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MEROMORPHIC DATA FOR MEAN CURVATURE
ONE SURFACES IN HYPERBOLIC THREE-SPACE

RICARDO SA EARP AND ERIC TOUBIANA
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Abstract. In this paper we construct meromorphic data and prove a representation
theorem for mean curvature one conformal immersions into the hyperbolic three-space. We
also give various examples.

Introduction. In this article we present a new approach to the theory of mean curvature
one surfaces in the hyperbolic three-space. Our main result is the following: Every non-totally
umbilic conformal immersion X : U • H3 of a simply connected domain U C into
the half-space model of the hyperbolic three-space (denoted by H3), having mean curvature
one with respect to the oriented euclidean Gauss map E (Definition 1-1), gives rise to two
meromorphic data (h, T) defined on U that describe completely X (see Theorem 3-9).

Kenmotsu [K] showed that any C2 solution on a simply connected domain U of the
equation

yy 7 7

1 + EE
produces a conformal immersion X : U — R3 of constant mean curvature, where U* =
U \{z; Ez¯ = 0}. He also proved a similar result for the case of prescribed mean curvature.
As far as we know, however, no explicit (non-trivial) solutions of this equation are known.

In this work, we derive a similar equation, namely

for which every non-trivial solution gives rise to a mean curvature one conformal immersion
X : U — H3 into the hyperbolic three-space (Proposition 2-1 and Theorem 2-5). In
contrast to the previous equation, we can give a complete description of the C2 -solutions
of (*). Indeed, any solution of (*) can be expressed in terms of meromorphic data (h,T).
Conversely, given any pair of non constant meromorphic functions (h,T) with h jt 1/(αT +
β), α, β C, there is a natural way to describe explicitly a conformal parametrization of a
piece of a surface with mean curvature one into the hyperbolic three-space, which involves
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just one integration, / h2Tzdz. The branched points, if there are any, are isolated; in any
case it is possible to handle the branched points and obtain many complete such surfaces. We
emphasize that for mean curvature one immersion any geometric quantity can be expressed
in terms of the euclidean Gauss map E alone.

Besides, the authors shall present in Section 4, many conformally parametrized com-
plete surfaces with mean curvature one, immersed into the hyperbolic three-space with cer-
tain geometric properties. We shall describe explicitely families of such surfaces invariant by
a discrete subgroup (but not invariant by a one-parameter continuous subgroup) of each of the
following group of rigid motions ofH3 : parabolic, hyperbolic and elliptic.

This paper is organized as follows. We shall develop in Section 1 the theory of surfaces
conformally immersed into H3 from our point of view. As a consequence, we shall derive the
geometric quantities in terms of the euclidean Gauss map E and the hyperbolic Gauss map G.
We shall infer another proof of Bryant's result: H = 1 if and only if G is holomorphic, and the
immersion is totally umbilic if and only if G is anti-holomorphic. We observe that the latter
astonishing result due to Bryant has thrown a light on the analytic nature of mean curvature
one surfaces in H3. We note that Galvão and Góes [G-G] have also given an alternative proof
of this theorem. We recall now that for minimal surfaces in euclidean space an analogous well-
known result holds. We shall explore the linking between minimal surfaces in euclidean space
and mean curvature one surfaces in hyperbolic space over and over through our main results.
This was explored before by Bryant [B], Umehara-Yamada [U-Y, 1] and the authors [SE-T,
1]. We begin Section 2 by establishing the globally defined equation for mean curvature one
surfaces in H3, namely (*), see Proposition 2-1. Then, we show that any solution of (*) gives
rise to a piece of a mean curvature one surface in the hyperbolic three-space, Theorem 2-5.

In Section 3 we shall develop our theory on mean curvature one surfaces, in order to
prove our main results (Propositions 3-6, 3-7, 3-8). Finally, in Section 4, we shall give a
family of complete examples.

Following Bryant idea's, Umehara and Yamada have introduced the notion of regular
ends and provided several techniques, that have been very useful since then [U-Y, 1]. On
this subject see also the following works: Umehara-Yamada [U-Y, 2], [U-Y, 3], Rossman-
Umehara-Yamada [R-U-Y, 1], [R-U-Y, 2], Lima-Rossman [L-R], Lima-Roitman [L-Roit],
Rossman-Sato [R-S], the authors [SE-T, 1], and Collin-Hauswirth-Rosenberg [C-H-R].

The basic idea here is that, looking at the upper half-space model of hyperbolic space,
one can see that hyperbolic geometry is very well integrated with Euclidean Geometry. This
point of view has guided us andBarbosato several papers (see [SE-T, 2], [SE-T, 3], [B-SE, 1]
and [B-SE, 2]). We refer the reader to the authors'book as well [SE-T, 4].

We note that any conformal immersion in the half-space model of hyperbolic space can
be expressed in terms of the euclidean Gauss map E and the hyperbolic Gauss map G. In
a forthcoming paper we make this more precise, see [SE-T, 5]. We note also that we have
obtained a Weierstrass-Kenmotsu type theorem for prescribed mean curvature surfaces in hy-
perbolic space, see [SE-T, 6].

The authors are grateful to the referee for valuable observations.
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1. Surface theory in hyperbolic space. We begin by fixing the notation we shall

use in this paper. We shall focus on the half-space model of the hyperbolic 3-space, which we

shall denote by H3, namely

H3 = {(u,v,w) R3 ; w > 0 }

equipped with the hyperbolic metric

du2 + dv2 +dw2

w2 .

Throughout this paper, U C will be a simply connected domain of the complex plane with

coordinate z = x + iy, and X : U • H3 will be a C2 conformal immersion of U into H3.

We shall call M = X(U) a surface in H3. For any vectors u and v±, the notation u • v (resp.

(u ; v}) stands for the standard euclidean (resp. hyperbolic) inner product of u and v±. Let N

be the euclidean Gauss map of X such that (Xx, Xy, N)(z) is a positively-oriented basis of

R3 for each z U, where Xx = X/ x and Xy = X/ y. That is,

Xx A l ,
N =

|Xx A

where | · | stands for the euclidean norm and A for the euclidean vector product. We call

N = (N1, N2, N3) the oriented euclidean Gauss map of X, or more briefly the euclidean

Gauss map of X.

DEFINITION 1-1. (1) Let Π : S2 C { } be the standard stereographic projec-

tion. We set
„ „ ,. JVi+iJV2E = Π • N = .

1 N3
so that

(2ReE,2ImE, EE - 1)
V̂ = = .

EE + 1
We call E the oriented euclidean Gauss map of X.

(2) Let p = X(z) M bea point on M. Let γ+ be the geodesic ray issuing from p,

orthogonal to M and oriented by the normal vector N(z). Let ω H 3 = C { } be the

asymptotic boundary of γ+. We then define a map G : U C { } by setting G(z) = ω.

The map G is the well-known hyperbolic Gauss map of X (or M), [B].

The following result states the relationship between these two Gauss maps E and G,

which will be fundamental throughout this work.

PROPOSITION 1-2. Using the notation above, we have

u +iv = G wE .

PROOF. Let z U be any point. Observe that G(z) = (u + iv)(z) implies that N(z) =

(0, 0, 1), and therefore E(z) = 0 = (G (u + iv))(z). Otherwise it suffices to express the

equation of the geodesic ray. •
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LEMMA 1-3. Assume that E(z) ^ = for any z U. Then we have

Re(E(G¯x wEx)) Re(E(G¯y wEy))
(1.1) wx = 2 R e ( E (G x x , w y = 2 y y ,

l + EE y l + EE
that is,
(1-2) ^ ^ ( G , - ^ ) ,

where wz¯ = w/ z¯.
PROOF. AS N is the euclidean Gauss map of X, we have Xx · Π 1(E) = Xx · N = 0.

Then, by Proposition 1-2, we obtain

(1 + EE)(X¯x · N) = ((U + iv)x, wx) · (2E, EE - 1)

= ((G wE)x, wx) · (2E, EE - 1)

= 2Re(E(G¯x wEx)) wx(EE + 1),

which is the first equation of (1.1). The second equation of (1.1) is obtained in a similar
way. •

LEMMA 1-4. Assume that E(z) ^ = for any z U. Then we have

(1.3) Gz = wEz

and the (hyperbolic) metric ds2 induced on U by the immersion X is given by

7 \G?-wE-z\
2

 7

(1.4) ds2=|G z
 w 2

 z¯| |dz|2.

Moreover, we have for every z U

(1.5) E¯z¯(z)Gz¯(z) R.

PROOF. AS X is a conformal immersion, we have

(1.6) Xx · Xx = Xy · Xy and Xx · Xy = 0.

On the other hand, using Proposition 1-2 and Lemma 1-3, we have

(1.7) Xx ·Xx = |Gx wEx|
2 and Xy · Xy = |Gy wEy|

2 ,

(1.8) Xx · Xy = Re ((Gx wEx)(G¯y wE¯y)).
From (1.6)—(1.8) we deduce that complex numbers (Gx wEx) and (Gy wEy) have

the same modulus and their arguments differ from ±Π/2. Thus, we get (Gy wEy) =
±i(Gx wEx). Now recall that

XxAXy _ (2E, EE - 1)

~ ]x~AXy~\ = EE + 1

Therefore, by Lemma 1-3, we get (Gy wEy) = i(Gx wEx). Hence we have Gz wEz =

0.
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Now, as X is a conformal immersion, the metric ds2 induced on U by X is given by

|Gx wEx|
2

2 .

On account of Gz — wEz¯ = Gz — wE-z + Gz wEz = Gx wEx, we have (1.4).
Finally, as wxy = wyx, by Lemma 1-3, we get (1.5), which completes the proof of the

lemma. •

DEFINITION 1-5. (1) We call N the unit normal vector field on M with respect to the
hyperbolic norm, having the same orientation as N,if N = wN.

(2) Denote by D (resp. V) the Riemannian connection of R3 (resp. H3). Also, denote
by Π (resp. Π )̃ the euclidean (resp. hyperbolic) second fundamental form of the immersion
X with respect to N (resp. N˜), that is,

77 = bxxdx + 2bxydxdy + byydy and Π˜ = b˜xxdx2 + 2b˜xydxdy + b˜yydy2 .

