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Abstract. A complete list of the monodromies of degenerations of genus three which
are not realized as the monodromies of any hyperelliptic families of genus three is given. We
also prove that all the other monodromies of genus three are realized as the monodromies of
certain hyperelliptic families.

Introduction. Let φ: S be a proper surjective holomorphic map from a non-

singular complex surface S to a small disk := {t C| |t| < ε} such that φ 1(t) is a

nonsingular curve of genus g 2 for each t A* := \ {0}. We call (φ, S, ) a de-

generation of curves of genus g. If all φ 1(t) for t A* are hyperelliptic curves, we call

(φ, S, ) a hyperelliptic family. We set X := φ 1(0) and call it the special fiber of S. If the

reduced scheme of X has normal crossings as singularities and any ( 1)-curve in the special

fiber intersects the other components at at least three points, (φ, S, ) is said to be normally

minimal. Two degenerations (φ, S, ) and (<f>', S', A') are said to be topologically equivalent

if there exist orientation-preserving homeomorphisms ψ: S S 5" and ψ: A' satisfying

(/>' O ijf = ijf O (f).

Let Tg := {normally minimal degenerations of genus g}/~, where ~ is the topological

equivalence. For an element ofTg, we can uniquely determine the topological monodromy

(sometimes called the monodromy, for short) as a conjugacy class in the mapping class group

of genus g. The monodromy of a degeneration is a conjugacy class of a pseudo-periodic map

of negative type (cf. [MM1], [Ni1], [Ni2], [Im], [ES], [ST], [AMO] etc.). Conversely, any

conjugacy class of a pseudo-periodic map of negative type is realized as the monodromy of a

certain degeneration (cf. [MM2]). In [AI], using the theory of Harvey and Wiman (cf. [Ha],

[Wi]) and the list of the stable curves of genus three in [F], we classified the monodromies of

degenerations of curves of genus three together with their topological types of moduli points.

In this paper, we completely classify the monodromies of degenerations of genus three

that cannot be realized as the monodromies of any hyperelliptic families of genus three (The-

orem 1.8). Moreover, we prove that all the other monodromies of genus three are realized as

the monodromies of certain hyperelliptic families. For the classification, we define an opera-

tion called the "inverse of Horikawa's canonical resolution". Using this operation, we easily

see that the closure of the hyperelliptic locus H3 in the Deligne-Mumford compactification

M3 of the moduli space of genus three curves does not intersect the strata of the stable curves
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of types (D), (H), (I), (M), (O) (cf. Corollary 1.6). In order to prove the existence of hyper-

elliptic families with monodromies not listed in Theorem 1.8, we give, for each monodromy,

the defining equation of a hyperelliptic family with the monodromy.

When we deal with the monodromies of hyperelliptic families, we need to deal carefully

with the data of monodromies called the screw number.

The conjugacy class of a pseudo-periodic map f:Σg Σgof negative type of genus g

(i.e., the monodromy of a degeneration) can be determined by the following data (cf. [MM2]):

(i) an admissible sysytem of cut curves C = \\ Ci on Σg, (ii) an action of f on the oriented

graph induced by the admissible system, (iii) the valency data of the stabilizer of each com-

ponent of Σ \ C, (iv) the screw number of f around each neighborhood of C i.

For example, there exist conjugacy classes [f1] and [f2] of pseudo-periodic maps of

negative type such that [f1] can be realized as the monodromy of a hyperelliptic family but

not [f2], although their data (i), (ii) and (iii) coincide.

In Section 1, we first classify the monodromies among those listed in [AI] that cannot be

realized as monodromies of any hyperelliptic family of genus three (cf. the list in Theorem

1.8). More precisely, for each monodromy [f] listed in Theorem 1.8, we prove that any

family whose monodromy is [f] cannot be obtained by Horikawa's canonical resolution of

any double covering of P1 × . We also show in Theorem 1.8 that all monodromies in
[AI] not listed in Theorem 1.8 can be realized as the monodromies of certain hyperelliptic
families. In Section 2, we prove this by constructing families whose monodromies are not
listed in Theorem 1.8.

In this paper, We adopt the same terminology for topological monodromies of genus
three as in [AI].

The author thanks Professors Tadashi Ashikaga, Kazuhiro Konno, Masanori Ishida,
Tatsuya Arakawa, Takeshi Kajiwara and Shigeru Takamura, for their useful advice and valu-
able discussions. He wishes to express his special gratitude to Professor Tadao Oda for his
continuous encouragement.

1. Possibility for the existence.
1.1. Inverse of canonical resolution. We first review Horikawa's canonical resolution

of singularities appearing in double coverings of a surface (cf. [Ho1, §2]). Let φ: S be

a normally minimal hyperelliptic family of genus g. By the same argument as in [Ho2, §1],

we see that S is bimeromorphic to a double covering ψ0: S0 W0 := P1 × branched
along a divisor B0 of W0. More precisely, there exists a line bundle F0 on P1 × such that
the line bundle [B0] associated to B0 is isomorphic to F®2 and that S0 is realized in the total
space of F0 as a double covering of P1 × . Let π0 be the second projection of W0. We set

Γt := π0 1(t), B˜0 := B0 Γ0 when Γ0 is a component of B0, and B˜ 0:= B0 otherwise. The
pair (S0, B0) satisfies the following conditions:

(i) The intersection number B0 · Γt is equal to 2g + 2.

(ii) If the local intersection number Ip(Bo, n:^l(t)) of B˜0 and Γt at P is greater than

one, then P is on Γ0.
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We define ΤI, τ˜i, π i , Bi, B˜i, F{, F{, Ei and ψi inductively as follows: Let Τ0 be the

identity map of W0. We choose a bad point Pi 1 on Bi 1, that is, Pi 1 is a singular point

or satisfies IPi 1 (B ĩ 1, ((Τ0 O • • τ I T,_i)*/o)red) 2, where B,_i is the strict transform

of B˜0 by Τ0 o • • τ i 1 . Let ΤI : W i Wi 1 be the blowing-up at P i 1. We denote the

multiplicity of B i 1 at Pi 1 by mP i 1. Let E i be the exceptional set of ΤI. We define Γ ˜ i
as the reduced scheme of (TO O • • • o T,-_I)TO. We set B, := T*/?,-_I — 2[m/>._1/2]£; and
Fi := T*F;_I [mPi 1/2]Ei, where [mPi 1/2] is the greatest integer not exceeding MP i 1/2.
Since [/?,-] ~ F®2, we can take a double covering ψi: S i Wi branched along Bi in the

total space of Fi, and naturally define a bimeromorphic map f,: Si S i 1 (cf. [Ho1, §2]).

We set πi := π i 1 • ΤI. Repeating this process at all bad points, we obtain a sequence of

blowing-ups Wr -4 • τ rW 1 τ1 W0 satisfying the following properties:

(a) Br is nonsingular.

(b) Θ := (Τ1 O • · • τ Tr)*(ro) and the strict transform of B˜0 intersect each other trans-
versally.
Sr is nonsingular by (a). The reduced scheme of the special fiber of Sr is a normal crossing
divisor by (b). We obtain the original normally minimal model φ: S A by the composite

of the blowing-downs of suitable ( 1)-curves successively on Sr. We call the above process

Horikawa's canonical resolution (the canonical resolution, for short). In this paper, we always

use r as the length of the sequence of the blowing-ups that satisfies the conditions (a) and (b).

Conversely, choosing a component E'r of (Τ1 O • · • τ Tr)*(.Tb) whose self-intersection

number is 1, we consider the blowing-down x'r: Wr • Wr_^ which contracts E'r to a point

P'. We set B'r := Br E'r when E'r is a component of Br, and B'r := Br otherwise. Let

mpi be the intersection number E'r • B'r. Since {x'r)^{Br + 2[mPi/2]E'r) is isomorphic to

(Tr)*(Fr + [mp//2]E'r)®2, we can take the double covering i\r'r_x: S'r_{ 1 W^j branched

along {T'r)*Br and naturally define a morphism T/ : Sr Sr 5 ^ ^ Repeating this process, we

finally obtain a sequence of blowing-downs Wr -4- • τ r W1 IVj τ1 WQ and a double covering

f'r: S0 ->• WQ = P 1 × such that 50 is bimeromorphic to Sr. We call this process an
inverse of Horikawa's canonical resolution. Note that if the multiplicity of a component E
of (Τ1 o • · • τ Tr)*Fo is one, we can find an inverse of Horikawa's canonical resolution such

that (T{ O • • • o x'r)*E is P1, i.e., we can consider {x[ o • • • o x'r)*E to be FQ. We call this

an inverse of Horikawa's canonical resolution associated to E. Let C be a prime divisor

of S that is a component of φ 1(0). Let Z be the set of points that are the images of the

exceptional curves of f: Sr S. Let Π(C) := Vr ° τ 1 (C (C Z)) denote the closure

of ψr•˜τ 1(C (C Z)) in Wr. Π(C) is also a prime divisor on Wr. Assume that C" is another

component of φ 1 (0) satisfying Π(C) n{C') = . Since the dual graph of Θ is connected,

there exists a subdivisor Z)CCv = J2 ai E i of Θ that satisfies the following conditions (we use

the same symbol E i for the strict transform of Ei on Wr):

(i) Θ Dec and Θ t Dec + Ei for all Ei (ai ^ 0).

(ii) Supp(Π(C)) £>CC/ ^ 0 and Supp(/7(C')) D C C ' ^ 0.

(iii) £>CC/ jt Π(C) and £>CC/ ^ 77(C).
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(iv) Supp(Z)cc>) is connected.

Since the dual graph of Θ has no loop, DCa is uniquely determined. We set DCa = 0 when

Π(C) intersects TJ(C'). We call the divisor DCc the bridge between Π(C) and TJ(C').

1.2. Periodic case. Let ->• be a totally ramified cover of degree d branched

at the origin. Let Sd be the nonsiglular model of S × A' and φd: Sd ^ ' the natural

morphism. Let f be a representative of the monodromy of (φ, S, ) (namely, f is a pseudo-

periodic map and its conjugacy class [f] in the mapping class group is the monodromy of

(φ, S, )). Then the monodromy of (φd, Sd, A') is [fd]. In Lemma 1.4 of [AI], we classified

the conjugacy classes of periodic maps of genus g (1 g 3). The data for the conjugacy

class of a periodic map [f] consists of two invariants: the period and the total valency. The

period n is the smallest positive integer such that fn is isotopic to the identity.

