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Abstract. In this paper we consiruct meromorphic dala and prove a representation
theorem for mean curvature one confermal immersions into the hyperbolic three-space. We
also give various examples.

Introduction. Tn this article we present a new approach (o the theory of mean curvature
one surfaces in the hyperbolic three-space. Our main result is the following: Every non-totally
umbilic conformal immersion X ; U — H?® of a simply connected domain U C C into
the half-space model of the hyperbolic three-space (denoted by H*), having mean curvature
ong with respect o the oriented euclidean Gauss map F (Delinition 1-1), gives rise 10 lwo
meromorphic data (2, T) defined on U that describe complelely X (see Theorem 3-9),

Kenmotsu [K] showed that any €2 solution on a simply connecled domain 7 of the
cquation

o= 21 + EE_EzEz
produces a conformal immersion X : U* — R of constant mean curvature, where U* =
U\ (z; Ez = 0}. He also proved a similar result for the case of prescribed mean curvature.
As far as we know, however, no explicit (non-trivial) solutions of this equation are known.
In this work, we derive a similar equation, namely

3

() B w0 s,
T 1+ EE VF

for which every non-trivial solution gives risc (0 a mean curvature one conformal immersion
X : U* — H° in the hyperbolic three-space (Proposition 2-1 and Theorem 2-5). In
contrast o the previous equation, we can give a complele description of the C2-solutions
of (%). Tndeed, any solution of (%) can be cxpressed in terms of meromorphic data (b, T).
Conversely, given any pair of non constant meromorphic functions (h, T) with k& # 1 faT +
B), «, g € C, there is a natural way (o describe explicitly a conformal parametrization of a
picee of a surface with mean curvature ong into the hyperbolic three-space, which involves
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just one integration, [ h’T,dz. The branched points, if there are any, are isolated; in any
case it is possible to handle the branched points and obtain many complete such surfaces, We
emphasize that for mean curvature one immersion any geometric quantity can be expressed
in terms of the euclidean Gauss map F alone,

Besides, the authors shall present in Section 4, many conformally parametrized com-
plete surfaces with mean curvature one, immersed into the hyperbolic three-space with cer-
tain geometric propertics. We shall describe explicitely familics of such surfaces invariant by
a discrete subgroup (but not invariant by a one-parameter continuous subgroup) of each of the
following group of rigid motions of H> : parabolic, hyperbolic and elliptic.

This paper is organized as follows., We shall develop in Section | the theory of surfaces
conformally immersed into H3 from our point of view. As a consequence, we shall derive the
geometric quantities in terms of the enclidean Gauss map E and the hyperbolic Gauss map G.
We shall infer another proof of Bryant's result; H = 1if and only if G is holomorphic, and the
immersion is totally umbilic if and only if G is anti-holomorphic. We observe that the latter
astonishing result due to Bryant has thrown a light on the analytic nature of mean curvature
one surfaces in H3, We note that Galviio and Gdes [G-G] have also given an alternative proof
of this theorem. We recall now that for minimal surfaces in euclidean space an analogous well-
known result holds, We shall explore the linking between minimal surfaces in euclidean space
and mean curvature one surfaces in hyperbolic space over and over through our main results.
This was explored before by Bryant [B], Umchara-Yamada [U-Y, 1] and the authors [SE-T,
1]. We begin Section 2 by establishing the globally defined equation for mean curvature one
surfaces in H> namely (%), see Proposition 2-1. Then, we show that any solution of (x) gives
rise Lo a piece of a mean curvature one surface in the hyperbolic three-space, Theorem 2-5.

In Section 3 we shall develop our theory on mean curvature one surfaces, in order to
prove our main results (Propositions 3-6, 3-7, 3-8). Finally, in Section 4, we shall give a
family of complete examples.

Following Bryant idea’s, Umehara and Yamada have introduced the notion of regular
ends and provided several techniques, that have been very useful since then [U-Y, 1]. On
this subject see also the following works: Umehara-Yamada [U-Y, 2], [U-Y, 3], Rossman-
Umehara-Yamada [R-U-Y, 1], [R-U-Y, 2], Lima-Rossman [L-R], Lima-Roitman [L-Roit],
Rossman-Sato [R-S], the authors [SE-T, 1], and Collin-Hauswirth-Rosenberg [C-H-R].

The basic idea here is that, looking at the upper half-space model of hyperbolic space,
one can see that hyperbolic geometry is very well integrated with Euclidean Geometry. This
point of view has guided us and Barbosa 1o several papers (see [SE-T, 2], [SE-T, 3], [B-SE, 1]
and [B-SE, 2]). We refer the reader to the authors book as well [SE-T, 4].

We nole that any conformal immersion in the half-space model of hyperbolic space can
be expressed in terms of the euclidean Gauss map £ and the hyperbolic Gauss map G. In
a forthcoming paper we make this more precise, see [SE-T, 5]. We nole also that we have
obtained a Weierstrass-Kenmotsu type theorem for prescribed mean curvature surfaces in hy-
perbolic space, see [SE-T, 6].

The authors are grateful to the referee for valuable observations.
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1. Surface theory in hyperbolic space.  We begin by fixing the notation we shall
use in this paper. We shall focus on the half-space model of the hyperbolic 3-space, which we
shall denote by H?>, namely

= {(u, v, w) € R w> 0}
equipped with the hyperbolic metric

du? 4+ dv? + du?
w? '

Throughout this paper, /' C €' will be a simply connected domain of the complex plane with
coordinate z = x + iy, and X : U — H? will be a C? conformal immersion of U into H>.
We shall call M = X (/) a surface in H>. For any vectors # and 9, the notation # - ¥ (resp.
{1 ; v)) stands for the standard euclidean (resp. hyperbolic) inmer product of # and 9. Let N
be the euclidean Gauss map of X such that (X., X, N)(z) is a positively-oriented basis of
R3 foreach z € U, where X, = X /ox and X, = dX/dy. Thalis,

_ XA Xy

X AKXl
where | - | stands for the euclidean norm and A for the euclidean vector product. We call

N = (N1, N2, N3) the oriented euclidean Gauss map of X, or more briefly the euclidean
Gauss map of X,

DEFINITION 1-1. (1) LetiI: §7 — CU {o0) be the standard stereographic projec-
tion. We set )
E=MToN= M ;
1— N3
so that
(2Re £,21ImE, EE — 1)
EE+1 '
We call E the oriented euclidean Gauss map of X.

(2) Let p = X(z) € M be a pointon M. Let y1 be the geodesic ray issuing from p,
orthogonal to M and oriented by the normal vector N(z). Let @ € dodI° = € U {oc} be the
asymptotic boundary of ., We then define amap G : U — C U {c0} by setting G(z) = w.
The map G is the well-known hyperbolic Gauss map of X (or M), |B].

N =

The following result states the relationship between these two Gauss maps £ and G,
which will be fundamental throughout this work.

PROPOSITION 1-2. Using the notation above, we have
u+iv=G—wk.

PrOOF. Lelz € U be any poinl. Observe thal G(z) = (u + iv){z) implies that N{z) =
(0,0, —1), and therefore E(z) =0 = (G — (u + iv))(z). Otherwise it suffices to express the
equation of the geodesic ray. 0
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LEMMA 1-3. Assume that E(z) # oo forany z € U. Then we have

(L33 %=fm&@¢wm,wﬁﬂmmmrymx
1+ EE : 1+ EE
that is,
(L.2) w; = B (G; —wkz),
1+ EE

where w; = Jw /0 Z.

PROOL. As N is the cuclidean Gauss map of X, we have X, - [1 1W(E£) = X, - N =0.
Then, by Proposition 1-2, we obtain

(14 EEYX, - N) = (u+iv)e, wy) - QE, EE—1)
=G —wE);,wy) - (2E.EE - 1)
=2Re(E(Gy — wE,)) — wy(EE + 1),

which is the first equation of (1.1). The second equation of (1.1) is obtained in a similar
way. O

LEMMA 1-4, Assume thar E£(z) # oc for any z € U. Then we have
(1.3) G, =wk;
and the (hyperbolic) metric ds® induced on U by the immersion X is given by
s G —wkzf

(1.4 ds* — |dz|? .
Moreover, we have for everyz e U
(1.5) E;(2)Gz(z) € R.
PROOF. As X is a conformal immersion, we have
(1.6) Xy Xy=Xy-Xy and Xe-X,=0.
On the other hand, using Proposition 1-2 and Lemma 1-3, we have
(1.7) Xo Xo=|Ge—why? and Xy - Xy =[Gy —why|*,
(1.8) Xy Xy = Re ((Gx — wE )Gy — wEy)).

From (1.6)—(1.8) we deduce that complex numbers (G, — w¥,) and (G, — wfy) have
the same modulus and their arguments differ from +m/2. Thus, we get (G, — wEy) =

+i{G, — wE;). Now rceall that
X, AXy (QE,EE-1)
=|Xx/\Xy|= EE+1 ’
Therefore, by Lemma 1-3, we get (Gy—w k) = —i{Gy—wky). Hence we have G, —wli; =
0.
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Now, as X is a conformal immersion, the metric ds” induced on U by X is given by

XX Gx— wWEy[?
ds? = 2F 5 *dx +dy?) = w
w w
Onaccountof G; — wk; =G; —wk; + G, —wk, = G, —wkE,, we have (14).
Finally, as wy, = wy,, by Lemma 1-3, we get (1.5), which compleles the proof of the
lemma. O

- |dz|?.

DEFINITION 1-5. (1) We call N the unit normal vector ficld on M with respect o the
hyperbolic norm, having the same orientation as N, il N = wiN.

(2) Denole by D (resp. V) the Riemannian conneclion of R (resp. I 3). Also, denote
by fT (resp. fT) the cuclidean (resp. hyperbolic) second fundamental form of the immersion
X with respect to N (resp. N), that is.

