1)’(5) vtj s
with
(4.17) Qo) = C1Zyrj+c2(—=0) T Z ;.
This leads to
o 1 (n—Dn ) e —(v+j)n .
(4.18) /) - (§> (—1)’"(770081)’”(5) o,

wherer, */ are defined by
© ® @D

Potj Potrj T Pt
| ® @ | N
(4.19) T:+'1 = (pv:i_'l (pv_—w ) (pv:i_'l > (01(114)»]' = (ta> Pv+j -
n-y w (@2
Porj  Pugj 0 Puyj

Therefore, from Theorem 2.2 and Remark 2.3, we obtain the following [14].

PrRoPOsSITION 4.1 (Okamoto). Define the functions z,) by (4.19) Then,
(4.20)

gL a1 ( 4 gt vEls ) _ L mhnh
Moo TV 'C:I]:!' 2noo \ dt T, t Anot )Ty’
(4.21) O =v+n+1l, Oo=—-v+n-1,

with 4nono = 1 give a family of classical transcendental solutions of §; .

4.3. FromR to By. Next, we consider the Painlevé IV equation

d?%q 1 /dq 2 3 3 > 1, Kg
4.22 — =—|— = 2t —t°q — (— 20, Dg— —
(4.22) 12 2q(dt> +2q+ q+2 q — (—Kko+ 2000 + g 2
which is equivalent to the Hamiltonian system
oH JH d
4.23 . /=—’ /:——, /:—,
(4.23) Siv q op p 9q ar

with the Hamiltonian

(4.24) H = qp® — (q° +1q + x0)p + 0o0q -

This system can also be derived from I8y coalescence, whose process is achieved by putting
qr>¢eq, p+> 8_1]7, t— 8_2(1+8t), H+rx e 1H,

2

(4.25) 5 7
O 754+ 205 — ko, Koob> & <,

and taking the limit — 0.
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Let us consider the degeneration of thesdlical transcendental solutions ¢f S\pplying
the Backlund transformatiam? to the solutions in Theorem 2.2, we obtain the following.

COROLLARY 4.2. Definethe functions 'C,l;’j by (2.30) Then,

n.00_11 n.10_01_-1-1
4.26 _ c—da Tn Tn—i—l -1 c—a-—1 Tn Tn—i—ltn-i-l
(4.26) ¢ =~ 001 P=0-a 0,0 _00 _00 °
c—a—l T, T c—a T AT ATy
n n+1 n+1°n+1"1
(4.27) Keo=C—a, ko=a+n, O=c—n-—2,

give a family of classical transcendental solutions of Sy .

It is easy to see that by putting— ¢ 2 + a, the Hamiltonian system8with (4.27) is
reduced to f with

(4.28) ko=—-v+n, 60O=-v—1,
in the limite — 0, where we denote = —v. We find that

T(c —
(4.29) LD b ei0) > (—o) " Hy 0,

I'(c)

whereH, (t) denotes the Hermite-Weber function. By a Kummer transformation
(4.30) Fla—c+1,2—c;t)=e¢'F(l—a,2—c; —1),
we get

I'c—a)'(a—c+1) tl_CF(a
r'2-c)
Thus we have

(4.32) @ — (=) "l (—v + k) Hy— (1) + el TVHRD/2,2 2 )]

(4.31) et 12— cit) = (—ie) L 2H_,_q(ir).

Let us rewrite this expression in terms of the hyperbolic cylinder fundigcr). Noting the
relationsH, (1) = ¢'-/4D, (t) and

I'(=v) :
(4.33) D_,_1(it) = (Tv)[ezn(H»l)/ZDU(t) _ efzﬂ(ufl)/ZDU(_t)] ’
JT
we getgy, j — ske’2/4(pv_k with
Dv—k([)
4.34 k=cl——— 4 ol (—v 4+ k) Dy (—1).
(4.34) ook =y e (=v+ k) Dy—k(=1)
This leads tay/ — e="("=Dgkngv—k wherer”—* are defined by
0 (1) (n—=1)
¢v7k ¢ufk e ¢u’ik
(€N} @ () d\"
(435) k= ¢ka ")vjk ")Ufk .o = <E> CRLTINY
L : S
¢]()n_k) (bl(,n_)k (bl(,_nk )

Therefore, we obtain the following.
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PROPOSITION 4.3. Definethe functions z,”~* by (4.35) Then,

7'.v.l:vfl vflz.v+l
(4.36) == p= 0 DI
T T, To1Tn
n+1 n+
(4.37) ko=—-v+n, 0Ox=-v-—1,

give a family of classical transcendental solutions of Sy .
A direct derivation of this proposition is given in Appendix.