We introduce the notion of the valency originally defined by Nielsen ([Ni1]). By Kerch-

hoff's theorem (cf. [Ke]), for each periodic homeomorphism f, there exist a Riemann surface

Σg of genus g and an analytic automorphism f ¯: Σg Σ g isotopic to f. For each point P

on Σg, we denote by rP the cardinality of the orbit of P under / , and let lP := n/rP. Let δP

be the smallest nonnegative integer such that f¯rP is the rotation of angle 2πδP/l P near each

point in the orbit. Denote by sP the smallest positive integer satisfying δPsP 1 (mod lP)

if Sp ^ 0, and set sP := 0 when δP = 0. The symbol sP /l P is called the valency of the orbit

of P.

Note that the valencies of all but a finite number of orbits are zero. The set of the pos-

itive valencies is called the total valency of / and expressed as the formal sum ^sp/lp of

symbols.

We define the total valency of a periodic homeomorphism f as the total valency of / . It

is well-known that the conjugacy class of a periodic map is determined by its period and total

valency.

For instance, (1) in [AI, p. 202], n = 14; 11/14 + 5/7+ 1/2 means that there exist three

orbits d = {P1}, O2 = {P2, f¯2(P2)}, and O3 = {P3, f¯2(P3), ···, f¯6(P3)} such that / is
the rotaion of angle 2π × 9/14 near P1, f¯2 is the rotaion of angle 2π × 3/7 near each point
in O2 and / 7 is the rotaion of angle π near each point in O3.

We use the same symbols as in [AI, p. 202 and p. 203]. To avoid confusion with another

number in another paragraph in [AI, p. 203], we denote for example by (i1) the monodromy

(1) in [AI, p. 202], n = 14; 11/14 + 5/7+ 1/2.

Let S be a family of genus three with periodic monodromy (i1) and / as above. Taking

a base change of degree seven, we obtain a family S 7 whose monodromy is a periodic

map with n = 2; 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2, because the points in O1 and O3

are the fixed points of the involution f¯7. Repeating this calculation for all periodic maps of
genus three, we obtain the following:

LEMMA 1.1. By taking a base change of suitable degree, all periodic maps of genus
three are obtained from those with

(i1) n = 14, 11/14 + 5/7 + 1/2,
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(i7) n = 12, 11/12 + 7/12+1/2,

(i9) n = 12, 11/12+3/4+1/3,

(i13) n = 9, 8/9 + 4/9 + 2/3,

(i20) n = 8, 1/8 + 5/8 + 1/4,

(i22) n = 8, 3/8 + 3/8 + 1/4,

(i28) n = 7, 1/7 + 2/7 + 4/7,

(i44) n = 4 , g> = 1, 1/2+1/2,

(i47) n = 2, g' = 2 and Π: Σ g Σ 17̂ / s an unramified covering.

PROOF. We set m1 = (i1), M 7 := (i7), m9 := (i9), m13 := (i13), M 2 0 := (i20),

m22 := (i22), m28 := (i28). Then, by elementary calculations, we obtain the following

equations:

(m 1)2 = (i31), (M 1)3 = (i3), (M 1) 4 = (i25), (M 1) 5 = (i6),
( M 1 ) 6 = (i29), (m1)7 = (i43), ( M 1 ) 8 = (i30), ( M 1 ) 9 = (i5),
( M 1 ) 1 0 = (i26), ( M 1 ) 1 1 = (i4), ( M 1 ) 1 2 = (i32), ( M 1 ) 1 3 = (i2),

( M 7 ) 2 = (i33), ( M 7 ) 3 = (i39), ( M 7 ) 4 = (i45), ( M 7 ) 7 = (i8),
( M 7 ) 9 = (i40), ( M 9 ) 2 = (i34), ( M 9 ) 3 = (i36), ( M 9 ) 4 = (i42),
( M 9 ) 5 = (i1 1), ( M 9 ) 6 = (i46), ( M 9 ) 7 = (i12), ( M 9 ) 8 = (i41),
(m 9 ) 1 0 = (i35), ( M 9 ) 1 1 = (i10), ( M 1 3 ) 2 = (i16), ( M 1 3 ) 4 = (i18),
(m13)

5 = (i17), (m13)
6 = (i42), (m13)

7 = (i15), (m13)
8 = (i14),

( M 2 0 ) 2 = (i37), ( M 2 0 ) 3 = (i19), ( M 2 2 ) 3 = (i24), ( M 2 2 ) 6 = (i38),

( M 2 2 ) 5 = (i23), ( M 2 2 ) 7 = (i21), ( M 2 8 ) 3 = (i27).

•

LEMMA 1.2. Let E be a component of (τ 1 • • • τ T;)*(/O) whose multiplicity α is

greater than or equal to two. Assume that E intersects at least three distinct components Ej1,

Ej2, Ej3 of (τ 1 • • • τ i)*(/"o). Let Eˆji (i = 1, 2, 3) be mutually distinct maximal connected

subdivisors of(τ1 • -or,- )*(/"o) such that their supports do not contain E and that E^ > Ejr

In any inverse of the canonical resolution, at least one of the Eˆji (i = 1, 2, 3) is contracted

before E.

PROOF. Let xr> be the blowing-up such that the strict transform of Er> by v + i + 1 • • o ΤI

is E. If none of the Eˆji (i = 1, 2, 3) are contracted before E in any inverse of the canonical
resolution, three distinct nonzero subdivisors ( τ r • • • ° τi)(Eˆji) (i = 1, 2, 3) intersect at a
point on Wr>_i. However, considering the process of the canonical resolutions, we see that
the singularities of the reduced scheme of (Τ1 o • · • τ xs)*(ro) are ordinary double points for

all s, a contradiction. •

COROLLARY 1.3. In the notation as above, there exists a subdivisor D of

( τ 1 • • • τ T;)*(/O) such that one ofEˆj1, Eˆj2, Eˆj3 coincides with αD.

PROPOSITION 1.4. There exist no hyperelliptic families whose topological monodro-

mies are (i9), (i10),(i11), (i12),(i13),

(i34),
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PROOF. By the argument in the proof of Lemma 1.1, we see that by taking a base

change of suitable degree, the periodic monodromies listed above become one of the fol-

lowing: (i28) n = 7; 1/7+ 2/7 +4/7, (i37) n = 4; 1/4+1/4+1/4+1/4, (i42) n = 3;

1/3 + 1/3 + 1/3 + 1/3 + 2/3. Thus, it suffices to prove that there exist no hyperelliptic families

whose monodromies are one of them.

Assume that there exists a hyperelliptic family S whose monodromy is (i28). Let C0,

C1, C2, C3 be the components of the special fiber of S whose multiplicities are 7, 1, 2 and 4,

respectively, and C0 intersects C1, C2 and C3. Since their multiplicities are distinct, Π(C i )

are all distinct. Since the multiplicity of each Π(C i ) is not a multiple of seven and the bridge

DC0Ci intersects Π(C0) at a point, Lemma 1.2 implies the nonexistence. Case (i42) is similar

to Case (i28).

Assume that there exists a hyperelliptic family S whose monodromy is (i37). Let C0,

C1, . . . , C4 be the components of the special fiber of S whose multiplicities are 4, 1, . . . ,

1, respectively. If Π(C0) is a component of Br, Π(C0) intersects at least four components.

It contradicts Lemma 1.2. Thus we may assume that Π(C0) is not a component of Br with

multiplicity four, Π(C1) = Π(C2) and Π(C3) = Π(C4) with multiplicity one, respectively.

If the bridge DC0C1 intersects Br or contains a component of Br, ir*{Dcod) is connected. In

this case, T(VV*(£>C0CI)) is a point, and C0, C1 and C2 intersect at a point, a contradiction.

Thus, if DC0C1 ¥= 0, all components of DC0C1 are not components of Br and do not intersect

Br. Since the multiplicities of the components of if*{Dc0Ci) are greater than or equal to

five, the multiplicities of the components of DC0C1 are greater than or equal to five. Then,

by any inverse of the canonical resolution, DC0C1 is contracted before Π(C0) and Π(C1) are

contracted. It means DC0C1 = 0 because, by our definition of the canonical resolution, we do

not blow up at non-bad points. By the same argument, Π(C0) intersects Π(C3) at a point.

Thus, there exists no component of (τ 1 • • • τ Tr)*(Fo) whose self-intersection number is 1,

a contradiction. •

1.3. Non-periodic case. By the semistable reduction theorem (cf. [DM]), there exists

a branched cover A' totally ramified over the origin with degree d such that Sd A' is

a semistable family. We call it a semistable model of φ: S . Let Sd S 5" be a composite

of the blowing-downs of ( 2)-curves so that S' is free from ( 2)-curves. We call 5" A'

a stable model of φ: S . We sometimes call the special fiber of a (semi)stable model

of φ: S the (semi)stable model of the special fiber of φ: S . We introduce the

weighted graphs (A) through (O) as the dual graphs of the stable curves in Table 1 (cf. Table 2

in [AI]). A vertex v corresponds to a component of a stable curve and an edge corresponds to

an intersection of two components. Let g(v) and ρ (v) be the genus and the number of singular

points of the component v, respectively. The number inside a small circle in Table 1 means

g(v) + ρ(v). We omit the number when it is zero. For instance, the graph (B) represents

six stable curves, that is, v1 has genus i1 and 2 i1 singular points while v2 has genus i2

and 1 i2 singular points (0 i1 2, 0 i2 1). We write the stable curves B i 1 i 2

(0 i1 2, 0 i2 1) for short. Figures (A) to (O) in Table 1 can be regarded as the



MONODROMIES OF HYPERELLIPTIC CURVES 7

dual graphs of stable curves of genus three. Furthermore, if we replace each edge of these
graphs by a chain of ( 2)-curves, these graphs can be regarded as the weighted dual graphs
of semistable curves of genus three. We call a chain of ( 2)-curves a P1-chain at the edge.
The number of components of a P1 -chain is called the length of the P1 -chain.

PROPOSITION 1.5. There exists no hyperelliptic family of genus three whose special
fiber of the stable model has a topological type of either (D), (H), (I), (M) or (O) in Table 1.

(A)

TABLE 1. Stable curves of genus 3.

(B) (C) (D)

V\ I'l V2 V\

(H) (I) U)

(K) (L)
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PROOF. Since the degeneration obtained by a base change of a hyperelliptic family is

a hyperelliptic family, we may assume the hyperelliptic family φ: S is (semi)stable.

The vertices of the graphs are regarded as the corresponding irreducible components for the

simplicity of notation.

Assume that there exists a hyperelliptic family whose special fiber is (D). Since the mul-

tiplicity of each VI is one, Π ( V I ) is not a component of Br. Since VI (1 i 3) intersects v4

at a point, the bridge Dviv4 between Π ( V I ) and Π(v4) intersects v4 at one point P i . Moreover,

each Pi is contained in Br. It means that v4 is the double covering of P1 branched at least at

three points. This contradicts the fact that v4 is P1.