1 = byydx” + 2byydxdy + byyd_yz and [T = byydx® + ZExydxdy - I;}.yd_vz :
Forexample, by = — X, - Ny and by = —(X,, Vx, N). Recall also that for any vector fields
A. B and C we have

1 1
(1.9) {C,VpgA) = —2C -DpA + —3(—A[w]B -C — B[w]C - A+ C[w]A - B),
w w

where A[w] stands for the (euclidean) derivative of w with respect (0 A, see [N] or [B-SE, 2],
(3) We denote by H (resp. H) the euclidean (resp. hyperbolic) mean curvature of X
with respect to N (resp. N). That is,

by +byy F Byx 4 byy
~ Ky Xy T2 X
(4) We denole by @ (resp. @) the Hopf function of X in R> (resp. H?), namely
by — by . i B, =i o
b = xxz }_V_bey’ P = -UZ ."Y_bey.
LEMMA 1-6, Assume that E{z) # oc for any z € U. Then we have
_2E..
(1.10) = = .
{1+ EENG; — wks)
(L11) 2 YT 1~ AYG; - wEs)
' 1+ EE 7 b
(1.12) HG; = (H — DE:,
(1.13) o = 25,527V
1+ EE
- Gz —wlis 1
(1.14) S s S

‘Wl + EE)  w
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PrOOF, By Lemma 1-3, we casily get

2 _
—bey =X, Ny = ———=Re(E Gy — wEy)).
XX X X 1+EE (X{ X X,)

Now, using the relation (1.9), we thus get

. 1
bix = —(Xx. VXXN) = T[bex + N3 X, - Xi]
m
1 [ —2uw o EE—1
= —| ——_Re(Ex(Gy — wE G —wE|?].
u?2[1+EE (Ex(Gy X))+EE+II x xl]

The other relations involving byy, by, bxy and by can be shown in a similar way.
Now relations (1.10)—(1.14) are easily inferred by using the definition of H, H, @ and
@ and (1.5). This concludes the proof of the Iemma. O

REMARK 1-7. It is well-known that every positive isometry (that is, an isometry pre-
serving the orientation) J : H° — H? extends continuously to the asymptotic boundary
8 of I, Moreover, the restriction of J t0 8.II°, denoted by Jo., is a Mbius function.
Conversely, each Mobius function on 807 is the restriction of a unique positive isometry of
H?. Letus call £ = u + iw the coordinate on d.H> = € U {oc). Note that every Mibius
function f on €' U {oc} has a form of ¢ither

i

) =xrec + 8, )=+ ——
flO=2"L+p, o fll=a Y

wherco, f e Cand 2.8 e R, X > 0,

LEMMA 1-8, Ler J : H® — H? be a positive isomerry and Ja the restriction of J 1o
dnH3. Let E be the euclidean Gauss map of the immersion X = J o X : U — H>. Then we
have

E=e® E if JolO) =26 0+ 8,
i

{+8°

pa b

it ( 1+ EE
Z

=G1p E, —E(G+ﬁ)) if Joolf) =+

Proor. For any complex nomber 8 and any real numbers A, 6, A > 0, we denote by
H,, the homothety on II° with respect to 0 and ratio A, by 75 the horizontal {Re 8, Im g, 0)-
euclidean translation on H?, and by R, the euclidean rotation on H® with respect to the w-axis
with argument ¢. Observe that Hj, T and Ry are positive isometries of II°.

Suppose that Joe ($) = e + 1 ¢ + B). Let I : H? — H? be the positive isometry of
H? such that 70 (¢) = 1/¢ . Then we have J = T,oHyoRgoloTs. Set JoX = X = (i, , i)
and consider the hyperbolic Gauss map Gof X. Thus G = Joe (G). Observe also that

 Ew
(g w) = ]2+ w2’



MEROMORPHIC DATA FOR MEAN CURVATURE ONE SURFACES 33
Then we obtain

Aet?
G+p’

(@9 + B), w)
&+ BP+w?”

>

I, w) = (e, 0) + 2 =o+

Now, the proof is a straightforward verification by using Proposition 1-2, Lemma 1-4 and the
relation £ = (G — (i +70))/0. O

The following result was first proved by Bryant [B, Proposition 1], See also Galvao and
Goes [G-G] for an alternative proof,

COROLLARY 1-9, (1) Let p = X(zo) € M such that E(zo) # oo, Then p is an
umbilic point of M if and only if G (z0) = 0. Therefore, M is totally umbilic if and only if
G, =0, that is, G is anti-meromorphic.

(2) Let p = X(zo) € M such that E(zo) # oc. Then H(zo) = 1 if and only if
G:lzo) = 0. Therefore. H = | if and only if G is meromorphic.

Consequently, the umbilic points of any non-torally umbilic mean curvature one surface
in H? are isolated.

Proor. From (1.3) and the [act that w > 0 il [ollows that {or any zo € U such thal
E{zp) # oo, we have G {(zp) = 0 il and only il E,(zo) = 0, which occurs il and only if
p = X{zo) is an umbilic point.

Now, let zp € U be a point such that £i(zp) = oc. Let J : H? — H7 be a positive
isometry of f1? such that E(z0) # 0o, where E is the oriented cuclidean Gauss map ol the
immersion X = J o X. Let Joo be the restriction of J to the asymplotic boundary 3,713, For
the hyperbolic Gauss map G of X, we have G = Joo o G. We see that zg is an umbilic point
of X il and only if zg is an umbilic point of X, which occurs if and only if Gz(z()) = 0 so that
G is anti-meromorphic at zg. From this we easily deduce the last statement in assertion (1).

In the same way, since the metric (1.4) does not degenerate, we have G; — wkE; # Oon
{/. Then, we deduce from (1.11) that G is holomorphic al zg if and only if H (zo)=1lonU.
In case where there exist some points zp € U such that f{zg) = oc, we proceed as before (0
conclude that # = 1if and only if G is a meromorphic map. This completes the proof of the
corollary. |

We deduce from Lemma 1-6 the [ollowing equation [or constant mean curvature.

COROLLARY 1-10. Assume that X : U — I isa C conformal immersion such that
E(z) # oo forany z € U. Then H is constant if and only if
- - - Gz
(14 EE)E,; — EE.E; — EE,—~ =0,
w}
Proor. Since Gz — wlhz # 0, (1.11) leads to

. o
= -2 — .
(1+ EEYG; — wEs)
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Here, since H is real, H is constant if and only if A, = 0, which is equivalent (o
w(l + EE)YE; (G; — wE;) — wEE Fz(G; — wEs)
— GHE E + E(I))/(G: — wkz) + EE;:G(Gz — wEz) =0.

Then by (1.5) we have the conclusion. O

2. Mean curvature one surfaces in H° via the euclidean Gauss map.  Throughout
this section we shall use the same notation as in Section 1. From now on we assume that
X : U — I is aC? conformal immersion, where &/ < C is a simply connected domain,

By Corollaries 1-9 and 1-10, we have the following

PROPOSITION 2-1. Assume that H = 1 and E(z) # o¢ forany z € U, Then

&

% Eyp = ———
(+) 7z \+ EE

E, Iz,

REMARK 2-2. (1) Assume that X is not a totally umbilic immersion and E(z7) #£ oc
forany 7 € U. Then we also have the following necessary and sufficient condition for H = 1

EEE
1+ EE-

Indeed, if H = 1, then (2.1) holds because of Lemma 1-3 and Corollary 1-9.

Reciprocally, suppose that (2.1) holds. From Lemma 1-3 we infer that £ Gz = 0. Set
Ur={zelU:; Ex) £ 0)and Us = (z € U; G:(z) # 0). Thus U; and U> are open subsels
of U7 such that Uy U /> = U, Hence we have the following aliemative; Uy = U or Uz = U
or Uy NU» # #. Nole that, if T/ # @, then we have Gz = 0 on U so that H = 1 on U;.
Furthermore, il T2 # @, then E = 0 on {72, that is, X (U>) is a peace of a horizonlal ¢uclidean
plane in H? with downward normal, which implies that H = —1 on Us. These observations
force Uy N Uz = @. Nole also that Uy = ¥ implics that £ = 0 on U, and hence X is a totally
umbilic immersion, which is a contradiction, Consequently, U» = @, that is, Gz = O on U,
We therefore conclude that H# = 1 on U,

(2) Observe that Proposition 2-1 shows that Equation () is a necessary condition for
A = 1 but is not a sufficient condition,

Indeed, assume that X is a mean curvature ong conformal immersion such that £ # oo
on U, Then its cuclidean Gauss map E salisfics Equation (x). Let & = 0 and consider the new
conformal immersion X = X + (0, 0, ). Clearly, X and X have the same euclidean Gauss
map. Therefore the euclidean Gauss map ol X satisfies Equation (%). Note that verlical
translations are not isometries of 713, It is casy to deduce thal X is not a mean curvature onc
immersion into [, For instance, any positive vertical translation of any horosphere whose
asymptole boundary is a finile point in 3,1 (that is, any cuclidean sphere in I tangent Lo
{w = 0)) is a compact sphere in FI* whose mean curvature with respect to the inward unit
normal veclor field is strictly bigger than 1.

(2.1) w; = —w
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Similarly, suppose that X is a mean curvature ong conformal immersion with E # oo
on {/, such that the coordinate w is bounded from above. Then there exists a ¥ = 0 such that
w(z) < y forevery z € U. Therefore X» := —X + (0,0,%) : U — H? is a conformal
immersion for any L = y, The oriented cuclidean Gauss map of X» is E, which satisfies
Equation (x) although the mean curvature of X» is not one.

As amatter of fact, let X 1 U — H? be a conformal C? immersion such that E(z) # oo
for any z € U, E satisfies Equation () and H Z 1. Then we prove in a forthcoming paper,
see [SE-T, 51, that X must have one of the two forms mentioned above unless E; = (), that is,
X is a minimal immersion into R? in euclidean meaning.

(3) Remark that Equation (x) does not depend on the choice of a complex coordinate.

LEMMA 2-3. Let E 1 U — € be a C? function sarisfying (x). Then the set {z €
U; E.(z) = 0} is discrete unless E s anti-holomorphic on U, Similarly, {z € U; E:{(z) =0)
is a discrete set unless E is holomorphic on U,

ProoOr. Let us first show that {z € U; E.(z) = 0} is a discrete subset of {/. For this,
we are going 1o show the exislence ol a positive real function ¢ : U — R such that ¢ E, is
a holomorphic function.

For any real [unction ¢ on U, @k, is holomorphic if and only il (¢ £;); = 0, that is, il

and only il
EE; Y\
(qaz 2 qom)kz =10
since £ satisfies Equation (). Therefore,
@2) v ___FE_
@ 1+ EE

is a sufficient condition for ¢ £, being holomorphic. Set f = (Loge) and consider the equa-
tion
EF:
1+ EE
The integrability condition of (2.3) is given by

o((i555))
I+ EE/,

which is satisfied, since F satisfics BEquation (%), Since U is a simply connected domain, we
deduce that there exists a real function f on I7 which is a solution of (2.3), so that

EE:
f=—Mm]( C)&.
1+ EE

Thus the fonction ¢ = & is a positive real function satisfying (2.2). Therefore @, is a
holomorphic function as desired.
The second part is shown in the same way. |

(2.3) o=
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LEMMA 2-4. Let X be a C non-totally umbilic conformal immersion such that F(z)
oo for any z € U. Assume that its euclidean Gauss map E sarisfies Equation (%) and that
G, = wE, is a holomorphic map. Then we have H = 1.