For example, bxx = Xx · Nx andb˜xx = —(Xx, VxxN). Recall also that for any vector fields
A, B and C we have

(1.9) (C, VBA> = 1C · DBA + 1( A[w]B · C B[w]C · A + C[w]A · B),

where A[w] stands for the (euclidean) derivative of w with respect to A, see [N] or [B-SE, 2].
(3) We denote by H (resp. H˜) the euclidean (resp. hyperbolic) mean curvature of X

with respect to N (resp. AO. That is,

„ bxx + byy b ˜xx + b˜yy
n = , H ˜ = .

2Xx · Xx 2Xx · Xx

(4) We denote by Φ (resp. &) the Hopffunction of X in R3 (resp. H3), namely

i L>XX ^VV . , Z L>XX Oyy ~

LEMMA 1-6. Assume that E(z) ^ = for any z U. Then we have

-2E-,
(1.10) H= 2 E z ̄  ,

(1 + EE)(GZ - wEz¯)

(1.11) 2 G z ¯ = (1 H)(G˜z¯ wEz¯),
1 + EE

(1.12) HGz = (H - l)E-z,
(1.13) z G

1 + EE

(1.14) 0 = -2Ez
Gl~WEI =-0.
w(1 + EE) w
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PROOF. By Lemma 1-3, we easily get

bxx = Xx·Nx = — 2 Re (E¯x(Gx wEx)).
1 + EE

Now, using the relation (1.9), we thus get

b˜xx = -(Xx, VXxN) = w2[wbxx + N3Xx · Xx]

1 f 2w E E¯ 1
= —r Re(E¯x(Gx wEx)) + | Gx wEx|

w2\_\ + EE EE + l
The other relations involving bxy, byy, b˜xy and b˜yy can be shown in a similar way.

Now relations (1.10)—(1.14) are easily inferred by using the definition of H, H˜, Φ and

0 and(1.5). This concludes the proof of the lemma. •

REMARK 1-7. It is well-known that every positive isometry (that is, an isometry pre-

serving the orientation) J : H3 H3 extends continuously to the asymptotic boundary

H 3 o f H 3 . Moreover, the restriction of J to H3, denoted by J , is a Möbius function.
Conversely, each Möbius function on H3 is the restriction of a unique positive isometry of
H3. Let us call ζ = u + iv the coordinate on H 3 = C { }. Note that every Möbius
function f on C { } has a form of either

Xew

or

where α, β C and λ, θ R, λ > 0.

LEMMA 1-8. Let J : H3 • H3 be a positive isometry and J the restriction of J to

H3. Let E be the euclidean Gauss map of the immersion X = J • X : U • H3. Then we

have

E = eiθ · E if J (ζ) = λeiθ · ζ + β ,

eiθ ( 1 + EE ¯ \ Xew

G + β

PROOF. For any complex number β and any real numbers λ, θ, λ > 0, we denote by

Hλ the homothety on H3 with respect to 0 and ratio λ, by Tβ the horizontal (Reβ, Imβ, 0)-

euclidean translation on H3, and by Rθ the euclidean rotation on H3 with respect to the w-axis

with argument θ. Observe that Hλ, Tβ and Rθ are positive isometries o fH 3 .

Suppose that J (ζ) = α+ λeiθ /(ζ + β). Let I : H3 H 3 be the positive isometry of

H 3 such that I (ζ) = 1/ζ . Then we haveJ = Tα•Hλ•Rθ•I•Tβ. SetJ•X = X = (u, ˆv, ˆw)
and consider the hyperbolic Gauss map G of Xˆ. Thus G = J (G). Observe also that
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Then we obtain

ew

|ζ + p\ + w2 G=α+ G

Now, the proof is a straightforward verification by using Proposition 1-2, Lemma 1-4 and the
relation E = (G - (u + iv))/w. D

The following result was first proved by Bryant [B, Proposition 1]. See also Galvão and
Góes [G-G] for an alternative proof.

COROLLARY 1-9. (1) Let p = X(z0) M such that E(z0) ^ = . Then p is an
umbilic point ofM if and only ifGz(z0) = 0. Therefore, M is totally umbilic if and only if
Gz 0, that is, G is anti-meromorphic.

(2) Let p = X(z0) M such that E(z0) ^ = . Then H(z˜0) = 1 if and only if
Gz¯(z0) = 0. Therefore, H = 1 if and only ifG is meromorphic.

Consequently, the umbilic points of any non-totally umbilic mean curvature one surface
in H3 are isolated.

PROOF. From (1.3) and the fact that w > 0 it follows that for any z0 U such that
E(z0) i= , we have Gz(z0) = 0 if and only if Ez(z0) = 0, which occurs if and only if
p = X(z0) is an umbilic point.

Now, let z0 U be a point such that E(z0) = . Let J : H3 H3 be a positive
isometry ofH 3 such that E(zˆ0) i= , where E is the oriented euclidean Gauss map of the
immersion X = J • X. Let J be the restriction of J to the asymptotic boundary H3. For
the hyperbolic Gauss map G of Xˆ, we have G = J • G. We see that z0 is an umbilic point
of X if and only if z0 is an umbilic point of Xˆ, which occurs if and only if Gˆz (z0) = 0 so that
G is anti-meromorphic at z0. From this we easily deduce the last statement in assertion (1).

In the same way, since the metric (1.4) does not degenerate, we have Gz — wE-z ^ 0 on
U. Then, we deduce from (1.11) that G is holomorphic at z0 if and only if H(z˜0) = 1onU.
In case where there exist some points z0 U such that E(z0) = , we proceed as before to
conclude that H = 1 if and only if G is a meromorphic map. This completes the proof of the
corollary. •

We deduce from Lemma 1-6 the following equation for constant mean curvature.

COROLLARY 1-10. Assume that X : U H3 is a C3 conformal immersion such that
E(z) jtz = for any z U. Then H is constant if and only if

(l + EE)Ezz-EEzE-z-EEfi=0.
w

PROOF. Since Gz - wE-z ^ 0, (1.11) leads to

a 1 -> Gi

EE)(G¯z¯ wEz¯)
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Here, since H is real, H is constant if and only if H˜z = 0, which is equivalent to

w(1 + EE)E-ZZ(G-Z - wEz¯) wEEzE-z(G-z - wEz¯)

- Gz¯(EzE¯ + E(E)¯z)(Gz - wE-z) + EEz¯Gz¯(Gz - wE-z) = 0.

Then by (1.5) we have the conclusion. •

2. Mean curvature one surfaces in H3 via the euclidean Gauss map. Throughout
this section we shall use the same notation as in Section 1. From now on we assume that
X : U H3 is a C3 conformal immersion, where U C is a simply connected domain.

By Corollaries 1-9 and 1-10, we have the following

PROPOSITION 2-1. Assume that H = 1 and E(z) ^ = for any z U. Then

(*) £?? = E zEz¯.
= 1 + EE

REMARK 2-2. (1) Assume that X is not a totally umbilic immersion and E(z) ^ =
for any z U. Then we also have the following necessary and sufficient condition for H = 1:

(2.1) wz̄  = w l + EE

Indeed, if H = 1, then (2.1) holds because of Lemma 1-3 and Corollary 1-9.
Reciprocally, suppose that (2.1) holds. From Lemma 1-3 we infer that E Gz = 0. Set

[/i = ( z e ( / ; £ ( z ) / 0 | and U2 = {z U; Gz̄ (z) ^ 0}. Thus U1 and U2 are open subsets
of U such that U1 U2 = U. Hence we have the following alternative: U1 = U or U2 = U
or f / i f l J / 2 / 0. Note that, if U1 =̂ , then we have Gz̄  = 0 on U1 so that H ˜ I on U1.
Furthermore, if U2 i= , then E = 0 on U2, that is, X(U2) is a peace of a horizontal euclidean
plane in H 3 with downward normal, which implies that H = — 1 on U2. These observations
force U1 U2 = . Note also that U1 = implies that E 0 on U, and hence X is a totally
umbilic immersion, which is a contradiction. Consequently, U2 = , that is, Gz̄  = 0 on U.
We therefore conclude that H = 1 on U.

(2) Observe that Proposition 2-1 shows that Equation (*) is a necessary condition for
H = 1 but is not a sufficient condition.

Indeed, assume that X is a mean curvature one conformal immersion such that E ^ =
on U. Then its euclidean Gauss map E satisfies Equation (*). Let λ > 0 and consider the new
conformal immersion X1 = X + (0, 0, λ). Clearly, X1 and X have the same euclidean Gauss
map. Therefore the euclidean Gauss map of X1 satisfies Equation (*). Note that vertical
translations are not isometries o f H 3 . It is easy to deduce that X1 is not a mean curvature one
immersion into H3. For instance, any positive vertical translation of any horosphere whose
asymptotc boundary is a finite point in H 3 (that is, any euclidean sphere in H3 tangent to
{w = 0}) is a compact sphere in H3 whose mean curvature with respect to the inward unit
normal vector field is strictly bigger than 1.
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Similarly, suppose that X is a mean curvature one conformal immersion with E ^ =

on U, such that the coordinate w is bounded from above. Then there exists a γ > 0 such that

w(z) < γ for every z U. Therefore X2 := X + (0, 0, λ) : U H3 is a conformal

immersion for any λ γ. The oriented euclidean Gauss map of X2 is E, which satisfies

Equation (*) although the mean curvature of X2 is not one.

As a matter of fact, let X : U H 3 be a conformal C 3 immersion such that E(z) ^=

for any z U, E satisfies Equation (*) and H ^ \. Then we prove in a forthcoming paper,

see [SE-T, 5], that X must have one of the two forms mentioned above unless E-z = 0, that is,

X is a minimal immersion into R 3 in euclidean meaning.

(3) Remark that Equation (*) does not depend on the choice of a complex coordinate.

LEMMA 2-3. Let E : U C be a C2 function satisfying (*). Then the set {z

U; Ez(z) = 0} w discrete unless E is anti-holomorphic on U. Similarly, {z £/; £^(z) = 0}

w a discrete set unless E is holomorphic on U.

PROOF. Let us first show that {z U; Ez(z) = 0} is a discrete subset of U. For this,

we are going to show the existence of a positive real function q> : U R+ such that <p£z is

a holomorphic function.

