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Abstract. A complete list of the monodromies of degenerations of genus three which
are not realized as the monodromies of any hyperelliptic tamilies of genus three is given. We
also prove that all the other monodromies of genus three are realized as the monodromies of
certain hyperelliptic families.

Iniroduetion. Let ¢p: § — A be a proper surjeclive holomorphic map from a non-
singular complex surface S (o a small disk A := {r € €| |t| < &} such that ¢~ '(r) is a
nonsingular curve of genus ¢ > 2 for each t € A* = A\ {0). We call (¢. S, A) a de-
generation of curves of genus g. If all ¢~ (1) for ¢ € A* are hyperelliptic curves, we call
(¢, S, A) a hyperelliptic family. We set X := ¢~'(0) and call it the special fiber of §. If the
reduced scheme ol X has normal crossings as singularities and any (—1)-curve in the special
liber interseets the other components al al least three points, (¢, §, A) is said 10 be normally
minimal. Two degenerations (¢, S, A) and (¢, §', A" are said to be ropologically equivalent
if there exist orientation-preserving homeomorphisms ¥ : § — §7and ¢/ : A — A’ satisfying
¢ oy =7og.

Let 7, := {normally minimal degenerations of genus g }/~, where ~ is the topological
cquivalence. For an element of 7, we can uniquely determine the topological monodromy
(sometimes called the monodromy. for short) as a conjugacy class in the mapping class group
of genus g. The monodromy of a degeneration is a conjugacy class ol a pseudo-periodic map
ol negalive type (cl. [MMI1], [Nil], [Ni2], [Im], [ES], [ST], [AMOQ] ete.). Conversely, any
conjugacy class ol a pseudo-periodic map of negalive type is realized as the monodromy of a
certain degeneration (cf. [MM2]). In [Al], using the theory of Harvey and Wiman (cf. [Ha],
[Wi]) and the list of the stable curves of genus three in |F], we classified the monodromies of
degenerations of curves of genus three together with their topological types of moduli points.

In this paper, we completely classify the monodromies of degenerations of genus three
that cannot be realized as the monodromies of any hyperelliptic families of genus three (The-
orem 1.8). Moreover, we prove that all the other monodromies of genus three are realized as
the monodromies of certain hyperelliptic families. For the classification, we define an opera-
tion called the “inverse of Horikawa’s canonical resolution”. Using this operation, we easily
see that the closure of the hyperelliptic locus H3 in the Deligne-Mumford compactification
M of the moduli space of genus three curves does not intersect the strata of the stable curves
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of types (D), (H), (), (M), (O) (cf. Corollary 1.6). In order to prove the existence of hyper-
elliptic families with monodromies not listed in Theorem 1.8, we give, for cach monodromy,
the defining equation of a hyperelliptic family with the monodromy,

When we deal with the monodromies of hyperelliptic familics, we need to deal carefully
with the data of monodromies called the screw number.,

The conjugacy ¢lass of a pseudo-periodic map f: X, — X of negative type of genus g
(i.¢., the monodromy of a degeneration) can be determined by the following data (cf. [MM?2]);
(i) an admissible sysytem of cut curves C = [ [C: on I, (ii) an action of f on the oriented
graph induced by the admissible system, (iii) the valency data of the stabilizer of each com-
ponent of X\ £, (iv) the screw number of f around each neighborhood of C;.

For example, there exist conjugacy classes [ fi1] and [ f2] of pseudo-periodic maps of
negative type such that [ 1] can be realized as the monodromy of a hyperelliptic family but
not [ f>], although their data (i), (ii) and (i11) ceincide.

In Section 1, we first classify the monodromics among those listed in [AT] that cannot be
realized as monodromies of any hyperelliptic family of genus three (cf. the list in Theorem
1.8). More precisely, for each monodromy [ f] listed in Theorem 1.8, we prove that any
family whose monodromy is [ f] cannot be obtained by Horikawa’s canonical resolution of
any double covering of P x A. We also show in Theorem 1.8 that all monodromies in
[AT] not listed in Theorem 1.8 can be realized as the monodromies of certain hyperelliptic
families. In Section 2, we prove this by constructing families whose monodromies are not
listed in Theorem 1.8,

In this paper, We adopt the same terminology for topological monodromics of genus
three as in [AI].

The author thanks Professors Tadashi Ashikaga, Kazuhiro Konno, Masanori Ishida,
Tatsuya Arakawa, Takeshi Kajiwara and Shigeru Takamura, for their useful advice and valu-
able discussions. He wishes to express his special gratitude to Professor Tadao Oda for his
continuous encouragement.

1. Possibility for the existence,

1.1. Inverse of canonical resolution. We first review Horikawa’s canonical resolution
of singularities appearing in double coverings of a surface (cf. [Hol, §2]). Let¢: S — A be
a normally minimal hyperelliptic family of genus g. By the same argument as in [Ho2, §1],
we see that § is bimeromorphic to a double covering ¥o: Sy — Wy := P! x A branched
along a divisor By of Wy. More precisely, there exists a line bundle Fy on P! x A such that
the line bundle [ Bp] associated to By is isomorphic 1o F(‘)82 and that Sp is realized in the total
space of Fp as a double covering of P! x A. Let &g be the second projection of Wy, We set
Iy =my 1(t), By := By — Iy when [ is a component of Bg, and By := By otherwise. The
pair {Sy, By) satisfies the following conditions:

(i) The intersection number By - [ is equal to 2g + 2.

(ii) If the local intersection number [ p(Bo, Ty 1(t)) of By and [ at P is greater than
one, then P is on £y,
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We define 1;, %, mi, Bi, Bi, F;, I}, F; and v; inductively as follows: Let 7 be the
identity map of Wy, We choose a bad point P;_1 on B;_;, that is, P;_; is a singular point
or satisfies Ip._, (Bi—1, (To © - -+ © Ti—1}*[0)ed) = 2, where B;_; is the strict transform
of Byby o0 -+ o Ti_y. Let ;1 Wi — W;_; be the blowing-up at Pi_;. We denote the
multiplicity of Bi_j at Pi_j by mp,_,. Let E; be the exceptional set of 7;. We define I3
as the reduced scheme of (rg o -+ 0 7—1)*To. We set B; = 1/'Bi_1 — 2[mp_, /2]E; and
F;i=1t*Fi_y —mp,_ /21E;, where [mp,_ /2] is the greatest integer not exceeding mp, /2.
Since [B;] = Fi®2, we can take a double covering v; : S; — W; branched along B; in the
total space of F;, and naturally define a bimeromorphic map %;: 5; — S;—1 (cf. [Hol, §2]).
We set m; = m;—1 o 1;. Repeating this process at all bad points, we obtain a sequence of
blowing-ups W, O, 4 Wy satistying the following properties:

(a) B, is nonsingular.

(b) @ :={1r10---015)*({p) and the strict transform of By intersect each other trans-
versally.
S, is nonsingular by (a). The reduced scheme of the special fiber of S, is a normal crossing
divisor by (b). We obtain the original normally minimal model ¢: § — A by the composite
of the blowing-downs of suitable (—1)-curves successively on S,. We call the above process
Horikawa’s canonical resolution (the canonical resolution, for short). In this paper, we always
use r as the length of the sequence of the blowing-ups that satisfies the conditions (a) and (b).

Conversely, choosing a component £, of {(r1 o --- o 7,)*{Ip) whose self-intersection
number is —1, we consider the blowing-down r/: W, — W/_, which contracts E] to a point
P'. We set B, := B, — E! when E! is a component of B,, and B, := B, otherwise. Let
mps be the intersection number E] - B, Since (7)) (B + 2[mp:/2]E}) is isomorphic to
()4 (Fr + [mp /2] EL)®?, we can take the double covering ¥/ _,+ S _, — W/ _, branched
along (t/), B, and naturally define a morphism 7/: S, — S7_;. Repeating this process, we
finally obtain a sequence of blowing-downs W, LGN W/ 5y W, and a double covering
v S, = W) = P! x A such that 5p is bimeromorphic to S,.. We call this process an
inverse of Horikawa’s canonical resolution. Note that if the multiplicity of a component E
of (t1 o -+ - o 7,)* I 18 one, we can find an inverse of Horikawa’s canonical resolution such
that {t] o -+ o /). E is P1, i.e., we can consider (] o -+ o t)).E t0 be Ip. We call this
an inverse of Horikawa's canonical resolution associated to E. Let C be a prime divisor
of S that is a component of ¢~1(0). Let Z be the set of points that are the images of the
exceptional curves of £: S, — §. Let [7(C) := v, o T-1{C — (C " Z)) denote the closure
of Y, 0f ~HC—(CNZ))in W,. II(C)is alsoa prime divisor on W,. Assume that C’ is another
component of ¢~ (0) satisfying [7{C)N IT(C") = @. Since the dual graph of @ is connected,
there exists a subdivisor Do = 3 a; E; of @ that satisfies the following conditions (we use
the same symbol E; for the strict transform of E; on W,):

(i @ = Do and @ # Deer + E; forall E; (a; # 0).
(i) Supp({T{C) N Dccr # B and Supp{IT{(C’)) N D # B.
(iii) Deo # H(C) and Doy # TT{CH.
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(iv) Supp{Dc¢) is connecled.,

Since the dual graph of @ has no loop, De¢r 15 uniquely determined. We sel Do = 0 when
IT(C) intersects IT{C". We call the divisor Dec: the bridge between IT(C) and IT{C").

1.2, Periodic case. Lel A — A be a lolally ramified cover of degree d branched
at the origin. Let Sy be the nonsiglular model of § x4 A’ and ¢4: S — A’ the natural
morphism, Let f be a representative of the monodromy of (¢, S, A) (namely, f is a pseudo-
periodic map and ils conjugacy class [ f] in the mapping class group is the monodromy of
(¢, S, A, Then the monodromy of (¢, S7. A" is [ £4]. Tn Lemma 1.4 of [AT], we classified
the conjugacy classes of periodic maps of genus ¢ (1 < ¢ < 3). The data for the conjugacy
class of a periodic map [ ] consists of two invariants: the period and the total valency. The
period s is the smallest positive integer such that 7 is isotopic to the identity.