Proor, TIndeed, as wE; is a holomorphic map, w; E; + wF.z; = 0. Since E satisfics
Equation (%), we then get
, EE,E;
1+ EE
Recall that, by Lemma 2-3, E. have isolated zeros. Then, by a continuily argumenl, we
deduce that the relation (2.1) in Remark 2-2 holds. Hence, by (1) of Remark 2-2, we have
H=1; O

will, = —u

We next prove that a solution of Equation (%) gives rise to a mean curvature one confor-
mal immersion into the hyperbolic 3-space.

THEOREM 2-5. Let U C € be a simply connected domain and E : U — C a non-
holomorphic C* function satisfying Equation (). Define U* = {z e U; Ez(z) £ 0) (U \ U™
is discrete, see Lemmia 2-3). Then there exisisamap X « U — H 3 such that the restriction of
X on U* defines a mean curvature one conformal immersion of U* into H> whose euclidean
Gauss map is E. More precisely, we have

(2.4) (1) =¢ ( 2R ] EEy d')
= w = X = C =

¢ P 1+ EE )
(2.5) G(2) =wazdz,
2.6) (u +i0)0) = (G — wE)z).

The hyperbolic merric induced by X is given by ds = | Ez||dz|.

Furthermore, X is uniguely determined up lo a positive isometry of II*. More precisely,
if X 1 U* = I is another mean curvaiure one conformal immersion whose euclidean
Gauss map is I, then there exists a positive real number A = 0 and a complex number @ € C
such that

X(z) = AX(2) + (2. 0).

Proor. Since U is simply connecled and F satisfies Equation (), the prool of Lemma

2-3 shows that the real 1-form _
EEz ..
Re “—dz
1+ EE

is integrable. Thus we can define a strictly positive [unction w on U by selling as in (2.4).
Moreover, w salisflies (2.1) in Remark 2-2, which implies that w /2, is a holomorphic function
on {/. As U is simply connected, there exists a holomorphic function G on U as in (2.5).
Now we define real funclions u and v on U by selling as in (2.6).

Let us prove that the map X = (u, v, w) : U — H? restricted to U* is a conformal
mean curvature one immersion with euclidean (resp. hyperbolic) Gauss map E (resp. G).
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Observe that from (2.5) we get G, = wkE,. Therefore G; —wFE; = G; —wE; + G, —wE, =
Gy —wE; and G; — wFE; = G; —wE; — (G, — wE;) = i{Gy — wE,). Thus we gel
Gy —wE, = —i{(G; —wE,). Also, by using (2.4), we gel
—wk Gy E
wx=2Re( M)’ wy:ZRe( (—u)y))'

1+ EE 1+ EE
It then follows that Xy - Xy = (G — wE)x, wy) - (G — wE)y, wy) = |Gy — wEy|%,
Xy Xy = |Gy — wEy|? = |Gy — wEx|> and Xy - Xy = Re((Gy — wE NGy — wEy)).
Hence we have that X, - Xy = X, - X, and X, - X, = 0, that is, X defines a conformal
immersion of U/* into H3.

Now the oriented euclidean Gauss map N on U* is given by
N = (X¢ A X))/ Xx A Xyl

Using the above relations, a computation shows that

|Gy —w x‘z
X AXy=—2— (2ReE,2ImE, EE —1).
1+ EE
Thus we geton U'*
1 -
N= —(2ReE,2ImE,EE -1 =11I"'cE.
1+ EE

We deduce that E s the euclidean Gauss map of X as desired.

Also from (2.6) and Proposition 1-2 we deduce that G is the hyperbolic Gauss map
associated o N, Finally, as G is a holomorphic map, we conclude from Corollary 1-9 that
H = 1onU* Thatis, X : U* — H? is a mean curvature one conformal immersion whose
induced metric is given by

452 = 16— wEe?
w

\dz? = | BzPldz]?.
This completes the proof of the existence part of the statement.

Suppose now that X : U* — H3 is another conformal mean curvature one immersion
with the oriented euclidean Gauss map E . Set X = (i, , ), and consider the hyperbolic
Gauss map Gof X.Since Gisa holomorphic map (Corollary 1-9), we infer with Lemma 1-4
that the coordinate  satisfies

w3 _ E E;  wg

W 1+EE  w’
This implies the existence of A > 0 such that & = Aw. Moreover, Lemma 1-4 shows that
Gz =wkE, =AwkE,; = AGZ Since G and G are holomorphic functions, we deduce that there
exists & € C such that G = AG + «. Thus

X =@ +it, %) =(G - 9E, W)
=(AG +a —rwE, Aw) = AX + (@, 0).

This achieves the proof of the theorem. |



38 R. SA LARP AND L. TOUBIANA

Theorem 2-5 leads immediately to a global representation;

COROLLARY 2-6. Let § be a Riemnann surface and E © § — C a non-holomorphic
C? map satisfving (*). Assume that

BBy o
Re ———dz=0
vy 1+ EE

for every closed path y C 5. Letrw : § — R be a function defined by

EE;
W =<Cxp| — Re 'mdz "

5o that wE dz is a holomorphic 1-form on 8. Assume also that

f wkdz =10
¥

Jfor every closed path y C S, that is, the 1-form wE.dz has a global primitive G on S. Set
u+ivi=G—wE.

Then the function X = (u, v. w) : § — H7 defines a mean curvature one conformal
immersion of 8§\ D into I 3, where D = {z € §; Ez(z) = 0} (recall that D is a discrele sel,
see Lemma 2-3).

We now describe in terms of £ the Hopf function @ and the Gauss curvature K of a
mean curvature one surface.

PROPOSITION 2-7. Assume that X : U — H* is a mean curvature one conformal
immersion such that E(z) # oo for any z € U. Then it holds that
PR P B
1+ EE (1+ EEY |Ez|°
The proof is a straightforward verification, by using the fact that the hyperbolic Gauss
map G is a holomorphic map.

REMARK 2-8. Since U is simply connecled, it is well-known that to cach mean curva-
ture one conformal immersion X : U — H? is associated an isometric minimal and confor-
mal immersion ¥ : I/ — R>. That is, the induced metric on U by ¥ is ds” and the second
fundamental form of ¥ is IT — ds”, see [L], [B]. [U-Y, 11, [SE-T, 11. Morcover, Y is uniquely
determined up to a positive isometry of R®. Consequently, the Weicrstrass representation
(g, fdz) associaled to X (namely. of the minimal immersion ¥ associated to X) is defined up
to a rotation of R*. Nevertheless, throughout this paper, we shall call the Weierstrass repre-
sentation of any minimal immersion associated to X the Weierstrass representation associared
w X,

We deduce from Proposition 2-7 the following

COROLLARY 2-9. Assume that X is a mean curvature one conformal immersion. Let
Y 1 U — R? be the isometric minimal immersion associated to X. Let (g, fdz) be the
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Weierstrass representation of Y. Then, on U* = (z € U; E(2) # oc}, we have
EL(E),
1+ EE’

I+ = |Ezl,  fg=—

so that ® = =2f g, on U*. Furthermore. for each zo in U, the function q and the hyperbolic
Gauss map G have the same order at Zo.

PrROOF. The metrics induced on U by X and ¥ are the same, so that
ds? = |Fadz* = | fP(1 + |gFPYldzf* on U*.

Moreover, the Hopf functions of X and ¥ are the same. Since the Hopf function of Y is
—2 f g, it follows that

v BB

¢ =pfiBs )f =-2fg, on U".

1+ EE
Finally, let zp be any pointin U, Up (o a positive isometry of R> (resp. H?) we can suppose,
without changing the order of ¢ (resp. ) at zo. that zp is not a pole of g (resp. G), so that
E{zo) # oc. Since G, = wE, on U* (s¢e Lemma 1-4), we have
(£),
fo, = =

w{l + EE)
Observe that £ and (£); /w(1 + £ E) are holomorphic functions which do not vanish at zg.
Hence, g has order n € N* at zy if and only if g. has a zero at zp with muoltiplicity » — 1,
which is equivalent to that G; has a zero at zo with multiplicity # — 1, that is, G has order n
at zp. This completes the proof of the corollary. O

REMARK 2-10. Assume that = 1 and £ # oc on U/. Then, by Lemma 1-3, one can
easily verify a well-known fact that Loguw is a superharmonic function.

REMARK 2-11. Now we recall briefly some technical facts obtained in [SE-T, 1], since
we need them to produce Examples 2-12 and 2-13. In what follows, we keep the notation of
that paper.

Let Y : U — R? be a conformal minimal immersion and (g, fdz) the Weierstrass
representationof . Let A, B, € and D be holomorphic functions on U given by Proposition
1-7 in [SE-T, 1. Then, up to a positive isometry of H>, the associated mean curvature one
immersion X : U — H> is given by

o AC+ BD
(u +iv)z) = AR+ IB\?(“)’
FI:EarThe
As amatter of fact, A and C (resp. B and D) are independent solutions of

(fgz)z
fo?

w(z) =

(2.7) P’ — é P'—fg.P =01 (resp. Q" -

. Q- fg0=0 (2)>
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satisfying AD — BC = land A, D, — B,C, = 0, see [U-Y-1, Lemma 2.1]. Observe that
here we have substituted # (in [SE-T, 171) for f. Finally, the hyperbolic Gauss map G of X is
G = C;/A; (see Lemma 1-10in [SE-T, 17).

ExAaMPLE 2-12, The euclidean Gauss map of the calenoid-helicoid cousins.

Let us consider the Weierstrass data (g, fdz) = (¢% re'? - e7%dz) on U = C, where
A > Qand 6 e [0,2x[. For each positive &, when @ varigs in the interval [0, 2x[, this
yiclds a family of isometric minimal immersions ¥y 0 © ¢ — R3. Tn fact, this family varies
continuously from the catenoids (when ¢ = +1) o the helicoids (when ¢ = +i), Let us
denote by X, o the associated mean curvature one immersion into H 3 Let Yy =y +iypbe
a complex number such that y2 = et = 0. Set A(z) = €Y%, and note that A satisfies
(2.7)-(1).