For any real function <p on U, <pEz is holomorphic if and only if (<pEz)i = 0, that is, if

and only if

EE¯ z
(p-z+(p¯ z¯ Ez = 0 ,

1 + EE¯
since E satisfies Equation (*). Therefore,

<Pi EE¯z

(2.2) — = z¯
<p 1 + EE

is a sufficient condition for <pEz being holomorphic. Set f = (Log<p) and consider the equa-
tion(2.3) / - = _ _

l
The integrability condition of (2.3) is given by

+ EE

which is satisfied, since E satisfies Equation (*). Since U is a simply connected domain, we
deduce that there exists a real function f on U which is a solution of (2.3), so that

\ + EE¯
Thus the fonction <p = ef is a positive real function satisfying (2.2). Therefore q>Ez is a
holomorphic function as desired.

The second part is shown in the same way. •
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LEMMA 2-4. Let X beaC3 non-totally umbilic conformal immersion such that E(z) j^
oo for any z U. Assume that its euclidean Gauss map E satisfies Equation (*) and that
Gz = wEz is a holomorphic map. Then we have H = 1.

PROOF. Indeed, as wEz is a holomorphic map, wz¯Ez + wEzz¯ = 0. Since E satisfies
Equation (*), we then get

EE¯zEz

wz¯Ez = w .
l + EE

Recall that, by Lemma 2-3, Ez have isolated zeros. Then, by a continuity argument, we
deduce that the relation (2.1) in Remark 2-2 holds. Hence, by (1) of Remark 2-2, we have
H = 1. •

We next prove that a solution of Equation (*) gives rise to a mean curvature one confor-
mal immersion into the hyperbolic 3-space.

THEOREM 2-5. Let U C be a simply connected domain and E : U • C a non-
holomorphic C2 function satisfying Equation (*). Define U* = {z U; Ez{z) ^ 0} (U \ U*
is discrete, see Lemma 2-3). Then there exists a map X : U • H3 such that the restriction of
X on U* defines a mean curvature one conformal immersion ofU* into H3 whose euclidean
Gauss map is E. More precisely, we have
(2.4) w(z) = exp (-2 Re f E

\ J 1

= j

+ EE

(2.5) G(z)

(2.6) (U + iv)(z) = (G wE)(z).

The hyperbolic metric induced by X isgivenbyds = |Ez¯||dz|.
Furthermore, X is uniquely determined up to a positive isometry ofH3. More precisely,

if X : U ->• H3 is another mean curvature one conformal immersion whose euclidean
Gauss map is E, then there exists a positive real number λ > 0 and a complex number α C
such that

PROOF. Since U is simply connected and E satisfies Equation (*), the proof of Lemma

2-3 shows that the real 1-form

/ EE¯z

Re I z-^
\l + EE

is integrable. Thus we can define a strictly positive function w on U by setting as in (2.4).
Moreover, w satisfies (2.1) in Remark 2-2, which implies that wEz is a holomorphic function
on U. As U is simply connected, there exists a holomorphic function G on U as in (2.5).
Now we define real functions u and v on U by setting as in (2.6).

Let us prove that the map X = (u,v, w) : U H3 restricted to U* is a conformal
mean curvature one immersion with euclidean (resp. hyperbolic) Gauss map E (resp. G).
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Observe that from (2.5) we get Gz = wEz. Therefore Gz - wEz = Gz - wEz + Gz wEz =
Gx wEx and Gz - wEz = Gz - wE-z - (Gz wEz) = i(Gy wEy). Thus we get
Gy wEy = i(Gx wEx). Also, by using (2.4), we get

/ (Gx wEx) ( -(Gy-wEy)
V + EE ) y =
[ E ) , wy= 2Re E
V 1 + EE ) y V l + EE

It then follows that Xx · Xx = ((G wE)x, wx) · ((G wE)x, wx) = |Gx wEx|
2,

Xy·Xy= |Gy wEy|
2 = |Gx wEx|

2 and Xx · Xy = Re((Gx wEx)(G¯y wE¯y)).
Hence we have that Xx · Xx = Xy · Xy and Xx · Xy = 0, that is, X defines a conformal
immersion of U* into H3.

Now the oriented euclidean Gauss map N on U* is given by

N=(XxAXy)/\XXAXy

Using the above relations, a computation shows that

Thus we get on U*

|Gx wEx
| 2

Xx A Xy = x x—(2ReE, 2ImE, EE — 1).
1 + EE

ftj ̂  N = (2 Re E, 2 Im E EE 1 ) =
l + EE

We deduce that E is the euclidean Gauss map of X as desired.
Also from (2.6) and Proposition 1-2 we deduce that G is the hyperbolic Gauss map

associated to N. Finally, as G is a holomorphic map, we conclude from Corollary 1-9 that
H = 1 on U*. That is, X : U ->• H3 is a mean curvature one conformal immersion whose
induced metric is given by

w2

This completes the proof of the existence part of the statement.
Suppose now that X : U —>• H3 is another conformal mean curvature one immersion

with the oriented euclidean Gauss map E . Set X = (u,ˆv,ˆw)ˆ, and consider the hyperbolic
Gauss map G of Xˆ. Since G is a holomorphic map (Corollary 1-9), we infer with Lemma 1-4
that the coordinate w satisfies

Wz
w l + EE w

This implies the existence of λ > 0 such that w = λw. Moreover, Lemma 1-4 shows that
Gˆz = wEz = λwEz = λGz. Since G and G are holomorphic functions, we deduce that there
exists α C such that G = λG + α. Thus

X = (u + iv, ̂ w) = (G — wE, w)

= (λG + α λwE, λw) = λX + (α, 0).

This achieves the proof of the theorem. •
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Theorem 2-5 leads immediately to a global representation:

COROLLARY 2-6. Let S be a Riemann surface and E : S C a non-holomorphic
C2 map satisfying (*). Assume that

Re f E
Jy 1ly 1 + EE

for every closed path γ S. Let w : S • R be a function defined by

( f EE¯z ¯
w = exp Re / z ¯ dz .FV J l+EE ¯

so that wEzdz is a holomorphic 1-form on S. Assume also that
wEzdz = 0

/
JyJy

for every closed path γ S, that is, the 1-form wEzdz has a global primitive G on S. Set
u + iv : = G wE.

Then the function X := (u, v, w) : S H3 defines a mean curvature one conformal
immersion ofS \ D into H3, where D = {z S; Ez¯(z) = 0} (recall that D is a discrete set,
see Lemma 2-3).

We now describe in terms of E the Hopf function & and the Gauss curvature K of a
mean curvature one surface.

PROPOSITION 2-7. Assume that X : U • H3 is a mean curvature one conformal
immersion such that E(z) ^ = for any z U. Then it holds that

EAE)? - 4 |Ez

l + EE¯,K= (1 + EE)2 \E-Z
2'

The proof is a straightforward verification, by using the fact that the hyperbolic Gauss
map G is a holomorphic map.

R E M A R K 2-8. Since U is simply connected, it is well-known that to each mean curva-
ture one conformal immersion X : U H3 is associated an isometric minimal and confor-
mal immersion Y : U R3. That is, the induced metric on U by Y is ds2 and the second
fundamental form of Y is Π˜ ds2, see [L], [B], [U-Y, 1], [SE-T, 1]. Moreover, Y is uniquely
determined up to a positive isometry of R3. Consequently, the Weierstrass representation
(g, fdz) associated to X (namely, of the minimal immersion Y associated to X) is defined up
to a rotation of R3. Nevertheless, throughout this paper, we shall call the Weierstrass repre-
sentation of any minimal immersion associated to X the Weierstrass representation associated
toX.

We deduce from Proposition 2-7 the following

COROLLARY 2-9. Assume that X is a mean curvature one conformal immersion. Let
Y : U R3 be the isometric minimal immersion associated to X. Let (g, fdz) be the



MEROMORPHIC DATA FOR MEAN CURVATURE ONE SURFACES 39

Weierstrass representation ofY. Then, on U* = {z U; E(z) ^= } , we have

g|2) = |Ez¯|, f g z = E

gzp^,
1 + EE

so that 0 = 2fgz on U*. Furthermore, for each z0 in U, the function g and the hyperbolic
Gauss map G have the same order at z0.

PROOF. The metrics induced on U by X and Y are the same, so that

ds2 = |Ez¯dz|2 = | f |2(1 + |g|2)2|dz|2 on U* .
Moreover, the Hopf functions of X and Y are the same. Since the Hopf function of Y is

2fgz, it follows that

$ = 2Ez(E)¯z = 2fgz on U* .
1 + EE

Finally, let z0 be any point in U. Up to a positive isometry ofR3 (resp. H3) we can suppose,
without changing the order of g (resp. G) at z0, that z0 is not a pole of g (resp. G), so that
E(z0) ¥= . Since Gz = wEz on U* (see Lemma 1-4), we have

(E)¯z
t gz = z · Gz.

w(1 + EE)

Observe that f and (E)¯z/w( 1 + EE) are holomorphic functions which do not vanish at z0.
Hence, g has order n N* at z0 if and only if gz has a zero at z0 with multiplicity n 1,
which is equivalent to that Gz has a zero at z0 with multiplicity n 1, that is, G has order n
at z0 . This completes the proof of the corollary. •

REMARK 2-10. Assume that H = 1 and E jt = on U. Then, by Lemma 1-3, one can
easily verify a well-known fact that Logw is a superharmonic function.

REMARK 2-11. Now we recall briefly some technical facts obtained in [SE-T, 1], since
we need them to produce Examples 2-12 and 2-13. In what follows, we keep the notation of
that paper.

Let Y : U R3 be a conformal minimal immersion and (g, fdz) the Weierstrass
representation of Y. Let A, B, C and D be holomorphic functions on U given by Proposition
1-7 in [SE-T, 1]. Then, up to a positive isometry ofH3 , the associated mean curvature one
immersion X : U • H3 is given by

AC + BD

As a matter of fact, A and C (resp. B and D) are independent solutions of

(2.7) />" f ^ / " - fgzP = 0 (1) (resp. g "
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satisfying AD BC 1 and AzDz BzCz 0, see [U-Y-1, Lemma 2.1]. Observe that

here we have substituted η (in [SE-T, 1]) for f. Finally, the hyperbolic Gauss map G of X is

G = Cz/A z (see Lemma 1-10 in [SE-T, 1]).