Assume that there exists a hyperelliptic family whose special fiber is (H). Π ( V 1 ) does not

coincide with Π(v2), because V1 is not homeomorphic to v2. Since V1 is connected with v2 by

three P1-chains, there exist at least two bridges between Π ( V 1 ) and Π(v2), a contradiction.

Assume that there exists a hyperelliptic family whose special fiber is (I). Since v3 is

not homeomorphic to v2, we have Π(v2) ^ =Π(v3). Π(V2) intersects Dv2v3 at a point on

Br, because v2 is connected with v3 by aP1-chain. Since Π(v2) intersects Br, we see that

Π ( V 1 ) ^ =Π(v2). Since V1 is connected with v2 by three P1-chains, there exist at least two

bridges between Π ( V 1 ) and Π(v2), a contradiction.

Assume that there exists a hyperelliptic family whose special fiber is (M). Since the dual

graph of Θ has no loop, we have Π ( V 1 ) = Π(v2). Since Π ( V 1 ) ^ =Π (v3), there exist at least

two bridges between Π(v3) and Π(V1), a contradiction.

Assume that there exist a hyperelliptic family whose special fiber is (O). We may assume

Π ( V 1 ) = Π(v2) and Π(v3) = Π(v4). In view of the configuration of (O), there exist at least

two bridges between Π ( V 1 ) and Π(v3), a contradiction. •

COROLLARY 1.6. Let M3 be the Deligne-Mumford compactification of the moduli

space of curves of genus three. The closure of the hyperelliptic locus H3 in M3 does not

intersect the loci of the stable curves whose topological types are (D), (H), (I), (M) and (O).

PROOF. Let C be a stable curve whose moduli point is on H3. According to [HM,

Theorem 3.160], there exists an admissible double cover π: C B of a stable 8-marked

curve B of genus 0. In the proof of Proposition 1.5, we showed that we cannot construct

stable curves of type (D), (H), (I), (M) and (O) as a double cover of genus 0 curves. •

PROPOSITION 1.7. There exists no (semi)stable hyperelliptic family whose special fiber

of the stable model has a topological type of either (E), (F), (G), (J), (K) or (N), if the following

conditions are satisfied:

(i) The length of the P1 -chains at e1 and e2 are mutually distinct in the cases (E), (F)

and(G).

(ii) The length of the P1-chains at e3 and e4 are mutually distinct in the cases (J) and

(K).

(iii) The length of the P1-chains at e5 and e6 are mutually distinct in the case (N).
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PROOF. If there exists a family whose special fiber is (E) or (G) satisfying the above

condition (i), then we see that Π(v1) ^ =Π(v2) and there exist at least two bridges between

Π(v1) and Π(v2), a contradiction. In the case (F), considering the brideges between Π(v3)

and Π(v4), we have the same contradiction. By the same argument, we can prove the non-

existence of families with monodromies (J) or (K) satisfying the above condition (ii).

We assume that there exists a family whose special fiber is (N) satisfying the condition

(iii). Assume that Π(v1) = Π(v2). Since Θ has no loop, we may assume that Π(v3) =

Π(v4). From the condition of (iii), we know that DVlV3 ^ Dv2v4, although Dv1v3 and Dv2v4 are

the bridges between Π(v1) and Π(v3), a contradiction to the unicity of the bridge. Thus, we

may assume that Π(v1) ^ =Π(v2). Since Θ has no loop, we may assume that Π(v1) = Π(v3)

and Π(v2) = Π(v4). In this case the double covering \jf*{DvlV2) must be two distinct P1-

chains between v1 and v2. On the other hand, ir*{DV3V4) must be two distinct P1-chains

between v3 and v4. Since Dv1v2 = Dv3v4, \[r*(DvlV2) must be four distinct P1-chains, a

contradiction to the fact that ψr is a map of degree two. •

Choosing a topological monodromy, we define an integer Kei for each edge as the sum

of the valencies and the screw number at the edge ([MM1], [AI, p. 201]). These integers play

a very important role when we deal with the monodromies of hyperelliptic families. In the

following theorem, c denotes a nonnegative integer.

THEOREM 1.8. There exist no hyperelliptic families satisfying the following condi-

tions:

(i) The topological type of the stable model is one of the types (D), (H), (I), (M) and

(O).

(ii) The topological type of the semistable model is one of the types (E), (F), (G), (J),

(K), (N) satisfying the conditions (i), (ii) and (iii) in Proposition 1.7.

(iii) The monodromy satisfies one of the following:

A 3 : ( i 9 ) , (i10),(i11), (i12),(i13),(i14), ( i1

A2: (iii2), (iii3), (iii7), (iii9), (iii11), (iii13), (iii14), (iii16), (iii18), (iii28).

A1: (viii5), (viii12).

A0: (xv2), (xv7).

B1i (i = 0, 1): V1 = {(vii4), (vii7), (vii8)}.

B0i (i = 0, 1): V1 = (xiv3).

C111, C101, C001: Id, V3 = {(va4), (va5)}.

C111, Cooi: H(l,l) V3 = {(vb1), (vb2)}.

En: H(0,l), V1 = {(vb1)}, V2 = {(vb1, 3, 5)}, Ke1 = 2c 1.

E11: II(0,1), V1 = {(vb1)}, V2 = {(vb2,4, 6)}, Ke1 = 2c.

Ew: H(0,l), V1 = {(vb1, 3, 5)}, V2 = {(xiib1)}, Ke1 = 2c 1.

E10: II(0,1), V1 = {(vb2, 4, 6)}, V2 = {(xiib2)}, Ke1 = 2c + 1.

E10: II(0,1), V1 = {(vb2, 4, 6)}, V2 = {(xiib1)}, Ke1 = 2c.

E10: II(0,1), V1 = {(vb1, 3, 5)}, V2 = {(xiib2)}, Ke1 = 2c.
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E00: II(0,1), V1 = V2 = {(xiibs)}, Ke1 = 2c 1.

E00: II(0,1), V1 = {(xiibs1)}, V2 = {(xiibs2)}, si ^ s2, Ke1 = 2c.

Fij(i, j = 0, 1): II(0,1), Ke1=2c 1.

G1i(i = 0, 1): II(0,1), V1 = {(vb1, 3, 5)}, Ke1=2c 1.

G1i(i = 0, 1): II(0,1), V1 = {(vb2, 4, 6)}, Ke1 = 2c.

G0i(i = 0, 1): II(0,1), V1 = {(xiib1)}, Ke1 =2c 1.

G0i(i = 0, 1): II(0,1), V1 = {(xiib2)}, Ke1 = 2c.

J1: II(1,4), V1 = {(vb1, 3, 5)}, Ke1 = 2c.

J1: II(1,4), V1 = {(vb2,4, 6)}, Ke1 =2c 1.

J1: II(1,6), V1 = {(vb1, 3, 5)}, Ke1 =2c 1.

J1: II(1,6), V1 = {(vb2,4, 6)}, Ke1 = 2c.

J0: II(1,4), V1 = {(xiib1)}, Ke1 = 2c.

J0: II(1,4), V1 = {(xiib2)}, Ke1 = 2c 1.

J 0 : II(1,6), V1 = {(xiib1)}, Ke1 = 2c 1.

J 0 : II(1,6), V1 = {(xiib2)}, Ke1 = 2c.

Ki (i = 0, 1) II(1,4), Ke1 = 2c. Ki (i = 0, 1) II(1,6), Ke1 = 2c 1.

Moreover, all monodromies listed in [AI] except those listed above can be realized as

monodromies of certain hyperelliptic families.

PROOF. We prove the existence of the families by giving examples of the equations

in Section 2. Since we have too many cases, we write down the proof of nonexistence only

for several typical cases. We call a subdivisor Z of the special fiber a P1-chain if all the

components of Z are nonsingular rational curves and its dual graph is linear.

Assume that there exists a normally minimal hyperelliptic family whose topological

monodromy is A2: (iii2). Let X = 4C0 + 8C1 + 7C2 + 6C3 + 5C4 + 4C5 + 3C6 + 2C7 +

5L1 + 2L2 + Z 1 +···+h Zk be the special fiber of the family. C i, L i, Z i are all rational curves.

Ci intersects C i+1, and Ci · Cj = 0 if |i j | 2. C1 intersects L1, and L1 intersects L2.

Z 1 +···+h Zk is a P1-chain connecting C7 with L2. Since the multiplicities of C1, C2 andL1

are distinct, Π(C1), Π(C2) and Π(L1) are all distinct. Moreover, by Lemma 1.2, we see that

Π(C1) is a component of Br with multiplicity four. Note that DC1C2 + 4Π (C1) + DC1L1 is the

bridge DC2L1 andf(^*(£>c2L1)) = 8C1. On the other hand, since X 4C0 8C1 7C2 5L1

intersects C2 and L1 at a point, respectively, the bridge DC2L1 at least contains Π(L2). Thus,

L2 is a component of x{ir*{Dc2Li)), a contradiction.

In the cases A2: (iii3), (iii7), (iii9), (iii11), (iii13), (iii14), (iii16), the special fibers

have loops and we obtain the same contradiction if we assume the existence of hyperelliptic

families with the monodromies.

We take this opportunity to point out that the picture of (iii7) in [AI, p. 217] is incorrect.

The sequence (3, 2, 1) should read (4, 3, 2, 1).

Assume that there exists a hyperelliptic family with monodromy C111 (i, j = 0, 1): Id,

V1 = V2 = (iv1), V3 = (va4).LetX = 3C0 + 2C1+2C2 + 2C3 + C4 + Z1 + Z2 + L1 + L 2 be

the special fiber of the family, where Ci are nonsingular rational curves, Li are elliptic curves
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and each Z i is the P1-chain that connects Ci with L i. Since the multiplicity of C0 is odd,

Π(C0) is not a component of Br. Since Π (L1) ^ =Π(L2), we see that Π (Ci) (i = 0, 1, 2, 3)

are mutually distinct. Thus, Π(C0) intersects three distinct bridges DC0C1, DC0C2

 a n d DC0C2

at a point on Br, respectively. It contradicts the fact that C0 is a nonsingular rational curve.

The other cases of C i j1 (i, j = 0, 1): Id, V3 = (va4, 5) can be proved by the same argument.

Assume that there exists a hyperelliptic family with monodromy A2: (iii18). Let C0

be the component with multiplicity two. The dual graph of the special fiber has a loop, and

we see that Π(C0) is not a component of Br and has multiplicity two. Since C0 intersects

other components at six distinct points, Π(C0) intersects at least three components D1, D2

and D3 at three distinct points. For each Di, let A be the connected maximal subdivisor of

0 containing Di but not Π (C0). Each Di has a component with multiplicity one, because

the multiplicities of the components other than C0 are one. It contradicts the assertion of

Lemma 1.2.