We introduce the notion of the valency originally defined by Nielsen ([Ni11). By Kerch-
hoff’s theorem (cf, [Ke]), for each periodic homeomorphism £, there exist a Riemann surface
%, of genus ¢ and an analylic automorphism f: Xy — Xy iso_topic to f. For each point P
on X, we denote by rp the cardinalily of the orbit of P under f, andletip = n/r p. Leldp
be the smallest nonnegative integer such that £7* is the rotation of angle 2z 8p /I p near each
pointin the orbit. Denole by sp the smallest positive inleger satisfying dpsp = 1 (mod Ip)
ifép # 0, and set sp := 0 when dp = 0. The symbol sp /1 p 1s called the valency of the orbil
of P,

Note that the valencies of all but a finite number of orbits are zero, The set of the pos-
itive valencies is called the roral valency of f and expressed as the formal sum Yspflpof
symbols,

We define the total valency of a periodic homeomorphism f as the total valency of . 1t
is well-known that the conjugacy class of a periodic map is determined by its period and total
valency.

For instance, (1) in [AL p. 202], n = 14; 11/1445/7 + 1/2 means that there exist three
orbits Q7 = {P1), @z = { P>, F2(P2)}, and O3 = {P3, F2(P3),-- -, FO(P3)} such that f is
the rotaion of angle 27 x 9/14 near Py, 2 is the rotaion of angle 277 x 3/7 near each point
in @ and f7 is the rotaion of angle 7 near each point in (5.

We use the same symbols as in [AT p. 202 and p. 203]. To avoid confusion with another
number in another paragraph in [AL p. 203], we denote for example by (i1) the monodromy
(D in [AL p. 202], »n = 14; 11/1445/7+ 1/2.

Let § be a family of genus three with periodic monodromy (i1) and £ as above. Taking
a base change of degree seven, we obtain a family §7 — A whose monodromy is a periodic
map with i = 2, 12+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2, because the points in @y and O3
are the fixed points of the involution f7. Repeating this caleulation for all periodic maps of
genus three, we obtain the following:

LEMMA 1.1. By taking a base change of suitable degree, all periodic maps of genus
three are obtained from those with
(i) mn=14. 11/14+5/7+ 1/2,
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7 n=12, 11/12+7/124+ 1/2,
({9 n=12, 11/12+3/4+ 1/3,
(i13) n=9. 8/94+4/9+2/3,
(200 n=38, 1/8+5/8+ 1/4,
(i22) n=8, 3/8+3/8+ 1/4,
(28) n=7 1/7T+2/7+4/7,
(44 n=4.¢9'=1,1/2+41/2,
(i47) n=2,¢'=2and I1: Ty — Xy is an unramified covering.

PrROOF. We set my = (1), my = (i7), mo = (i9), w3 = (i13), my = (20),
moy = (122), mog = (i28). Then, by elementary calculations, we obtain the following
equations:

(ml)z = (i31),

)6 = (i29),
gzi)“’ =((i26) ;
(m7)? = (i33).
(m7)° = (i40).
(mg)” = (il1),
(mgj 0 _ (i35) j
(m13)° = (i175,
(m20)* = (137),
(m)? = (123),

(m1)® = (i3).,

(m1)" = (i43),
(mpH = (4,
(m7)* = (i39),
(mo)? = (i34),
(mo)® = (i46)

(mo)!! = (i10)
(m13)® = (i42),
(man)?* = (il9),
(mz)! = {(i21),

mD* = (125),
(m® = G30),
(m1? = (i32),
(m7)! = (i45).
(my)? = (i36).
(mg)’ = (i12),
(11213)2 =(il6),
(m13) = (il5),
(m)3 = (124,
(ng)3 = {i27).

(m1) = (i6),
(m1)? = (i5)
(m)? = (12),
(m7) = (i8),
(mg): = (i42),
= (i41),
Eﬁi)“ =(2118> :
(m13)® = (il4),
(m22)® = (i38) ,

O

LeMma 1.2. Let E be a component of (11 0 ---
greater than or equal to two. Assume that E intersects at least three distinct components Ej,

o 1) (1) whose multiplicity a is

Ei, Epof (tio--07)"(10). Let E,}. (i = 1, 2, 3) be mutually distinct maximal connected
subdivisors of (t10-- otV (1 0) such that their supporis do not contain I and that E = By
In any inverse of the canonical resolution, at least one of the E 5 G =1,2,3) is contracted
before I,

PROOCF. Let 7+ be the blowing-up such that the strict transform of £,: by 1 10---071;
is . 1f none of the £ i (i = 1,2, 3) are contracted before £ in any inverse of the canonical
resolution, three distingl nonzero subdivisors (1 0 -+ ¢ t,»)(L?T iy = 1,2, 3) mlersect al a
point on W, However, considering the process of the canonical resolutions, we see thal
the singularities of the reduced scheme of (11 o - -+ o 7,)*(I}) are ordinary double points for
all s, a contradiction, a

CoRrROLLARY 1.3, In the notation as above, there exists a subdivisor D of
(t1 0+ 0 T)*(Io) such thatone of E;,. E},, E, coincides with aD.

PROPOSITION 1.4. There exist no hyperelliptic families whose topological monodro-
mies are (19), (i10y, (i11), (112), (i13), (i14), (i15), (i16), (117), (i18), (119), (i20), (i28),
(134), 135). (136), (137). (141). (i42).
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PrROOF. By the argument in the proof of Lemma 1.1, we see that by taking a base
change of suitable degree, the periodic monodromies listed above become one of the [ol-
lowing: (28 n = 7; U7+2/7+4/7, 37y n = 4; 1M4A+14+1M4+1/4, 42) n = 3;
13+ 1/3+ 1/3+ 1/3+2/3. Thus, it suffices to prove that there exist no hyperelliptic families
whose monodromigs are one of them,

Assume that there ¢xists a hyperclliptic family § whose monodromy is (128). Let Co.
C1, Cz, C3 be the components of the special fiber of S whose multiplicitics are 7, 1, 2 and 4,
respectively, and Cp intersects Cyp, Cz and Cs. Since their multiplicities arc distinet, I7(C;)
are all distinct. Since the multiplicity of each [7(C;) is nol a multiple of seven and the bridge
Dy, intersects I7(Cq) ala point, Lemma 1.2 implies the nonexistence. Case (i42) is similar
to Case (128).

Assume that there exists a hyperelliptic family § whose monodromy is (i37). Let Chp,
Cl1, ..., C4 be the components of the special fiber of § whose multiplicities are 4, 1, ...,
1, respectively. TC TT(Cp) is a component of By, IT{Cp) interscets at least four components.
Tt contradicts Lemma 1.2, Thus we may assume that 77{Cq) 1s not a component of B, with
multiplicity four, IT(C} = IT(C>) and 7T(C3) = [1(C4) with multiplicity one, respectively.
If the bridge D¢, ¢, intersects B, or contains a component of B,, ¥*{Dc,c,) is connected. Tn
this case, T (D)) 15 a point, and Cp, Cy and Cz inlersecl at a point, a contradiclion,
Thus, if Dg,c; # 0, all components of Dg,¢, are not components of B, and do not infersect
B.. Since the multiplicities of the components of ¥ (Dg,e,) are greater than or equal (o
five, the multiplicitics of the components of D¢, ¢, are greater than or equal Lo five, Then,
by any inverse of the canonical resolution, D, i$ contracted before IT(Cp) and IT(Cy) are
contracted. It means D¢, ¢, = 0 because, by our definition of the canonical resolution, we do
nol blow up at non-bad points. By the same argument, 77(Cy) intersects f7{C3) al a point.
Thus, there exists no component of (r1 o- -+ o 7,)*({ ) whose self-interseclion number is —1,
a contradiction. 0

1.3. Nom-periodic case. By the semistable reduction theorem (cf. [DM]), there exists
a branched cover A" — A totally ramified over the origin with degree o such that 4 — A’ is
a semistable family. We call it a semistable modelof ¢: § — A. Let S¢ — $' be a composite
of the blowing-downs of {—2)-curves so that 5’ is free [rom (—2)-curves. We call §' — A’
a stable model of ¢: § — A. We sometimes call the special fiber of a (semi)stable model
of ¢: § — A the (semi)stable model of the special fiber of ¢p: § — A. We introduce the
weighled graphs (A) through (O) as the dual graphs of the stable curves in Table 1 (cI. Table 2
in | Al]). A vertex v corresponds to a component of a stable curve and an edge corresponds o
an inlersection ol two components. Let g(v) and p(v) be the genus and the number of singular
points ol the component v, respectively. The number inside a small circle in Table 1 means
g(v) + p(v). We omil the number when il is zero. For instance, the graph (B) represents
six stable curves, that is, »; has genus 7 and 2 — 77 singular points while v> has genus is
and 1 — 77 singular points (0 < i) < 2, 0 < i2 = 1). We write the stable curves B;;,
(0 < =2, 0=<i> = 1) forshort. Figures (A) to (O) in Table 1 can be regarded as the
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dual graphs of stable curves of genus three. Furthermore, if we replace cach edge of these
graphs by a chain of (—2)-curves, these graphs can be regarded as the weighted dual graphs
of semistable curves of genus three. We call a chain of (—=2)-curves a P'-chain at the edge.
The number of components of a P'-chain is called the length of the P'-chain,

PrROPOSITION 1.5, There exists no hyperelliptic family of genus three whose special
fiber of the stable model has a ropological type of either (D), (H), (T), (M) or (O) in Table 1.

TABLE1. Stable curves of genus 3.