Suppose first that 1 4+ 2y £ (0, On account of Proposition 1-7 of [SE-T, 11, we have

z Y _ 4y
Al =¢€Y?. Bl =— e+riz
¢ ¢ 1+y

2
_Mc)*(lﬂ/)z’ D(z) = Meﬂ/z_

C =
@ 1+2y 1+2y

Thus X; g is given by (see Remark 2-11)

(1+ y)QE,zyzy(l + 7)™t + 71+ p)ef
1+2y L+ y 2+ |y [fet

e_}"?._);z

142+ |yPests”

(w+in)z)=—

w(z) = [1+y?

We deduce also that

Cz _ (1+ V)Zef(lirZy]z )

e s
Az 142%

Performing some calculations combined with Proposition 1-2, we get

- 1 _
B = e””((l PR PN i VeZ) .

Note that for any vp € R we have

(u + iv)(z + iw) = e WUF2ReY)  lmy g, L juy(z),

w(z +1yo) = 0" w(z) .

Suppose now that 1 + 2y = 0 (thatis, A = 1/4 and ¢ = —1). Using Proposition 1-7
of [SE-T, 1], we get B(z) = %2, C(z) = (—z/4)e~%? and D(z) = (1 — z/4)e*"2. We infer
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that
(z47)/2
(u+iv)z) = e(z+5)/2 +e—@D2 % !
w(z) = @t D/2 -Q—le*(”i)/z ’
Gl = jj = _;1{2 %
Thus

1 . .
E@) = Eef”zedz(—ez +e 5.

We remark that w(z + iyg) = w(z) and (u + iv)(z + iyg) = (4 + iv)z) — iyo/4 for any
Yo € R.

We then deduce the following:

(i) Whene = 1,ore’® = —land A < 1/4 (thatis, Imy = Oand 1 + 2y # 0), X,
is a rotational immersion, called catenoid cousin by Bryant, see |B].

(i) When e = —land A = 1/4 (that is, 1 + 2y = 0), the associated surface (see
figure 0-a) is invariant under the cuclidean horizontal translations in [13:

(o, v, w)y = {u,v, w) + (0, w,0) forany yo e R.

The profile curve, called “courbe des forgats™ (see figure 0-b), was studied by Poleni in
1729, see [Rev]. This surface is known as a dual of Enneper’s cousin, see [R-U-Y, 3]

(iii) When ¢ = —1 and A > 1/4 (thatis, | + 2Rey = O and Tmy # 0), X5 9 is
invariant under a ong-parameter group of hyperbolic translations;

(v, w) = & (u, v, w) forany A > 0.

(iv) Inall other cases (thatis, ¢/ # 1. orequivalently Imy # Oand 14+2Re y # 0),
X g 15 anon-trivial helicoidal immersion.

FIGURE 0-a. FIGURE O-b.

Now, let us show that if Imy # 0 (that is, when the immersion is neither a rotational
one nor invariant by an euclidean horizonlal translation), then the asymptotic boundary of the



42 R. SA LARP AND L. TOUBIANA

surface is the whole 9.H>. Indeed, by selting z = x +iv and y = y1 + iy2, we have
2
i@ = — S sl | ity +2:5)
142y
vty +yd+y)e™
L+ yPe + |y|Pe
e2y2y—x(14+2y1)
1+ y[2e™ + [y Pes
Letug + ivg € C* be any non-zero complex number and & € R such that
(1+ )
142y
Denole by z, = x + iy the complex numbers such that 2y»y — x{(1 4+ 2y1) = «. We then have

w(z) =1+ y|2

o

= |ug + ivgl .

_1+y

lim w(ze) =0, lm_[{u+iv){ze)| = w0+ ivol.
x—E00 x—+00

Furthermore, as y(1+2y1) +2y2x = (x((1+2y1)7 +4y5) +a (1 +2y1))/2y2. iLis casy (0 sce
that Arg{u+iv){z,) approaches any real number, modulo 2, when x — 400, Consequently,
there exists a subsequence zo, » = X, + iy, such that im,,— 1ae X, = 400 and lim Arg(x +
it za, n) = Arg(ug + ivg). We infer thal ug 4 fvg lies on the asymplotic boundary of the
surface. Since this is true for any non-zero complex number g 4 i v, we conclude that the
asymplotic boundary is the whole 3. H> as claimed.

It can be easily inferred thal in the case where y € R — {—1/2) (that is, when the
immersion is rotational), the asymplotic boundary is {0, oc}. Fmally, if y = —1/2 (that is,
when the immersion is invariant under cuclidean horizontal tranglations), then the asymplotic
boundary is {co).

ExAMPLE 2-13. The euclidean Gauss map of the Enneper cousins.
Let us now consider the Weiersirass representation of Enneper surfaces on 7 = €
(g(2), F(z)dz) = (z, adz), where a € C*, The equations (2.7) in Remark 2-11 are

2
PlraP=0() and Q"—Q —aQ =0 (2).
Z

Let y € € be any square rool of &, that is, ¥ = «. Then the function A(z) = % is a solution
of (1). Thus, taking into account of Proposition 1-7 of [SE-T, 1], we get

1 1
B(z) = (—z + —)e” ;. Gl = _%e"“ ., D) = E(yz + L™V,
Y

from which we deduce that
(=ly P+ (=72 + D(yz + 1))e 272

21+ lz =1y D
1

A+ 2= Ly Peram

n+iv)z) =

wlz) =
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Morcover, G(z) = (C, /A )z) = (ye™2¥?) /2. Therefore, using Proposition 1-2, we get

LE(z) = %ze‘”eﬁ(Z =1 +ﬁ) .

Z

3. Meromorphic data.  Recall that H (resp. H) denotes the euclidean (resp. hyper-
bolic) mean curvature with respect to &V (resp. N). Furthermore, U C C is a simply connected
domain.

REMARK 3-1, Assume that # = 1 and E, = 0. Then we sce that X is an cuclidean
otally umbilic immersion, so that it is a hyperbolic (otally umbilic immersion. Hence we may
conclude that X (V) is part of a horosphere,

Throughout this section we consider the equation

*) Ei:=— _FE,F;,
( 4 Z7 1+ EE g
where £ : U — CU {o0) is a C” map. In fact, we require that (+) holds on U — [z €
U; E(zg) = oo}, When £ is the oriented euclidean Gauss map of a mean curvature ong
conformal immersion X : U — H? the set {z € U; E(zo) = oc) is discrete unless X
is a totally vmbilic immersion (see Lemma 2-3). When £ is the euclidean Gauss map of a
conformal immersion X, we have seen in Section 2 that () 15 a necessary condition to have
H =1 (see Proposition 2-1).

DEFINITION 3-2. Let £ : U — C U {o0) be a C? function. We say that £ is a
non-trivial solution of Equation (+) if £ is a solution of (x) and is neither meromorphic

nor anti-meromorphic. Otherwise, we say that I is a rrivial solution of Equation (x). This
terminology is justified by Remarl 3-1.

LEMMA 3-3. Ler E be a solution of (%) which has one of the forms
E=1J oo E=I+J,
where I and J are meromorphic functions on U. Then E is a rivial solution of ().

PROOL. Suppose that £ = 1. We have £, = L.J, L; = I J; and E,; = 1.J,. Thus
(+) holds if and only if 7./, = 0. This implies £, = 0 or J, = 0. Then E is either anti-
meromorphic or else £ is meromorphic. The case where £ = { + J can be treated in the
same way. o

We observe that Examples 2-12 and 2-13 suggest to look for solutions of (x) of the
following form

(3.1) E =hS(T +R),

where , R. § and T are meromorphic funclions on U. As a matler of [act, the form (3.1) is
invariant under positive isometry of H? (sce Proposition 3-7) and, surprisingly, we shall see
that every solution of () nust have this form (see Theorem 3-13).
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LEMMA 3-4, Ler E ;. U — C U {oc) be a solution of (%) of the form (3.1). If one of
the functrions k, R, S or T is constant, thern E is a trivial solution of (x).

ProoF, If T or R is constant, then we already know from Lemma 3-3 that £ is a trivial

solution of ().

Suppose that k is constant and set 2 = ¢ € C*. We then have E = ¢5(T + R),
E, = ¢ST,, E: = ¢5,(T + R)+ ¢SR, and Fz = ¢§,T,. Nole that if § were also constant,
then E should be a trivial solution of {x). Hence, 1el us suppose that § is not constant on U.

Thus () holds if and only if
1 S?R, TSR,
—ar=ul -]+ i
ceS Wy 8

Differentiating this with respect to z, we have

S2R TSR
o(5),+ (550), -
St /s % /s

Hence R is constantor (2R, /S ), = (TS?R,/S;), = 0.

Therefore, if R is nol constant, we infer easily that T is conslant, In cach case we see
that E must be a trivial solution of (). We can apply the same argument when S is constant.
This achigves the proof of the lemma, U

We are looking for ron-trivial solutions of Equalion {(x),

PROPOSITION 3-5. Let E: U — CU{co) bea Czﬁmction of the form (3.1). Then I
is a non-trivial solution of (*) if and only if there exist iwo complex numbers a and b, a # 0,

such that

. (b+alh, + ahT,
= e ]
b1 h;
R=—-+4—-- - i
a a (b+al)h,+ahT,
h for any complex numbers «. B .
# g lorany complex numbers . §

Consequently. we have

h ({(b+aD)h, +ahl; h;
E=-—. “ )b T :
a ( 2T, )( Ta +((h+a7’)hz+ahTz

Conversely, for any meromorphic functions h and T on U and for any complex numbers a
andb,a # 0, the function E = hS(T 4+ R). where R and S are defined as above, is a solution

of ().
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PROOF. Let £ = hS(T + R) be a non-trivial solution of (%). Consequently, , R, S
and 7 are non-conslant meromorphic functions on U7, Therefore () is wrillen as

— _{Th,+hT WST,\——— [(h2SRT,\——
(3.2) [Rsz+SRz]+Sf( okl *’):(lh Z)hSQTRZ+(II Z)hssz.

/. 2 1z

Z

Taking the derivalive of the last equality with respect Lo z, we get

2 2¢
STt ) o (0 e+ () R
Z Z Z

kh, A

-
I

Observe that if ((Th, + hT)/h;);, = 0, then we should have one of the following
possibilities:

hS2TR h2ST. HISRT.
(1) ———= isconstanl, orelse (2) (—"“) =( z) =0,
hS’R, hy /, e J,

If the case (1) occurs, we infer that T is constant, Furthermore, if the case (2) occurs, then
W’ ST, /h, and k’ SRT, /h , are constant, so that R is constant. Therefore both cases contradict
the assumption that £ is non-trivial, Hence ({(Th, + hT.)/h ), Z 0. Thus (x) implics

_ h2ST. /hy), ——— hISRT, /h,
A ( 2/he); RS2TR, + ( 2/h)z
({(Th, +hT)/h ), (Th, + BT/ k),
Differentiating this by z, we then gel

(hZSTz/hz)z ) = ( (thRTz/h )z ) :
0= hS2TR, + hS2R, .
(((Thz +hT) R/, (The +hT)/R:) ), °

hS2R, .