The cases A2: (iii28), A1: (viii5), A0: (xv2), (xv7), B1i (i = 0, 1): V1 = {(vii4), (vii7),

(vii8)} can be proved by the same argument.

Assume that there exists a hyperelliptic family with monodromy B0i (i = 0, 1), V1 =

(xiv3). Let D = 2C0 + 2 ( £ Zj) + C1 + C2 be the subdivisor of the special fiber X as

shown in [AI, p. 220, (xiv3)]. Ci and Zj are nonsingular rational curves and the dual graph of

C0 + J2 Zj is a loop. By the configuration of X, we see that Π(C i ) are mutually distinct and

not components of Bn. Assume that DC0C1 ¥= 0. Since if*{Dcod) is contracted to a point

at which C0 intersects C1, the multiplicity of the component D' of if*{Dcod) intersecting

f*(Co) is odd. On the other hand, the component D' of DC0C1 intersecting Π(C0) is a com-

ponent of Br, because C0 intersects C1 at a point. It contradicts the fact that the multiplicity

of D' = ir*{D') is odd. Thus, we see that DC0C1 =0, a contradiction to the configuration of

the special fiber.

If there exists a hyperelliptic family S whose monodromy is A1: (viii12), the configura-

tion of the special fiber X is as shown in Figure 1. We consider ψ0: S0 × P1 as in §1.1.
Let Fo' be the strict transform of Γ0 in Wr. Since the multiplicity of each component of X is

greater than one, Γ0 is a component of B0. If not, the multiplicities of ir*{rQ') is one, and we

cannot contract ijf*(r0'). Assume that Π(v1) is not a component of Br. Then, Π(v1) inter-

sects the bridge Dv1 v4 between Π (v1) andΠ(v4) at a branch point of ψr. If Π(v2) ^ =Π(v3),

then Π(v1) intersects the bridge between Π(v1) and Π(v i) (i = 2, 3) at the branch points

elliptic

4

FIGURE 1.
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of ψr. It contradicts the fact that v1 is a nonsingular rational curve. We may also assume

that Π(v2) = Π(v3). Since the multiplicity of ir*{r^) is equal to two, there exists a bridge
D

v2f*(r')ied
°f Θ that does not contain Π(v1) as a component. However, the dual graph of

^o + Dv2f*(r')ied + Π(v2) + Π(v1)) has a loop because r0' is a component of Br, a

contradiction to the configuration of X. Moreover, we see that each component of Θ with

multiplicity one is a component of Br by the same argument.

Assume that Π(v1) is a component of Br. Then the multiplicity of Π(v1) is equal to

two and Π(v2) ^ n{v^). We also asssume that we can find an inverse of the canonical

resolution Wr · · · τ r Wr/ -4- Wr>_i · · · τ 1 W0 satisfying (i) the strict transform of the

exceptional set Zv of v b y v + i o - 1 •···•τr is/7(i;i),(ii)v is the blowing-up at a point at which

two components E and £ ' of (τ 1 • • • τ Tr>_i)*/o intersect. In this paragraph and the next, we

use the same symbols E, E' and Er> for the divisors on Wr that are the strict transforms of E,

E' and Eri, respectively. Since E and Π(v1) are components of Br, there exists a maximal

nonzero connected subdivisor D of Θ connecting E with Π(v1). The component D' of D

intersecting Π(v1) is not a component of B r. Moreover, since the multiplicities of T*,(E)

and Eri are one and two, respectively, the multiplicity of D' is odd. Thus, the multiplicity of

f*(D') is odd. On the other hand, the multiplicities of the components of the special fiber

are all even and we cannot make a component having odd multiplicity by any sequence of the

blowing-ups, a contradiction.

Thus, for each inverse of the canonical resolution, we can find the blowing-up v satisfy-

ing (ii), and(iii) ( v + i o - • •τ r)(Π(v1)) is a point on Er> that is not on any other components

of ( τ 1 • • • r v)*(/o) . If Eri is a component of Br, we have the same contradiction as in the

previous paragraph. Thus, we may assume that Er> is not a component of Br. Since the dual

graph of the special fiber has no loop, we see that the divisor connecting Π(v1) with E, E'

and Π(v1) intersects Er> at three distinct branch points of ψr. It contradicts the fact that the

nonrational component of the special fiber has multiplicity four.

LEMMA 1.9. The monodromy of a hyperelliptic family whose special fiber is as in

Figure 2 is E11: II(0,1), V1 = (vb1), V2 = (vb6).

3C7

2L elliptic

2Z m

FIGURE 2.
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Since the special fiber of a hyperelliptic family with monodromy C111: II(1,1), V3 =

(vb1), V1=V2 = (iv1) has the same configuration of the special fiber as that of afamily with

monodromy En- H(0,l), V1 = (vb1), V2 = (vb6), we obtain the following:

COROLLARY 1.10. There exists no hyperelliptic family with monodromy Cm- n(l,l),

V3 = (vb1), V1 = V2 = (iv1).

PROOF OF LEMMA 1.9. Assume that there exists a hyperelliptic family with the spe-

cial fiber X = 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + C6 + 3C7 + 4C8 + 2C9 + 2 £ Zj + 2L as in

Figure 2. Note that Ci and Zj are nonsingular rational components and L is an elliptic curve.

By Lemma 1.2, we see that Π(C1) is a component of Br. Assume that the bridge Dcxc2 ^ 0.

Since ^(DdCz) is contracted to a point at which C1 intersects C2, each multiplicity of a

component of •t/f*(Dc1c2) is written as 6a + 5b with positive integers a and b. We see that the

multiplicities of the components of DC1C2 are at least eight, because the multiplicities of the

components of •t/f*(Dc1c2) are greater than or equal to eleven if odd, and sixteen, otherwise.

Then, by any inverse of the canonical resolution, the bridge DC1C2 is contracted to a point

P Wri before Π (C1) and Π(C 2 ) are contracted. If P is a bad point, \lr*(Dclc2) is not

contracted, because ifr^Dc^) is the resolution graph of the singular point \jr~,l{P). Thus,

we see that P is not a bad point, a contradiction to the process of the canonical resolution.

(According to our definition of the canonical resolution, we do not blow up a non-bad point.)

By the same argument, we see that DC1C7 = DC1C8 = DCICI+1 = 0 (1 i 5) and Π(C8)

is not a component of Br.

Assume that Π(C 9 ) is not a component of Br. Since Π(C8) also is not a component of

Br, we have DC8C9 ¥= 0. Since the multiplicities of the components of ijf*(Dcsc9) are greater

than or equal to six, those of the components of DC8C9 are greater than or equal to three.

Thus, by any inverse of the canonical resolution, Π(C8) + DC8C9 is contracted before Π (C1)

and Π(C 9 ) are contracted. Especially, Π(C8) is contracted before Π (C1) and Π(C 9 ) . Since

the multiplicities of Π (C1) and Π(C8) are three and four, there should exist a component of

DC8C9 having multiplicity one, a contradiction. Thus, we see that Π(C 9 ) is a component of

Br with multiplicity one and DC8C9 = 0.

Assume that we can find an inverse of the canonical resolution Wr · · · τ r Wr> r

Wr/_i · · · τ 1W0 such that v is a blowing-up at the point at which two components E and

£ ' of (TI o • • • ov_i)*(7o) intersect and ( v + i o • • • o v)77(L) is a point g on Er>. We use

the same symbols E, E' and Er> for the strict transform of them on Wr. We may assume that

E is a component of DC9L. By the configuration of X, we see that E and £ ' are components

of Br. If we assume that Er> is a component of Br, \jr*{Eri) is not contracted by f, because

the multiplicities of ir*{Er>) and ir*{E') are four and two, respectively, a contradiction to

the configuration of X. If we assume that Er> is not a component of Br, we see that ir*{Er>)

is not a nonsingular rational curve because the dual graph of X has no loop and the divisor

connecting Er> with E, E' and Π(L) intersects Er> at three distinct branch points of ψr. It

contradicts the assumption 77(L) ^ Er>.
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277 (L)

377(Ci)

FIGURE 3.

3

• t)4

FIGURE 4.

Thus, we cannot find an inverse of the canonical resolution satisfying the above condition
and we obtain the figure of Θ as shown in Figure 3. In Figures 3 and 5, the dotted lines mean
the components of Θ that are not the components of Br. The solid lines mean the components
of Br, and the waves mean B˜r. By an inverse of the canonical resolution associated to E', we
obtain the equation

y2 = t(x 1){(x 1)3 t3k+1}(x2 t)(x2 + t)

for a double covering of P1 × . By a base change of degree 6, we see that the stable model
of this family is E 1 1. •

By the same argument, we can prove the nonexistence of hyperelliptic families with
monodromies C111: II(1,1), V3 = (vb1, 2), V1 = V2 = (ivs) (2 s 8).

We continue the proof of Theorem 1.8. Assume that there exists a hyperelliptic family
whose monodromy is En- 11(0,1), V1 = V2 = (vb2), Ke1 odd. The special fiber X is as
in Figure 4. In this case, the number of components of nonsingular rational curves between
v1 and v2 is even. By Lemma 1.2, we know that Π(v1) and Π(v2) are components of Br.
Then, we may assume that Π(v1) ^ =Π (v2). Assume that Π(v3) is a component of Br

with multiplicity one. Since f*(DVlV3) is contracted to a point at which v1 intersects v3,
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n(vs).

n(V3)
n(v4)

/7(y2)

77 (1)4)

77(u7) 77 (

(a) (b)

FIGURE 5.

the multiplicities of the components D v 1 v 3 are greater than three. Thus, by an inverse of the

canonical resolution, Π(v1) and Π(v3) cannot be contracted before Dv1v3 is contracted. Let

• τ1 W0 be an inverse of the canonical resolution such thatWr Wr
Wr/-i

the composite of the blowing-downs τ r • • • ° τr contracts D v 1 v 3 but not Π(v1) and Π(v3).

Let 7> be the point at which ( v o • • • o rr)(77(i;i)) and ( v ° • • • ° t>)(77(i;3)) intersect. Since

Π(v1) and Π(v2) are components of Br, \[rri_i(P) is a singular point of SV'_i and iff* (Dv1v3)

is the exceptional set of the resolution of Vv-i(^X a contradiction to the fact that \fr*(DVlV3)

is contracted by f. Therefore, Π(v3) is not a component of B r. By the same argument, Π (v4)

also is not a component of B r. Since we do not blow up a non-bad point as in our previous

argument, we see that Π(v1) intersects Π(v3) at a point. By the same argument, Π(v1)

intersects Π(vl) (l = 5, 7) at a point, respectively and Π(v2) intersects 77(u/>) (// = 4, 6, 8)

at a point, respectively. Then the configuration of Θ is as in Figure 5, (a).