(A) (B) ) (D)
¥ i, ik
& G0 Deg O ® “
£l 2| e £3
28 i (5] A U3 v
2
vo
(E) (F) G
£ e3 €1 ¢ 1 €3
o v i Uz €2 I 72 CI 3
(H) (I) (I
€1 e i
|
&2 =
o 23 A €3 [ €3 £4
1 2 v1€3 e A.
v 2
(K) (L (M)
v3
(3
I & / 4
ckBo A
vy 1) () s (5}
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Proor, Since the degeneration oblained by a base change of a hyperelliptic family is
a hyperelliptic family, we may assume the hyperelliptic family ¢: § — A is (semi)stable,
The vertices of the graphs are regarded as the corresponding irreducible components for the
simplicity of notation,

Assume that there exists a hyperelliptic family whose special fiber is (D). Since the mul-
tiplicity of each v; is one, IT{1;) is not a component of By, Since v (1 <1 < 3) inlersects vy
al a point, the bridge Dy, between IT(w; ) and 77 (v4) inlersects vy al one point P;. Moreover,
cach P; is contained in B,. Tt means that v4 15 the double covering of P! branched at least at
three points. This contradicts the fact that vy is P!,

Assume that there exists a hyperelliptic family whose special fiber is (H). 77(vq) docs not
coincide with IT{v2), because vq is not homeomaorphic (o v2. Since vy is connected with w2 by
three P'-chains, there exist at least two bridges between 77 (v ) and TT{v3), a contradiction,

Assume that there exists a hyperelliptic family whose special fiber is (T). Since vy is
nol homeomorphic (0 v2, we have IT(v2) # IT(v3). IT(v2) intersecls Dy, al a point on
B, because » is connected with v3 by a P-chain. Since 17 {v2) intersecls By, we see thal
M(v1) # IT{v2). Since vy is connected with v» by three Pl-chains, there exist at least two
bridges between IT(v)) and 77 (v»), a contradiction,

Assumge thal there exists a hyperelliptic family whose special fiber is (M), Since the dual
graph of & has no loop, we have I7(v1) = IT(m). Since IT(v) # [T{v3), there exist at least
two bridges between IT(v3) and I7(v1), a contradiction,

Assume that there exist a hyperelliptic family whose special fiber is (O). We may assume
IT(v) = H{v) and T (13) = {v4). In view of the configuration of (O), there exist at least
two bridges between f7(v1) and f1(v3), a contradiction. O

COROLLARY 1.6. Let M3 be the Deligne-Mumford compactification of the moduli
space of curves of genus three. The closure of the hyperelliptic locus H in M3 does not
intersect the loci of the stable curves whose lopological types are (D), (H), (1), (M) and (O).

PrOOI. Let C be a stable curve whose moduli point is on H3. According to [HM,
Theorem 3.160)], there exists an admissible double cover w: C — B of a stable 8-marked
curve B ol genus 0. In the prool ol Proposition 1.5, we showed thal we cannol construct
stable curves of type (D), (H), (I), (M) and (O) as a double cover of genus () curves. |

PROPOSITION 1.7. There exists no (semi)stable hyperelliptic family whose special fiber
of the stable model has a topological type of either (E), (F), (G), (J), (K) or (N), if the following
conditions are satisfied:

(i) The length of the P'-chains at ey and ey are mutually distinct in the cases (B), (F)
and (G).
(i) The length of the P'-chains at e3 and ¢4 are mutually distinct in the cases (J) and
(K).
(i)  The length of the P'-chains at es and eg are mutually distinct in the case (N).



MONODROMIES O HY PERELLIPTIC CURVES 9

ProoF. Tf there exists a family whose special fiber is (E) or (G) satisfying the above
condlition (i), then we see that 77(w) £ IT(v2) and there exist al least lwo bridges belween
IT(in) and TT{»3), a contradiclion. In the case (F), considering the brideges between IT(w3)
and 7 (v4). we have the same contradiction. By the same argument, we can prove the non-
existence of families with monodromies (1) or (K) satisfying the above condition (i1).

We assume that there cxists a family whose special fiber is (N) satisfying the condition
(i11). Assume that I7{v1) = IT(w2). Since @ has no loop, we may assume that I7(m) =
IT{wy). From the condition of (ii1), we know that D, ., # Dy, , although D, ... and D, are
the bridges between [7(v;) and fT(v3), a contradiction to the unicity of the bridge. Thus, we
may assume that I7(v1) 5 fT(v2). Since & has no loop, we may assume that 77 {vy) = TT(m3)
and T(v2) = {T(va). In this case the double covering v (Dy, ) must be two distinet P
chains between vy and va. On the other hand, ¥*(D,,,,) must be two distinet P'-chains
between vy and vy, Since Dy, = Do, ¥ (Dye,) must be four distinet P!-chains, a
contradiction (o the fact that v is a map of degree (wo. o

Choosing a topological monodromy, we define an integer — K, for cach cdge as the sum
of the valencies and the screw number at the edge ([MMI1], [AL p. 201]). These integers play
a very important role when we deal with the monodromies of hyperelliptic families. In the
[ollowing theorem, ¢ denoles a nonnegative integer.

THEOREM 1.8. There exist no hyperelliptic families satisfving the following condi-

Hons:
(i) The topological type of the stable model is one of the types (D), (H), (1), (M) and

(0).

(1) The topological type of the semistable model is one of the types (E), (F), (G), (1),
(K), (N) satisfving the conditions (1), (1) and (iil) in Proposition 1.7.

(1ii)  The monodromy satisfies one of the following:

Azt (19), G10), (111), (112), (113), (114), (115), (116), (117), (118), (119), (i20),

(128), (134), (135), (136), (i37), (i41), (i42).

An: (i), (11i3), (mi7), (i1i9), Giil 1), (ii113), (a114), (11116), (1118), (iii28).

Ar: (viiid), (viiil2).

Ap: (xv2), (xv7).

B (i =0, 1)V = {(viid), (vii7), (viid)}.

Boi (i =0,1): V) = (xiv3).

Ci11- Cro1, Com: 1d, Va = {(vad), (va5)).

Cii1. Coor:  1I(1,1) V3 = {(vb1), (vb2)}.

En: IO, Vi = {{vbD}, Va = {{vbl,3,5)}, K, =2¢ — 1.

Eqp IO, Vi = {{vbD)}, Va = {{vb2, 4, 6)}, K., = 2c.

Ep: 1{0.1), V1 = {(vbl, 3,5)}, V2 = {(xiibl)}, K, =2¢ - 1.

Ew: I01), Vi = {(vb2, 4,6)}, V2 = {(xiib2)}, K, =2¢c+ 1.

Ep: 1(0.1), V1 = {(vb2, 4, 6)}, V2 = {(xiibl)}, K, = 2c.

Ewp: 1I01), Vi = {(vbl, 3, 5)}, V2 = {(xiib2)}, K, = 2c.
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Foo: TI(0,1), Vi = V2 = {(xiibs)}, K,, =2¢ — 1.

Foo: TI(0,1), Vi = {{xiibs1)}, V2 = {(xiibs2)), 51 # 52, Koy = 2¢.

Fij(i,j=0,1y TO0.1), K, =2c— L

Gu(i=0,13: IO, Vi={(bl, 3.5}, K, =2c—1.

Gu(i =0, Ly IO, Vi = {(vb2,4,6)}, K., = 2c.

Goi(i =0, 1); TI0,1), Vi = {(xiibD}}, K., = 2¢ — 1.

Goi(i =0, )2 TI0,1), Vi = {(xiib2)}, K., = 2¢.

Jio T(L4), Vi = {{vbl, 3, 5)}. K, = 2¢.

Jii (LA, Vi = {(vb2,4,6)}, K, =2c— 1.

Jio T(LG), Vi = {(vbl,3, 5)), K, =2c— 1.

Jir T(L6), Vi = {(vb2, 4, 6)), K, = 2c.

Jo: TI(L4), V1 = [{xiibl)), K, = 2c.

Jor TI(L.4), V1 = {(xiib2}), K, =2c— L.

Jo: T(L6), V1 = {(xiibl}}, K,, =2¢ — L.

Jo: T(1.6), V1 = {(xiib2)}, K., = 2¢c.

Ki(i=0,D)T(1,4), K, =2 K; (i =0, DT(LE), Ko, =2¢— 1,

Moreover, all monodromies listed in [AT] except those listed above can be realized as
monodromies of certain hyperellipric families.

PrROOF. We prove the existence of the families by giving examples of the equalions
in Section 2. Since we have (0o many cases, we wrile down the prool of nonexislence only
for several typical cases. We call a subdivisor Z of the special fiber a Pl-chain if all the
components of Z are nonsingular rational curves and its dual graph is linear.

Assume thal there exists a normally minimal hyperelliptic family whose topological
monodromy is Aa: (i1i2). Let X = 4Cy + 8C1 + T7C2 +6C3 + 5C1 +4C5 + 3C + 207 +
SLi+2Ly+ Z1+- -+ Zj be the special fiber of the family. C;, L;, Z; are all ralional curves.
Ciintersects Ciq, and C; - C; = 0l |i — j| = 2. Cy intersects Lq, and Ly intersects Lo.
Zy + -+ Zy is a Pl-chain comnecting C7 with L». Since the multiplicities of Cy, C» and L
are distinet, I7{C1), IT(C>) and IT(L) ar¢ all distinct. Moreover, by Lemma 1.2, we see that
IT(C1) 1s a componenl of B, with multiplicity four. Note that D¢, ¢, +4IT{C1) + D¢, 1, is the
bridge D, and Ty (De, 1)) = 8C1. On the other hand, since X —4Cy —8C1 —7C2—5L,
intersects Cz and L1 at a point, respectively, the bridge D,y at least contains f7(Lo). Thus,
L» is a component of 7 (y'{ D¢, 1, ), a contradiction.

In the cases Aa: (iii3), (iii7), (ii9), (iill), (iiil3), (iiild), (iii16), the special fibers
have loops and we obtain the same contradiction il we assume the existence ol hyperelliplic
familics with the monodromies.

We take this opportunity 1o point out that the picture of (11i7) in [AL p. 217] is incorrect.
The sequence (3, 2, 1) should read (4, 3,2, 1).

Assume that there exists a hyperelliptic family with monodromy Ci11 (i, j = 0, 1): 1d,
Vi=Vo=(vl), V3 = (vad). Let X =3Cy+2C1+2C+2C+Ca+Z 1+ Zr+ L1+ Labe
the special fiber of the family, where C; are nonsingular rational curves, L; are elliptic curves
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and cach Z; is the P'-chain that comnects C; with L;. Since the multiplicity of Cp is odd,
TT{(Cp) is not a component of B, Since IT{L1) # M{L>), we see that 7T(C;) (i =0,1,2,3)
are mutually distinct, Thus, I7{Cy) intersects three distinet bridges Doy c,. Deye, and De,yc,
at a point on By, respectively. Tt contradicts the fact that Cp is a nonsingular rational curve,
The other cases of Ciy (i, f =0, 1): Id, V3 = (va4, 5) can be proved by the same argument,

Assume that there exists a hyperelliptic family with monodromy A»; (iii18). Let Cop
be the component with multiplicity two. The dual graph of the special fiber has a loop, and
we see thal IT(Co) is nol a componenl of B, and has multiplicity two. Since Co intersects
other components at six distinct points, f7(Cp) intersects at least three components Dy, D>
and D3 at three distinct points, For each D;, let D; be the connected maximal subdivisor of
@ containing D; but not IT(Cp). Each D; has a component with multiplicity one, because
the multiplicitics of the components other than Cp arc onc. It contradicts the assertion of
Lemma 1.2,

The cases Az: (11i28), Aq: (viii5), Ag: (xv2), (xv7), By; (f =0, 1): V) = {(viid), {(vii7),
(vii8)} can be proved by the same argument.