EXAMPLE 2-12. The euclidean Gauss map of the catenoid-helicoid cousins.

Let us consider the Weierstrass data (g, fdz) = (ez, λeiθ · e zdz) on U = C, where

X > 0 and θ [0, 2Π[. For each positive λ, when θ varies in the interval [0, 2Π[, this

yields a family of isometric minimal immersions Yλ,θ : C • R3. In fact, this family varies

continuously from the catenoids (when eiθ = ±1) to the helicoids (when eiθ = ±i) . Let us

denote by Xλ,θ the associated mean curvature one immersion into H3. Let γ = γ1 + iγ2 be

a complex number such that γ2 + γ λeiθ = 0. Set A(z) = eγz, and note that A satisfies

(2.7)-(1).

Suppose first that 1 + 2y ^ 0. On account of Proposition 1-7 of [SE-T, 1], we have

A(z) = eγz, B(z) =

2γ

Thus XΛ,Θ is given by (see Remark 2-11)

(U

K ) 2 _ y

γ)e

γ|2+|γ|2ez+¯z

o-yz-yz

We deduce also that

= Q =

γ|2ez

2γ

Performing some calculations combined with Proposition 1-2, we get

E = eγz γz ((I + γ)e z + y
\

Note that for any y0 R we have

(u + iv)(z

Suppose now that 1 + 2γ = 0 (that is, λ = 1/4 and eiθ = 1). Using Proposition 1-7

of [SE-T, 1], we get B(z) = e z / 2 , C(z) = ( z/4)e z/2 and D(z) = (1 z/4)ez/2. We infer
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that

(z+¯z)/2

w(z) =
e(z+¯z)/2 +

1

z
4

e(z+¯z)/2 + e (z+¯z)/2
 ,

Thus

EV \ —ill lilt Z

E(z) = -e z'ze
z/z(-ez

We remark that w(z + iy0) = w(z) and (u + iv)(z + iy0) = (u + iv)(z) iy0/4 for any

y0 R
We then deduce the following:
(i) When eiθ = 1, or eiθ = 1 and λ < 1/4 (that is, Im γ = 0 and 1 + 2γ ̂  0), XK9

is a rotational immersion, called catenoid cousin by Bryant, see [B].

(ii) When eiθ = 1 and λ = 1/4 (that is, 1 + 2γ = 0), the associated surface (see

figure 0-a) is invariant under the euclidean horizontal translations in H3:

(u, v, w) (U, v, w) + (0, y0, 0) for any y0 R.

The profile curve, called "courbe des forçats" (see figure 0-b), was studied by Poleni in
1729, see [Rev]. This surface is known as a dual ofEnneper's cousin, see [R-U-Y, 3].

(iii) When eiθ = 1 and λ > 1/4 (that is, 1 + 2Reγ = 0 and Imγ ̂  0), XK9 is

invariant under a one-parameter group of hyperbolic translations:

(u,v,w) λ·(u,v, w) for any λ > 0.

(iv) In all other cases (that is, eiθ ^ ± 1 , or equivalently Imγ

is anon-trivial helicoidal immersion.

0andl+2Rey ^ 0),

FIGURE 0-a. FIGURE 0-b.

Now, let us show that if Im y ^ 0 (that is, when the immersion is neither a rotational

one nor invariant by an euclidean horizontal translation), then the asymptotic boundary of the
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surface is the whole 3. Indeed, by setting z = x + iy and γ = γ1 + iγ2, we have

, (1 + γ ) 2

, e2γ2y x(1+2γ1) · e i(y(1+2γ1)+2γ2x)

γ)ex

γ|2e2e x \y\2e
2ex

+ γ|2e x + |γ|2ex .

Let U0 + iv0 C* be any non-zero complex number and α such that

γ)2 1 + γ = |U 0 + iv0|.

Denote by zα = x + iy the complex numbers such that 2γ2y x(1+ 2γ1) = α. We then have

lim w(zα) = 0,
^ ± o o

lim

Furthermore, as y(1 + 2γ1)+2γ2x = (x((1 +2γ1) 2 + 4γ22) + α ( 1 +2γ1))/2γ2, it is easy to see

thatArg(u+iv)(zα) approaches any real number, modulo 2π, whenx + . Consequently,

there exists a subsequence zα, n = xn + iyn such that limn + xn = + and lim Arg(u +
i v)(zα,n) = Arg(u0 + iv0). We infer that U0 + iv0 lies on the asymptotic boundary of the

surface. Since this is true for any non-zero complex number U0 + iv0, we conclude that the

asymptotic boundary is the whole H 3 as claimed.

It can be easily inferred that in the case where γ R { 1/2} (that is, when the

immersion is rotational), the asymptotic boundary is {0, }. Finally, if γ = 1/2 (that is,

when the immersion is invariant under euclidean horizontal translations), then the asymptotic

boundary is { }.

EXAMPLE 2-13. The euclidean Gauss map of the Enneper cousins.

Let us now consider the Weierstrass representation of Enneper surfaces on U = C:

(g(z), f(z)dz) = (z, αdz), where α C*. The equations (2.7) in Remark 2-11 are

2
P"-aP = 0 (1) and Q" -Q' αQ = 0 (2).

z
Letγ C be any square root of α, that is, γ2 = α. Then the function A (z) = eγz is a solution

of (1). Thus, taking into account of Proposition 1-7 of [SE-T, 1], we get

C(z) = e

from which we deduce that

w(z) =

( | |2 + ( γz
1)(γz

z
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Moreover, G(z) = (Cz/Az)(z) = (γe 2γz)/2. Therefore, using Proposition 1-2, we get

3. Meromorphic data. Recall that H (resp. H˜) denotes the euclidean (resp. hyper-
bolic) mean curvature with respect to N (resp. N˜). Furthermore, U C is a simply connected
domain.

REMARK 3-1. Assume that H = 1 and Ez 0. Then we see that X is an euclidean
totally umbilic immersion, so that it is a hyperbolic totally umbilic immersion. Hence we may
conclude that X(U) is part of a horosphere.

Throughout this section we consider the equation

where E : U C { } is a C2 map. In fact, we require that (*) holds on U {z
U; E(z0) = }. When E is the oriented euclidean Gauss map of a mean curvature one
conformal immersion X : U H3, the set {z U; E(z0) = } is discrete unless X
is a totally umbilic immersion (see Lemma 2-3). When E is the euclidean Gauss map of a
conformal immersion X, we have seen in Section 2 that (*) is a necessary condition to have
H = 1 (see Proposition 2-1).

DEFINITION 3-2. Let E : U C { } be a C2 function. We say that E is a
non-trivial solution of Equation (*) if E is a solution of (*) and is neither meromorphic
nor anti-meromorphic. Otherwise, we say that E is a trivial solution of Equation (*). This
terminology is justified by Remark 3-1.

LEMMA 3-3. Let E be a solution of(*) which has one of the forms

E = IJ¯ or E = I + J,

where I and J are meromorphic functions on U. Then E is a trivial solution of(*).

PROOF. Suppose that E = IJ¯. We have Ez = IzJ, E-z = IJz and Ezz¯ = IzJz. Thus
(*) holds if and only if IzJz = 0. This implies Iz 0 or Jz 0. Then E is either anti-
meromorphic or else E is meromorphic. The case where E = I + J can be treated in the
same way. •

We observe that Examples 2-12 and 2-13 suggest to look for solutions of (*) of the
following form

(3.1) E = hS(T + R),

where h, R, S and T are meromorphic functions on U. As a matter of fact, the form (3.1) is
invariant under positive isometry ofH 3 (see Proposition 3-7) and, surprisingly, we shall see
that every solution of(*) must have this form (see Theorem 3-13).



44 R. SA EARP AND E. TOUBIANA

LEMMA 3-4. Let E : U C { } be a solution of(*) of the form (3.1). Ifone of
the functions h, R, S or T is constant, then E is a trivial solution of(*).

PROOF. If T or R is constant, then we already know from Lemma 3-3 that E is a trivial
solution of (*).

Suppose that h is constant and set h c C*. We then have E = cS(T + R)¯,
Ez = cST¯z, Ez¯ = cSz(T + R) + cSRz and Ezz¯ = cSzTz. Note that if S were also constant,
then E should be a trivial solution of (*). Hence, let us suppose that S is not constant on U.
Thus (*) holds if and only if

Differentiating this with respect to z̄ , we have

L) =0 .

Hence R is constant or (S2Rz/Sz)z = (TS2Rz/Sz)z = 0.
Therefore, if R is not constant, we infer easily that T is constant. In each case we see

that E must be a trivial solution of (*). We can apply the same argument when S is constant.
This achieves the proof of the lemma. •

We are looking for non-trivial solutions of Equation (*).

PROPOSITION 3-5. Let E : U C { } be a C2 function ofthe form (3.1). Then E
is a non-trivial solution of (*) if and only if there exist two complex numbers a andb, a ^ 0,
such that

(b + aT)hz + ahTz
S =

h2Tz

b 1 hz

R = - + - •
a a (b + aT)hz + ahTz

h j t 1 f o r any complex numbers α,

Consequently, we have

hz

Conversely, for any meromorphic functions h and T on U and for any complex numbers a

andb, a ^ 0, the function E = hS(T + R), ̄ where R and S are defined as above, is a solution

of(*).
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PROOF. Let E = hS(T + R) be a non-trivial solution of (*). Consequently, h, R, S
and T are non-constant meromorphic functions on U. Therefore (*) is written as

(3.2)
h2STz

hz \ hz

Taking the derivative of the last equality with respect to z, we get

t

Observe that if ((Thz + hTz)/hz)z 0, then we should have one of the following
possibilities:

(1) z is constant, or else (2)
hS2Rz

If the case (1) occurs, we infer that T is constant. Furthermore, if the case (2) occurs, then
h2STz/h z and h2SRTz/h z are constant, so that R is constant. Therefore both cases contradict
the assumption that E is non-trivial. Hence ((Thz + hTz)/hz)z ^ 0. Thus (*) implies

(h2STz/hz)z

((Thz+hTz)/hz)

Differentiating this by z, we then get

(h2STz/hz)

—( h2SRTz/hz ) z—
zhS2TRz + — z/ Vz hS2Rz.