Let X)y=i a i jE i j ^ e m e bridge between v3 and v4 such that Π(v3)Ei1 = 1, Π(v4)Eik =

1, EijE i j + 1 = 1 (1 j k 1) and Eij Et., = 0 (|j j ' \ > 2). Consider an inverse of the

canonical resolution associated to Π(v8). First, we contract Π(v5) and Π(v6), then contract

Π(v1) and Π(v2). Then the configuration of the image of Θ by the above contractions is as

in Figure 5, (b). We use the same name for the components of Θ after contractions. Assume

a(1 ^ 1. Since we cannot contract Π(v3) in the next step, there exists / such that a•-., = 1

and after some steps of blowing-downs, E i , intersects Π(v3) at a point. If the point at which

Ei, intersects Π(v3) is a singular point of the branch locus, f*(J2Jj=0 cannot be contracted

by f, a contradiction to the process of the canonical resolution. Thus, a i1 = 1. By the same

argument we see that a ik = 1. If a i2 > 2, f*(Ei2) is contracted by τ .̃ Let / be the smallest
integer greater than two such that f*(Ei,) is not contracted by f. Since a••., is less than or
equal to two, all Ei j (1 < j < / ) are contracted to a point P on Ei1 before Ei 1 and Eij,
by any inverse of the canonical resolution. If P is a singular point of the branch locus, all
f*(Eij) (1 < j < / ) are not contracted, a contradiction to the process of the canonical
resolution. Thus we have ai2 = 2 and Ei2 is not a component of Br. Repeating this argument,
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we obtain that E i j is a component of Br with multiplicity one when j is odd, and Eij is not
a component of Br and has multiplicity two, otherwise. Then the number of components of
nonsingular rational curves between v1 and v2 is odd.

The other cases are proved by similar arguments. •

2. Construction of families. In this section, we complete the proof of Theorem 1.8
by constructing hyperelliptic families whose monodromies are listed in [AI], but not listed
in Theorem 1.8. More precisely, for each monodromy [f] , we give an equation for a double
covering S0 of P1 × whose monodromy of the nonsingular model is [f] . Indices which
appear in the table of symbols and equations are positive integers unless we mention their
range. Let α, αi (1 i 4) be mutually distinct real numbers which are not integers.

Let x be the inhomogeneous coordinate of P 1 and t the coordinate of . For example,
we give an equation for S0 whose topological monodromy is (A3) as follows:

(A3) y2 = x(x 1)(x 2)(x 3)(x 4)(x 5)(x 6)(x 7).

We introduce some symbols for simplicity.
F3(x,t,k) :=x3 tk,

F12(x, t, KU K2) := (x tK1)(x2 tK2),
F˜3(x, t, K, L) := (x2 tf - tKxL,
F˜4(x, t, K, L) := (x2 tf - tKxL,
F˜12(x, t, K1, K2, L1, L2) := {(x2 t) tK1xL1}{(x2 t)2 tK2xL2},
F˜13(x, t, K1, L1, K2, L2) := {(x2 t) tK1xL1}{(x2 tf - tK2xL2},
F˜22(x, t, K, L) := {(x2 t)2 tKxL}{(x2 t)2 + tKxL}.
Let c be a positive integer. We fix a pair of integers (K', L') satisfying 2K' + L' 6 = c,

K' > 0 and 0 < V < 5. We set F̃ 3
c := F˜3(x, t, K', L'). Similarly, fixing a pair (Kf, L')

satisfying 2K' + L' 8 = c, K' > 0 and 0 L' < 8, we set F˜4c := F˜4(x, t, K', L').
Fixing a pair (K', L') satisfying 2K' + L' 4 = c, we set F2

C
2 := F˜22(x, t, K', L'). Let

c1 and c2 be positive integers. We fix two pairs of integers (K[, L[) and (K2, L'2) satisfying
2K{ + L\ - 2 = cu 2K'2 + L2 - 4 = c2, K[ > 1, 0 L1 < 1, K2 > 1 and 0
L2 < 3. We set F˜12c1,c2 := F˜12(x, t, K[, L\, K2, L2). Fixing two pairs of integers (K[, L\)
and (K2, L2) satisfying 2K[ + L1 - 2 = c1 and 2K2 + L2 - 6 = c2, we set F˜13c1c2 :=
F˜13(x, t, K[, L[, K2, L'2). We also define the following symbols using the above ones:

f1(x, t, k, l) := x3 α1t6(k 1 )+ 3 l . f2(x, t, k, l) := F3(x, t, 6k+ 3l 1).
f3(x, t, k, l) := F3(x, t, 6k+ 3l 5). f4(x, t, k, l) := F3(x, t, 6k + 3l 2).
f5(x, t, k, l) := F3(x, t, 6k + 3l 4). f6(x, t, k, l) = F12(x, t, 2k + l, 4k + 2l 1).
f7(x, t, k, l) := F12(x, t, 2k + l,4k+ 2l 3). f8(x, t, k, l) := F3(x, t, 6k + 3l 3).

g1(x, t, k) : = x 5 α2t 1 0 ( k 1 ). g2(x, t, k) := x5 tm~7.
3(x, t, k) := x 5 t10k 3. g4(x, t, k) := x5 t10k 1.
g5(x, t, k) := x 5 t10k 9. g6(x, t, k) := x(x4 t8k 1 ) .
g7(x, t, k) := x(x4 t8k 3 ) . g8(x, t, k) := x(x4 t8k 7 ) .
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A t8k-5->g9(x, t, k) := x(x — t
g15(x,t,k) :=x5 t10k 6.
g19(x,t,k) := x5 t10k 8.
g21(x, t, k) := x(x2 t4k 3)(x2 + t4k 3 ) .
h1(x, t, k, l) := F12(x, t, 2k, 4k + l + 1).
cri(x, t, k, l) : = (x3 t6k)(x2 t4k+l+1).
σ3(x, t, k, l) : = (x3 t6k 4)(x2 t4k+l 2 ) .
σ6(x, t, k, l) : = (x3 t6k 5)(x2 t4k+l 2 ) .
τ1(x, t, ku k2) : = F12(x, t, 2, k1 + 4){(x 2t2)2 tk2+4}.
τ2(x, t, ku k2) := (x 2t)(x2 tk1+2){(x t)2 tk2+2}.
τ4(x, t, ku k2) : = (x t2){(x2 t3)2 t

τ5(x, t, ku k2) := x{(x2 t)2 tk1xk2}

9{(x, t, k) := F˜36k.θ
θ3(x,t,k) := F˜336k 2

θ4(x, t, k) := F™-\ 9'A(x, t, k) := F˜336k 2

t4k 1

) .

g13(x,t,k) :=x5 t10k 4.
g17(x,t,k) :=x5 t10k 2.
g20(x, t, k) := x(x2 t4k 1)(x2

g24(x,t,k) :=x5 t10k 5.
h2(x, t, k, l) := F12(x, t,2k 1,4k + l 1).

σ2(x, t, k, l) := (x3 t6k 2)(x2 t4k+l).
σ5(x, t, k, l) := (x3 t6k 1)(x2 t4k+l).
Σ9(X, t, k, l) := (x3 t6k 3)(x2 t4k+l 2 ) .

-- it~3

+3k2 10 1).

+ k2 4 1).

9'2(x,t,k) 3:=F˜36

3 . θ4

9'5(x,t,k):=F$k+2.
n / , j \ r*2k, 4k— 1

θ7(x,t, k) := F˜
1

95(x,t,k):=Flk-\

Ffk+h 4k+l

a)'3(x,t,k)
co'4(x, t, k)
co'5(x,t,k)
co'6(x, t, k)

=x4-t4k~1.

9'n(x, t, k) := F˜
1(x, t, k) := x4 α

wL(x,t,k):=F^-\
= F

4k 3

13
P,k,3k-2= Fnk

= F˜22

.ω4(x, t, k)

(x, t, k)
.ω6(x, t, k)

, t, k) = (x tk)(x3 t3k 2).Γ
= x4 t4k 3

= x 4 α t

Γ3(x,t,k)
Γ5(x,t,k)
ρ1(x, t, k, l) := (x2 αt2l)(x2 t

4k 4

2l

9>6{x,t,k):=Flk>4k-\

8(x,t,k) := F˜36k.
-l\ co[(x,t,k) = F˜44k.

.ω3(x,t,k) :=x4 t4k 3.

= (x tk)(x3 t3k 1 ) .

= (x tk)(x3 t3k 2 ) .

= (x tk)(x3

= x4 t4k 1

= x4 t4k 2.

Γ2(x, t, k)

4(x, t, k)

6(x, t, k)
ρ2(x, t, k, l) := (x2 t2l+1)(x2 t

3l+1,6k+ 3 l + 2

.η2(x, t, k, l) = Fjg . r]3(x, t, k, l) =

22l+k 2 t2l+1)(x2 tk+2l+1).

η4(x, t, k, l) = F˜1
3l+1,6k+3l+1. η5(x, t, k, l) =

η6(x, t, k, l) = F˜2k+l+1,4k+2l+1{(x2 - 0 tk1xl1}, (2k1

η7(x, t, k, l) = F

l
F˜2k+l,4k+2l 1 {(x2 - 0

l + 2)(l1 2).

, (2k1 + h = l + 2) (h < 2).

We first give examples in the semistable and periodic cases. We then give examples of
hyperelliptic families whose topological monodromies are neither periodic nor semistable.
In the periodic cases, it suffices to construct hyperelliptic families whose topological mon-
odromies are (i1), (i7), (i22), (i44) and (i47). We give two or three equations for the same
symbol of the topological monodromies classified in [AI] according to the difference of their
screw numbers. In the following equations, k, ki are positive integers and l, li are nonnegative
integers unless otherwise specified.
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T H E CASES OF SEMISTABLE CURVES.

(A3) y2 = x(x 1)(x 2)(x 3)(x 4)(x 5)(x 6)(x 7).
(A2) y2 = (x2 tk)(x 1)(x 2)(x 3)(x 4)(x 5)(x 6).
(A1) y2 = (x2 tk1){(x 1)2 tk2}(x 2)(x 3)(x 4)(x 5).
(A0) y2 = (x2 tk1){(x 1)2 tk2}{(x 2)2 tk3}(x 3)(x 4).

(B21) y2 = (x3 t6k)(x 1)(x 2)(x 3)(x 4)(x 5).
(B20) y2 = (x t2k)(x2 t4k+k1)(x 1)(x 2)(x 3)(x 4)(x 5).
(B11) y2 = (x3 t6k1){(x 1)2 + tk2}(x 2)(x 3)(x 4).
(B10) y2 = (x t2k1)(x2 t4k1+k2){(x 1)2 + tk3}(x 2)(x 3)(x 4).
(B01) y2 = (x3 t6k1){(x 1)2 + tk2}{(x 2) 2 + tk3}(x 3).
(B00) y2 = (x t2k1)(x2 t4k1+k2){(x 1)2 + tk3}{(x 2)2 + tk4}(x 4).