Assume that there exists a hyperelliptic family with monodromy By, (( = 0, 1), Vi =
(xiv3). Let D = 2Cy + 2(3_Z;) + C1 + C» be the subdivisor of the special fiber X as
shown in [AT, p, 220, (xiv3)]. C; and Z; arc nonsingular rational curves and the dual graph of
Co + 2_ Z; is aloop. By (he configuration of X, we see thal fT(C;) are mutually distinet and
nol components of B, Assume that Dy, # 0. Since ¥ (D¢, } 18 contracted (o a point
at which Cg intersects €1, the multiplicity of the component D’ of ¥ (De,c,) intersecting
7*(Cop) 15 odd. On the other hand, the component D’ of D, ¢, intersecting f7{Cqp) is a com-
ponent of B, because Cop intersects Cq at a point, Tt contradicts the fact that the multiplicity
of D = ¥ (D) is odd. Thus, we sce that Dy, =0, a contradiction (o the configuration of
the special fiber.

If there exists a hyperelliptic family § whose monodromy is A : (viiil2), the configura-
tion of the special fiber X is as shown in Figure 1. We consider vip: Sp — A x Plasin §1.1.
Let Iy be the strict transform of Ip in W,., Since the multiplicity of each component of X is
greater than one, Iy is a component of By, I not, the multiplicities of ¢,*(I7) is one, and we
cannol contract ¥ (T 6). Assume that IT(w1) is not a componenl of By, Then, IT{v) inler-
sects the bridge Dy, ,, between IT(u1) and I7(n4) at a branch point of . I IT(v2) # TT(v3),
then I7(v1) intersects the bridge between fT{v) and f7(v;) (i = 2. 3) at the branch points

4 i
elliptic
4 vl
,7,2 i}
N
B Ba———t

FIGURE 1.
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of yr.. Tt contradicts the fact that vy s a nonsingular rational curve. We may also assume
that IT(vz) = M{w3). Since the multiplicity of " (1) is equal o two, there exists a bridge
Dy, ux Fred of @ that does nol contain I7(»1) as a componenl. However, the dual graph of
Wy + sz,,,:(r(;)md + IT{vz) + M(v)) has a loop because Ij is a component of B, a
contradiction (o the configuration of X, Moreover, we see thal ¢ach component of & with
mulliplicity one is a component of B, by the same argument,

Assume that T{v1) is a component of B, Then the multiplicity of 77(v1) is equal ©
two and fT(v2) # [T(v3}. We also asssume that we can find an inverse of the canonical
resolution W, S B W, i Weo_| — -~ 2 Wy satisfying (i) the strict transform ol the
exceptional sel £ of t,s by 1,710 - -oT, 18 TT{v1). (ii) T, is Lhe blowing-up al a poinl at which
two components £ and £’ of (t10- - o t_1)*fp intersect. In this paragraph and the next, we
use the same symbols £, £ and £, for the divisors on W, that are the strict transforms of /-,
E' and E., respectively. Since £ and f7{v;) arec components of B,, there exists a maximal
nonzero conmected subdivisor D of @ connecting E with f7(v;). The component D of D
intersecting fT(v;) is not a component of B,. Moreover, since the multiplicities of 7 (£)
and £, are one and two, respectively. the multiplicity of £’ is odd. Thus, the multiplicity of
Y¥(D") 1s odd. On the other hand, the multiplicities of the components of the special fiber
are all even and we cannol make a component having odd multiplicity by any sequence of the
blowing-ups, a contradiction.

Thus, for each inverse of the canonical resolution, we can find the blowing-up 7, satisfy-
ing (i), and (i1i) {t,+ 11 0 - - -0 T, ){([T(v1)) is a poanl on £ that is nol on any other components
of (11 0+ -- 0 7.)*({ ). If £, is a component of B,, we have the same contradiction as in the
previous paragraph. Thus, we may assume that £+ is not a component of B,. Since the dual
graph of the special fiber has no loop, we see that the divisor connecting f7{v;) with £, £’
and fI{v1) intersects L, at three distinct branch points of ¢,.. It contradicts the fact that the
nonrational component of the special fiber has multiplicity four.

LEMMA 1.9, The monodromy of a hyperelliptic family whose special fiber is as in
Figure 2 is Eq1: 11(0,1), V1 = (vbl), V2 = (vb6).

4C; 2Cs Csa
150, G4
30,
2L elliptic
s © 37

i

FIGURE 2.
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Since the special fiber of a hyperelliptic family with monodromy Cyqq: TI(1,1), V3 =
(vbl), Vi = Vo = (iv1) has the same configuration of the special fiber as that of a family with
monodromy Eqq: TI(0,1), V1 = (vb1), V> = (vb6), we oblain the following;

CoROLLARY 1,10, There exists no hyperelliptic family with monodromy Ci11; TI(1L 1),
Vi = (vbl), Vi = Vo = (ivl).

PROOF OF LEMMA 1.9,  Assume that there exists a hyperelliptic family with the spe-
cial fiber X = 6C1 +5C2+4C3+3Ca+2C5 +Cs+3C7+4Cs+2Co+23° Zi+2Lasin
Figure 2, Note that C; and Z; are nonsingular rational components and L is an ¢lliplic curve.
By Lemma 1.2, we see that /7(C) is a component of B-. Assume that the bridge D¢, ¢, # 0.
Since ¥, (D¢ c,) is contracted to a point at which €y intersects C>, each multiplicity of a
component of W (D¢, ¢,) is wrilten as 6a + 5b with posilive integers @ and 5. We see that the
multiplicities of the components of D¢, ¢, are at least eight, because the multiplicities of the
components of ¥ (D¢, c,) are greater than or equal (o eleven if odd, and sixteen, otherwise.
Then, by any inverse of the canonical resolution, the bridge D¢, ¢, is contracted (o a point
P e W, before [7(Cy) and fI(C>) are contracted. If P is a bad point, (D¢ ¢,) is not
contracted, because ¥ (D, ¢,) is the resolution graph of the singular point llr:,] (P). Thus,
we see that P is not a bad point, a contradiction (o the process of the canonical resolution,
(According (o our definition of the canonical resolution, we do not blow up a non-bad point.)
By the same argument, we sce that Doy, = Deyc, = Deey = 0(1 =i = 5) and TT(Cs)
is not a component of B,.

Assumge that I7(Cq) is not a component of B, Since 77(Csg) also is not a component of
B, we have Dc,c, # 0. Since the multiplicities of the components of ¢ (D¢, ¢,) are greater
than or equal 1o six, those of the components of Dg,c, are greater than or equal (o three,
Thus, by any inverse of the canonical resolution, IT(Cg) + D¢, is contracted before 7T(Cy)
and 77(Cy) arc contracted. Especially, I7{Cg) is contracted before IT(C) and 77(Cy). Since
the multiplicitics of T7(C) and IT(Cg) are three and four, there should exist a component of
D¢, having muliiplicily one, a contradiction, Thus, we sce that I7(Cg) 15 a component of
B, with multiplicity on¢ and D¢y, = 0.

Assume that we can find an inverse of the canonical resolution W, 5 ..« — W, 5
W, = ++- — Wy such that 7, is a blowing-up al the point at which two components £ and
E'of (t10---ot_)*(Ip) intersect and (t41 0 -+ -0 T )T{L) is apoint O on £,... We use
the same symbols £, £ and [, for the strict transform of them on W,. We may assume that
E is a component of Dg,y.. By the configuration of X, we see that £ and £ are components
of B,. Il we assume that £, is a component of B, ¢ (k) is nol contracled by T, because
the multiplicitics of . (f2,») and y*(£") are four and two, respectively, a contradiction to
the configuration of X. If we assume that /2, is nol a component of B,, we see that ¢ (k)
is not a nonsingular rational curve because the dual graph of X has no loop and the divisor
connecting £, with £, E' and [T(L) interscets £, at three distinet branch points of . 1t
contradicts the assumption f7(L) # E..
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Thus, we cannot find an inverse of the canonical resolution satisfving the above condition
and we obtain the figure of @ as shown in Figure 3. In Figures 3 and 5, the dotted lines mean
the components of & that are not the components of B,. The solid lines mean the components
of B, and the waves mean B,. By an inverse of the canonical resolution associated to £, we
obtain the equation

e = D=1 =2 T — H® +4

for a double covering of P! x A. By a base change of degree 6, we see (hat the stable model
of this family is Eq;. O

By the same argument, we can prove the nonexistence of hyperelliptic families with
monodromies Cipq: TI(1.1), V3 = (vb1.2), V1 = V2 = (ivs) (2 <5 < 8).

We continue the proof of Theorem 1.8. Assume that there exists a hyperelliptic family
whose monodromy is Eyq: 101D, Vi = Vo = (vb2), K, odd. The special fiber X is as
in Figure 4. In this case, the number of components of nonsingular rational curves belween
vy and v is even. By Lemima 1.2, we know that [7(vy) and fT{v>) are components of B5,.
Then, we may assume that f7(v;) # [T(v2). Assume lhal [7{v) is a component ol B,
with multiplicity one. Since (D, ) is contracted to a point at which v intersects va,
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T(ug)
IT{1y)
IT(ve}
() MT(es) IT{ug)
{a) {b)
FIGURE 5.

the multiplicities of the components £, are greater than three. Thus, by an inverse of the
canonical resolution, f7(v1) and [1{v3) cannot be contracted before D, is contracted. Let

W, . SO W, hicd Wo_g — -+ Y Wy be an inverse of the canonical resolution such that
the composite of the blowing-downs 7.+ o - - - o 7, contracts Dy, but not 77(v1) and I7(v3).
Let P be the point at which (t o --- ot )(JI(v1)) and (t~ o - - - o 7, }({T(v3)) intersect. Since
IT(vy) and I (o) are components of By, v 1(P) is a singular point of S,r_y and " (Dy»,)
is the exceptional set of the resolution of y_; (P), a contradiction to the fact that ¢ (Dy,»,)
is contracted by T. Therefore, {1(v3) is not a component of B,. By the same argument, £1{v4)
also is not a component of 8,. Since we do not blow up a non-bad point as in our previous
aregument, we see that f1(v1) intersects [1(v3) at a point. By the same argument, [1{v1)
intersects £1(v;) (I = 5,7) at a point, respectively and {1{v) intersects f1{v;) (I' = 4,6,8)
at a point, respectively. Then the configuration of @ is as in Figure 5, (a).