Since T is not a constant function, it follows that

( (h28T,/h,), ) ( (hW’SRT,/h,),
=0 and ) =0.
(Thy +hT)/h) /, (Thy +hT) /) /,

Consequently, there exist complex numbers ¢, &, ¢ and d such that

ST, Th, + kT,
=d

= b,
h, Iy i
h2SRT, Th, +hT;
=i +d.
h, b,

Hence we get
¢_ (b+ahhe+ahT;
KT,
_ {d+cTYh; +chT,
T (b+aTh, +ahT,’

H

(3.3)

Nole that we must have ad — be £ 0, otherwise R should be constant.
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Now, we are going 0 look for the necessary and sufficient condition about a, b, ¢ and
d so that E = h S{T + R) is a non-trivial solution of (x), where R and § are given by (3.3).
For this purpose, assume that S and R satisfy (3.3). We infer that (3.2) is written as

(dteny (@+al)y
(hThy, — 2H2T, — Wi Ty;) - (hz(w) +(Th; + hTz)(lfﬁi‘?))
T hT{ad —be)\
= (hT hy — Zh%Tz = hh 1) - (((b +alih; + ahTZ)((.:Tzc))
F4

(ad — be)k

Observe that (hT,h,, — 2]1%1"z — hh T;;) = 0 implies that R and § are constant functions, a
contradiction. On the other hand, (hT; 4, — 2h§ T, — hh T;) = Oifand only if b, /h, —
2h,/h = T, /T,, or equivalently i = —1/(e*1T + a) for certain complex numbers o and
a2. Thus £ cannot have the form A = 1 T + 8)
Since (hT;h;; — ZhETz — hh,T,;) # 0, we have
(d — d(ad —bcWhy + (b — clad — bONThy + kTy)
= [{(b(ad — bc) — Dby, + {alad — be) — a){Th, + khT,)]-T.
Since T is a non-constant anti-holomorphic function, we may deduce
(d —d{ad — bc))h, + (b —c(ad — be)(Th, + hT,) =0,
{(blad — bcy — Ohy + {alad — be) — a){Th, + hT,) =0.

But it is easily seen that if & and 7 satisfy the relation a1k, + az(kT, + Th;) = 0 with
complex numbers «;, o such that @y #= 0 oraz # 0, then & = o3 /(e 2T + «y) for some

complex number a3. This implies that £ is a trivial solution of {(«). Thus we must have
) d—dad—bc)=0, b—clad—bo) =0,
) blad —bc) —c=0, alad—bc)—a=0.

Ttis casy tosee thata # 0, d # 0 and ad — be 5 0. Thus (3.4) leads to
c=abja, d={(1+bba.
Putting these relations into the expression of R, we conclude as promised that

b 1 b
R=_+_- .
a a (b+aTyh, +ahT,

Finally, let us consider any meromorphic functions & and T on U. Let a and & be any
complex mumbers, a # 0. Set E = =S{T 4+ R), where R and S are defined as in the statement.
Then the above proof shows that E is a solution of (x), a

We shall need the following propositions.
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PROPOSITION 3-6. Assume that H = 1 and E : U — C U {oc} has the form as in
Proposition 3-5. Then, up to a multiplicative positive constant. we have
RT,? 1
w= L 5 Gz=fh2Tz.
|(b +aT)r, +ahT,|? + |h.| a
Furthermore, the induced metric and the Hopf function are given respectively by
\hTohyy — 20T, — hh, To|?
lal?|nT,*

ds® = |Ezdz)* = (14 |b+aT|H?|dz?,

& 2hTzhzz —2h2T, — hh, Ty, '
W2T;

Proor. We deduce [rom Proposition 3-5 that

E. = (| +aT)h; + ‘thTzl2 + |k, ‘2) -

ah’T,
I we set
7T

(b + aThy + ab T2 + By 2

then t - E, = (1/a)h>T,. Thercfore, ¢ is a real function such that 7 - E, is meromorphic on U,
Notice that ¢ is a unique real function, up (o a multiplicative constant, with this property. Since
H = 1, we have that wil, = G, 1s a meromorphic function. Hence, up 10 a multplicative
constant, we have

t{z) =

BT 1.5

L, 5 -, G, =wE, = ~hT,.
b+ aTYh, + ahT,|> + |k |* i a
Furthermore, we deduce from Proposition 3-5

w(z) =

hT.h,, — 2h2T, — kh. T,
By = h—2 2 T 2TE R0+ p+aTP).
ah3T,”

Hence we have
hTzh; — 2’12Tz — hh, Tzz|2 242 2
ds* = |Ezdz|* = 2 : 1+ |b+aTH*dz|*.
8% = |Ezdz] PG (1+ |b+al ") |dz]
By a straightforward calculation with Proposition 2-7 and 3-5, we easily infer that
- hThy, —2R2T, — hh, Ty,
@ =72 . > s
BT,
PROPOSITION 3-7. Assume thar H = | and E has the form (3.1). Let J : H> — H?
be a posirive isometry of H? and E the euclidean oriented Gauss map of the immersion Jo X,
Then E has also the form (3.1),

O

The proof, based on Lemma 1-8, is a straightforward computation.
We shall give the Weierstrass representation (g. felz) ol the associaled minimal immer-
sion in B2 in the case where E has the form (3.1).
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PROPOSITION 3-8, Assume that H = land E : U — €U {oc) has the form as
in Proposition 3-5. Let (g, fdz) be the Weierstrass representation of the isomerric minimal
immersion in R associated to X (see Remark 2-8-(3)). Then we have

1 AThy — 20T, — hh, Ty, y
TaT, 2T, @

g=b+al, fdz=

Proor. We define holomorphic functions g and f’ on U/ by

2
G=b+al, f= o Alghe — thz Te —hh: Ty .
al; 2T,

Then the data {7, fdz) define a minimal immersion ¥ of U into R? with induced metric
ds? = |Ez[2|dz|? and the Hopf function @ = 2£,(E), /(1 + E[). Then the associated mean
curvature one immersion X has the same induced metric and the Hop! funclion as those of
X. We deduce that X and X differ by a positive isomelry of II?. Consequently, they have the
same associated minimal immersion in R, We conclude therefore that we can choose g = §
and f = f . This completes the prool of the proposition. O

We now give a meromorphic data for a mean curvature one conformal immersion in H3.

THEOREM 3-9 (Existence of Meromorphic Data). Let U < C be a simply connected
domain and X : U — H® a non-totally umbilic conformal immersion. Let E be the ori-
ented euclidean Gauss map of X. Assume that X has mean curvature one with respect o £
(therefore, Equation (%) as in Proposition 2-1). Then there exist meromorphic functions k, T
on U such that

Th, +hT. h.

3.5 E=h-{—]|T — .
s ( h2T, )( +(Thz+hTz))
Furthermore, up (o a multiplicative positive constant, we have

BT
(3.6) w T

T Thy + RL2 + R

(3.7 G, = KT, .
Up to the same multiplicarive positive constant and an additive complex constant, we also
have

T,

| s i,
. D = — ATh. +hTH-{T - .
PR e O Am e T ( +(Thz+hn.))

Moreover, we obtain

, o |RTphoy — 202T, — hh, Ty |?
(3.9) ds” = |Eydel? = ——— (1 + [TPPdzP,
O

3.10) é— Zh.Tzhzz —202T, — hh, Ty,
) h2T,

il
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(3.11) 1T = Re (D(dz)*) + ds*,

1 5o 4|76
(W Tehze — 2R2T, — hb T L+ TP

and., up ro a rigid motion of R®, we can choose
(3.13) g=T,

1 hT;hy — 2RET, — hh. T,

(314) f=__ LIT i Z4Ig
T, R2T,

where (g. fdz) is the Weierstrass representation of the minimal immersion in R® associared

to X.

il

PROOF. Let ¥ : U — R? be the minimal conformal immersion associated to X and
(g. fdz) the Weierstrass representation of ¥, Tnorder (o prove the relation (3.5), we look for
a meromorphic function k on U satisfying
Behee — 2520, — By
(3']5) f - Gz 7z - ch - lzz )

hz_qg

50 that the map E on U defined by

. s fgh,+k h
E:;,.(—Mf g")(w—(—A . ))
hz.‘k gh; +hg;

is the euclidean Gauss map of a mean curvature one conformal immersion X = (i, 0, &) :
U — II* such that X and X share the same metric and the same second fundamental form.
Assume fitst that such i and X exist. Consequently, X and X differ by a positive isomelry
of H3. Therefore, since £ has the form (3.1), we may conclude with the aid of Proposition
3-7 that £ has also the form (3.1) on U. Thus we deduce from Proposition 3-3 that there exist
two meromorphic functions [ and J on U and two complex numbers ¢ and b, a # 0, such

that
1 b KAV 1S, 1
- L. (b+al)l; +allt, b+al+ z
a 21, b +al, +all,

on /. Now, settingh = I'fa and T = b + aJ, we have

Th,+ hT; hy
E=h-| —57—7MNT T
( BT, )( " (Thz + h'Tz))

as desired. Thus, to prove the relation (3.5), it remains to show that the equation (3.15)
admits a meromorphic solution F on U and that there exists a mean curvature one conformal
immersion X : U — H? satisfying the conditions stated above.

For this purpose, we choose a point zg € U such that ¢(zg) # oo and ¢:(zo) # 0. Set
@ = ﬁz/ﬁ. Then (3.15) holds if and only if

=

(3.16) Gy — @ — 2 4 Fg, = 0.

gz
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Since g,,/g, is a holomorphic function (without pole) in a neighborhood of zp, the equation
{3.16) (with respect (0 ) is regular at 7 = zo. Therefore, (3.16) can be integrated in a neigh-
borhood of zp. Thus we get a holomorphic solution ¢ of (3.16) defined on a simply connecied
neighborhood U ¢ U of zo. Hence, using the relation ¢ = fzz /ﬁ, we get a holomorphic
solution % of {3.15) defined on 7. We shall show that / can be extended to a meromorphic
function on U,

Since ﬁ(zg) # (), we can suppose that h # 0on U'. Moreover, we can assume that gisa
holomorphic map such that g, # 0 on {7. Consider the function £ on U which has the form
(3.1), defined by h and g with complex constants ¢ = 1 and b = 0. Namely,

. ~ (gh,+h b,
b0k () (4 [ o
h=g, ghz + hg;

forany z € U/. We then have

~ hgzhzz - Zh ﬁflzgzz
Bz = h3

(L+1g19).