((Thz+hTz)/hz)z

(h2SRTz/hz)z

«Thz+hTz)/hz)zJz \«Thz + hTz)/hz)zz

hS2Rz

Since T is not a constant function, it follows that

(h2STz/hz)z \ n ( (h2SRTz/hz)z
= 0 and

S(Thz+hTz)/hz)zJz \{{Thz+hTz)/hz)z

Consequently, there exist complex numbers a, b, c and d such that

= 0.

h2STz Thz + hTz

h2SRTz Thz+hTz

—I = c T h z + h d +
h h

Hence we get

(3.3)
S =

R =

(b + aT)hz + ahTz

(d + cT)hz + chTz

aT)hz + ahTz

Note that we must have ad be ̂  0, otherwise R should be constant.



4 6 R. SA EARP AND E. TOUBIANA

Now, we are going to look for the necessary and sufficient condition about a, b, c and

d so that E = h S(T + R) is a non-trivial solution of (*), where R and S are given by (3.3).

For this purpose, assume that S and R satisfy (3.3). We infer that (3.2) is written as

(hTzhzz 2hz2Tz hhzTzz)

= (hTzhzz 2hz2Tz hhzTzz) · (((b + aT)hz

+ ((d + cT)hz + chTz)

Observe that (hTzhzz 2h2zTz hhzTzz) 0 implies that R and S are constant functions, a

contradiction. On the other hand, (hTzhzz 2h2zTz hhzTzz) = 0 if and only if hzz/h z

2hz/h = Tzz/Tz, or equivalently h = 1/(eα1T +α2) for certain complex numbers α1 and

α2. Thus h cannot have the form h = 1/(αT + β)

Since (hTzhzz 2h2

zTz hhzTzz) ^ 0, we have

(d - d(ad bc))hz + (b¯ c(ad bc))(Thz + hTz)

= [(b(ad be) - c)hz + (a(ad be) - a)(Thz + hTz)] · T .

Since f is a non-constant anti-holomorphic function, we may deduce

(d - d(ad bc))hz + (b¯ c(ad bc))(Thz + hTz) = 0,
I (b(ad be) - c)hz + (a(ad be) - a)(Thz + hTz) = 0 .

But it is easily seen that if h and T satisfy the relation α1hz + α2(hTz + Thz) = 0 with

complex numbers α1, α2 such that α1 •£ 0 or a2 ^ 0, then h = α3 /(α2T + α1) for some

complex number α3. This implies that E is a trivial solution of (*). Thus we must have

{ d¯ d(ad bc) = 0, b - c(ad bc) = 0,

b(ad be) — c = 0, a(ad be) — a = 0.

It is easy to see that a ^ 0, d ^ 0 and ad bc ^ 0. Thus (3.4) leads to

c = ab/¯a , d = (1 + bb)/¯a .

Putting these relations into the expression of R, we conclude as promised that
b 1 hz

R=b+1·h za a (b + aT)hz + ahTz

Finally, let us consider any meromorphic functions h and T on U. Let a and b be any
complex numbers, a ^= 0. Set E = hS(T + R)¯, where R and S are defined as in the statement.
Then the above proof shows that E is a solution of (*). •

We shall need the following propositions.
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PROPOSITION 3-6. Assume that H = 1 and E : U C { } has the form as in
Proposition 3-5. Then, up to a multiplicative positive constant, we have

|h2Tz|
2 1 2

a|(b + aT)hz+ahTz|2+|hz|2,G

Furthermore, the induced metric and the Hopf function are given respectively by

|hTzhzz 2h2
zTz hhzTzz

|
 2

ds2 = |Ez¯dz|2 =

2 2

˜=2

2|hTz

hTzhzz 2hz2Tz hhzTzz

Wf7

aT|2)2|d

PROOF. We deduce from Proposition 3-5 that

1
Ez =

ah2Tz

If we set

t(z) =
|h2Tz|

2

|(b + aT)hz + ahTz|
2 + |hz|

2 ,

then t · Ez = (1/a)h2Tz. Therefore, t is a real function such that t · Ez is meromorphic on U.
Notice that t is a unique real function, up to a multiplicative constant, with this property. Since
H = 1, we have that wEz = Gz is a meromorphic function. Hence, up to a multiplicative
constant, we have

17 2 T 2

2Tz|
2

w(z) =
|(b + aT)hz + ahTz hz

Furthermore, we deduce from Proposition 3-5

Ez¯ = h
hTzhzz 2hz2Tz hhzTzz

G7 = wEz = 1h2Tz.

aT|2).

Hence we have

ds2 = |Ez¯dz|2 =

|hTzhzz 2hz2Tz hhzTzz

a|2|hTz

+aT|2)2|dz|2

By a straightforward calculation with Proposition 2-7 and 3-5, we easily infer that

Φ˜ =2

hTzhzz 2hz2Tz hhzTzz

h2Tz
•

PROPOSITION 3-7. Assume that H = 1 and E has the form (3.1). Let J : H3 H3

be a positive isometry ofH3 and E the euclidean oriented Gauss map of the immersion J • X.
Then E has also the form (3.1).

The proof, based on Lemma 1-8, is a straightforward computation.
We shall give the Weierstrass representation (g, fdz) of the associated minimal immer-

sion in R3 in the case where E has the form (3.1).
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PROPOSITION 3-8. Assume that H = 1 and E : U C { } has the form as
in Proposition 3-5. Let (g, fdz) be the Weierstrass representation of the isometric minimal
immersion inR3 associated to X (see Remark 2-8-(3)). Then we have

1 hTzhzz 2h2Tz hhzTzz

g = b + aT, fdz = — ^ d
aT
aTz

PROOF. We define holomorphic functions g and / on U by

1 hTzhzz 2h2Tz hhzTzz
g = b + aT, f = z h z z — .

aTz h2Tz

Then the data (gˆ, fdz) define a minimal immersion Y of U into R3 with induced metric
ds2 = |Ez¯|2|dz|2 and the Hopf function Φ˜ = 2Ez(E)¯z/( 1 + EE)¯. Then the associated mean
curvature one immersion X has the same induced metric and the Hopf function as those of
X. We deduce that X and X differ by a positive isometry of H3. Consequently, they have the
same associated minimal immersion in R3. We conclude therefore that we can choose g = g
and f = / . This completes the proof of the proposition. •

We now give a meromorphic data for a mean curvature one conformal immersion in H3.

THEOREM 3-9 (Existence of Meromorphic Data). Let U C be a simply connected
domain and X : U H3 a non-totally umbilic conformal immersion. Let E be the ori-
ented euclidean Gauss map of X. Assume that X has mean curvature one with respect to E
(therefore, Equation (*) as in Proposition 2-1). Then there exist meromorphic functions h, T
on U such that

Furthermore, up to a multiplicative positive constant, we have

, , , . , \h2Tz\
2

(3.7) Gz = h2Tz.

Up to the same multiplicative positive constant and an additive complex constant, we also
have

Moreover, we obtain

0 0 hTzhzz 2h2Tz hhzTzz
(3.9) ds2 = |Ez¯dz|2 = ^ zhzz 2

\nlz\

hTzhzz 2hz2Tz hhzTzz(3.10)
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(3.11) n = Re(Φ(dz)˜2) + ds2 ,

|h|4|Tz|
6

(3.12) K = 4
|hTzhzz 2h2Tz hhzTzz|2(1 + |T|2)4 ,

and, up to a rigid motion ofR3, we can choose

(3.13) g = T,

1 hTzhzz 2h2Tz hhzTzz

(3.14) / = — f^ — ,
Tz ·h2Tz

where (g, fdz) is the Weierstrass representation of the minimal immersion in R3 associated
toX.

PROOF. Let Y : U R 3 be the minimal conformal immersion associated to X and
(g, fdz) the Weierstrass representation of Y. In order to prove the relation (3.5), we look for
a meromorphic function hˆonU satisfying

(3.15) f =

so that the map E on U defined by

hgzhzz - 1h\gz - hhzgzz

K

hˆ2gz gh ˆz+hˆgz

is the euclidean Gauss map of a mean curvature one conformal immersion X := (U,̂  V, ̂ W) :
U H 3 such that X and X share the same metric and the same second fundamental form.

Assume first that such h and X exist. Consequently, X and X differ by a positive isometry
ofH3 . Therefore, since £ has the form (3.1), we may conclude with the aid of Proposition
3-7 that E has also the form (3.1) on U. Thus we deduce from Proposition 3-5 that there exist
two meromorphic functions I and J on U and two complex numbers a and b, a ^ 0, such
that

Iz

on U. Now, setting h = I/a and T = b + a J , we have

,Th,+hT,\( ( hz

Thz+hTz

as desired. Thus, to prove the relation (3.5), it remains to show that the equation (3.15)
admits a meromorphic solution h on U and that there exists a mean curvature one conformal
immersion X : U H3 satisfying the conditions stated above.

For this purpose, we choose a point z0 U such that g(z0) ^ = and gz(zo) ^ 0. Set
(p = hˆz/hˆ. Then (3.15) holds if and only if

(3.16) <pz-<p2-<p^ + fgz=0.
gz
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Since gzz/gz is a holomorphic function (without pole) in a neighborhood of z0, the equation
(3.16) (with respect to q>) is regular at z = z0. Therefore, (3.16) can be integrated in a neigh-
borhood of z0. Thus we get a holomorphic solution q> of (3.16) defined on a simply connected
neighborhood U c U of z0. Hence, using the relation q> = hˆz/hˆ, we get a holomorphic
solution h of (3.15) defined on Uˆ. We shall show that h can be extended to a meromorphic
function on U.