Let Ei;:l aj; Iuj; be the bridge between v3 and v4 such that [1(v3) Ly = 1, 11 (va) L5y, =
LB, =1(1=2j<k—1)and E; E,-J,, =0¢|j — j'| = 2). Consider an inverse of the
canonical resolution associated to {1 (vg). First, we contract {7 (vs) and f1(ve), then contract
II{v1) and II(vp). Then the configuration of the image of & by the above contractions is as
in Figure 5, (b). We use the same name for the components of @ after contractions. Assume
a;, # 1. Since we cannot contract 17 (v3) in the next step, there exists ;' such that ai, = 1
and after some steps of blowing-downs, £, intersects £1(v3) at a point. If the point at which

li';j, ntersects 7{v3) is a singular point of the branch locus, 1/’/;"(2;.!:]) cannol be contracied
by 7, a contradiction (o the process of the canonical resolution. Thus, a;; = 1. By the same
argument we see that a;, = 1. If @, > 2, Y*(E;,) is contracled by 7. Let 7/ be the smallest
integer greater than two such that (Eij,) 15 not contracted by 7. Since i, is Iess than or
equal to two, all £, (1 < j < 7"y are contracted to a point P on F;, before £; and E,-J_,
by any inverse of the canonical resolution. I[' P is a singular point of the branch locus, all
PiED (1 < ] < j") are not contracted, a contradiction to the process of the canonical
resolution. Thus we have a;, = 2 and Ej, is not a component of B,. Repeating this argument,
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we obtain that E;; is a component of 8, with multiplicity one when j is odd, and £; ; 1s not
a component of B, and has multiplicity two, otherwise. Then the number of components of
nonsingular rational curves between vy and v is odd.

The other cases are proved by similar arguments. O

2. Construction of families. In this section, we complete the proof of Theorem 1.8
by constructing hyperelliptic families whose monodromies are listed in [AlI], but not listed
in Theorem 1.8. More precisely, for each monodromy [ f], we give an equation for a double
covering Sg of P! x A whose monodromy of the nonsingular model is [ £]. Indices which
appear in the table of symbols and equations are positive integers unless we mention their
range, Let e, o; (1 < i < 4) be mutvally distinet real numbers which are not integers.

Let x be the inhomogeneous coordinate of P! and ¢ the coordinate of A, For example,
we give an equation for Sg whose topological monodromy is (A3) as follows:

(A3) Y =x@—Dix—Dx-DE—HE—-NE—6Ex—"7).

We introduce some symbols for simplicity.

Fax. 1. k) = x> — 1%,

Fia(x, 1, K1, K2) = (x — t51) (% —1%2),

F(x.t, K, L) = (x2 — )7 — tKxT,

Fatx,t, K, L) i= (x2 — )* — 1K L,

Fialx, t, K1, Ka, L1, Ly) := {(x2 — 1) — tFixli){(x2 — 1) — Kaxla),

Fis(x,t, K1, L1, Ko, La) = (0% — 1) — tKuxlj{(x? — 1) — 1Kaxla),

Foolx, t, K, L) := {{x2 — 2 — Kby {(x? — 1)? + tKx D),

Let ¢ be a positive integer. We fix a pair of integers (K, L") satisfying 2K'+ L' —6 = ¢,
K'>0and0 < L' < 5. We set ﬁ'{ = Falx,t. K', L"), Similarly, fixing a pair (K, L")
satisfying 2K+ L' — 8 = ¢, K/ > 0and 0 = L' < 8, we set Fj = Fylx,1, K’ L.
Fixing a pair (K’, L) satisfying 2K’ + L' — 4 = ¢, we set 152“2 = Folx. t,K', L. Let
c1 and ¢ be positive integers. We fix two pairs of integers (K|, L{) and (K7, L) satislying
2Ki+ Ly —2=0,2K+ L5 -4 =, K > 1,0 L] < 1,K, > land 0 <
Ly < 3. We set M2 .= Fro(x,t, K, L), K}, L}). Fixing two pairs of integers (K|, L))
and (K}, L)) satisfying 2K} + L] — 2 = ¢ and 2K} + L}, — 6 = 2, we set F[1% =
I, i, K 1, LY, K3, L%). We also define the following symbols using the above ones:

File t,k, D) 1= 23 — o S&- D3 folx. t k1) = F3(x.t, 6k + 31— 1).

flx. 1,k 1) 1= Falx, t, 6k + 31 — 5). Falx, t k1) i= Filx, f, 6k + 31 = 2).
fs(x.t.k, D) = F3(x, t, 6k + 31 — 4), fole bk, D) = Fialx, £, 2k + 1, 4k + 21 — 1).
Fle, . kD) = Fialx, £, 2k +1, 4k + 21 = 3). falx, t,k, D) = I3{x,t, 6k + 3] = 3).
g1(x, 1, k) 1= x° —ape 101, pln, 1, k) = x5 — 1067,

k) = % —glUE8, galx, t, k) = 7 o k=L

gs(x. 1. k) = x° —t10F=9 gslx, £, k) 1= x(x® — ¥,

qlx.t. k) = x(x4 —_ t?’k_3)_ gslx, 1, k) 1= x(x‘i — (8k=Ty
{
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go(x,t. k) == x(x f8k75) qizlx. t. k) = x? — p10k=4
giste. £, K) 2= ‘ ~ 21085, g170x. . k) 1= x5 — g 10k=2,
gio(x. 1. k) 1= x5 — 110K=3, go(x, 1, 5) 1= x(? = *H? 44,

@Gl t k)= x(x2 — I4k_3) (xz LRy, gualr, k) =20 — 10k=5,
hi(x,t. k. D)= Fralx, t, 2k, 4k +1 + 1). ho(r. 1, kD) = Fralx, 1.2k — 1,4k +1— 1),
ozt kD) = (x3 _ rﬁ-k)(x"_) _ t4k+l+1]_ 0,2{.1.’ tk 1) = (,‘C3 _ ték—Z)(XZ _ f4k+£).
plagh, b, 1) 0= G = 0N 00, it n B T e (00 Ty(n R il
o6(x, t, k1) = (x3 e IGk—S)(XZ _ t4k+1'72). oolx, t. k, ) = (}C3 _ t6k73\)(x2 _ t4k+l72)l
T1(x, 1, ky, ko) = Fra(x. 1. 2. k1 + D {(x — 29)2 — atdy,
Ta(x, 1, ky, ko) == (x — 20)(x? — A (x — 12 — R t?),
(x, 1, k. ko) == (x —t2){(x 3)'2 — bk, 2k 43k — 10 = 1),
5(x, 1, k| ko) = x{(x> =2 —fix) 2k + ko —4 2= 1),

- —3 ok fok—4
& 13 . Oi(x, 1, k) : = F; Balx, 1, k) = Fy
Hz(x,t,k) = Bl Ga(n, 1, k) = F"’“ 2, k) = F““

o Fk—5 ’ T = g

Balx, 1, k) = F5" 70 Blx, 1, k) = Fj Os(x. 1, k) == F;

OL(x, 1, k) 1= Foet?, Belx, 1, k) —FZk“ "3 gl g B = PR
Or(x, 1, k) = ]Nak = O7(x, t, k) == ﬁ“ ‘U‘H Os(x, t, k) .= FOF.
g(x, 1, k) == Fy 6R+3 @ {x, t, k) = X~4 Of]l‘4(k L wi(x, ¢, k) = ﬁf‘
wafx, 1, k) = x~4 1“”L 1 (x)’z(x, t. k)= Fj"‘“', w3(x, . k) 1= x4 3
wylx, £, k) 1= F{"%, @15 = @ - -7,

; k-1

by, t,.K) = Fg
wlx,t,ky == F3 2
wl(x, 1, k) = lf”* b

CUj(X, f, k) = (X = tk)(x3 — t3k72).
(’)6(1, (48 k] 1= (x2 — tZk_l)(xz + IZk_l),

Mix. k) =(x — tk)(x3 - t3k—2). Dix,t, k) = {x — tk)(x3 —r3k'l_)_
Pyx. t. k) 1= x* — 1493, [ax, t, k) 1= x? — (%1,
Ts(x, 8, k) 1= x* — ar¥h4, Iglx, t; k) 1= x* =2
PL06, K D) 1= (2 — a6 = PP o, 1) = (67 — 2 (7 — R,
nikx, bk, D) = FH—I Ok+3143 ma(x.t. k1) = I+1 6L+3i+2_ max k) = FH'] L6431 —
na(x, 1. kD= {;1 6k+3l+1_ ns(x, £k, ) = I+1 6k+3(— 1

nee, 1k, 1) = Fo AL G2y i), Qe =1y = 1 42) ( <),
(e, k1) = s ke 4t 2 =) —rfixh), @k + 1 =1 4+2) (h < 2).

st 0k, D) = H—J Oh+3!