Thus IE | = | £1{14|g|?), and therefore Ez (z) # 0,00 forevery z € U. We deduce then with
the a1d of Theorem 2-5 that £ generates a constant mean curvature one conformal immersion
X : U - H? whose euclidean Gauss map is E. We infer from Proposition 3-8 that the
Weierstrass representation (g, f Fdz) of the minimal immersion of U into R? associated o X
is given by

N ] hg o — 2"155}% — hhy g,

g=9, [f=- > -

h*g;

Thus § = g and f = f. Consequently, the immersions X and X have the same metric
and the same second fundamental form with respect their oriented euclidean Gauss map. This
implies that X, and X differ by a positive isometry J of H3, thatis, X = J o X g Thus
X can be extended to the whole U as a mean curvature one conformal immersion, since X is
defined on 7. We call again X the conformal immersion defined on the whole U,

Let G be the hyperbolic Gauss map of X, We infer from Proposition 3-6 that G, = h%g,
on U, Thus 22 = éz /g on U. Since G and ¢ are defined on the whole U7, we deduce again
that A can be extended to a meromorphic map on U. Recall that G and ¢ have same order at
any point of U (see Corollary 2-9). This implies that the zeros and poles of GZ fg. on U, if
any, must have even multiplicity, As U is simply connected, using the Monodromy Theorem,
one can show that éz /g; has a well-defined square root meromorphic function on U, Thus
h can be extended to a meromorphic function on I/, which we call again h. Then, by the
analytic continuation, h satisfies Equation (3.15) on the whole IV as desired.

Finally, we show that X is generated by E on the whole U7 and not only on . For this
purpose we set

=1{z € U; h() # 0,00, 9(2) # 00, g:(2) #0, () #0}.
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Observe that I7 \ U* consists of isolated points. Furthermore, nole that E can be extended Lo
a well-defined function on U*, We have E {z) # oc and ﬁg {z) # 0 forany z € U*, since
|Es| = | FI(1 + |g). Now we set X 1= (i, 7, w) : U* — H?, where

g,
|9he + hge | + ||
for every z € U*. A simple computation then shows that & satisfies (2.1) in Remark 2-2 with
£ instead of E.

Since £ # oo on U*, the proof of Theorem 2-3 shows that X : U* — II° is a mean
curvature one conformal immersion having the euclidean Gauss map £ and the hyperbolic
Gauss map G. As X = X on U, we conclude that X = X on U*. Since U \ U* has only
isolated points, we deduce with an argument of continuity that the euclidean Gauss map of X
is £ and X is defined by E on the whole U. That is, for everyz € U

72 g.*

(@i + i)z = (G — DEXD), &) =

”~

@), G, =h@.

w(z) = 7 12 o2
|gh, + hg:|* + B ]
and
~ A ﬁ +£ fl ~ . A o -
b =h (M g+ (L))o, @i = G-,
k=g, gh; + hg;

This shows that the euclidean Gauss map of X is given by (3.5).

Henceforth, (3.6), (3.7), (3.9), (3.10) and (3.11) follow from Proposition 3-6 on the sub-
domain U = {z € U; E{z) # oc). Since U \6r consists of isolated points, we infer that these
relations hold on the whole /. On the other hand, (3.8) follows from Proposition 1-2. Lastly,
we deduce from Proposition 2-7 that K = —|@|2/|E;|* on . Hence, using the expression
of E: (see the proof of Proposition 3-6), we easily find the desired formula for K on U and,
by continuity, on the whole {/. Relations (3.13) and (3.14) follow from Proposition 3-8. This
completes the proof of the theorem. m|

REMARK 3-10. We note that it is possible to verify Small’s formula using our repre-
sentation (see [S]). Indeed, under the notation of the present paper, 7 = g is the secondary
Gauss map and k is equal to /dGd g (see Proposition 3-6). Then the meromorphic repre-
sentation formula implies Small’s formula for null meromorphic map & : M — PSL(2 O):

da db

5 e GE—G GE—E) (a _ /@ g /@)
da db CVdg' T TVdgf)o
dG dG

LEMMA 3-11. Let U € be a simply connected domain and X : U — H* a non-
torally wmbilic conformal immersion. Assume that X has mean curvature one with respect
to K. Consider the meromorphic data b and T of X given by Theorem 3-9. Let zp € U be
a point such that E(zo) # oo. Then h is holomorphic al z = zo. Moreover, h vanishes at
z = zq if and only if T has a pole there whose multiplicity is the same as the order of h at z.
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Conversely, let zo € U be a point where h is holomorphic and such that h vanishes there
ifand only T has a pole ar z = zo whose multiplicity is equal to the order of b at zo. Then we
have E{zp) # co.

Proor, In order to simplify the notation, let us set 7o = 0. Consider the Weiersirass
representation (g, fdz) of the minimal immersion in R? associated (o the mean curvature ong
conformal immersion X : U/ — H?, We have scen in Proposilion 3-8 that we can choose
g = T. Wec deduce with the aid of Corollary 2-9 that T and G have the same order at any
point and, in particular at z = 0. Recall that G, = #°T. (see relation (3.7) of Theorem 3-9),
Since G{0) #£ co (because E(0) # oc) we infer thal G, is holomorphic at z = 0.

Assume thal 2 has a pole al z = 0. Thus k(z) = z”7H{(z), where —p € N* and H
is a holomorphic function at z = 0 with H(0) # 0. As G, = #’T,, we deduce that 7 is
holomorphic at z = 0 and 7, must vanish there. Thus G, must also vanish there with the
samg order as T,. This is impossible, since A is supposed to have a pole at z = 0. Therefore
k i holomorphic at z = 0,

Assume that & vanishes at z = 0. Since G and T have the same order at z = 0, we
deduce that T cannol be holomorphic at this poinl. Therelore, T must have a pole at z = 0.
Thus, T{z) = z9¢(z) and h(z) = z” H(z), where p, —g € N* and ¢t and H are holomorphic
functions with +{0) # 0 and H{0) # 0. Since G, is holomorphic al z = 0, and G and T
have the same order at this point, we must have 2p 4+ ¢ — 1 = Oand 2p + g = —g. Thal
is, ¢ = —p, which shows that 7 must have a pole at z = 0 whose multiplicity is equal to the
order of # there.

Finally, assume that 7 has a pole al z = 0. Thus we have T{(z) = z%(z), where
—g € N* and ¢ is a holomorphic function with #(0) # (. Then the previous argument shows
that 7z must vanish at z = 0 and the order of & there must be equal to the order of T at z = 0.
This completes the prool of the first statement of the lemma.

Conversely, let zg € U be any point, and suppose that /z is holomorphicat z = zo. I[ T
is also holomorphic at z, we deduce from the relation G, = #°T; that G is also holomorphic
there. Therelore, in this case we have £(zg) # co. Assume now (hat 7 has a pole al z = zp
with multiplicity n € N* and that & vanishes there with multiplicity n. We infer [rom the
relation G, = h*7; that G is holomorphic at z9. Consequently, we must have F(zp) # oc.
This achieves the prool. O

Recall that Equation () is a global equation (see Remark 2-2-(3)). Now, consider a
Riemann surface § and let £ and T be two meromorphic functions on § such thath # 1 aT +
#) for any complex numbers e, . Then w = |h°T,|>/(|Th, + hT;|* + |h;|?) defines a
global function on § with isolated zeros and “poles”. Thus Theorem 3-9 leads o a global
represenialiion:

THUCEOREM 3-12 (Representation Theorem). Let § be a Riemann surface and let h and
T be non constant meromorphic functions on 8 such that h # 1f(aT + B) for any complex
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numbers o, B. Set

W2 |? Th, +hT, h,
= Bk (12 T g f. H8
W) = b S AT+ 12T, T \7h, + a7,

and 8* = {z € §; |E;] # 0, 0c). Assume that

(3.17) f W T,dz =0
s

for every closed path y C S on which neither h nor T have poles, that is, the 1-form h>T,dz
has a global primitive G on §. Set

(u+inz) :=(G—wE)Xz), z&8§".

Then the function X = (u, v, w) : §* — H? defines a mean curvature one conformal
immersion whose euclidean Gauss map is E and the hyperbolic Gauss map is G (recall that
S\ 8* is a discrete sel). Furthermore, the geometric quantities of X are given by (3.9) through
(3.14) of Theorem 3-9.

Observe that when § is simply connected, (3.17) means that the function #>7;, does not
have non-zero residues.

Proor. It follows from {3.17) that there exists a meromorphic function G on U such
that dG = h%dT, that is, locally, G, = h°T,. Clearly, the set of zeros and “poles” of w is
contained in the set of zeros and poles of k2, dk, T and dT'. Therefore the zeros and “poles”
of w are isolated points. We set

$ST:={ze8: |E:(2)] #£ 0,00, E(z) # 00, w(z) # 0, 00).
A straightforward verification then shows that
EEZ

wy = —w =

1+ EE

on $*. Hence it can be inferred from the proof of Theorem 2-5 that X is a mean curvature
one conformal immersion of T into f1? whose cuclidean (resp. hyperbolic) Gauss map is /£
(resp. G). Let zg € §*, and set ¢ = T and

1 hTchey — 20T, — hh, Ty,

- L h’T,

We then get | F{1 + | g1%) = |Ez|. Thus (¢. fdz) define a mean curvature one conformal
immersion X of a simply connected neighborhood of zp, say Uy, into H?. Note that when
restricted o the set §T N Uy, Xo and X differ by a positive isomelry of I 3 Henceforth,
X can be exlended Lo any poinl zg € §*. This shows that [or any zg € $%, we must have
w{zo) # 0, co. This achieves the proof of the theorem. a
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THEOREM 3-13. Let U < C be a simply connected domain and E : U — Ca C?
map, which is neither holomorphic nor anti-holomorphic and satisfies

#* Emp=—--+—<E;F;.
e CTNyEE T
Then there exist a holomorphic function h and a meromorphic function T on U such that
Th:+ hT, b
(3.18) B et Al Vg (B Y
2T, Th, + kT,

Moreover, for any point 7o € U, T has a pole there if and only if k vanishes at zp, and T and
h have the same order ar this point.

