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A NOTE ON THE PRODUCT OF

INDEPENDENT RANDOM VARIABLES WITH

REGULARLY VARYING TAILS

By

Yuji Kasahara

Abstract. The tail probability of the product of independent ran-

dom variables is discussed. The class of random variables with

regularly varying tails is known to be closed under multiplication and

some explicit examples are given by Kifer-Varadhan [2]. We extend

them.

1. Introduction

Let X and Y be independent random variables with regularly varying tail

probabilities. We study the asymptotics of PðXY > xÞ (the tail probability of

the product random variable) as x ! y. The problem is motivated by Kifer-

Varadhan [2], which will be explained a little later. Here, by regularly varying

function with index r A R we mean a measurable positive function f ðxÞ defined on

an interval ½A;yÞ with the property that

lim
x!y

f ðlxÞ
f ðxÞ ¼ lr ðEl > 0Þ:ð1:1Þ

Throughout Rr will denote the class of all regularly varying functions with

index r. When r ¼ 0, we say slowly varying rather than regularly varying. So

f A Rr if and only if f ðxÞ ¼ xrLðxÞ for some slowly varying L. It is well known

that the convergence in (1.1) is automatically uniform on every compact l-set

in ð0;yÞ (see e.g. [1, page 6]). Typical examples of slowly varying functions

are cðlog xÞd1ðlog log xÞd2 where c > 0 and d1; d2 A R. Another example is

expfðlog xÞbg ð0 < b < 1Þ.
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We now return to the problem we stated at the beginning. In what follows

we assume, for simplicity, that X b 0 and Y b 0 unless stated explicitly. General

cases may easily be reduced to this case because

PðXY > xÞ ¼ PðX þY þ > xÞ þ PðX �Y � > xÞ ðx > 0Þ:ð1:2Þ

A basic result on our problem is Theorem A below obtained by Embrechts and

Goldie [3]. Throughout f ðxÞ@ gðxÞ means limx!y f ðxÞ=gðxÞ ¼ 1 and f ðxÞ ¼
oðgðxÞÞ denotes limx!y f ðxÞ=gðxÞ ¼ 0:

Theorem A (Theorem 3 and Corollary of [3]). Let X b 0 and Y b 0 be

independent random variables satisfying the following with some a > 0.

(1) PðX > xÞ@ x�aL1ðxÞ A R�a

(2) Either PðY > xÞ@ x�aL2ðxÞ A R�a or PðY > xÞ ¼ oðPðX > xÞÞ
Then,

PðXY > xÞ@ x�aL3ðxÞ A R�a

for some L3ðA R0Þ.

In other words, the domain of attraction of the a-stable law is closed under

convolution (when 0 < a < 2).

An easy corollary of Theorem A is the following: Let fXjgn
j¼1 be independent

random variables such that PðXj > xÞ A R�aj . Then

PðX1X2 � � �Xn > xÞ A R�a; where a ¼ min
j

aj:

However, Theorem A above is a theoretical result and does not mention

any explicit formulas for L3 in terms of L1 and L2 (even in the simplest case

where L1 and L2 are constants!). In fact it seems hard to find a simple formula

that is applicable to the general case, but if we confine ourselves to a certain

subclass, which should include the normal domain of attraction of a-stable laws,

there is an explicit formula obtained by [2] we mentioned above. It studies the

case where fXjgj are independent random variables such that, for some aj > 0

and kj b 0,

PðXj > xÞ@ cjx
�aj ðlog xÞkj ; j ¼ 1; 2; . . .ð1:3Þ

In [2, Proposition 3.1] it is proved, after a lot of calculi, that if a1 < a2,

then

PðX1X2 > xÞ@E½X a1
2 �c1x�a1ðlog xÞk1ð1:4Þ
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and, if a1 ¼ a2, then

PðX1X2 > xÞ@ a1Bðk1 þ 1; k2 þ 1Þc1c2x�a1ðlog xÞk1þk2þ1;ð1:5Þ

where Bðp; qÞ is the beta function. Using these two formulas [2] studied the tails

of random variables of the form

Z ¼ FðX1; . . . ;XnÞ

where Fðx1; . . . ; xnÞ is a polynomial, and it is proved that the tail behavior of Z

is also of the form (1.3). A typical example is the following: Let X1; . . . ;Xn be

independent identically distributed (i.i.d.) nonnegative random variables such that

PðX1 > xÞ@ cx�a

for some c; a > 0. Then,

PðX1X2 � � �Xn > xÞ@ an�1cn

ðn� 1Þ! x
�aðlog xÞn�1:ð1:6Þ

This shows that the class (1.3) is the minimal one when we consider our problem.