We first give examp]cs in the semistable and periodic cases. We then give examples of
hyperelliptic families whose topological monodromies are neither periodic nor semistable.
In the periodic cases, it suffices (o construct hyperelliptic families whose Lopological mon-
odromies are (il), (i7), (122), (i44) and (147). We give lwo or three equalions for the same
symbol of the topological monodromies classified in [AT] according Lo the difference of their
screw numbers, In the following equations, k, k; are positive integers and [, /; are nonnegalive
integers unless otherwise specified.
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THE CASES OF SEMISTABLE CURVES.
2

(A3) y"=x(x— D{x —2{x —3){x —d)(x — 5){x —6)(x — 7).
(A2) ¥ = (7 = ") x — D(x — 2)(x = 3)(x — H(x — 5)(x — 6).
(A1) ¥ = @ =) — D> =2} -2 = 3)(x — D(x - 5).
(Ag) ¥2 = (2 =" {x — D=2 l(x — 207 — R3)(x — B)(x — 4).
(Ba)  ¥” = (% — %) (v — D(x — D — 3)(x —4)x = 5).
(Bn) y* = (x — 12y (% — t4‘c”‘l)(x — Dix — 2)(x = {x —H{x —5).
(Bi) ¥ = (x*— %k e — 12 + 152} (x — 2)(x — 3fx — 4.
(Big) ¥’ = (x —t™)(x? ‘”‘l*"l)[(r D2+ %) (x — 2)(x — 3)(x — 4).
(Bo)) ¥y = (x*— rf’kl){(x 194 £2H{(e—2)7 449} e— 3.
(Boo) ¥* = (x — %) (x? — etk — 1)2 + 53} {(x — 2)2 4+ £54) (x — 4).
(Ci1) ¥° =02 — Ryl — 1% — 192 (x — 3)(x — 4).
(Cre) ¥ = (% — %) {(x — 1)? — iR} {(x — 2)° — 1955},
(Cor)  ¥? = (x — 1%y (x? — Ptk — 1)% — %0} (x — )y — 4).
(Coo) ¥ = (x + )22 — p*hithey(x — 2 4 1) (x — 2)7 — P57 l(x — B)(x — 4).
(Cote) ¥2 = (& 120y (% — Pathey(x — 1+ 29[ (x — 293 — 1554},
(Cooo) ¥ = r + 121y (x? — Rtk (0 — 207 — 3 — 3+ 2R [(x — 3)7 — etk
(Ei) ¥ =& = %) — D(x — 2)(x — 3)(x — 4).
(Eg)) y* = <v2 — 2Ry (% — 2Ry o — Dx — 2)(x — 3)(x — 4,
(Foo) ¥? = (% — 12y (x2 — 2tk ((x — 1)? — 53)(x — 3)(x — 4).
(Fi) ¥? = (x — oy (ed — Py — 13 — (s x — 2).
(Fo) »2 = (r =) (% — PRF8)(x — 1+ 028 [(r — 1)° — (0Tl — 2),
(Fon) ,VZ = (x— |+f2k Mie— l)“ I4k1+k2}(x_atk3)(x_tk3+2k4)(x2_t2k3+4k4+k5‘)(1._2).
(G1) ¥ = (x —tF)(x3 — PRy (x — D(x — 2)(x — 3)(x — 4).
(G1o) ¥? = (x —tf1)(x — R 2Ry (2 — 2k +4k2+’“3)(x Di{x — 2){x — 3)(x — 4).
(Go) ¥ = (x —tF) (03 — 4%y (¢ — 1)? — i) (v — 2)(x — 3).
(Goo) > = (& —opF) (e — ¢ty — g Zhitalblsy i — 192 — el ) (x —2)(x — 3).
() ¥ = =[x — 17 — i) {(x =207 —1B).
(Jo) ¥ = (% — 120 (x? — 2tk — 1)% — Rs){(x —2)7 — M),
(KD ¥ = (x —t®)(x? — Pty ((x — 1)2 — th}{(x — 2)% — R},
(Ko) yZ — (V _ Ik3)(x _ tk3+2k4)(v\72 _ 12k3+4k"+k5){(v\7 _ 1)2 _ Ikl}{(.x.' _ 2)2 _ Ikz}.
(L) =2 =D {(x — D2 = tFel{(x — 27 — o) {(x = 3)2 — M.
(N) V2={(X—Ikl]2 2R1+k2}{x2_t2k1+k3}{(x_])'Z_rk4}{(x_2)2_tk5}_

THE PERIODIC CASES,

(i) ¥y =" =N -1

(N Y =x@"-1NE -1

(i22) y2=x%+73,
44y =l =Dt ).
147 v? = 2 —a)(x? — ant) (3% — ast)(x? —agt)).
Next, we give examples of hyperelliptic families whose monodromies are neither peri-

odic nor semistable.

THE CASES WHERE THE STABLE MODEL IS Az,
Gid) ¥ =1(xS -2 —1), ¥y = (¢ =) {x - D> +1').



(iii5)
(iii6)
(iii8)

(iii 10)

(iii12)

(iii15)

(iiil7)

(iiil9)

(iii20)

(iii21)

(iii22)

(iii23)

(iii24)

(iii25)

(iii26)

(iii27)

(iii29)

(iii30)
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¥? = foef —r)l(x 1%+ ¢,

¥=4 (x =thi{x =11 4] 3 =t =)@ =1%).

¥ =x(xd —n{(x - 1)2+r’}

y2 = x(x° —tz){(x 17 +z}

¥ =tx(x? — 0¥ — 1), 2 —J(.x —t3)[{x T4,

y’3=t(x +r2){x ) (x? — = (x> =P+ D) = D2+ ).
¥ =0 -0 +z){(x—l) +r1

¥ = (%% —DHE2 06— 20— 1% 41t

y2 =tx(x® —1D){(x — DI+ 1}

¥ =1 — 1 =D — 1), ¥ = tal® — Y = D* + ).

¥ = tx(xi‘ - r)[(x -1+ 4.

¥ =2 =) — Hx — 1, y2 = tx(x® —H{(x — D2+ ).
y2=1(x® —r){(r l)2+t}

¥ = (a2 —){x® —t) y2 = r{x® —I5){(x—1) + .

V2 =1(x> =@+ @2 —1), ¥ =t (3 — O+ D - D241
V=13 -6 + 0l — D2+,

¥y =1 (x% — ) x — Dx — 2)(x — 3 (x — H(x — 5)(x — 6).

¥ =#2 =D + G2 —20{x — D2+ 1)

The CAS[:ES WIHERE THE STABLE MODEL 1S Aq.

(viii2)
(viii3)
(viiid)
(viii6)
(viii7)
(viii8)
(viii9)

(viiil0Q)

(viiill)

¥V =tat =02 + ) e - 12+ )

y?‘ =pE® - Pt -~ Pl = — O FHE
2 =i(x2 =ty G2 — (2 + 010 — D2 —1®2),

v =t (x? — ) — D2 — 2 ) (x — D(x — 3D(x — D(x — ).

¥ =#* — O — Dt ol — 1P + 1.

= — r)(x2 + Dix® — 21)2 —thxl}, @k +1-22=1).

¥ =ix — Iix? — Ox — O —202 — 52!}, @k +1 - 2= 1).

}j = t(r — D(x? =) = {62 =207 — 52!}, Gk +1 =22 1),

= t(x2 — D2+ =202 — k), Gk +1=22= D).

THE CASES WHERLE THE STABLE MODEL IS Ajp.

(xv3)
(xv4)
(xv5)
(xv6)
(xv8)

y2 = ix? — M) — P+ 520 —2)% +15) (- 3 —4).
¥r=1? = 0% =207 — Ml (e — 1P + 1), 2k + 11 - 2= 1),
¥ =22 =202 =t x — 12 +12), Qi+ L =22 1).
v =tx(x — 1‘)[('( — 12 —t5xh, Be+127).

2 =xlx = D> =02 =2, Bk +1= 7).

THE CASES WHERE THE STABLE MODEL IS Bo.
Bai: Vi = (iis1), Va = (ivs2).  ¥% = go(x. 0. k) fiy(x — 1,8, k2, 0D,

When Ba1: Vi = (iis1), V> = (ivse) and the screw number is special (nol appearing in the
above equation), examples of their equations are as follows (we wrile (112)-(iv2) instead of
writing Vi = (ii2), V> = (iv2) for simplicity);

(i2)-(v2) ¥? =1(x® =) (P =), (i2)(iv6) ¥ = tx(x? — D(x® =),

({i3)-(v2) ¥ =1(x° —D)x — D3 =2} GiD-vd) v =@ — D) x — 1P —1).
(i3)-GvS) ¥ = 1(x? — (> = 1), [13)-(iv6) ¥y =1 —)x — D{{(x — D? —1),
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(ii3)-(iv8) % = t(x5 — B (x = Dix —2)(x — 3).
(iid)-(iv2) y2 = t(x = t4){(x D? =) (id)-(v3) ¥2 =123 =) —1).
(iid)-(iv4) = t(x —x = D3 =1}, @d-(ivs) y? =13 - x> —1%).

= t(x — Y x = D{x = D7 =1}, ()-Gv]) ¥ =tx(x? —)x° —1),

(iid)-(iv6e) ¥

(D-Gv8) ¥ = t(x° — tHi{x — Di{x — 20z — 3).

({i6)-(iv2) ¥ =tx(x* =) {(x = 1P =12} (ii6)-(ivd) y> =t(x* =P —nx - 1),

{i6)-(ivs) y2=t(x* — O =D x = 1),

(1i6)-(iv6)  y2 = tx(x* — ) (x — D{(x — D% —1).

(1i6)-(iv7)  ¥y? =tx(x® —)(x* = OH(x = 1).

({i6)-(iv8) y? = tx{x? — t){x — D(x — 2{x = 3).

GiN-(v2) ¥2 =tx(x* —){(x — 13 =%}, din-vd) 2 = x(x* — )z - D3 —1).

GiN-(iv5) ¥2 =tx{x* —)(x — D{(x — D? —1¢).

(D-(v8) y2 =x(x* —=D{x— D —2(x—3). (@{i9-(iv2) ¥y =tx(x* =) —1).

(i9)-(ivd) vy =(x4—-t)(x3—1‘)(.1:— 1).

(ii9)-(ive) ¥’ = r(r -0 —=x—1).  (i13)-(v2) ¥ =t{(x" —{@x - 1) —¢?).
(i13)-(iv4) y2 =1(x® —OH{x — D3 =1}

(i1 13)-(1v6)
(ii 13)-(iv8)
(ii135)-(iv4)
(i 17)-(iv2)
(i 17)-(iv5)
(ii17)-(iv7)
(i 17)-(iv8)
(ii20)-(iv2)
(ii20)-(iv4)
(ii20)-(iv5)
(ii20)-(1v6)
(ii20)-(iv8)
(ii21)-(iv2)
(ii24)-(iv4)
(ii24)-(iv6)

= t(x — O — D — 1 —#).

= t{x - a‘)(x —Dx—=2x—3). Gil5-v2) Y =1 -’ —1).
= {x° —t](x — 0. G(ilS)-(iv6e) ¥ =1 — ) —x = 1),
{57 rz){(x D3 —t).  @i1D-Gvd) y =t -z - D3 —1).
(x' Hixd =), GiIDvE) ¥ =1 — D — Dix — D2 —1¢).
(x° —tH(x? - - 1).

1(x° —P)(x —D(x—=3x—3). ([{l9-v2) ¥ =1 -3 -1
tx(r —){x? + O {(x — 1)’ =2},

ix(x —t)(x +0{(x - 1% —1).