(C111) y2 = (x3 t6k1){(x 1)3 t6k2}(x 3)(x 4).
(C110) y2 = (x3 t6k1){(x 1)2 tk2}{(x 2) 3 t6k3}.
(C011) y2 = (x t2k1)(x2 t4k1+k2){(x 1)3 t6k3}(x 3)(x 4).
(C001) y2 = (x + t2k1)(x2 t4k1+k2)(x 2 + t2k3){(x 2)2 t4k3+k4}(x 3)(x 4).
(C010) y2 = (x + t2k1)(x2 t4k1+k2)(x 1 + t2k3){(x 2)3 t6k4}.
(C000) y2 = (x + t2k1)(x2 t4k1+k2){(x 2)2 tk3}(x 3 + t2k4){(x 3)2 t4k4+k5}.
(E11) y2 = (x4 t4k)(x 1)(x 2)(x 3)(x 4).
(E01) y2 = (x2 t2k1)(x2 t2k1+k2)(x 1)(x 2)(x 3)(x 4).
(E00) y2 = (x2 t2k1)(x2 t2k1+k2){(x 1)2 tk3}(x 3)(x 4).
(F11) y2 = (x tk1)(x3 t3k1+6k2){(x 1)3 t6k3}(x 2).
(F01) y2 = (x tk1)(x3 t3k1+6k2)(x 1 + t2k3){(x 1)2 t4k3+k4}(x 2).

(F00) y2 = (x 1+t2k1){(x 1)2 t4k1+k2}(x αtk3)(x tk3+2k4)(x2 t2k3+4k4+k5)(x 2).
(G11) y2 = (x tk1)(x3 t3k1+6k2)(x 1)(x 2)(x 3)(x 4).
(G10) y2 = (x tk1)(x tk1+2k2)(x2 t2k1+4k2+k3)(x 1)(x 2)(x 3)(x 4).
(G01) y2 = (x tk1)(x3 t3k1+6k2){(x 1)2 tk3}(x 2)(x 3).
(G00) y2 = (x αtk1)(x tk1+2k2)(x2 t2k1+4k2+k3){(x 1)2 tl2}(x 2)(x 3).

(J1) y2 = (x4 t4k1){(x 1)2 tk2}{(x 2)2 tk3}.
(J0) y2 = (x2 t2k1)(x2 t2k1+k2){(x 1)2 tk3}{(x 2)2 t k

(K1) y2 = (x tk3)(x3 t3k3+6k4){(x 1)2 tk1}{(x 2)2 tk2}.
(K0) y2 = (x tk3)(x tk3+2k4)(x2 t2k3+4k4+k5){(x 1)2 tk1}{(x 2)2 tk2}.

(L) y2 = (x2 tk1){(x 1)2 tk2}{(x 2)2 tk3}{(x 3)2 tk4}.
(N) y2 = {(x tk1)2 t2k1+k2}{x2 t2k1+k3}{(x 1)2 tk4}{(x 2)2 - f^j.

THE PERIODIC CASES.

(i1) y

2 = (x7 t9)(x 1).
(i7) y2 = x(x6 t7)(x 1).

(i22) y

2 = x8 + t3.
(i44) y2 = t{(x4 t)(x4 + t)}.

(i47) y2 = t{(x2 α1t)(x2 α2t)(x2 α3t)(x2 α4t)}.

Next, we give examples of hyperelliptic families whose monodromies are neither peri-

odic nor semistable.

THE CASES WHERE THE STABLE MODEL IS A2.

(iii4) y2 = t(x6 t5)(x2 t), y2 = (x6 t5){(x 1)2 + t l } .
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y 2 = (x6 t){(x 1)2 + tl}.
(iii6) y2 = x(x5 t4){(x 1)2 + tl} y2 = tx(x2 t)(x5 t4).
(iii8) y 2 = x(x5 t){(x 1 ) 2 + tl}.

(iii10) y 2 = x(x5 t2){(x 1)2 + tl}.
(iii12) y 2 = tx(x2 t)(x5 t3), y 2 = x(x5 t3){(x 1 ) 2 + tl}.
(iii15) y 2 = t(x3 + t2)(x3 t2)(x2 t ) , y 2 = (x3 t2)(x3 + t2){(x 1 ) 2 + tl}.
(iii17) y 2 = (x3 t)(x3 + t){(x 1 ) 2 + tl}.
(11119) y 2 = (x2 t)(x2 + t)(x2 2t){(x 1 ) 2 + tl}.
(11120) y2 = tx(x5 t2){(x 1)2 + t l } .
(11121) y 2 = t(x5 t2)(x2 t)(x 1), y 2 = tx(x5 t3){(x 1 ) 2 + tl}.
(11122) y 2 = tx(x5 t){(x 1)2 + tl}.
(11123) y 2 = (x2 t)(x5 t)(x 1), y 2 = tx(x5 t4){(x 1 ) 2 + tl}.
(11124) y 2 = t(x6 t){(x 1)2 + tl}.
(11125) y2 = (x2 t)(x6 t), y2 = t(x6 t5){(x 1)2 + t l } .
(11126) y2 = t(x3 t)(x3 + t)(x2 t), y2 = t(x3 t2)(x3 + t2){(x 1)2 + tl}.

y2 = t(x3 t)(x3 + t){(x 1)2 + tl}.
y2 = t(x2 tk)(x 1)(x 2)(x 3)(x 4)(x 5)(x 6).
y2 = t(x2 t)(x2 + t)(x2 2t){(x 1)2 + tl}.

THE CASES WHERE THE STABLE MODEL IS A1.

(viii2) y 2 = t(x4 t)(x2 + tk){(x 1 ) 2 + tl}.
(viii3) y 2 = t(x4 t3)(x2 tk+1){(x 1 ) 2 + tl}. y 2 = (x4 t3)(x2 tk+1)(x2 t)

y 2 = (x2 tk1+1)(x2 t)(x2 + t){(x 1 ) 2 tk2}.
y 2 = t(x2 tk1){(x 1 ) 2 tk2}(x 2)(x 3)(x 4)(x 5 ) .
y 2 = t(x2 tk+1)(x2 t)(x2 + t){(x 1 ) 2 + tl}.
y 2 = (x2 t)(x2 + t){(x2 2t)2 tkxl}, (2k + l 2 1).
y 2 = (x 1)(x2 t)(x t){(x2 2t)2 tkxl}, (2k + l 2 1).

(viii10) y 2 = t(x 1)(x2 t)(x t){(x2 2t)2 tkxl}, (2k + l 2 1).
(viii11) y 2 = t(x2 t)(x2 + t){(x2 2t)2 tkxl}, (2k + l 2 1).

THE CASES WHERE THE STABLE MODEL IS A0.

(xv3) y2 = t(x2 tk1){(x 1)2 + tk2}{(x 2)2 + tk3}(x 3)(x 4).
(xv4) y2 = t(x2 t){(x2 2tf - tk1xl1}{(x 1)2 + tl2}, (2k1 + l1 2 1).
(xv5) y2 = (x2 t){(x2 2t)2 tk1xl1}{(x 1)2 + tl2}, (2k1 + l1 2 1).
(xv6) y2 = tx(x 1){(x3 t)2 tkxl}, (3k + l 7).
(xv8) y2 = x(x 1){(x3 t)2 tkxl}, (3k + l 7).

THE CASES WHERE THE STABLE MODEL IS B21.

B21: V1 = (iis1), V2 = (ivs2). y2 = gs1(x, t, k1)fs2(x 1, t, k2, 0).

When B21: V1 = (iis1), V2 = (ivs2) and the screw number is special (not appearing in the
above equation), examples of their equations are as follows (we write (ii2)-(iv2) instead of
writing V1 = (ii2), V2 = (iv2) for simplicity):

(ii2)-(iv2) y2 = t(x3 t2)(x5 t2). (ii2)-(iv6) y2 = tx(x2 1)(x5 t2).
(ii3)-(iv2) y2 = t(x5 t2){(x 1)3 t2}. (ii3)-(iv4) y2 = t(x5 t2){(x 1)3 t}.
(ii3)-(iv5) y2 = t(x3 t2)(x5 t3). (ii3)-(iv6) y2 = t(x5 t2)(x 1){(x 1)2 t}.
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y2 = t(x5 t2)(x 1)(x 2)(x 3).
y2 = t(x5 t4){(x 1)3 t 2 } . (ii4)-(iv3) / = t(x3 t)(x5 t).
y2 = t(x5 t2){(x 1)3 t } . (ii4)-(iv5) y2 = t(x3 t)(x5 t3).
y2 = t(x5 t4)(x 1){(x 1)2 t}. (ii4)-(iv7) y2 = tx(x2 t)(x5 t).
y2 = t(x5 t4)(x 1)(x 2)(x 3).
y2 = tx(x4 t3){(x 1)3 t2}. (ii6)-(iv4) y2 = t(x4 t3)(x3 t)(x 1).
y2 = t(x4 t)(x3 t2)(x 1).

(ii6)-(iv6) y2 = tx(x4 t3)(x 1){(x 1)2 t}.
y2 = tx(x2 t)(x4 t)(x 1).
y2 = tx(x2 t3)(x 1)(x 2)(x 3).
y2 = tx(x4 t){(x 1)3 t2}. (ii7)-(iv4) y2 = tx(x4 t){(x 1)3 t}.

(ii7)-(iv5) y2 = tx(x4 t)(x 1){(x 1) 2 t}.

(ii7)-(iv8) y2 = tx(x4 t)(x 1)(x 2)(x 3). (ii9)-(iv2) y2 = tx(x4 t3)(x3 t).
(ii9)-(iv4) y2 = (x4 t)(x3 t)(x 1).
(ii9)-(iv6) y2 = x(x4 t)(x2 t)(x 1). (ii13)-(iv2) y2 = t(x5 t){(x 1)3 t2}.

(ii13)-(iv4) y2 = t(x5 t){(x 1)3 t}.
(ii13)-(iv6) y2 = t(x5 t)(x 1){(x 1)2 t}.
(ii13)-(iv8) y2 = t(x5 t)(x 1)(x 2)(x 3). (ii15)-(iv2) y2 = t(x5 t4)(x3 t).
(ii15)-(iv4) y2 = (x5 t)(x3 t). (ii15)-(iv6) y2 = t(x5 t4)(x2 t)(x 1).

y2 = t(x5 t2){(x 1)3 t } . (ii17)-(iv4) y2 = t(x5 t3){(x 1)3 t}.
y2 = (x5 t3)(x3 t). (ii17)-(iv6) y2 = t(x5 t3)(x 1){(x 1)2 t}.