Now in the present article we try to relax the condition (1.3) to generalize

(1.4) and (1.5). One of the aim of this generalization is to clarify the mechanism

and simplify the proofs of [2] above.

Our results are as follows. The proofs will be given in Section 3.

Proposition 1.1. Let X b 0 and Y b 0 be independent random variables such

that PðX > xÞ A R�a for some a > 0.

(i)

lim inf
x!y

PðXY > xÞ
PðX > xÞ bE½Y a�:ð1:7Þ

(ii) If E½Y a� ¼ y, then

PðX > xÞ ¼ oðPðXY > xÞÞ:

(iii) If E½Y aþ�� < y ðb� > 0Þ, then

lim
x!y

PðXY > xÞ
PðX > xÞ ¼ E½Y a�:ð1:8Þ

Note that the condition of (iii) is satisfied if PðY > xÞ A R�b for some b > a,

So (iii) includes (1.4).
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In fact Proposition 1.1 is almost clear and we do not claim that this result is

new, although the proof will be given in Section 3 to make sure. See also Shimura

[4] for the extreme case a ¼ 0.

Our generalization of (1.5) is the following.

Theorem 1.1. Let X b 0 and Y b 0 be independent random variables with

the following tail probabilities; for some a; b; g > 0,

PðX > xÞ@ x�ajðlog xÞ with jðxÞ A Rb�1;

PðY > xÞ@ x�acðlog xÞ with cðxÞ A Rg�1:

Then,

PðXY > xÞ@ aBðb; gÞx�ajðlog xÞcðlog xÞ log x:ð1:9Þ

Remark 1.1. Here, the condition b; g > 0 implies E½X a� ¼ E½Y a� ¼ y, for

E½X a� ¼ a
Ðy
0 xa�1P½X > x� dx. So Theorem 1.1 corresponds to the case (ii) of

Proposition 1.1.

We considered the case where X ;Y b 0. The general case can be reduced

to this case using (1.2). Namely, if X , Y are not necessarily nonnegative and

satisfy

lim
x!y

PðGX > xÞ
x�ajðlog xÞ ¼ aG; lim

x!y

PðGY > xÞ
x�acðlog xÞ ¼ bG;

where aGb 0, bGb 0. Then,

PðXY > xÞ@ aBðb; gÞx�aCjðlog xÞcðlog xÞ log x;

where C ¼ aþbþ þ a�b�. (Even in the case where some (or all) of faG; bGg
vanish, the assertion remains valid with a suitable convention.)

Corollary 1.1. Let X1; . . . ;Xn be independent nonnegative random variables

such that

PðXj > xÞ@ x�ajjðlog xÞ j A Rbj�1 ð j ¼ 1; . . . ; nÞ

for some a; bj > 0. Then

PðX1X2 � � �Xn > xÞ@ an�1Dðb1; . . . ; bnÞx�aðlog xÞn�1
Yn
j¼1

jjðlog xÞ;
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where

Dðb1; . . . ; bnÞ ¼
Yn
j¼1

GðbjÞ
�

G
Xn
j¼1

bj

 !
:

In Theorem 1.1, the condition that b; g > 0 is crucial, because the beta func-

tion Bðb; gÞ appears in (1.9). But it might be of interest to study the critical case

g ¼ 0, which case is not discussed by [2] except for the following example.

Example 1.1 ([2, Example 1]). If

PðX > xÞ@ c1x
�a; PðY > xÞ@ c2x

�a=log x;

then

PðXY > xÞ@ ac1c2x
�a logðlog xÞ:

Our generalization of this example is the following: For c A Rg�1, let

CðxÞ :¼
ð x
1

cðuÞ du: xb 1:

It is well known that, if g > 0, then

CðxÞ@ ð1=gÞxcðxÞ A Rgð1:10Þ

and this remains valid in the extreme case g ¼ 0 in the sense that F A R0 and

xjðxÞ ¼ oðCðxÞÞ. See e.g. page 26 of [1] for the proofs, if necessary. These facts

will be used later. Our generalization of Example 1.1 is

Theorem 1.2. In Theorem 1.1 replace the condition g > 0 by g ¼ 0. Then,

PðXY > xÞ@ ax�ajðlog xÞCðlog xÞð1:11Þ

provided that CðyÞ ¼ y.