(x> =) (%% — H(x? +x — 1).

H(x —)x® + Ol = D{(x— 1% =1}

tx(x — t)(x + t)(x — Di(x —2)(x — 3.

tx(x -2+ =), (124)-(v2) ¥ = (=)D 1),
=1(x? — Or — D{x —2)(x — 3z — D(x — 5).

=tx(x2 —O){x — Dx —2D(x —N{x —H(x —3).

tJ[\Jl\Jk\)MlJI-JF\)I\JNF\J|\Jt~3[\Jl\Jt\)MIJI-JF\)I\JNF\JKJFJ[\JI\JN[Q

R T e e B B A

TIIE CASES WIIERE TIIC STABLE MODEL 18 Bap.
Bao: Vi = (iis)), Vo = (xis2). ¥ = g5, (x, 1, kA (x — 1, 1, k2, D).
When the screw number at e 1s special, we need the following equations in addition to those
above:
(ii6)-(xi2) ¥ = tx(x —tH{kx - 1)2 —z Nx —2).
(1i13)-(xi2) 2 = t(x = e — 132 = ) Ge— 2).
(1i17)-(xi2) 2 =(x* — :3){@ 1)’ — '}z = 2).
(ii20)-(xi2) ” =tx{x? — )2+ O{x — 17 =) (x = 2).

THE CASES WHERE THE STABLE MODEL 18 B] Ji
Bi: Vi = (viis1), Vo = (ivs2).  y7 = fo,(x — 1.t k, O)as (x, £, k1, D).
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THE CASES WHERE THE STABLE MODEL IS Byg.
Big: Vi = (viis1), Vo = (xis2).  ¥? = oy, (x — L1, ki, 1k, (x, ¢, ko, ).

THE CASES WHERE THE STABLE MODEL IS Bpg.
Boi: Vi = (xivs1), Vo = (ivs2). ¥ =T, (x, t, k1, ko) firy(x — 1, ¢, k3, 0).

THE CASES WHERE THE STABLE MODEL IS Bpg.
Boo: Vi = (xivs1), Vo = (xis2).  ¥% =1, (x, 1, k1, k)b (x — 1, ¢, ks, D).

THE CASES WHERE THE STABLE MODEL IS C111.
Ci: Id, Vi = (ivsy), Vo = {ivs2), V3 = (val).
¥ = fo e, 6, k1, 0) foy (x = 1,2, k2, 0)(x — 2)(x — 3). (k; = 2 whens; = 1orsz = 1)
Ci: Id, Vi = (ivsy), Vo = {ivsz), Va3 = (va2).
Y= @2 =)tk D (e — 1,8 ko, 0). (ky = 0 whens; =2,4,6,8.)
Ci: Id, Vi = (ivsy), Vo = {ivsz), V3 = (va3).
Y= @2 = f (et ke, D f (= 1,2, k2, 0).
Ci: 1d, Vi = (ivsy), Vo = (ivss), V3 = (vab).
V=@ =)t + 1,00 f,(x — 1,8, k2, 0).
Ci: T, Vi = Vs = (ivsy), V3 = (vb3).  y° = tx(x — 1)fs, (x, 1, k).
Ci: 1L, Vi = Vi = (ivsy), V3 = (vb4). y2 =x(x — D& (x, 1, k).
Ci: TI(LD), Vi = Vs = (ivs1), Va = (vb3). 2= (x? - 200] (x. 1. k).
Cun: T(LD), Vi = Vo = (ivsr), V3 = (vb6).  y* = 1(x® — 208 (x, 1, k).

THE CASES WHERE THE STABLE MODEL 18 Ci10.-
Cho: Id, V1 = (ivsy), Vo = {ivse), V3 = (xiial).
¥ = fo (e, 8, k1, 0) foy (x = 2,2, ka2, O){(x — 1) — 152},
Cho: Id, V1 = (ivsy), Vo = {ivse), V3 = (xiia2).
Vo= afe 0k, D e = 2,8, k2, Dix — D? — 1%}, (kg = Owhens; =2,4,6,8.)
Crio: I(LD), Vi = V5 = (ivsy), V3 = (xiibl).  y? = (x% — 1T,
Crio: I(LD), Vi = V3 = (ivsy), V3 = (xiib2).  y? = ¢#(x? — tirthyg] .

THE CASES WHERE THE STABLE MODEL IS Cl()l.
Cro1: Id, Vi = (ivsy), V2 = (xis2), V3 = (val).

¥o = fo ke, O, (x — 1L £, ko, D(x — 2)(x — 3).
Cro1: Id, Vi = (ivsy), V2 = (xis2), V3 = (va2).

¥ = @2 = e, (x, t, ko + 172, D f i — 1,8, kg, 0).
Cro1: Id, Vi = (ivsy), V2 = (xis2), V3 = (va3).

¥ = @2 = Dby (x, ko + 1/2,D fr (x — 1,1, k1, O).
Cio1: Id, Vi = (ivsq), Vo = (xis2), V3 = (va0d).

¥ = (x% = D (x, t, k2, D fi, (x — 1,£,k1,0).
THE CASES WHERE THE STABLE MODEL IS Cl()().
Croo: 1d V1 = (ivsy), Vo = {xisp), V3 = {xiial).

¥2 = fokx = 1,8, k1, OV, (x, £, ko, D{(x — 2)% — 153}, (kg = 2 when sy = 1)
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Croo: Id Vi = (vsy), V2 = (xisz), V3 = (xiia2).
y=tf (o — Lt ky, Db (e, 1,k + 172, D{(x — 2)2 —¢%3),

THE CASES WHERE THE STABLE MODEL 1S Cpo1.
Coor: Id, V1 = {xis1), V2 = (xis2), V3 = (val).

v =k (v — 1, t, k1, Dby (x, 8, 2, D{x — 2){x — 3).
Coor: Id, V1 = (xis1), Vo = (xXism), V3 = (va2).

¥ = 0(x? = Dby (x, 2, kn, IDRs, (x — 12, ko + 1/2, 1),
Coor: Id, V1 = {xis1), Vo = (xiz), V3 = (va3).

¥y = (2 = Ok (b k1 + 172,10k, (x — 1,2, ka2, ).
CDOI: Id, V1 = (Xisl), V2 = (XiSQ), V3 = (va6).

¥y = (2 — D (x, t kL, Dhgy (e — 1,8, k2, D).
Coor: TI(L, D), V1 = Vo = (xil), V3 = {vb3).
Coor: TI(L, D), V] = Vo = (xi2), V3 = {vb3). A%
Coor: TI(LL 1), V1 = V> = (xil), Va = (vb4). =x(x — 1)F,
Coor: TI(L,D), V] = Vo = (xi2), V3 = {vb4). =x(x — l)F

2k1 i +hy =2

2 l)i;'-122k1*1,4k1+k2*2
2
2
2
Coor: TI(1,1), V1 = Vo = (xil), V3 = (vb3). 2 = {(x? —2¢) — }F12
2
2
2

l)lf-Zkl 4k1+k2
2k1—1 4k1+k2 2

=ix(x —

=ix(x —
Zkl 4k1+k2
Coor: (L 1), V) = Vi = (xi2), V3 = (vb3). ={(x2=20)— r2 VEIR Ak

Coor: II{L D), V] = Vo = (xil), V3 = (vbO). = t{(x —-2t)— 2x Vo
Coor: II{L D), V] = Vo = (xi2), V3 = (vbO). = t{(x —-2t)— 2x 15

Q,kl 4k +k7_
2k1 1 4k1+k2—2

THE CASES WHERE THE STABLE MODEL 18 Cogo.
Cooo: Id, V1 = (xisy), V2 = (xis), V3 = (xiial).
¥2 =Ry (x, t, ke, Dhgy (x — 1,1, k2, D{(x = 2)% — %),
Cooo: Id, V1 = (xisy), V2 = (xis), V3 = (xiia2).
¥ = thy (6, 1,k + 172, 1Dhe, (x — 1, ¢, ko + 172, 1) {(x — 3)% — %),
Cooo: (LD, Vi = Vo = (xil), V3 = (xiibl). 2 = (a7 —tat]) fRdbivke

Cooo: TL D), Vi = Vi = (xi2), V3 = (xiibl). 2= (a2 = thrty sk 2,
Cooo: (LD, V) = Vo = (xil), V3 = (xiib2).  y2 =¢(x2 —tatl) Florthths
Cooo: I(LLD), V) = Vs = (xi2), V3 = (xiib2). 2 = 1(x2 — tht]y fra— A2

THE CASES WHERE THE STABLE MODEL I8 E11.

Eqr: 1d, Vi = (vasy), Vo = (vas). y2 = wy (X, 1, k1)wg,{(x — 1,1, k2).

Eq1: 11(0,1), V1 = (vbsy), Vo = (vbs2). y2 =tls{x, t, k) (x —1,¢, k2).
We have to give more examples when the screw number at ¢; is special.

Eq1: II(0,1), V1 = (vb1), V2 = {vb4). ¥ =x(x* = -0

Eq1: I(0.1), VL = V2 = (vb2). ¥ =x(x —HX —Dx = D

Eq11: 1(0,1), Vi = (vb2),V2 = (vb4). ¥ =@ = HE - -1,

Eq1: II(0,1), V1 = (vb2), V2 = (vb6). Y=t =D -0 =D

E11: 11(1,2), Vi = Vo = (vas). v =twl.
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Eq: TI(L,3), Vi = Vo = (vas). y2 = cu;.

THE CASES WHERE THE STABLE MODELS 1S Eqp,

E10: Id, V1 = {vasy), V> = (xiias2). y2 = (X, 1, k) ps, (x — 2,2, k2, 1),

E19: TI(0,1), V1 = (vbsy), V2 = (xiibsz). vy =ty (x, b k) ps,(x — 1Lt k2, ),
We have to give more examples when the screw number at e is special.

V1 = (vb2), V2 = (xiib2). ¥ =x(x® =T —O{x - D2 —F1).

Vi = (vbd), V2 = (xiib2). y? =23 — )2 = D{(x = D? =+ 1)

THE CASES WHERE THE STABLE MODEL IS Epyyp.

Epo: 1d, V1 = (xiiasy), Vo = (xiias2). y2 = oy (x, 1 k1, 1) s, (x — 1,2, k2, I2).