(ii17)-(iv7) y2 = (x5 t3)(x2 t)(x 1).
(ii17)-(iv8) y2 = t(x5 t3)(x 1)(x 3)(x 3). (ii19)-(iv2) y2 = t(x5 t2)(x3 t).
(ii20)-(iv2) y2 = tx(x2 t)(x2 + t){(x 1)3 t2}.
(ii20)-(iv4) y2 = tx(x2 t)(x2 + t){(x 1)3 t}.

y2 = (x3 t2)(x2 t)(x2 + t)(x 1).
y2 = tx(x2 t)(x2 + t)(x 1){(x 1)2 t}.
y2 = tx(x2 t)(x2 + t)(x 1)(x 2)(x 3).
y2 = tx(x2 t)(x2 + t)(x3 t). (ii24)-(iv2) y2 = tx(x2 t)(x2 + t)(x3 t).
y2 = t(x3 t)(x 1)(x 2)(x 3)(x 4)(x 5).
y2 = tx(x2 t)(x 1)(x 2)(x 3)(x 4)(x 5).

T H E CASES WHERE THE STABLE MODEL IS B20.

B20: V1 = (iis1), V2 = (xis2). y2 = gs1(x, t, k1)hs2(x 1, t, k2, l).

When the screw number at e1 is special, we need the following equations in addition to those

above:
(ii6)-(xi2) y2 = tx(x4 t3){(x 1)2 tl}(x 2).

(ii13)-(xi2) y2 = t(x5 t){(x 1)2 tl}(x 2).
(ii17)-(xi2) y2 = t(x5 t3){(x 1)2 tl}(x 2).

y2 = tx(x2 t)(x2 + t){(x 1)2 tl}(x 2).

THE CASES WHERE THE STABLE MODEL IS B11.

B11: V1 = (viis1), V2 = (ivs2). y2 = fs2(x 1, t, k, 0)σs1(x, t, ku I).
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T H E CASES WHERE THE STABLE MODEL IS B10.

B10: V1 = (viis1), V2 = (xis2). y2 = σs1(x 1, t, ku h)hS2(x, t, k2, l2).

T H E CASES WHERE THE STABLE MODEL IS B 0 1 .

), V2 = (ivs2). y2 = τs1(x, t, kh k2)fs2(x 1, t, k3, 0).

T H E CASES WHERE THE STABLE MODEL IS B00.

B 0 0: V1 = (xivs1), V2 = (xis2). y2 = ΤS1(X, t, h, k2)hs2(x 1, t, k3,l).

T H E CASES WHERE THE STABLE MODEL IS C111.

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va1).

y

2 = fs1(x,t,k1,0)fs2(x 1,t,k2,0)(x 2)(x 3). (ki 2whens1 = 1ors 2 = 1.)

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va2).

y

2 = (x2-t3)fSl(x,t,ku l)fS2(x- 1,t,k2,0). (h > 0 whens1 = 2 , 4 , 6 , 8 . )

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va3).

y2 = (x2 t)fs1(x, t, k1, 1)fs2(x 1, t, k2, 0).

C111: Id, V1 = (ivs1), V2 = (ivs2), V3 = (va6).

y2 = (x2 t2)fs1(x, t, k1 + 1, 0)fs2(x 1, t, k2, 0).

C111: II(1,1), V1 = V2 = (ivs1), V3 = (vb3). y2 = tx(x 1)θs1(x, t, k).

C111: II(1,1), V1 = V2 = (ivs1), V3 = (vb4). / = X(X 1)θs1(x, t, k).

C111: II(1,1), V1 = V2 = (ivs1), V3 = (vb5). / = (x2 2t)9'Sl(x, t, k).

C111: II(1,1), V1 = V2 = (ivs1), V3 = (vb6). / = t(x2 2t)0^(x, t, k).

T H E CASES WHERE THE STABLE MODEL IS C110.

0: Id, V1 = (ivs1), V2 = (ivs2), V3 = (xiia1).

= fs1(x, t, k1, 0)f s 2(x 2, t, k2, 0){(x 1)2 - &}.

0: Id, V1 = (ivs1), V2 = (ivs2), V3 = (xiia2).

y2 = tfn(x,t,ku l)fS2(x-2,t,k2, 1){(x 1)2 tk3}. (k1 0 whens1 =2,4,6 ,8 . )

C110: II(1,1), V1 = V2 = (IVS1), V3 = (xiib1). y 2 = (x2 f*:i+1)6>;i.

: II(1,1), V1 = V2 = (ivs1), V3 = (xiib2). y 2 = t(x2 tk^)6'si.

T H E CASES WHERE THE STABLE MODEL IS C101.

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va1).

/ = fs1(x, t, k1, 0)hs2(x 1, t, k2, l)(x 2)(x 3).

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va2).
y2 = (x2 t3)hs2(x,t , k2 + 1/2, l)fs1(x 1, t, k1, 0).

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va3).

y2 = (x2 t)hs2(x, t, k2 + 1/2, l)fs1(x 1, t, k1, 0).

C101: Id, V1 = (ivs1), V2 = (xis2), V3 = (va6).

/ = (x2 t2)hs2(x, t, k2, l)fs1 (x 1, t, k1, 0).

T H E CASES WHERE THE STABLE MODEL IS C100.

C100: Id V1 = (ivs1), V2 = (xis2), V3 = (xiia1).

y2 = fs1(x 1,t,k1,0)hs2(x,t,k2,l){(x 2)2 tk3}. (k1 2 when s1 = 1.)
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C100: Id V1 = (ivs1), V2 = (xis2), V3 = (xiia2).

y2 = tfs1(x 1, t, kU l)hS2(x, t, k2 + 1/2, l){(x 2)2

THE CASES WHERE THE STABLE MODEL IS C001.

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va1).

y2 = hs1(x 1, t, Jfci, s 2 ( x, t,k2, l)(x 2)(x 3).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va2).

/ = f (x2 - O M * > f, Jfci, Z i ) M * - 1, t, k2 + 1/2, h).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va3).

/ = (x2 t)hs1(x, t, h + 1/2, l1)hs2(x 1, t, k2, l2).

C001: Id, V1 = (xis1), V2 = (xis2), V3 = (va6).

/ = (x2 t2)hs1(x, t, k1, l)hs2(x 1, t, fc2, 0 .

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb3). y2 = tx(x 1

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb3). y2 = ^ ( ^ 1)F˜2k1,4k1+k2.

k 1 + kC001: II(1,1), V1 = V2 = (xi1), V3 = (vb4). y2 = x(x

C001:II(1,1), V1 = V2 = (xi2), V3 = (vb4). y2 = x(x 1

C001:II(1,1), V1 = V2 = (xi1), V3 = (vb5). y2 = {(x2 2t) t2

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb5). y2 = K*2 2t) t

C001: II(1,1), V1 = V2 = (xi1), V3 = (vb6). y 2 = t { ( x 2 2 t ) t 2 x

C001: II(1,1), V1 = V2 = (xi2), V3 = (vb6). y2 = t{(x2 2t) t2x}F˜122k1

THE CASES WHERE THE STABLE MODEL IS C000.

C000: Id, V1 = (xis1), V2 = (xis2), V3 = (xiia1).

y2 = hs1(x, t, k1, l)hs2(x 1, t, k2, l){(x 2)2 tk}.

C000: Id, V1 = (xis1), V2 = (xis2), V3 = (xiia2).

y2 = ths1(x, t, k1 + 1/2, l1)hs2(x 1, t, k2 + 1/2,l2){(x 3)2 tk}.

Cooo: H(l,l), V1 = V2 = (xi1), V3 = (xiib1). y2 = (x2 tk1+1)F˜2k1,4k1+k2.

Cooo: H(l,l), V1 = V2 = (xi2), V3 = (xiib1). y2 = (x2
 tk1+2)F˜122k1 1,4k1+

Cooo: H(l,l), V1 = V2 = (xi1), V3 = (xiib2). y2 = t(x2 tk1+1)F˜2k1,4k1+k

Cooo: H(l,l), V1 = V2 = (xi2), V3 = (xiib2). y2 = t(x2 tk1+1)F˜12

THE CASES WHERE THE STABLE MODEL IS E11

E11: Id, V1 = (vas1), V2 = (vas2). y2 = ωs1(x, t, k1)ωs2(x 1, t, k2).

E11: II(0,1), V1 = (vbs1), V2 = (vbs2). y 2 = tΓs1(x, t, k1)Γs2(x 1, t, k2).

We have to give more examples when the screw number at e1 is special.

E11: II(0,1), V1 = (vb1),V2 = (vb4). y2 = x(x4 t)(x3 t).

E11: II(0,1), V1 = V2 = (vb2). y2 = x(x3 t2)(x3 t)(x 1).

E11: II(0,1), V1 = (vb2),V2 = (vb4). y2 = (x4 t3)(x3 t)(x 1).

E11: II(0,1), V1 = (vb2), V2 = (vb6). y2 = (x4 t2)(x3 t)(x 1).

E11: II(1,2), V1 = V2 = (vas). y2 = twfs.
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1:II(1,3), V1 = V2 = (vas).
"s-

T H E CASES WHERE THE STABLE MODELS IS E10.

E10: Id, V1 = (vas1), V2 = (xiias2). y2 = ωs1(x, t, k1)ρs2(x 2, t, k2,l).

E10: II(0,1), V1 = (vbs1), V2 = (xiibs2). y2 = tΓs1(x, t, k1)ρs2(x 1, t, k2,l).

We have to give more examples when the screw number at e1 is special.

V1 = (vb2), V2 = (xiib2). y2 = x(x3 t2)(x2 t){(x 1)2 tk 1}.

V1 = (vb4), V2 = (xiib2). y2 = x(x3 t2)(x2 t){(x 1)2 tk 1}.

T H E CASES WHERE THE STABLE MODEL IS E00.

E00: Id, V1 = (xiias1), V2 = (xiias2). y2 = ρs1(x, t, ki, h)pS2(x 1, t, k2, l2).

E00: II(0,1), V1 = (xiibs1), V2 = (xiibs2). y2 = tρs1(x, t, ki, h)pS2(x 1, t, k2, l2).

Eoo: H(l,2), V1=V2 = (xiia1).

y2 = t{(x2 t)2 tk1xl1}{(x2 t)2 tk2xl2}, (2k1 + l1 4 = 2k, 2k2 + l2 4 = 2k + l).

Eoo: H(l,2), V1 = V2 = (xiia2).

y2 = t{(x2 t)2 tk1xl1}{(x2 t)2 tk2xl2}, (2k1 + h-4 = 2k3 1, 2k2+l2 4 = 2k3 + k4).

Eoo: H(l,3), V1=V2 = (xiia1).