Example 1.1 is the special case where jðxÞ ¼ c1, cðxÞ ¼ c2=x so that CðxÞ ¼
c2 log x.

The assertion of Theorem 1.2 is not surprising because, when g > 0, it holds

that cðxÞx@ gCðxÞ as we mentioned in (1.10). So (1.9) may be rewritten as

PðXY > xÞ@ a
GðbÞGðgþ 1Þ
Gðb þ gÞ x�ajðlog xÞCðlog xÞ:
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Therefore, letting g ! þ0 we naturally expect (1.11) to hold. The case where

b ¼ g ¼ 0 can also be treated in a similar way. For example;

Example 1.2. If

PðX > xÞ@ c1x
�a=log x; PðY > xÞ@ c2x

�a=log x;

then

PðXY > xÞ@ 2ac1c2x
�aðlog xÞ�1 logðlog xÞ:

Remark 1.2. In Theorem 1.2, we may not remove the condition CðyÞ ¼
y, (which condition is equivalent to E½Y a� ¼ y). Indeed, if CðyÞ < y and

hence E½Y a� < y, then we may possibly have a formula like (1.8), where the

constant depends not on the tail probability but on E½Y a�.

2. Preliminaries: Abelian theorem for convolution

In this section we prepare some results on convolutions. Throughout this

section jðxÞ and cðxÞ are locally bounded measurable positive functions defined

on the half line ½0;yÞ and j � cðxÞ denotes the convolution;

j � cðxÞ ¼
ð x
0

jðx� uÞcðuÞ du ðxb 0Þ:

Proposition 2.1. If j A Rb�1 ðb > 0Þ and c A Rg�1 ðg > 0Þ, then

j � cðxÞ@Bðb; gÞxjðxÞcðxÞ:

Proof. Laplace transform is useful to handle convolutions. So when

j � cðxÞ is monotone, the assertion follows immediately from Karamata’s

Tauberian theorem for Laplace transform. However, we shall not adopt this

idea because we do not want to assume the monotonicity of j � cðxÞ.
By a simple change of variables we see

1

xjðxÞcðxÞ

ð x
0

jðx� uÞcðuÞ du ¼
ð1
0

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ du:

As for the integrand we have

lim
x!y

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ ¼ ð1� uÞb�1

ug�1 ð0 < u < 1Þ
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by the assumption j A Rb�1, c A Rg�1. So the assertion is almost clear. This may

look a heuristic argument, but it is routine to justify it using well-known Potter’s

theorem (see [1, page 25]) combined with the dominated convergence theorem as

follows: Choose e > 0 small enough so that b � e > 0, g� e > 0. Then, by Potter’s

theorem, there exist C > 0 and A > 0 such that

jðyÞ
jðxÞaC maxfðy=xÞb�e�1; ðy=xÞbþe�1g;

cðyÞ
cðxÞaC maxfðy=xÞg�e�1; ðy=xÞgþe�1g

for all x; y > A. So

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ aCð1� uÞb�e�1

ug�e�1 ðA=xa Eua 1� ðA=xÞÞ:

Therefore, by the dominated convergence theorem,

lim
x!y

ð1�ðA=xÞ

A=x

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ du ¼

ð1
0

ð1� uÞb�1
ug�1 du:

So it remains only to show that

lim
x!y

ðA=x
0

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ du ¼ 0ð2:1Þ

and

lim
x!y

ð1
1�ðA=xÞ

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ du ¼ 0:ð2:2Þ

Let us see (2.1). Since

jðð1� uÞxÞ
jðxÞ

converges uniformly in u around 0, it su‰ces to show

lim
x!y

ðA=x
0

cðuxÞ
cðxÞ du ¼ 0;

or, equivalently,

lim
x!y

1

xcðxÞ

ðA
0

cðuÞ du ¼ 0:
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But this is trivial because c A Rb�1 ðb > 0Þ implies xcðxÞ ! y. Similarly, we

see (2.2) by changing the role of j and c. r

We next study the critical case where g ¼ 0 (but b > 0). In this case,

CðxÞ :¼
Ð x
0 cðuÞ du is slowly varying and it holds that cðxÞ ¼ oðx�1CðxÞÞ as we

mentioned before Theorem 1.2.