PROOF, Assume first that Ez(z) # O for every z € U. Then it follows from Theo-
rem 2-5 that E generales a mean curvature one conformal immersion from U into H? whose
cuchidean Gauss map is £, Then we apply Theorem 3-9 1o conclude that there exisls mero-
morphi¢ functions %z and T on U satisfying the conditions.

Assume now thal F; vanishes al some points. Since E is nol holomorphic, the points
where E; vanishes are isolated points (see Lemma 2-3). Set U* = {z € U7; E:z(z) # 0}. Nole
that Theorem 2-5 allows us to construct a C> map X : U — H? such that its restriction o
U* is a mean curvature one conformal immersion whose cuclidean Gauss map is E. Conse-
quently, each zero of E; is a branch poinz (that is, a singularity) of X. Since F is a C° map,
¢ach branch point of X has a well-delined unit normal veclor.

Observe that, beginning on a simply connected domain of U* and using the analytic con-
tinuation principle, we can construct a (possibly multi-valued) map ¥ : U* — R> whichis a
minimal conformal (possibly multi-valued) immersion, locally associated o X, Lel (g, fdz)
be the Weierstrass representation of ¥. Thus ¢ and § are (possibly multi-valued) meromor-
phi¢ functions on I7*,

We claim that ¥ can be extended to a branched minimal immersion from U into R3,
branched at each zero point of E;. Lel zo € U be a branch point of X, that is, a zero point
of Ez. Let D < U be a small round disk centered at zp and such that zg is the only branch
point of X contained in D, We denote again by ¥ the restriction of the (possibly multi-valued)
minimal immersion ¥ on D* = D\ {zo}. Then define the new (possibly multi-valued) map
Y : D* = R3 by selting ¥(2) = limg— o, g2z ¥Yizo + €% (z — z0)) forany z € D*, Note
that the (possibly multi-valued) maps ¥ and ¥ are locally associated to X (restricled to D*).
Therefore they share the same metric and the same second fundamental form. We deduce that
Y and ¥ differ by a positive isometry T of R, Thus, 7 is a translation composed by a rotation
R around a straight line of R*. Up to a positive isometry of R*, we can assume that R is a
rotation around the vertical xz-axis. Thus there exists a real number o with 0 < e« < 1 such
that lima_ 2. a<2r 9{zo+e"(z—20)) = > ¥ g(z) for every z € D*. Henee g(z)-(z —z0) ™%
is a well-delined meromorphic [unction on D*. We want to show thal e = 0.

Since £ is C? al z = zg, we infer that £ and £, both have finite limits when z goes
0 zp. Hence we deduce with the aid of Proposition 2-7 that the expression K (z)ds®> =
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(—4|E,|>/((1 + EE)?) |dz|” is bounded near z = zo. Therefore, X has finite total curvature
in a neighborhood of z = zg. Now, it follows from the proof of Proposition 4 in [B] that
g{z) - {z — zo)~* extends continuously to z = zp. Suppose that e # 0. Then g{z} has a limit
when z goes to zp, which is 0 or co, Up to a positive isometry of R3, we can choose this
limit (o be equal to 0. Thus there exist an integer p € N and a meromorphic function ¥ on D
such that ¢(z) = (z — zo)* TPy (2) with ¥r(zg) € C\ {0). As E is a C? map, we deduce with
the aid of Proposition 2-7 that the Hopf function & is well-defined on D, Since & = —2f¢,
(see Corollary 2-9), we infer that the restriction of £ on D* must have the following form;
F{2) = (2 — z0) ~™¢(z), where ¢ is a holomorphic function on D. Let us set T(z) = g(z). As
in the proof of Theorem 3-9, we can find a meromorphic function # on a simply connected
domain D of D* satisfying the ordinary differential equation
1 hghy — 2h§9’z —hh g,

f=—- 2 :
9z h*g,
Therefore, the data (h, T) define a mean curvature one conformal immersion X: D—H3
(see Theorem 3-12). Since X and X have the same metric and the same second fundamental
form, we deduce that they differ by a positive isometry of H?, and hence X is globally defined
on D (branched al z = zg). Finally, since the hyperbolic Gauss map G of X is well-defined
on D and G, = h2g, on D, we infer that » can be extended to a meromorphic multi-valued
function on D*, with A% having the following form: h%(z) = (z — z0) "% H(z), where g € Z
and H is a meromorphic function on D with H(zg) # (), oc. Nole that the metric ds? must
have a zero at z = zp. On the other hand, Theorem 3-9 shows that

_ |fgzhiz; — thgz - hhzgzz|2
|f2g. |4

ds? (1+[¢/»%)dz) .

Thus the expression A(z) = (hgho; — 2h2 g, — hh g, Kk g:)”)(z) must vanish al z = zo.
Observe that ,
=((0) .-G+ ()G,
h z h gz h 9/,
Recall that #%(z) = (z — zo)? *H{(z) and g(2) = (z — z20)" ™y (z) withg € Z, p € N,

0 « @ < 1, where H and v are meromorphic on D with H (zg), ¥{zo) # 0, co. We deduce
that

A(Z)=_(q—a)(q+2p+af)_ 1 (( 1 )

Ap + @)y {z20) (z — zp)Ptatl i z—2z0)P
Therefore, as 0 < a < 1, A{(z) cannot vanish at z = zp. We deduce that & = 0, that is,
f and g are globally defined on I». Furthermore, since the metric is singular at 7z = zg,
the function f must vanish at z = zp. Thus the map Y extend to a well-defined minimal
conformal immersion ¥ : D — B3 branched at 7 = zg as claimed.

Now, we are going to show that ¢ and G have the same order at z = zp. Observe that
G(zg) # oo, since E(zg) # oo. Recall that fg, = —E, (Ez) /1 + EE) (see Corollary 2-9).
Also, we have the relation | £|(1 + |g|?) = | Ez| proved in Corollary 2-9. Hence the function



56 R. SA HARP AND L. TOUBIANA

| f/E 7| can be continuously extended 0 £ = zp by selting | f/E 7|(zo) = 1 (since g{zq) = 0).
Therefore, we have
E, (Ez) G, (Ez)
fo: = _1 e A — o
+ EE wi{l + EE)

Hence, |G, /¢,| = w(l + EE)-| f/E;|. We conclude that if g, or G, vanishes at z = zg. then
they both vanish with the same order.

Clearly, the discussion above holds for every branch point of X. Thus, ¥ : U — R%is
a well-defined branched minimal immersion with the same branch points as that of X. Thus
the Weierstrass representation (g, fdz) is well-defined on the whole U, and g and G have
the same order at any point of U/ (sce Corollary 2-9 for the regular points of X, and see the
argument above for the branched points of X). Now the proof of assertion (3.5) of Theorem
3-9 ensures that there exist meromorphic functions z and T on U such that

Th, + hT. h,
E=h.-| ——— '+ ———— :
BT, Th, + hT,

The last statement of the theorem as well as the fact that # is holomorphic on U follows from
Lemma 3-11, since £ # oo on the whole {/ by assumption. This completes the proof of the
theorem. O

REMARK 3-14. Assume that X : U — II3 has mean corvature one and let (g, fdz)
be the Weierstrass representation of the associated minimal immersion in R, For any mero-
morphic function W, let us denote by S{W) the Schwarzian derivative of W, that is,

, d (We\ 1/W.\’
S(W) = — =) — = .
dz \ W, 2\ W,

Then we can easily verify the following relation

5(G) = S(g) + & = S(9) —2fg..

oblained by Umehara and Yamada (see [U-Y, 1], (2.6)).
Indeed, we infer from Theorem 3-9 that

2 ) 2
hi’.l _ 4};72 _ 2’1? . TI’.Z TZZZ _ 3 TZZ S((]) — TI’.ZZ 3 TZ’.Z

B R B T, T 212" "Y1, 272’

S(G) =2

Therefore, we have

) 2
Toe 315 +2h“_ .‘E_QE.E=S(G).
7 2I7 h B2 A

ExAMPLE 3-15. We have seen in Example 2-13 that the euclidean Gauss map £ of
the Enneper cousins is given by

Sg)—2fg. =

-
<

E(7) = izeﬂeﬂ(i -1 +?E>
Y
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for any non-zero complex number y . Conversely, consider the mean curvature one conformal
immersion generated by E (see Theorem 2-5), As a verification, we are looking for the mero-
morphic data ¢k, T) stated in Theorem 3-9, and then see that the Weierstrass representation of
the associated minimal immersion is, up to a positive isometry of H3, ¢{z) = z and f{(z) = «,
where & = y 2. This will show that the mean curvature one conformal immersions generated
by E arc the Enneper cousins.

We first call ﬁ(z) = pze 7 /y and f‘{z) =—-14+y/zforanyz € C. Leta and b be
any complex numbers with @ # 0 and consider the meromorphic functions R and § given in
Proposition 3-5. Set E= fzS”{f“ + R). Then a simple computation shows that E = Eifand
onlyifa=»5 = 1/y. Now, we set h(z) = ﬁ(z)/a =yze Vand T{z) =b + af“(z) =1/z.
Then a straightforward calculation shows that

po (TRt REN (o h, .
n2T, Th, + hT,

Then we easily infer that

U RThy — 2HIT, — kb Ty,

— 22
T, 2T, (z) yozo.

We deduce with (3.13) and (3.14) of Theorem 3-9 that the Weiersirass representation of the

associated minimal immersion in R3 is §(z) = 1/z and f(z)dz = —y2z%dz. Fnally, let

I be the euclidean reflection in R with respect to the xp-axis (where (x1, x2, x3) are the
coordinates of R3). Let ¥ : € — R3 be the conformal minimal immersion generated by
(7, f dz). We call (g, fdz) the Weierstrass representation of the conformal minimal immer-
sion ¥ = I o ¥. Hence a straightforward computation shows that g(z) = z and f(2) = «,
where o = 2, and we recognize the Weierstrass representation of the Enneper surfaces.

4. Examples. Letusset U/ = C and choose the holomorphic data k(z) = ¢¥* and
T(z) =b+e* where b, y € C. Define E as in (3.18) in Theorem 3-13, that is,

vy ¥
E(zy=¢e""e "% (bye t+ (1 + -(b+ez+(—))-
@ bye T+ +y) AT
A straightforward computation then leads to F;{(z) = —y (1 + )e?? D21 4 |b + 2%
and (hTzhzz - ZhETz - hhszz) (2} = —p{y + etz
Combining with Theorem 3-9, we deduce that for any ¥ € C\ {—1, 0}, the data (%, T")
give rise to a mean curvature one conformal immersion X : € — H* whose metric is

ds® = |Ez(dz> = |y (1 + y)e 2 (1 + |b + %2 dz)*.