REMARK 4.4. A special casecf = 0) of Proposition 4.3 is stated in [5]. In [7], the
case ofv € Z, where ther-functions are reduced to some polynomials, is discussed.

4.4, From R to B;. Both Ry and Ry go to Ry by coalescence. First, we consider
the degeneration frorsy;; to Sy, which is achieved by putting

g 1+eq, pr>etp, Oor2034+a®, O 2634+ a?,

4.38 1
( ) t —28_3(1— Eszt) , Hr— —2e72H — 2¢7 3¢,

and taking the limit — 0, where we sat = (¢® + «?)/2.

Let us consider the degeneration of the faroilglassical transcendental solutions. From
(4.38), itis the case of = 1 (the Bessel function) that we can take the degeneration limit. By
the relation/_, = cogvm)J, — sin(vr)Y,, we rewrite (4.17) a®,+; = c1Jv+j + c2Voy ;.
Then, from (4.38), we see that by putting= —2¢ 3, the Hamiltonian system;Bwith (4.21)
is reduced to B with « = n. Itis known that we have [1]

Jo(v + 20/ = 2137 1BAI (=2Y37) + 0 (Y,

(4.39)

Yo+ 2v??) = =237 13Bi(=2Y3) + 0 v
which lead to
(4.40) L) = —eAi() + 03, Y1) — eBi(t) + 0(e%).

Thus we getr, ™/ — ¢"(—2¢=2)@=Dng, where the functions, are defined by (1.13).
Therefore, we obtain Proposition 1.1.

4.5. From R, to B;. Itis well-known that the Hamiltonian system % also derived
from Sy by degeneration. This process is achieved by putting

1
q 8’3(1— 82q), pr— —€p, tr> 2731+ Ee“t) ,

Kor—>8’6, O > H+—>—8’1H+8’3a,

(4.41)

and taking the limit — 0.
Let us consider the degeneration of classical transcendental solutions. Applying the
Bécklund transformation to the solutions in Theorem A.2, we obtain the following.
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COROLLARY 4.5. Definethe functions z, by (4.35) Then,

d i1 T;+1T::11
(442) qzalogt—v—t, plev,
n Tn Tn
(443) ko=v+1, 0o =1,

give a family of classical transcendental solutions of Sy .

It is easy to see that by putting— ¢~ — 1, the Hamiltonian systemywith (4.43) is
reduced to $ with o = n in the limite — 0.

Let us consider the degeneration of classical transcendental solutions. According to [2],
we find that the parabolic cylinder function is reduced to the Airy function as

Dv-‘rj ()

Fv+j+1
with @ = ¢27/3, Thus we havey,; — (—¢)% ¢, wheregp denote the general solution of
Airy’s differential equation. Normalizing the-functions (4.35) as’ ™ = "*/4£'%/ we
getiy ™ — (—g)n(1=D+3ing where the functions, are defined by (1.13). Therefore, we
obtain Proposition 1.1.

(4.44) — (—e)¥Ai(1), T'(—v—j)Dyj(=1) = (—&)¥ Ai(w1),

A. Classical transcendental solutions of the Painlevé 1V equation.
A.1. The symmetric form of the Painlevé IV equation. The symmetric formpfis
given by [6,7]
fo = fo(fr— f2) + @0, J
(A1) fi=fi(fa— fo)+ o1, /ZE’
fz=fo(fo— f1) + a2,
with normalization conditionag + «1 + o2 = 1 andfo + f1 + f2 = t. The correspondences
to the canonical variables and to parametersypfa®e given by

(A.2) g=—fi, p=f2, Ko =01, B =—0z.
The Béacklund transformations ofyPare described as follows:
si(ei) = —ai, si(ej) =aj+o (j=ixl), n(aj)=aj1,
s(f)=fio  s(fp=fi+ “7 (G=itD. 7(f)=fis.
where the subscripis= 0, 1, 2 are understood as elementZof3Z. The Hamiltonian%; of
the system (A.1) are given by

1— o1 + 202 2001 + a2

(A.4) ho = fofifo+ = - S h- T,

andh; = n'(ho). Introducingz-functionst; ash; = (logt;)’, we find that the Bécklund
transformations fot-functions are described by

. . Ti—1Ti4+1
(A.5) si(t)) =1 (i #J), si(n)=fi— T_Hr . w(T) =Tig1.

]

(A.3)

o2
fo+
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The f-variables are recovered from theunctions by

;8 (T7) d Ti-1
IRt S 4+ —.
T_1Tiy1  dt T Tiy1 3

(A.6) fi =

Let us define the translation operat@si = 0, 1, 2) by Th = wsps1 andn T; = Tj417,
which commute with each other and act on the parameteas

(A7) Ti(@i-1) =a;i-1+1, Ti(o)=o; =1, Ti(aj)=0a;(j#i—-11).