The most typical example is, if cðxÞ@ 1=x, then CðxÞ@ log x. More gen-

erally, if cðxÞ@ x�1ðlog xÞd�1, then CðxÞ@ 1
d
ðlog xÞd if d > 0.

Proposition 2.2. Suppose that j A Rb�1 ðb > 0Þ and c A R�1. Then,

j � cðxÞ@ jðxÞCðxÞ

Proof. The proof is essentially the same as that of Proposition 2.1:

Recall

1

jðxÞCðxÞ

ð x
0

jðx� uÞcðuÞ du ¼
ð1
0

jðð1� uÞxÞ
jðxÞ

xcðuxÞ
CðxÞ du;ð2:3Þ

and let us evaluate the right-hand side.

For every 0 < e < 1, we have, as before,

lim
x!y

ð1
e

jðð1� uÞxÞ
jðxÞ

cðuxÞ
cðxÞ du ¼

ð1
e

ð1� uÞb�1
u�1 du:

Since, as we mentioned before, cðxÞ ¼ oðx�1CðxÞÞ, replacing cðxÞ in the de-

nominator by x�1CðxÞ, we see

lim
x!y

ð1
e

jðð1� uÞxÞ
jðxÞ

xcðuxÞ
CðxÞ du ¼ 0:

So the main part of (2.3) is

IeðxÞ :¼
ð e
0

jðð1� uÞxÞ
jðxÞ

xcðuxÞ
CðxÞ du;ð2:4Þ

for small e > 0.

Now notice that

jðð1� uÞxÞ
jðxÞ ! ð1� uÞb�1 ðx ! yÞ
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holds uniformly in u A ½0; e�. So, when an e 0ð> 0Þ is given arbitrarily, we can

choose small e > 0 so that

1� e 0 <
jðð1� uÞxÞ

jðxÞ < 1þ e 0

holds uniformly in u A ½0; e� for all large x. So IeðxÞ in (2.4) may arbitrarily be

approximated by

JeðxÞ :¼
ð e
0

xcðuxÞ
CðxÞ du ¼ 1

CðxÞCðexÞ:

Since CðxÞ is known to be slowly varying by the general theory as we mentioned

before, the right-hand side converges to 1 as x ! y. r

The critical case b ¼ g ¼ 0 is:

Proposition 2.3. Let j;c A R�1 and define FðxÞ ¼
Ð x
0 jðuÞ du, CðxÞ ¼Ð x

0 cðuÞ du, so that F;C A R0. Then,

j � cðxÞ ¼ ð1þ oð1ÞÞjðxÞCðxÞ þ ð1þ oð1ÞÞFðxÞcðxÞ:

Proof. As in the proof of Proposition 2.2, we haveð x=2
0

jðx� uÞcðuÞ du@ jðxÞCðxÞ:

Since ð1
x=2

jðx� uÞcðuÞ du ¼
ð x=2
0

cðx� uÞjðuÞ du;

we similarly have ð1
x=2

jðx� uÞcðuÞ du@cðxÞFðxÞ:

Summing these two we have the assertion. r

Example 2.1. Suppose that jðxÞ@xb�1ðlog xÞd1�1 and cðxÞ@xg�1ðlog xÞd2�1

for some d1; d2 A R.

(i) If b > 0, g > 0, then

j � cðxÞ@Bðb; gÞxbþg�1ðlog xÞd1þd2�2:
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(ii) If b > 0, g ¼ 0 and d2 > 0, then CðxÞ@ ð1=d2Þðlog xÞd2 and hence,

j � cðxÞ@ 1

d2
xb�1ðlog xÞd1þd2�1:

(iii) If b ¼ g ¼ 0 and d1; d2 > 0, then FðxÞ@ ð1=d1Þðlog xÞd1 and CðxÞ@
ð1=d2Þðlog xÞd2 . Hence,

j � cðxÞ@ 1

d1
þ 1

d2

� �
x�1ðlog xÞd1þd2�1:

Proposition 2.4. Suppose that j A Rb�1 ðbb 0Þ and c A Rg�1 ðgb 0Þ. Also
assume that c has locally bounded variation on ½0;yÞ and is absolutely continuous

on ðA;yÞ ðbAb0Þ with the derivative c 0ðxÞ ¼ oðcðxÞÞ. We put FðxÞ ¼
Ð x
0 jðuÞ du,

CðxÞ ¼
Ð x
0 cðuÞ du and, when g ¼ 0, we further assume that CðþyÞ ¼ y.