V2 _ jYy2 _ f\2 _ fki xh\f(x2 _ t\2 _ A v t ] (Oki +U — 4 — 2k 2k^ 4- /T — 4 — 2k 4- /*)

£oo: H(l,3), V1 = V2 = (xiia2).

y2 = { (x 2 -^) 2 -^ !^ ' 1 }^^ 2 -^) 2 -^ 2 ^ 2 }- (2/fci+/i-4 = 2fc3-l, 2/fc2 + / 2 - 4 = 2*3 + ^4).

T H E CASES WHERE THE STABLE MODEL IS F11.

F11: Id, V1 = (ivs1), V2 = (ivs2).

y2 = (x αtl+1)(x 2)fs2(x, t, h, l + 1)fs1(x 1, t, k2, 0).

(k1 2 when s1 = 1 or s2 = 1.)

F11: II(0,1), V1 = (ivs1), V2 = (ivs2).

/ = t(x αtl+1)(x 2)fs2(x, t, ku I + 2)fs1 (x 1, t, k2, 0).

F11: II(2,1), V1 = V2 = (ivs). y2 = tηs.

F11: II(2,2), V1 = V2 = (ivs). y2 = ηs.

T H E CASES WHERE THE STABLE MODEL IS F10.

F1 0: Id, V1 = (ivs1), V2 = (xis2).

y2 = (x t l1+1)f s1(x, t, ku h + 1)hs2(x 1, t, k2 + 1, l2)(x 2).

F1 0: II(0,1), V1 = (ivs1), V2 = (xis2).
/ = t (x t l1+1)f s1(x, t, k1, l1 + 2)hs2(x 1, t, k2 + 1/2, l)(x 2).

T H E CASES WHERE THE STABLE MODEL IS F00.

F00: Id, V1 = (xis1), V2 = (xis2).

y2 = (x t l 1 + 1)f s1(x, t, k1 + (l1 + 1)/2, l 2)h s 2(x 1, t, k2, h){x 2).

Foo: H(0,l), V1 = (xis1), V2 = (xis2).

/ = t(x tl1+1)hs1(x, t, k1 + (l1 + 1)/2, l2)hs2(x 1, t, k2 + 1/2, l3)(x 2).

F00: II(2,1), V1 = V2 = (xi1). y2 = tF˜2k2+k1,4k2+2k1+k3(x2 t tk4xl), (2k4+l 2 = k1).
F00: II(2,1), V1 = V2= (xi2).

y 2 = t k k l k k k
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: II(2,2), V1 = V2 = (xi1). y2 = F˜2k2+k1,4k2+2k1+k3(x2 t tk4xl), (2k4 + l 2 = k1).

F00: II(2,2), V1 = V2 = (xi2).

THE CASES WHERE THE STABLE MODEL IS G11.

G11: Id, V1 = (vas1), V3 = (ivs2).

/ = fs2(x,t,k1,0)(x 1)ωs1(x 2,t,k2). (k2 2whens 2= 1.)
G11: II(0,1), V1 = (vbs1), V3 = (ivs2).

y

2 = tΓs1(x,t,k1)(x 1)fs2(x,t,k2, 1). (k2 0 w h e n s 2 = 2 , 4 , 6 , 8 . )

THE CASES WHERE THE STABLE MODEL IS G10.

G1 0: Id, V1 = (vas1), V3 = (xis2). y2 = ωs1(x, t, k1)(x 1)hs2(x 2, t, k2,l).

G10: II(0,1), V1 = (vbs1), V3 = (xis2). y2 = tΓs1(x, t, k1)(x 1)hs2(x 2, t, k2+ 1/2, l).

THE CASES OF THE STABLE MODELS ARE G00.

G00: Id, V1 = (xiias1), V3 = (xis2). y2 = ρs1(x, t, k1, l1 + 1)(x 1)hs2(x 2, t, k2, l2).

Goo: H(0,l), V1 = (xiibs1), V3 = (xis2).

y2 = tρs1(x, t, Jfei, h + 1)(x 1)hs2(x 2, t, k2 + 1/2, l2).

THE CASES OF THE STABLE MODELS ARE G 0 1 .

G01: Id, V1 = (xiias1), V3 = (ivs2). y2 = ρs1(x, t, ku I + 1)(x 1)fs2(x 2, t, k2, 0).

G01: II(0,1), V1 = (xiibs1), V3 = (ivs2). y2 = tρs1(x, t, h, l + 1)(x 1)fs2(x 2, t, k2, 1).

THE CASES WHERE THE STABLE MODEL IS J1.

J1: Id, V1 = (vas).

y2 = ωs(x,t,k1){(x if - tk2}{(x 2) 2 tk3}. (k > 2 when s = 1.)

J1: II(0,1), V1 = (vas).

y2 = ωs(x, t, k1){(x2 tf — tk2xl}, (2k2 + l 4 1). (k1 2 when s = 1.)

J1: II(1,4), V1 = (vbs). y2 = tΓs(x 1, t, k1){(x2 tf - tk2xl}, (2k2 + l 4 1).

J\\ 11(1,6), V1 = (vbs). y2 = tΓs(x, t, k1){(x if - tk2}{(x 2) 2 tk3}.

THE CASES WHERE THE STABLE MODELS IS J0.

J 0 : Id, V1 = (xiias). y2 = ρs(x, t, ku I + 1){(x if - tk2}{(x 2)2 - &}.

J 0 : II(0,1), V1 = (xiias). y2 = ρs(x, t, h, h + 1){(x2 tf - tk2xl}, (2k2 +l 4 1).

J 0 : II(1,4), V1 = (xiibs). y2 = tρs(x 1, t, ku h){(x2 tf - tk2xl}, (2k2 + l 4 1).

J 0 : II(1,6), V1 = (xiibs). y2 = tρs(x, t, ku h){(x if - tk2}{(x 2)2 tk3}.

THE CASES WHERE THE STABLE MODEL IS K 1 .

K1: Id, V4 = (ivs). y2 = (x tl1+1)fs(x,t,k1 + 1,l1 + 1){(x-if -th}{(x-2)2 tk3}.

Kr. 11(0,1), V4 = (ivs).

y2 = {(x2 tf - tk1xl1}{(x 1) tl2+1}fs(x 1, t, k2 + 1,l2 + 1), (2k1 + h ~ 4 1).

Kr. 11(1,4), V4 = (ivs).

y2 = t{(x2 t) - thxh}{(x 1) tl2+1}fs(x 1, t, k2, l2 + 2), (2k1 + l ~ 4 1).

Kr. 11(1,6), V4 = (ivs).

y2 = t(x2 tk1){(x if - tk2}{(x 2) tl1+1}fs(x 3, t, k3, h + 2).
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THE CASES WHERE THE STABLE MODEL IS K0.

K0:Id, V4 = (xis). y2 = (x tk1)hs(x, t, k1/2 + k2, l){(x if - tk3}{(x 2)2 tk4}.
Ko: H(0,l), V4 = (xis).

y2 = {(x
2 t)2 tk1xl1}{(x 1) tk2}hs(x 1,t,k2/2 + k3,l) (2ki+h - 4 > 1).

Ko: H(l,4), V4 = (ivs).

y2 = t{(x2 t)2 tk1xl1}{(x 1) tk2}hs(x 1,t,k3 + (k2+1)/2, l2)(2k1 + h-4> 1).
Ko: H(l,6), V4 = (ivs).

y2 = t(x2 tk1){(x 1)2 tk2}{(x 2) tk3}hs(x 3, t, k4 + (k3

THE CASES WHERE THE STABLE MODEL IS L.

L: II(0,1), V1 = V2 = (xb).
y2 = (x2 tk1+1){(x2 tf - tk2xl1}{(x 1)2 + tl2)}, (2k2 + l 4 1).

L: II(0,2), V1 = V2 = (xc).
y2 = {(x2 t) - thxh}{(x2 tf - 2tk2xl2}. (2k1 + l - 4 1, 2k2 + l2 4 1)

L: II(1,5). y2 = t{(x2 t)2 tk1xl1}{(x2 2t)2 tk2xl2}, (2k1+l1 4 1, 2k2+l2 4 1).
L: II(1,7). y2 = t{(x2 t) - thxh}{x2 tl2}{(x 1)2 + tl3}, (2k1 +l1 4 1).
L: II(1,8). y2 = t(x2 tk1){(x if - tk2}{(x 2)2 tk3}{(x 3)2 - &}.
L: III(0,1), V1 = (vds) y2 = {(x3 tf - tk1xl1}{(x 1)2 t l } , (3k1 + h - 6 1).

y2 = {(x3 tf - tk1xl1}(x2 tk2+1), (3k1 + l - 6 1).
L: IV(0,1), V1 = (ve). y2 = {(x4 tf - tk1xl1}, (4k1 + l1 8 1).
L: IV(1,1), V1 = (ve). y2 = t{(x4 tf - tk1xl1}, (4k1 + l1 8 1).
L: VI(1,1), V1 = (vds). y2 = t{(x3 -tf -thxl^}{(x 1) 2 tk2 1}, (3k1 +2l1 6 0).

THE CASES WHERE THE STABLE MODEL IS N.

N: II(0,1).
y2 = {(x2 t) 2 tk1xl1}{(x l ) 2 - ^ 2 - ^ 3 } ^ - l-tkif -tk4+2k3}, ( 2 k 1 + l 1 4 1).
N: II(0,2). y2 = {(x2 t2k1 1)2 tk2+4k1 4xl1}{((x2 if - tf - tk3xl2},

(2k2 + l1 4 1,2k3 + l2 4 1).
N: II(2,3). y2 = t{(x2

 t2k1 1)2 tk2+4k1 4xl1}{((x2 If - tf - tk3xl2},
(2k2 + l1 4 1,2k3 + l2 4 1).

N: II(2,4). y2 = t{(x tk1 - t2k1+k2}{x2 t2k1+k3}{(x 1) - f^}{(x 2)2 tk5}.
N: II(2,5).
y2 = t{(x if - tk1}{(x 2)2 tk2}{(x2 t2ki-lf - t4k3+k4 4xl2}, (2k4 + l2 4 1).
N: II(2,7). y2 = t{((x2 t) tk1xl1 - tk2xl2}{(x2 t) - f^x'3},

(2k3 4k1 +l3 2l1 0, 2k2 + l2 4k1 2l1 1).
N: II(2,8). y2 = {((x2 t) tk1xl1 - tk2xl2}{(x2 t) - f^x'3},

(2k3 4k1 +l3 2l1 0, 2k2 + l2 4k1 2l1 1).
N: IV(2,1). y2 = t{(x2 tf - tk1x}2 tk2xl, (2k1 3 0, 2k2 +l 8 0)
N: IV(2,2). y2 = {(x2 tf - tk1x}2 tk2xl, (2h - 3 0, 2k2 +l 8 0).
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