Epo: 1I(0,1), V1 = (xiibsy), V> = (xiibs2). y2 =tps{x. 5, k1, 1) pe(x — 1,8, k2, 12).
Eop: 1I(1,2), V] = V5 = (xiial).

v = t{(x? = )2 —thxh){(x2 = 1)2 —thxl}, Qky+ 1 =4 =2k, 2ko+1r —4 =2k +1).
Eop: 1I(L,2), V] = V5 = (xiia2).

y2 = H{(x2 =12 =l (2 = )2 —tRexla), Qk 411 =4 = 2k3— 1, 2ko+1lo—4 = 2k3+ky).
Eop: 1I(1,3), V] = V> = (xiial).

v =2 =02 —thixt (2 — )2 —thaxle) (Qky + 11 —4 =2k, 2ka+1p —4 =2k +1).
Eop: 1I(1,3), V] = V5 = (xiia2).

¥ = {2 =D =t (2% =) —thexha), 2k +11—4 = 2k3— 1, 2k +lo—4 = 2k3+kq).

THE CASES WHERE THE STABLE MODEL I8 F1.
Fri: 1d, ¥1 = (vsy), Va = (ivsr).

¥ =(x —at' T (x = 2 fo(x, t k1, T4 D f (x — 1,1, k2, 0).

(ki =2whensi=1lors =1

Fry: I(0,1), Vi = (ivsy), Vo = (ivse).

Vo =t(x —at D = 2 i (x, 1, k1,1 +2) fr (x — 1,2, k2,0).
Fri: 2,1, Vi = Va = (ivs). ¥ =tn;.
12 11(2.2), Vi = Vo = (ivs). ¥ = ;.

THE CASES WHERE THE STABLE MODEL I8 Fp.
Fip: Id, V1 = {ivsy), Vo = (xiso).

y2 =G — WD f Gtk T4 Digy (e — 1,8, de + 1, B = 2).
Flo! L0, 1), Vi = (ivsy), Vo = (xisz).

y2 =t — D (g ke I Dk (e — 1t ke 4172, D(x = 2).

THE CASES WHERE THE STABLE MODEL I8 Foo.
Foo: Id, V1 = {xisy), Vo = (xis).
¥2o= (o — Y f Gt Ry + 4 D/2, DR (c — 1,8, kg, I3)(x — 2).
Fyo: II(0,1), V1 = (xisy), Vo = (Xisz).
y2 = t(x — " DR G, 1k + ( + D/2, )R (0 — 1,8, ko + 172, 13)(x — 2).
Fop: TI2,1), Vi = Vo = (xil).  y? = piipetiudbetBicks 024 thixl) (2kg+1-2 = ky).
Fop: 11(2,1), V1 = V2 = (xi2).

y2 = pFpeth A tiith =2 2 _ o phiyly 2k, +1-2=1k).
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Foo: TI(2.2), Vi = Vo = (xil). 2 = FiethudhatZitha 2y phandy (kg +1-2 = ky).
Foo: 1I(2,2), Vi = V5 = {xi2).
y2 — F122kz+k1*1’4k2+2k1+k3*2(x2 — = tk‘*x"), ks +1—2=ky).

THE CASES WHERE THE STABLE MODEL IS G11.
Gi1: Id, Vi = (vasy), V3 = (ivsy).

Vo= fo (6,8, k1, 0)(x — Dag, (x —2, 1, ko). (k2 > 2 when sy = 1.)
G11: TI(0,1), V1 = (vbs1), V3 = {ivsa).

¥ =t e, 1, k) — D fi, (3,1, k2, 1), (ko = Owhen sy =2,4,6,8.)

THE CASES WHERE THE STABLE MODEL IS G1o.
Gio: Id, Vy = (vasy), Vi = (xis2). ¥ = o (0, 8, k) (x — Dhg(x — 2, ¢, ko, D).
Gio: TIO,1), Vi = (vbsy), Va = (xis).  y2 = 10, (o, £, k) — Db, (x = 2,1, ko + 1/2, 1),

THE CASES OF THE STABLE MODELS ARE (Gqg.
Goo: 1d, Vi = (xiiasy), V3 = (xisz). ¥ = ps (. 1, ki, I+ 1Dx — Dhg{x — 2,1, ka, ).
Gop: TI(0,1), V| = {xiibsy), V3 = {xis2).

¥y =toq (6t kL I+ D — Dig (x — 2,2, ko + 172, 1),

THE CASES OF THE STABLE MODELS ARE Gog.
Goi: Id, Vi = (xiiasy), V3 = (ivs2). ¥y = py(x, 8. k1, 1+ D = D foy(x — 2, 1, k2, 0).
Gor: 0,1, Vi = (xiibs1), V3 = (ivsz).  ¥2 =toq (x, 1, k1, I+ D(x =1 f5, (x =2, 1, k2, D).

THE CASES WHERE THE STABLE MODEL IS Jj.
Ji:1d, V) = {vas).
2 = welx, t, kD {(x — D2 —tF2H(x —2)2 — 122}, (k1 = 2 whens = 1)
J12 (0, 1), V| = (vas).
¥ = wylx, 1, k){(x% = )% —tR2x!}, (ko +1 =4 = 1). (ky = 2 whens = 1.)
J (LA, Vi = (vbs). ¥ =tl(x — 1,1, ka2 — )% —tx!), Qka +1-4 = 1).
Jir (LG, Vi = (vbs).  ¥2 =tly(x, 1, k){{x — D? — 152 ) (x — 2)2 — ths}.

THE CASES WHERE THE STABLE MODELS 18 Jy.

Jo: Id, Vi = (xiias). 2 = po(x, t, ky 1+ Di(x — 12 — t22){(x — 2)% — 53},

Jo: IO, V) = (xifas).  y° = pe(x, 1, ki, i1 + D{(xZ = )2 = 2!}, Qo +1 -4 = 1),
Jor (1A, V1 = (xiibs). 32 =tp{x — 1, 8, k1, ID{(x% — 02 —t2x!), Cha +1 =4 > 1),
Jor I(1,6), V1 = (xiibs). 3% = tpe{x, ¢, ki, ID{{x — D% — 2} {{x — 2)2 — 2},

THE CASES WHERE THE STABLE MCDEL I8 K.
Ky ld, Va = (ivs),  y2 = (x =MD flr, 6,k 4+ LI+ D{(x — 12 —iR2){(x — 2)2 — ks,
K1 10,1, Vg = (ivs).
V=== - - G- Lk + L+ D), Qi+ — 4= 1)
K1 (1,4, Vg = (ivs).

V=t — o — o — D =Y o= 1,0, k0, B+ 2), Qkp + 1 —4 2 1)
K1 1(L6), Vg = (ivs).

¥y =t(x? — e = 12 — Rl {(x —2) — VY fr = 3,1, k3, 1+ 2).
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THE CASES WHERE THE STABLE MODEL I8 Kj.
Ko:Id, Va = (xis).  ¥> = (x — "R, (x, 1, k1 /2 + ko, D{(x — D7 — 2 ){(x — 2)% — %),
Kp: T{(0,1), V4 = (xis).

V= -0 = (- ) — 2o — 1t k2 /2+ ks, D) 2k + 1 —4 = 1),
Ko: TI(1,4), Va = (ivs).

y2 = {2 =0 = {(x = D=2 )R (x =1, £, ks +{a+ 1) /2, ) ki +H —4 = 1),
Kp: TI(1,6), V4 = (ivs).

¥y =t — ) {(x — DT — 2} (x —2) — ) (x — 3,8, ke + (ks 4+ 1)/2, D).

THE CASES WHERE THE STABLE MODEL 1S L,
L: TI{0,1), V| = V> = (xb).

yi= a2 -2 - 0? - (e - DT+ ), QR+ T —4 2 ).
L:TI{0,2), Vi = V> = (x¢).

V= {? =02 =) (x? =02 —2fexz). Qg+ 4= L2k + L —4> 1)
JT(LS).,  v? = t{{xP =) =Pl ((xF =207 —rFaxle), Rk 4+ —4 > 1, 2k 4 =4 = 1),
(L7, P =2 =02 — Rk — (e — D2+ B), @k + L —4 = 1),
(IL8). ¥ = t{x% — ) (x — 12 — 12} {(x — 2)% — 53} {(x — 3)% — 1he).

CIIOD, Vi = (vds) y2={(x7 =) —Fixli (x = D> =¢), GBli+h —6= 1.

y2={(x? =2 —thxty(x2 —teth, B+ —6= D).

L:IVIO.D), Vi =(ve). Y2 ={x'=n2 -z}, @i+ —8=1).
L:IV(LD, Vi = (ve). y2=#t{{(x" -1 —fxlt}, @k +0H1 -8 = 1).
L:VI(LD, Vi = (vds). v =t{x* =2 —thixl ) (x — D2 =t~ 1), (3ky + 201 —6 = 0).

[ e Bl Bl

THE CASES WHERE THE STABLE MODEL IS N.
N:1(0,1).
v =% = )2 = txiy(x = 1) = Rty o — 1 = pR)2 — 28 2k 41 —4 = 1).
N:T100,2). yZ — {(xZ _ f2k1_1)2 - tk2+4k1—4xi1}{((x2 _ 1)2 _ t)2 _ tk3xi2},
Chko+lh —4=1,2k34+b—-4=>1).
N:T02,3). yZ — t{(xZ _ f2k1_1)2 _ tk2+4k1—4xi1}{((x2 _ 1)2 _ t)2 _ tk3xi2},
Chko+lh —4=1,2k34+b—-4=>1).
NI24).  y? =t{{x — o2 — g2tk 2 2ty — )2 — R (x — 2)2 — 55},
N:1(2,5).
yE=tr = 17 =t ){(x — 22 — R H(x? — Py — gty O 4 -4 = 1)
NIR7). ¥ =H{(x% —1) —thrxh)? — fhaxby(x? — 12 — thaxls),
(ks —dky+13 =2l = 0,2k + b — 4k =25 = 1).
NI28).  v* = {({(x? — 1) — tRxi)2 — phaxiayf(x2 — )2 — haxiz)
Qks —4k1 +13 =211 = 0,2kr + 1 —4k1 — 211 = 1).
N:IVRD., yr=tx? =P —thx)r—rhex! 2k —320,2k2+1—8>0)
N IV2D). y2={(x2 =02 —thax)2—iexl Oki—3>0,2k+1—8>0).
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