Since h(zˆ0) ¥= 0, we can suppose that h ^ 0 on Uˆ. Moreover, we can assume that g is a
holomorphic map such that gz ^ 0 on Uˆ. Consider the function E on U which has the form
(3.1), defined by h and g with complex constants a = 1 and b = 0. Namely,

for any z U .̂ We then have

A h ˆgzhˆzz 2hˆ2gz hˆhˆzgzz 0

Ez=h( - ^ ^ ^ ^ (1 + \g\2).
V hˆ3g2 /

Thus \EZ\ = | f | (1 + | g |2) , and therefore Ez(z) ^ 0, for every z U .̂ We deduce then with
the aid of Theorem 2-5 that E generates a constant mean curvature one conformal immersion
X : U ˆ H 3 whose euclidean Gauss map is £ . We infer from Proposition 3-8 that the
Weierstrass representation (gˆ, fdz) of the minimal immersion of U into R3 associated to X
is given by

p hgzhzz-2h2gz-hhzgzz

g = g, f = ^ - 2 h 2

Thus g = g and / = f. Consequently, the immersions X.y and X have the same metric
and the same second fundamental form with respect their oriented euclidean Gauss map. This
implies that X.Q and X differ by a positive isometry J ofH3 , that is, X = J • X|Uˆ. Thus

X can be extended to the whole U as a mean curvature one conformal immersion, since X is
defined on U. We call again X the conformal immersion defined on the whole U.

Let G be the hyperbolic Gauss map of Xˆ. We infer from Proposition 3-6 that Gˆz = hˆ2gz

on Uˆ. Thus hˆ2 = Gˆz/gz on Uˆ. Since G and g are defined on the whole U, we deduce again
that hˆ2 can be extended to a meromorphic map on U. Recall that G and g have same order at
any point of U (see Corollary 2-9). This implies that the zeros and poles of Gˆz/gz on U, if
any, must have even multiplicity. As U is simply connected, using the Monodromy Theorem,
one can show that Gˆz/gz has a well-defined square root meromorphic function on U. Thus
h can be extended to a meromorphic function on U, which we call again hˆ. Then, by the
analytic continuation, h satisfies Equation (3.15) on the whole U as desired.

Finally, we show that X is generated by E on the whole U and not only on Uˆ. For this
purpose we set

U* = {z U; h(z) ^ 0, , g(z) ^ = , gz(z) ^ 0, hˆz(z) ^ 0}.
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Observe that U \U* consists of isolated points. Furthermore, note that E can be extended to
a well-defined function on U*. We have E(z) ^ oo and Ez(z) ^ 0 for any z U*, since
\E-Z\ = | f | (1 + |g|2).NowwesetX := (u,˜v,˜w) : U* H3, where

2 - - - \h2gz\
2

(u + iv)(z)˜ = (G — wE)(z), ˆw(z) ̃  = z A Â —

for every z £/*. A simple computation then shows that w satisfies (2.1) in Remark 2-2 with
E instead of E.

Since E jt = on U*, the proof of Theorem 2-5 shows that X : U — H 3 is a mean
curvature one conformal immersion having the euclidean Gauss map £ and the hyperbolic
Gauss map Gˆ. As X = X on U ,̂ we conclude that X = X on U*. Since U \U* has only
isolated points, we deduce with an argument of continuity that the euclidean Gauss map of X
is E and X is defined by E on the whole U. That is, for every z U

and

E(z) = h- (9\+k9z\(g+
V /2 /V ghz+hgz

This shows that the euclidean Gauss map of X is given by (3.5).
Henceforth, (3.6), (3.7), (3.9), (3.10) and (3.11) follow from Proposition 3-6 on the sub-

domain U = {z U; E(z) 7̂  = }. Since U \ Ũ  consists of isolated points, we infer that these
relations hold on the whole U. On the other hand, (3.8) follows from Proposition 1-2. Lastly,
we deduce from Proposition 2-7 that K = — Φ˜|2/|Ez¯|4 on U˜. Hence, using the expression
of Ez¯ (see the proof of Proposition 3-6), we easily find the desired formula for K on U and,
by continuity, on the whole U. Relations (3.13) and (3.14) follow from Proposition 3-8. This
completes the proof of the theorem. •

REMARK 3-10. We note that it is possible to verify Small's formula using our repre-
sentation (see [S]). Indeed, under the notation of the present paper, T = g is the secondary
Gauss map and h is equal to dG/dg (see Proposition 3-6). Then the meromorphic repre-
sentation formula implies Small's formula for null meromorphic map F : M PSL(2 C):

( d a db \

dG GdG-b\ I \dG

dadG db_ \ i
dG dG

LEMMA 3-11. Let U C be a simply connected domain and X : U H3 a non-
totally umbilic conformal immersion. Assume that X has mean curvature one with respect
to E. Consider the meromorphic data h and T of X given by Theorem 3-9. Let z0 U be
a point such that E(z0) r̂  = . Then h is holomorphic at z = z0. Moreover, h vanishes at
z = z0 if and only if T has a pole there whose multiplicity is the same as the order ofh at z0.
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Conversely, let z0 U be a point where h is holomorphic and such that h vanishes there

if and only T has a pole at z = z0 whose multiplicity is equal to the order ofh at z0. Then we

have E(z0) ^ = .

PROOF. In order to simplify the notation, let us set z0 = 0. Consider the Weierstrass

representation (g, fdz) of the minimal immersion in R 3 associated to the mean curvature one

conformal immersion X : U H3. We have seen in Proposition 3-8 that we can choose

g = T. We deduce with the aid of Corollary 2-9 that T and G have the same order at any

point and, in particular at z = 0. Recall that Gz = h2Tz (see relation (3.7) of Theorem 3-9).

Since G(0) ^ = (because E(0) ^ = ) we infer that Gz is holomorphic at z = 0.

Assume that h has a pole at z = 0. Thus h(z) = zpH(z), where p N* and H

is a holomorphic function at z = 0 with H(0) ^ 0. As Gz = h2Tz, we deduce that T is

holomorphic at z = 0 and Tz must vanish there. Thus Gz must also vanish there with the

same order as Tz. This is impossible, since h is supposed to have a pole at z = 0. Therefore

h is holomorphic at z = 0.

Assume that h vanishes at z = 0. Since G and T have the same order at z = 0, we

deduce that T cannot be holomorphic at this point. Therefore, T must have a pole at z = 0.

Thus, T(z) = zqt(z) and h(z) = zpH(z), where p, q N* and t and H are holomorphic

functions with t (0) ^ 0 and H(0) ^ 0. Since Gz is holomorphic at z = 0, and G and T

have the same order at this point, we must have 2p + q 1 0 and 2p + q = q. That

is, q = p, which shows that T must have a pole at z = 0 whose multiplicity is equal to the

order of h there.

Finally, assume that T has a pole at z = 0. Thus we have T(z) = zqt(z), where

-<? N* and t is a holomorphic function with t (0) ^ 0. Then the previous argument shows

that h must vanish at z = 0 and the order of h there must be equal to the order of T at z = 0.

This completes the proof of the first statement of the lemma.

Conversely, let z0 U be any point, and suppose that h is holomorphic at z = z0. If T

is also holomorphic at z0, we deduce from the relation Gz = h2Tz that G is also holomorphic

there. Therefore, in this case we have E(z0) i= . Assume now that T has a pole at z = z0

with multiplicity n N* and that h vanishes there with multiplicity n. We infer from the

relation Gz = h2Tz that G is holomorphic at z0. Consequently, we must have E(z0) i= .

This achieves the proof. •

Recall that Equation (*) is a global equation (see Remark 2-2-(3)). Now, consider a

Riemann surface S and let h and T be two meromorphic functions on S such that h ^= 1/(αT +

β) for any complex numbers α, β. Then w := |h2Tz|
2/( |Thz + hTz|

2 + |hz|
2) defines a

global function on S with isolated zeros and "poles". Thus Theorem 3-9 leads to a global

representation:

THEOREM 3-12 (Representation Theorem). Let S be a Riemann surface and let h and

T be non constant meromorphic functions on S such that h ^ l/(aT + β)for any complex
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numbers α, β. Set

n-2T,r- Thz+hTz7 z hz

Thz+hTz

and S* = {z S;

(3.17)

0, }. Assume that

f h
Jy

Tzdz =

for every closed path γ S on which neither h nor T have poles, that is, the 1-form h2Tzdz

has a global primitive G on S. Set

(u + iv)(z):=(G wE)(z), zeS*.

Then the function X := (u, v, w) : S ->• H3 defines a mean curvature one conformal

immersion whose euclidean Gauss map is E and the hyperbolic Gauss map is G (recall that

S\S* is a discrete set). Furthermore, the geometric quantities ofX are given by (3.9) through

(3.14) of Theorem 3-9.

Observe that when S is simply connected, (3.17) means that the function h2Tz does not

have non-zero residues.

PROOF. It follows from (3.17) that there exists a meromorphic function G on U such

that dG = h2dT, that is, locally, Gz = h2Tz. Clearly, the set of zeros and "poles" of w is

contained in the set of zeros and poles of h, dh, T and dT. Therefore the zeros and "poles"

of w are isolated points. We set

S+ :={z S; \E-Z(z)\ ̂  0, , E(z) ^ = , w(z) ^ 0, }.

A straightforward verification then shows that

wz = w

EE¯z

-
l + EE

on S+. Hence it can be inferred from the proof of Theorem 2-5 that X is a mean curvature
one conformal immersion of S+ into H3 whose euclidean (resp. hyperbolic) Gauss map is E
(resp. G). Let z0 S*, and set g = T and

f=~%-
hTzhzz 2h2zTz hhzTz

h2Tz

We then get | f | (1 + |g|2) = |Ez¯|. Thus (g, fdz) define a mean curvature one conformal
immersion X0 of a simply connected neighborhood of z0, say U0, into H3. Note that when
restricted to the set S+ U0, X0 and X differ by a positive isometry of H3. Henceforth,
X can be extended to any point z0 S*. This shows that for any z0 S*, we must have
w(z0) i= 0, . This achieves the proof of the theorem. •
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THEOREM 3-13. Let U C be a simply connected domain and E : U C a C2

map, which is neither holomorphic nor anti-holomorphic and satisfies

Then there exist a holomorphic function h and a meromorphic function T onU such that

(3.18) . - . . z 2

Moreover, for any point z0 U, T has a pole there if and only ifh vanishes at z0, and T and
h have the same order at this point.

PROOF. Assume first that E-Z{z) ^ 0 for every z U. Then it follows from Theo-
rem 2-5 that E generates a mean curvature one conformal immersion from U into H3 whose
euclidean Gauss map is E. Then we apply Theorem 3-9 to conclude that there exists mero-
morphic functions h and T on U satisfying the conditions.