Noting that71 7> To = 1, we setr,; = TF T} (z0) (k,1 € Z). Then we have from (A.6)

Tk I Th4-2,0+1 d Tepli41 | 1
Ty = S gyt 1
Tt 1,i+1Tk+1,  dt Th+1,1 3
Th+1,iThi+1  d Tkl t
(A.8) TETh(f1) = — =22 = "o =,
ThiTk+1,0+1  dt Terl i+l 3
kol T I+1Tk1-1  d Te+1,l !
T Ty(f2) = ———— = — —.
Thk+1,1 Tk, dt Tkl 3

Itis possible to derive a bilinear equation of Toda type with respect to each translation opera-
tor. For theTy-direction, we have

2000 +ap — 2k + 1
3
A.2. A Riccati solution. We derive a Bgati solution of (A.1). First, we seilp = 0

and fo = 0. Thenf; satisfies a Riccati equatioff = f1(r — f1) + «1. By a dependent
variable transformatiorfy = (logg)’ + ¢/2, we have foip the linear equation

d? 1 7
A.l z —_ )y =
(A.10) (dtz w1t 4) 0,
which is nothing but Weber’s differential equation. Weggt= —v. Then the general solution
of (A.10) is expressed by

(A.9) Tkt 1, Th—1,] = [(|09 ) + ] Tkl - Tkl -

D
(A.12) Q= Clm +c2I'(=v)Dy(—1),

wherec; (i = 1, 2) are arbitrary complex constants. By using the contiguity relations of the
hyperbolic cylinder function, we obtain the following.
PROPOSITION A.1. Define the function ¢,_x by (4.34) Then,

(A12)  (fo fu. f2) = (o, U

give a Riccati solution of the symmetric form of Pyy.

> , (a0, a1,00) = (0, —v, v+ 1),

A.3. A Determinant formula for a family of eksical transcendental solutions. First,
we calculate the Hamiltonians andfunctions for the Riccati solution in Proposition A.1.
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Under the specialization (A.12), the Hamiltonians anfdinctions are calculated as

e, v+1/2 v+1 v
= — t, h = t, h :_t,
o T3 1=73 273

(A.13) ho

and

v+1/2 ,
T0 = 70,0 = ¢v EXP 6 =],

(v+1 2)
T1 = T1,0 = €Xp 6 ],

(57)
2=T111=6eXp| <7 S
(A.14) 6

so(to) = 12,1 =0,

v—1/2 ,
51(T1) = 10,1 = Qv_1EXP 6 <),

v+ 3/2
s2(2) =101 = (v + Dopy1 exp( 6 / t2> ,

up to multiplication by some constants, respectively. Introducing functipndy

2k—1-1
(A.15) Tl = Ok exp(% tz) ,
we see that; = 0, o1, = const. andrg; = (const) x e'’/4g,_,. Moreover, we set
(A.16) Okl = OkIPk1, Wkl = 0k, (V),
with p1; = 1 andpo, = ¢'*/4p,_;, and impose that the constantg; satisfy

(A.17) k41,1 0k—1,] = a)]il .

From the bilinear equation of Toda type (A.9), the functign are determined by

(A.18) P+11Pk—11 = PY10kd — (o ).
with initial conditions

2
(A.19) p20=0, pri=1, pos=e"4p,;.

By Darboux’s formula, the functionsi—, ; for n € Z>q are expressed as

(O] D (n—1)
Poi  Pog " Poy

“ @ () , g\
(A20)  pru=| P00 o for ., pé’,?=<—> POl

n- (-2
Po,1 bo; 0,
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Note that the constants; ; are determined by recurrence relations (A.17) @nd1wi -1 =
v+1- l)wfl with initial conditionsw; o = w;;1 = 1 (i = 0, 1). Since it is possible to set
[ = 0 without loss of generality, we obtain the following.

THEOREM A.2. Definethe functions r,‘;—" by (4.35) Then,

fo= L“t’f:ll _4 n
f,f—lf’y dt (AN
v—1
(A.21) fr 4 T
’ 1=7 v—1" 4 v—1"
Ty1Tn t T,
v—1_v+1 v
_ n n+l _ d Tl’l
fz—(erl)T—Elogtv +1,
n “n+1 n+1
(A.22) (@0, @1, @2) = (—n, —v +n,v+1),
and
vtvfl d v v—1_v+1 d v
(A23) g = - = ——log 4% p=(v+ DL = Zlog -+,
7"r]z)Jrl‘L—” dt Tn Tn Tnt1 dt Tnt1
(A.24) ko=-v+n, BO=-v-—1,

give a family of classical transcendental solutions of the symmetric form of Py and the
Hamiltonian system Sy, respectively.
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