We infer easily that X is a complete immersion for any complex numbers » and y with
y # —1, 0. Let us call {g, fdz) the Weierstrass representation of the associated minimal
immersion ¥ : € — R3. We infer from Theorem 3-9 that g(z) = T(z) = b + ¢% and
() = y{y + De™*. When b = 0, we recognize the catenoid-helicoid family. We deduce
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that, up to a positive isometry of H>, if » = 0, then X is one of the immersions seen in
Example 2-12,
From now on, we assume b # 0. From Theorem 3-9 we gel
le*|?
by + (1 +p)e?2+ |y’
( +iv)z) = (G —wEXz).

First case: y = —1/2. In this case, G, = 1. Thus we can choose G(z) = z. Further-
more, by setling ¥ = —1/2 in the formulas above, we gel

(—be~/? +ez/2)(b Fuf ( 1 )) ;
b — et

[l

1+ b—ei?’

w(z) — eYZ+ﬁ . Gz(z) — 6(2?+1]Z,

~2f2

e
E(r) =
(z) >

w(z) =4

(u+ivz)=z+ (b +e)b—et)+1).

1+ b —e2]?
Tt follows that for any 7 € C, w{z + 2wi) = w{z), E{z + 2xi) = E{z), G{z + 2xwi) =
G{(z) + 2mi and (& + iv){z + 27i) = {(u + iv)(2) + 27i. Thus

X(z+2m1) = X(z) + (0, 27, O

This shows that the surface X (C) is invariant under the horizontal translations (u +iv, w) —
(u + iv. w) + (2mi. 0) of H?. Therefore, X(C) is invariant under a discrete subgroup of
parabolic isometries of I3 isomelric lo Z.

In Figure 1-a, we draw a piece ol a fundamental domain of the surface corresponding Lo
b = 1/2. We draw also three fundamental domains of the same surface in Figure 1-b. Observe
that for each » € C we gel a dual of the Enneper cousins.

FIGURE l-a. FIGURE 1-b.

From now on, we assume y # — 1 /2. Hence we can choose G(z) = Y t1D2 42y + 1), Thus

1 (p+eD)by T +y)e) +}7)
2y +1 by + (1 + y)et|? + |y|? )

(u +iv)(z) = (_,(ZJerl)z(
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Therefore, for any z € C we have
(w+iv)z +270) =V 4 iv)(z), wiz+2mi) =e MY w(z).

For any real number A, let R, be the rotation around the w-axis whose argument is A and let
H, be the homothety with respect to 0 and ratio ¢*. Note that Ry, (resp. H,) is an elliptic
(resp. hyperbolic) isometry of H3.

Second case: Re{y) = 0. Then X(z + 27i) = H_sptm ) (X {(2)). Thatis, X is in-
variant under a discrete subgroup of hyperbolic isometry of H? isometric to Z.

Third case: y € R\ {—1,0,—1/2}. In this case we have X (z + 27i)} = Ry (X {(2)).
That is, X is invariant under a subgroup of elliptic isometries of . Recall that when & = 0,
X is invariant under a reflection in £3 for any real y such that y(y + 1) > —1/4, thatis, X
parametrizes the catenoids cousin (see Example 2-12). This suggests to look for symmetries
when b # (0, forany y € R\ {—1,0,—1/2}. Let R > 0O be a positive real number and let S
be the reflection in H3 with respect to the geodesic plane {(u, v, w) € H w4+ w?=
R?}. The reflection § is a negative isometry (that is, a orientation reverting isometry) of
H3. Observe that if S(X(C)) = X (C), then there exists a orientation reverting conformal
transformation of €, say ¢(z), such that § o X = X o ¢. Thinking of the catenoids cousin, we
lock for ¢ with the following form: ¢(z) = —Z + a. where a € R. Then a straightforward
computation shows that if @ = Log(l + |b|%), then ¢*(ds) = ds. Moreover, the relation
SoX = Xogpleadsto Sx o G = G o ¢, where Sy is the restriction of S to 3,.H>. Thus we
should have

R? _
(G’{Z)) =G{p(2)) =G(-z+a)

for any z € €. Again a simple calculation shows that this condition is satisfied if and only if
R? = ¢°Or*+D 29 4 1)?. Therefore, we take a < R such that e = 1 + |b|? and choose R as
above. Let us define the new immersion X = So X o @. Clearly, X is a mean curvature one
conformal immersion (with respect to the oriented euclidean Gauss map) sharing the same
metric with X. Since the second fondamental form of X is I7 = — Re (y (y + D)(dz)?) +ds?,
we deduce that the second fondamental form of X is also 77, Thus X and X coincide upoa
positive isometry of H?. Nevertheless, since Sa 0 G 0@ = G, we deduce that X and X share
the same hyperbolic Gauss map. Finally, we conclude X = X, thatis, X is symmetric with
respect (o the geodesic plane {(u, v, w) € H?; w? + > + w? = R?}.

(i) Assume ¥ € R\ . Since y is irrational, X is invariant under a subgroup of elliptic
isometries of H? isometric to Z.

(i) Assume Im(y) =Oand y € @\ {0, —1, —1/2). We have again X (z + 2ri{) =
Ryzy(X(2)). Letus set 2y = pjg, where p € Z*, g € N*, p+ 2q # 0 (since y # —1),
p+q #0ince y # —1/2) and p and ¢ without common factors. Therefore, X (z+¢2mi) =
X(z). Now we make the change of parameter £ = %4 and let X : €* — H?3 be the
mean curvature one conformal immersion defined by X(2) = (&, %, @){(¢) = X(z). A
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straighforward computation then leads to

it = et 4 o _(b+§q)(bp+(24+p)§q)+p}
R = £ [p+q bp + 2q + DI+ P2

Ié-lpﬂq
bp + (g + p)ge> + p*

@) = 4¢°

Let U denote the function in the bracket in the formula of (& + i©)(¢) above, that is, (& +
i) = ¢PT . U(). 1Lis easily seen that U(0) = 0 il and only if p + 2¢ = 0. Also,
m; o0 U4C) = —pg/(p + g){p + 2¢). Thus we infer from our assumption about p and
g that U (0) # 0 and lim; .o U{¢) # 0. Furthermore, the Weierstrass representation of the
minimal immersion in R? Tocally associated to X is 5(¢) = b + ¢% and f(5)de = (p(p +
20/ 4q§‘?+1))d§‘. Observe that the Weierstrass data (g, f'd £) define a conformal minimal
immersion into R3 if and only if » = 0. When b = 0, we gel the catenoids. Nevertheless,
when b # 0, the data (§. fd) define a singly periodic minimal immersion into B3, More
precisely, (7, fd¢) defing a minimal immersion of C* into the quotient space R3/Z whose
total curvature is —4mq. We deduce that X has total curvature equals to —4m¢. Furthermore,
as G(C) = (g/p + ¢)c"™4, we infer that cach end (0 and o) is a regular end, From the
expression of (i + iv)(¢) and the observation aboul the function U7 (&) ., we deduce that
¢ach end (urns |p + ¢| tmes around the w-axis, That is, the restriction of the orthogonal
projection on the (. v)-plane (0 each end is a |p 4 ¢| covering map. Recall thal theses
surfaces are symmelric with respect 10 some geodesic plane (see the discussion above in the
beginning of the third case). Then, il is casy L0 see that this geodesic plane is {(i. v, w) €
H w407 + 0w = R?) with R? = 1714 . ¢? {p + q)°, where ¢ is the posilive real number
such that 77 = 1+ |b|> Namely, we have (Sg o X)(Z) = X(¢/ ) forevery £ € C*, where S
is the reflection about the half-sphere in H? centered at 0 and radius R. Tn Figure 2 we draw
the half part of the surface with b = 1, p = ¢ = 1. See also Figure 3 withbh = 1, p =2 and
g=1

Special case: |p 4+ ¢| = 1. In this case, since the orthogonal projection (o the (i, v)

FIGURE 2.
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FIGURE 3.

plane restricted to each end is an injective map, we deduce that each end is embedded. We
conclude that X is a mean curvature one conformal immersion of €* into H> with two reg-
vlar embedded ends and with finite total curvature. Observe that these surfaces are different
from the immersed catenoids cousin, since they are locally associated to some singly periodic
minimal surfaces of R® and not to a catenoid (recall that b % 0). We can also infer from
the expresion of (i + i0)(¢) that they are not rotational immersions. Finally, we infer from
Theorem 2-3 of [SE-T, 1] that each end is asymptotic to a catenoid cousin, in both euclidean

and hyperbolic meaning. See Figures 4, 5, 6, 7 and 8, where in each case we draw a half
surface with b = 1.
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FIGURE 8. p=—-6,¢g="1. FIGURE 9. p=-6,g="17.

We draw in Figure 9 a piece of the other hall part of the surface seen in
Figure 8.

FIGURE 10.

When y € @\ {0, — 1, —1/2), we observe that these surfaces were classified by Ume-
hara and Yamada [U-Y-1, Theorem 6.2]. Their symmelry aboul a geodesic plang has been
¢stablished in an alternative way by Rossman, Umehara and Yamada [R-U-Y, 3]

Fourth case: Tm (y) # Oand Re(y) 7= 0. Inthis case, X (z + 2wi) = (H_4pTn ) ©
RynRre(p1) X (z). Thalis, X is invariant under a discrele subgroup of screw motions of H?
isometric to Z, See Figure 10, where y = —1 +iand b = 1.

REMARK 4-1, (1) Using the same arguments as in Example 2-12, we can state the

following observalion about the asymplotic boundary of X (C);
(i) When Im () # 0, then 8 X (€) = 301>,

(i) When y € R\ {—1.0,—1/2}, then doe X (€) = {0, co}.

(i1i) When y = —1/2, then 3, X (C) = {o0}.

(2) Recently, Umehara and Yamada informed us that some of the above examples were
known by them (personal communication). Nevertheless, the [ull geomelric description we
gave here is new.
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(3) Ttis worth mentioning that the authors have given in a previous work (see [SE-
T, 21) familics of examples of complete minimal surfaces in H> invariant by a subgroup
of discrete rigid motions (bul not invariant by a one-parameler continuous family of such
subgroups), namely a subgroup of ¢ither of the following isometries: hyperbolic, parabolic,
elliptic. The techniques there are quite different, and are based on geometric analysis. That is,
a combination of hyperbolic geometry with PDE methods, which enable us some flexibility,
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