Assume now that Ez¯ vanishes at some points. Since E is not holomorphic, the points
where Ez vanishes are isolated points (see Lemma 2-3). Set U* = {z U; E-Z{z) ̂  0}. Note
that Theorem 2-5 allows us to construct a C2 map X : U H3 such that its restriction to
U* is a mean curvature one conformal immersion whose euclidean Gauss map is E. Conse-
quently, each zero of Ez¯ is a branch point (that is, a singularity) of X. Since E is a C2 map,
each branch point of X has a well-defined unit normal vector.

Observe that, beginning on a simply connected domain of U* and using the analytic con-
tinuation principle, we can construct a (possibly multi-valued) map Y : U* R3 which is a
minimal conformal (possibly multi-valued) immersion, locally associated to X. Let (g, fdz)
be the Weierstrass representation of Y. Thus g and f are (possibly multi-valued) meromor-
phic functions on U*.

We claim that Y can be extended to a branched minimal immersion from U into R3,
branched at each zero point of Ez¯. Let z0 U be a branch point of X, that is, a zero point
of £ j . Let D U be a small round disk centered at z0 and such that z0 is the only branch
point of X contained in D. We denote again by Y the restriction of the (possibly multi-valued)
minimal immersion Y on D* = D \ {z0}. Then define the new (possibly multi-valued) map

Y : D* R3 by setting Y(z) = l im θ 2π, θ<2π Y(z0 + eiθ(z z0)) for any z £>*. Note
that the (possibly multi-valued) maps Y and ? are locally associated to X (restricted to D*).
Therefore they share the same metric and the same second fundamental form. We deduce that
Y and Y differ by a positive isometry I o f R 3 . Thus, I is a translation composed by a rotation
R around a straight line ofR3. Up to a positive isometry of R 3, we can assume that R is a
rotation around the vertical x3-axis. Thus there exists a real number α with 0 α < 1 such
thatlimθ 2π, θ<2π g(z0 + eiθ(z z0)) = e2πiαg(z) foreveryz D*. Henceg(z)·(z z0) α

is a well-defined meromorphic function on D*. We want to show that α = 0.

Since E is C 2 at z = z0, we infer that E and E z both have finite limits when z goes
to z0. Hence we deduce with the aid of Proposition 2-7 that the expression K(z)ds2 =
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(—4|Ez|
2/( 1 + EE)2) |dz|2 is bounded near z = z0. Therefore, X has finite total curvature

in a neighborhood of z = z0. Now, it follows from the proof of Proposition 4 in [B] that

g(z) · (z z0) α extends continuously to z = z0. Suppose that a ^ 0. Then g(z) has a limit

when z goes to z0, which is 0 or . Up to a positive isometry of R3, we can choose this

limit to be equal to 0. Thus there exist an integer p N and a meromorphic function ψ on D

such that g(z) = (z z0)α+pψ (z) with ψ (z0) C\ {0}. As E is a C2 map, we deduce with

the aid of Proposition 2-7 that the Hopf function & is well-defined on D. Since & = 2fgz

(see Corollary 2-9), we infer that the restriction of f on D* must have the following form:

f(z) = (z zo)~a<p(z), where q> is a holomorphic function on D. Let us set T(z) = g(z). As

in the proof of Theorem 3-9, we can find a meromorphic function h o n a simply connected

domain D of D* satisfying the ordinary differential equation

_ j _ hgzhzz 2h2zgz hhzgzz
S~ Vz ^ •

Therefore, the data (h, T) define a mean curvature one conformal immersion X : D ˜ H3

(see Theorem 3-12). Since X and X have the same metric and the same second fundamental
form, we deduce that they differ by a positive isometry ofH3, and hence X is globally defined
on D (branched at z = z0). Finally, since the hyperbolic Gauss map G of X is well-defined
on D and G˜z = h2gz on D˜, we infer that h can be extended to a meromorphic multi-valued
function on D*, with h2 having the following form: h2(z) = (z z0)q αH(z), where q Z

and H is a meromorphic function on D with H(zo) ^ 0, . Note that the metric ds 2 must

have a zero at z = z0. On the other hand, Theorem 3-9 shows that

2q — hhq 2r. hgzhzz 2h2gz hhzgzz | 2

ds2 = ^ ^ - ^ ^ - ( 1 + \g\2f\dz\|
2

Thus the expression A(z) = (hgzhzz 2hz2gz hhzgzz/(hgz)
2)(z) must vanish at z = z0.

Observe that

h · gz +h·gzz.
Recall that h2(z) = (z z0)q αH(z) and g(z) = (z z0)p+αψ(z) with q Z, p N,

0 < α < 1, where H and ψ are meromorphic on D with H(z0), f(zo) ^ 0, . We deduce

that
1

A(z) =

Therefore, as 0 < α < 1, A(z) cannot vanish at z = z0. We deduce that α = 0, that is,

/ and g are globally defined on D. Furthermore, since the metric is singular at z = z0,

the function f must vanish at z = z0. Thus the map Y extend to a well-defined minimal

conformal immersion Y : D R3 branched at z = z0 as claimed.

Now, we are going to show that g and G have the same order at z = z0. Observe that

G(z0) ^ = , since E(z0) ^ = . Recall that fgz = Ez (Ez¯)/( 1 + EE) (see Corollary 2-9).
Also, we have the relation | f | (1 + |g|2) = |Ez¯| proved in Corollary 2-9. Hence the function
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|f/Ez¯| can be continuously extended to z = z0 by setting |f/Ez¯|(z0) = 1 (since g(z0) = 0).
Therefore, we have

Ez (Ez¯) Gz (Ez¯)
fgz = z

l + EE ¯w(1 + EE)
Hence, |Gz/gz| = w(1 + EE) • \f/Ez\. We conclude that if gz orGz vanishes at z = z0, then
they both vanish with the same order.

Clearly, the discussion above holds for every branch point of X. Thus, Y : U R3 is
a well-defined branched minimal immersion with the same branch points as that of X. Thus
the Weierstrass representation (g, fdz) is well-defined on the whole U, and g and G have
the same order at any point of U (see Corollary 2-9 for the regular points of X, and see the
argument above for the branched points of X). Now the proof of assertion (3.5) of Theorem
3-9 ensures that there exist meromorphic functions h and T on U such that

h2Tz T +Thz + hTz

The last statement of the theorem as well as the fact that h is holomorphic on U follows from
Lemma 3-11, since E ^ = on the whole U by assumption. This completes the proof of the
theorem. •

REMARK 3-14. Assume that X : U H3 has mean curvature one and let (g, fdz)
be the Weierstrass representation of the associated minimal immersion inR3. For any mero-
morphic function W, let us denote by S(W) the Schwarzian derivative of W, that is,

d ( Wzz \ 1 / Wzz
 x

S(W) = d W z z 1 W z zd z W z 2 W z

Then we can easily verify the following relation

S(G) = S(g) + 0 = S(g) 2fgz

obtained by Umehara and Yamada (see [U-Y, 1], (2.6)).
Indeed, we infer from Theorem 3-9 that

lj fa fa T T ^\ T
llZZ H z hz T ZZ ZZZ ZZ

~h~ P ~ ~h'J\+^rz~~2lf' ~™> • Tz 2T2

Therefore, we have

S(g) 2fgz = -^- ^ + 2h - 4 ^ - 2 h • — = S(G).

EXAMPLE 3-15. We have seen in Example 2-13 that the euclidean Gauss map E of
the Enneper cousins is given by
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for any non-zero complex number γ. Conversely, consider the mean curvature one conformal

immersion generated by E (see Theorem 2-5). As a verification, we are looking for the mero-

morphic data (h, T) stated in Theorem 3-9, and then see that the Weierstrass representation of

the associated minimal immersion is, up to a positive isometry ofH 3 , g(z) = z and f(z) α,

where α = γ2. This will show that the mean curvature one conformal immersions generated

by E are the Enneper cousins.

We first call h(z) = γze γz/γ¯ and T(z)ˆ = 1 + ¯γ/z for any z C. Let a and b be

any complex numbers with a ^ 0 and consider the meromorphic functions R and S given in

Proposition 3-5. Set E = hˆS(¯Tˆ + R)¯. Then a simple computation shows that E = E if and
only ifa = b = 1/γ¯. Now, we set h(z) = h(z)/a = γze γ z and T(z) = b + aT(z)ˆ = 1/z.
Then a straightforward calculation shows that

'Thz + hTz

Then we easily infer that

_l_ hTzhzz 2hz2Tz hhzTzz 2 2

Tz
 · h2zTz

 KZ) Y Z 2

We deduce with (3.13) and (3.14) of Theorem 3-9 that the Weierstrass representation of the
associated minimal immersion in R3 is g˜(z) = 1/z and f(z)dz = γ2z2dz. Finally, let

/ be the euclidean reflection in R3 with respect to the x1-axis (where (x1,x2, x3) are the

coordinates ofR 3 ) . Let Y : C • R3 be the conformal minimal immersion generated by

(g˜, fdz)˜. We call (g, fdz) the Weierstrass representation of the conformal minimal immer-
sion Y = I •Y˜. Hence a straightforward computation shows that g(z) = z and f(z) = α,

where α = γ2, and we recognize the Weierstrass representation of the Enneper surfaces.

4. Examples. Let us set U = C and choose the holomorphic data h(z) = eγz and

T(z) = b + ez, where b, γ C. Define E as in (3.18) in Theorem 3-13, that is,

E(z) = eγze γ z · (bγe z + (1 + γ)) · b + ez +
Y

bγ + (1 + γ)ez

A straightforward computation then leads to Ez¯(z) = γ(1 + γ)eγz (γ+1)z(1 + |b + ez|2)

and (hTzhzz 2hz2Tz hhzTzz) (z) = γ(γ + 1)ez+2γz.

Combining with Theorem 3-9, we deduce that for any γ C \ { 1, 0}, the data (h, T)

give rise to a mean curvature one conformal immersion X : C H3 whose metric is

ds2 = |Ez¯(z)dz|
2 = |γ(1 + γ)e z|2(1 + |b + ez|2)2|dz|2 .

We infer easily that X is a complete immersion for any complex numbers b and γ with

y ^ — 1, 0. Let us call (g, fdz) the Weierstrass representation of the associated minimal

immersion Y : C • R3. We infer from Theorem 3-9 that g(z) = T(z) = b + ez and

f(z) = γ(γ + 1)e z. When b = 0, we recognize the catenoid-helicoid family. We deduce



58 R. SA EARP AND E. TOUBIANA

that, up to a positive isometry of H3, if b = 0, then X is one of the immersions seen in

Example 2-12.