Now, for a > 0, let jaðxÞ ¼ e�axjðxÞ, caðxÞ ¼ e�axcðxÞ and define

f ðxÞ ¼ �
ð x
0

jaðx� uÞ dcaðuÞ:

Then:

(i) When b > 0, g > 0,

f ðxÞ@ ae�axBðb; gÞjðxÞcðxÞx; xb 0:

(ii) When b > 0, g ¼ 0,

f ðxÞ@ ae�axjðxÞCðxÞ:

(iii) When b ¼ g ¼ 0,

f ðxÞ ¼ ae�axfð1þ oð1ÞÞjðxÞCðxÞ þ ð1þ oð1ÞÞFðxÞcðxÞg:

The meaning of f ðxÞ above is the following: Let X �;Y � b 0 be inde-

pendent random variables such that PðX � > xÞ ¼ jaðxÞ, PðY � > xÞ ¼ caðxÞ, then
PðX � þ Y � > xÞ ¼ f ðxÞ.

Proof. Since

dcaðxÞ ¼ �ae�axcðxÞ dxþ e�ax dcðxÞ;

we see

f ðxÞ ¼ ae�axðj � cÞðxÞ � e�ax

ð x
0

jðx� uÞ dcðuÞ:
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But j � cðxÞ is already discussed in Propositions 2.1–2.3. So it remains only to

show that the second term in the right-hand side is negligible; i.e.,ð x
0

jðx� uÞ dcðuÞ ¼ oðj � cðxÞÞ:ð2:5Þ

For every given � > 0, there exists an Mð> AÞ such that jc 0ðxÞj < �cðxÞ for all

x > M. So we haveð x
M

jðx� uÞc 0ðuÞ du
����

����a �

ð x
M

jðx� uÞcðuÞ dua �j � cðxÞ:ð2:6Þ

In order to handle the remainder, note that

lim
x!y

ðM
0

jðx� uÞ
jðxÞ dcðuÞ ¼

ðM
0

lim
x!y

jðx� uÞ
jðxÞ dcðuÞ ¼

ðM
0

1 dcðuÞ:

(The first equality is allowed because the convergence of the integrand is uniform

in u A ½0;M�.) So ðM
0

jðx� uÞ dcðuÞ ¼ OðjðxÞÞ:ð2:7Þ

Here, notice that jðxÞ ¼ oðj � cðxÞÞ, which follows from Propositions 2.1–2.3,

because, when g > 0, it holds xcðxÞ ! y, and when g ¼ 0, we assumed CðþyÞ
¼ y. Therefore, combining (2.6) and (2.7) we have (2.5). r

3. Proofs

Proof of Proposition 1.1. By the assumption PðX > xÞ A R�a, we have

lim
x!y

PðX > x=uÞ
PðX > xÞ ¼ ua ðu > 0Þ:

So, formally,

lim
x!y

PðXY > xÞ
PðX > xÞ ¼ lim

x!y

ðy
0

PðX > x=uÞ
PðX > xÞ PðY A duÞð3:1Þ

¼
ðy
0

uaPðY A duÞ ¼ E½Y a�:

In general this cannot be justified without additional conditions. But Fatou’s

lemma is applicable and therefore, we have

lim inf
x!y

PðXY > xÞ
PðX > xÞ bE½Y a�;
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which proves (i) and (ii). We next prove (iii). In this case the justification of

(3.1) is routine:

By Potter’s theorem there exist C;M > 0 such that

PðX > yÞ=PðX > xÞaC maxfðy=xÞ�a�e; ðy=xÞ�aþeg ðEx; y > MÞ:

So if x > M, then

PðX > x=uÞ
PðX > xÞ aC maxfua�e; uaþeg ðEu A ð0; x=M�Þ:

By the assumption E½Y aþe� < y,

ðy
0

maxfua�e; uaþegPðY A duÞ < y:

Therefore, we can apply the dominated convergence theorem to obtain

lim
x!y

ð x=M
0

PðX > x=uÞ
PðX > xÞ PðY A duÞ ¼

ðy
0

uaPðY A duÞ:

So, it remains only to show

lim
x!y

ðy
x=M

PðX > x=uÞ
PðX > xÞ PðY A duÞ ¼ 0:ð3:2Þ

To see this note that

ðy
x=M

PðX > x=uÞ
PðX > xÞ PðY A duÞa

ðy
x=M

1

PðX > xÞPðY A duÞ ¼ PðY > x=MÞ
PðX > xÞ :

To evaluate the extreme right-hand side, we use Chebyshev’s inequality,

PðY > x=MÞa ðx=MÞ�ðaþeÞ
E½Y aþe�:

So ðy
x=M

PðX > x=uÞ
PðX > xÞ PðY A duÞa M aþeE½Y aþe�

xaþePðX > xÞ :

Since PðX > xÞ A R�a by assumption, it holds xaþePðX > xÞ ! y and therefore

we have (3.2). r

Thus Proposition 1.1 is proved. An easy corollary is
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Corollary 3.1. Let X ;Y1;Y2 b 0 be random variables such that X is in-

dependent of Yi ði ¼ 1; 2Þ. Then,

PðY1 > xÞ@PðY2 > xÞ

implies

PðXY1 > xÞ@PðXY2 > xÞ;

if PðX > xÞ A R�a ða > 0Þ and if E½Y a
1 � ¼ y.

Proof. By Proposition 1.1(ii), we have PðX > xÞ ¼ oðPðXYi > xÞÞ ði ¼ 1; 2Þ.
So, for every fixed A > 0,

PðXYi > x;Yi aAÞaPðX > x=AÞ@AaPðX > xÞ ¼ oðPðXYi > xÞÞ:

Therefore,

PðXYi > xÞ@PðXYi > x;Yi > AÞ ¼
ðy
0

PðYi > maxðx=u;AÞÞPðX A duÞ;

for any A > 0, and therefore the assertion is clear. r

We now proceed to the proofs of Theorems 1.1 and 1.2.

Since E½X a� ¼ E½Y a� ¼ y (see Remarks 1.1 and 1.2), we may assume that

X ;Y > 1 without loss of generality thanks to Corollary 3.1. So letting X � ¼ log X

and Y � ¼ log Y , we see that Theorem 1.1 is equivalent to

Theorem 3.1. Let X � and Y � be nonnegative independent random variables

such that, for some a > 0,

PðX � > xÞ ¼ e�axjðxÞ with j A Rb�1 ðb > 0Þ;

PðY � > xÞ ¼ e�axcðxÞ with c A Rg�1 ðg > 0Þ:

Then,

PðX � þ Y � > xÞ@ aBðb; gÞe�axjðxÞcðxÞx:ð3:3Þ

(The convolution of two Gamma distributions is again a Gamma distribu-

tion. Theorem 3.1 is its asymptotic version.)

Now let us prove Theorem 3.1. Its assertion (and hence that of Theorem 1.1)

is almost clear by Proposition 2.4, where f ðxÞ corresponds to PðX � þ Y � > xÞ.
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The only problem is that cðxÞ does not necessarily satisfy the condition that it is

absolutely continuous and c 0ðxÞ ¼ oðcðxÞÞ. However, as we remarked in Cor-

ollary 3.1, only the asymptotics of cðxÞ is essential and the smoothness is not

at all important. Therefore, it is su‰cient to see that there is a random vari-

able Z � b 0 such that PðZ � > xÞ ¼ e�axc0ðxÞ where cðxÞ@c0ðxÞ and c 0
0ðxÞ ¼

oðc0ðxÞÞ. But this is almost trivial if we recall the canonical representation of

slowly varying functions (see [1, page 12]); i.e., c A Rg has the representation

cðxÞ ¼ xgcðxÞ exp
ð x
1

eðuÞ
u

du

where cðxÞ ! c > 0 and eðxÞ ! 0. So define

c0ðxÞ ¼ cxg exp

ð x
1

eðuÞ
u

du

for large x. Then c0ðxÞ@cðxÞ and c 0
0ðxÞ ¼ oðc0ðxÞÞ. Since it is easy to see

that x�ac0ðxÞ is decreasing for large x and tends to 0, the function F ðxÞ :¼
1� x�ac0ðxÞ becomes a distribution function if we modify it on a finite interval,

if necessary. Then we have a desired one.

Similarly, Theorem 1.2 follows from Proposition 2.4 (ii). Also Example 1.2

may be shown by Proposition 2.4 (iii).
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