From now on, we assume b ^ 0. From Theorem 3-9 we get

w(z) = eγz+γz Gz(z)=

(u + iv)(z) = (G wE)(z).

First case: γ = 1/2. In this case, Gz 1. Thus we can choose G(z) = z. Further-

more, by setting γ = 1/2 in the formulas above, we get

E(z) =
z/2

e 2) ( b + ez 1

b ez

w(z) = 4
- P Z \ 2 '\b-e*\

=z \b-e'>

It follows that for any z C, w(z + 2πi) = w(z), E(z + 2πi) = E(z), G(z + 2πi) =

G(z) + 2πi and (u + iv)(z + 2πi) = (u + iv)(z) + 2πi. Thus

X(z + 2πi) = X(z) + (0,2π,0).

This shows that the surface X(C) is invariant under the horizontal translations (u + iv,w)

(U + iv, w) + (2πi, 0) of H3. Therefore, X(C) is invariant under a discrete subgroup of

parabolic isometries of H3 isometric to Z.

In Figure 1-a, we draw a piece of a fundamental domain of the surface corresponding to

b = 1/2. We draw also three fundamental domains of the same surface in Figure 1-b. Observe

that for each b C we get a dual of the Enneper cousins.

FIGURE 1-a. FIGURE 1-b.

From now on, we assume γ ^ —1/2. Hence we can choose G(z) = e ( 2 γ + 1 ) z /( 2γ + 1). Thus

(2y+i)z{ 1 (b + ez)(bγ + (1 + γ)ez) + y s
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Therefore, for any z C we have

(u + iv)(z + 2πi) = e4πiγ(u + iv)(z), w(z + 2πi) = e

 4πImγ · w(z).

For any real number λ, let Rλ be the rotation around the w-axis whose argument is λ and let

Hλ be the homothety with respect to 0 and ratio eλ. Note that Rλ (resp. Hλ) is an elliptic

(resp. hyperbolic) isometry o f H 3 .

Second case: Re(γ) = 0. Then X(z + 2πi) = H 4 π I m ( γ ) ( X ( z ) ) . That is, X is in-

variant under a discrete subgroup of hyperbolic isometry o f H 3 isometric to Z.

Third case: γ R \ { 1, 0, 1/2}. In this case we have X(z + 2πi) = R4πγ(X(z)).

That is, X is invariant under a subgroup of elliptic isometries o f H 3 . Recall that when b = 0,

X is invariant under a reflection in H3 for any real γ such that γ(γ + 1) > 1/4, that is, X

parametrizes the catenoids cousin (see Example 2-12). This suggests to look for symmetries

when b ^ 0, for any γ R\ { 1, 0, 1/2}. Let R > 0 be a positive real number and let S

be the reflection in H3 with respect to the geodesic plane {(u, v, w) H3; u2 + v2 + w2 =

R2}. The reflection S is a negative isometry (that is, a orientation reverting isometry) of

H3. Observe that if S(X(C)) = X(C), then there exists a orientation reverting conformal

transformation of C, say q>(z), such that S • X = X oq>. Thinking of the catenoids cousin, we

look for q> with the following form: q>{z) = —z + a, where a R. Then a straightforward

computation shows that if a = Log(1 + |b|2), then q>*{ds) = ds. Moreover, the relation

S •X = X oq> leads to S • G = G • <p, where S is the restriction of S to H3. Thus we

should have

G(z)
= G(<p(z)) = G( ¯z + a)

for any z C. Again a simple calculation shows that this condition is satisfied if and only if
R2 = ea(2γ+1)/(2γ + 1)2. Therefore, we take a R such that ea = 1 + |b|2 and choose R as

above. Let us define the new immersion X = S • X oq>. Clearly, X is a mean curvature one

conformal immersion (with respect to the oriented euclidean Gauss map) sharing the same

metric with X. Since the second fondamental form of X is Π˜ = Re (γ (γ + 1)(dz)2) +ds2,

we deduce that the second fondamental form of X is also Π .̃ Thus X and X coincide up to a
positive isometry ofH3 . Nevertheless, since S m o G o ^ = G,we deduce that X and X share
the same hyperbolic Gauss map. Finally, we conclude X = X, that is, X is symmetric with
respect to the geodesic plane {(u, v, w) H3; u2 + v2 + w2 = R2}.

(i) Assume γ R\Q. Since γ is irrational, X is invariant under a subgroup of elliptic

isometries o f H 3 isometric to Z.

(ii) Assume Im (γ) = 0 and γ Q \ {0, 1, 1/2}. We have again X(z + 2πi) =

R4ΠΓ(X(Z)). Let us set 2γ = p/q, where p Z*, q N*, p + 2q ^ 0 (since γ ^ -1),

p + q ^: 0 (since γ ^ —1/2) andp and q without common factors. Therefore, X(z+q2πi) =

X(z). Now we make the change of parameter ζ = ez/q, and let X : C ->• H 3 be the

mean curvature one conformal immersion defined by X(ζ) = (u, ˜v, ˜w)(ζ) := X(z). A
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straighforward computation then leads to

(u˜+ i v)(ζ)̃  =
ζq)(bp

|bp + (2q + p)ζq|2 + p2

w(ζ) =
|bp + (2q + p)ζq|2 + p2

Let U denote the function in the bracket in the formula of (w + iv)(ζ)˜ above, that is, (ũ  +
iv)(ζ)˜ = ζp+q · U(ζ). It is easily seen that U(0) = 0 if and only if p + 2q = 0. Also,

limζ U(ζ) = pq/(p + q)(p + 2q). Thus we infer from our assumption about p and

q that U(0) ^ 0 and limζ U(ζ) ^ 0. Furthermore, the Weierstrass representation of the

minimal immersion in R3 locally associated to X is g˜(ζ) = b + ζq and f(ζ)dζ˜ = (p(p +
2q)/(4qζq+1))dζ. Observe that the Weierstrass data (g˜, fdζ)˜ define a conformal minimal
immersion into R3 if and only if b = 0. When b = 0, we get the catenoids. Nevertheless,
when b ^ 0, the data (g˜, fdζ)˜ define a singly periodic minimal immersion into R3. More
precisely, (g˜, fdζ)˜ define a minimal immersion of C* into the quotient space R3/Z whose
total curvature is 4πq. We deduce that X has total curvature equals to 4πq. Furthermore,

as G(ζ)˜ = (q/p + q)ζp+q, we infer that each end (0 and ) is a regular end. From the

expression of (Ũ  + iv)(ζ)˜ and the observation about the function U(ζ) , we deduce that

each end turns |p + q| times around the w-axis. That is, the restriction of the orthogonal

projection on the (u, v)-plane to each end is a |p + q| covering map. Recall that theses

surfaces are symmetric with respect to some geodesic plane (see the discussion above in the

beginning of the third case). Then, it is easy to see that this geodesic plane is {(u, v, w)

H3; u2 + v2 + w2 = R2} with R2 = tp+q · q2/(p + q)2, where t is the positive real number

such that tq = 1 + |b|2. Namely, we have (SR • X)(ζ)˜ = X(t/˜ζ) for every ζ C*, where SR

is the reflection about the half-sphere in H3 centered at 0 and radius R. In Figure 2 we draw

the half part of the surface with b = 1, p = q = 1. See also Figure 3 with b = 1, p = 2 and

4 = 1.

Special case: |p + q| = 1. In this case, since the orthogonal projection to the (u, v)

FIGURE 2.
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FIGURE 3.

plane restricted to each end is an injective map, we deduce that each end is embedded. We

conclude that X is a mean curvature one conformal immersion of C* into H3 with two reg-

ular embedded ends and with finite total curvature. Observe that these surfaces are different

from the immersed catenoids cousin, since they are locally associated to some singly periodic

minimal surfaces of R3 and not to a catenoid (recall that b ^ 0). We can also infer from

the expresion of (u + iv)(ζ)˜ that they are not rotational immersions. Finally, we infer from
Theorem 2-3 of [SE-T, 1] that each end is asymptotic to a catenoid cousin, in both euclidean
and hyperbolic meaning. See Figures 4, 5, 6, 7 and 8, where in each case we draw a half
surface with b = 1.

FIGURE 4. p = 1, q = 2. FIGURE 5. p = 2, q = 3.

FIGURE 6. p = 3, q = 4. FIGURE 7. p = 3, q = 4.
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FIGURE 8. p = 6, q=7.F FIGURE 9. p = 6, q = 7.

We draw in Figure 9 a piece of the other half part of the surface seen in

Figure 8.

FIGURE 10.

When γ Q \ {0, 1, 1/2}, we observe that these surfaces were classified by Ume-

hara and Yamada [U-Y-1, Theorem 6.2]. Their symmetry about a geodesic plane has been

established in an alternative way by Rossman, Umehara and Yamada [R-U-Y, 3].

Fourth case: Im (y) ^ 0 and Re (γ) ^ 0. In this case, X(z + 2πi) = (H 4πIm(γ) •

R4πRe(γ))X(z). That is, X is invariant under a discrete subgroup of screw motions o f H 3

isometric to Z. See Figure 10, where γ = 1 + i and b = 1.

REMARK 4-1. (1) Using the same arguments as in Example 2-12, we can state the

following observation about the asymptotic boundary of X(C):

(i) When Im (y) ^ 0, then X(C) = H 3 .

(ii) When γ R\ { 1, 0, 1/2}, then X(C) = {0, }.

(iii) When γ = 1/2, then X(C) = { }.

(2) Recently, Umehara and Yamada informed us that some of the above examples were

known by them (personal communication). Nevertheless, the full geometric description we

gave here is new.
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(3) It is worth mentioning that the authors have given in a previous work (see [SE-
T, 2]) families of examples of complete minimal surfaces in H3 invariant by a subgroup
of discrete rigid motions (but not invariant by a one-parameter continuous family of such
subgroups), namely a subgroup of either of the following isometries: hyperbolic, parabolic,
elliptic. The techniques there are quite different, and are based on geometric analysis. That is,
a combination of hyperbolic geometry with PDE methods, which enable us some flexibility.
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