A TOPOLOGICAL PROOF OF CHEN'S ALTERNATIVE KNESER COLORING THEOREM

By

Yasuhiro HARA

Abstract. Johnson, Holroyd and Stahl [5] conjectured that the circular chromatic number of the Kneser graph is equal to the ordinary chromatic number. Chen completely confirmed the conjecture in [4]. Chen's alternative Kneser coloring theorem is a key lemma in his proof of Johnson-Holroyd-Stahl conjecture. Chen [4] and Chang, Liu and Zhu [3] proved the theorem by using Fan's lemma. In this paper, we prove Chen's alternative Kneser coloring theorem by using cohomology.

1. Introduction

Let G = (V(G), E(G)) be a graph and p, q integers with $1 \le q \le p$. We denote by [p] the set $\{1, 2, ..., p\}$. A (p, q)-coloring of G is a map $c : V(G) \to [p]$ such that $q \le |c(x) - c(y)| \le p - q$ for every edge xy of G. The circular chromatic number of G is

$$\chi_c(G) = \inf \left\{ \frac{p}{q} \right|$$
 there exists a (p,q) -coloring of $G \right\}.$

Because the ordinary chromatic number $\chi(G)$ is equal to

 $\min\{p \mid \text{there exists a } (p, 1)\text{-coloring of } G\},\$

we see $\chi_c(G) \leq \chi(G)$. It has been known that $\chi_c(G) > \chi(G) - 1$ (see [2], [11]).

²⁰¹⁰ Mathematics Subject Classification. Primary 55U10; Secondary 05C15, 55M25.

Key words and phrases. cohomology, Borsuk-Ulam type theorem, circular chromatic number, Kneser graph.

Received May 14, 2018.

Revised November 9, 2018.

Yasuhiro HARA

We denote by $\binom{[n]}{k}$ the collection of all k-subsets of [n]. The Kneser graph $KG_{n,k}$ for $n \ge 2k > 0$, has vertex set $\binom{[n]}{k}$ and any two vertices $u, v \in \binom{[n]}{k}$ are adjacent if and only if $u \cap v = \emptyset$. Lovász [6] proved the chromatic number of the Kneser graph $KG_{n,k}$ is n - 2k + 2 by using a Borsuk-Ulam type theorem (see also [7]).

Johnson, Holroyd and Stahl [5] conjectured that the circular chromatic number $\chi_c(KG_{n,k})$ of the Kneser graph $KG_{n,k}$ is equal to the ordinary chromatic number $\chi(KG_{n,k})$. Meunier [8] and Simonyi and Tardos [10] proved independently that if *n* is even, then $\chi_c(KG_{n,k}) = \chi(KG_{n,k})$. Chen [4] completely proved Johnson-Holroyd-Stahl conjecture. Chang, Liu and Zhu gave a short proof of it in [3]. The following is a key lemma of the proofs of $\chi_c(KG_{n,k}) = \chi(KG_{n,k})$ in [3] and [4].

CHEN'S ALTERNATIVE KNESER COLORING THEOREM ([3], [4]). Let n and k be integers with $n \ge 2k > 0$. If $c : {\binom{[n]}{k}} \to [n-2k+2]$ is a proper coloring of $KG_{n,k}$, then there exist two disjoint (k-1)-subsets S, T of [n] and the integers of $[n] \setminus (S \cup T)$ are enumerated as i_1, \ldots, i_{n-2k+2} such that $c(S \cup \{i_j\}) = c(T \cup \{i_j\}) = j$ for $j = 1, 2, \ldots, n-2k+2$.

In [3] and [4], Fan's lemma was used to prove this theorem. In this paper, we prove Chen's alternative Kneser coloring theorem by using cohomology argument.

Let S^n denote the unit sphere in the (n + 1)-dimensional Euclidean space. We denote by \mathbb{Z}_2 the cyclic group of order 2 and consider the antipodal \mathbb{Z}_2 -action on S^n . The following Borsuk-Ulam type theorem is the key theorem in a topological proof of Chen's alternative Kneser coloring theorem in this paper.

THEOREM 1.1. Let *n* be a positive integer and *Y* a connected regular cell complex such that $H^p(Y; \mathbb{Z}_2) = 0$ for $1 \leq p \leq n$. Let *X* be a subcomplex of *Y* which admits a free cellular \mathbb{Z}_2 -action such that each cell of $Y \setminus X$ has dimension (n+1). Then for each \mathbb{Z}_2 -map $f: X \to S^n$, there exists an (n+1)-cell *e* in $Y \setminus X$ such that $(f|\partial e)^* : H^n(S^n; \mathbb{Z}_2) \to H^n(\partial e; \mathbb{Z}_2)$ is an isomorphism, where ∂e is the boundary of *e* and $f|\partial e$ is the restriction of *f* to ∂e .

In Theorem 1.1, we remark that ∂e is homeomorphic to S^n because Y is a regular cell complex.

252

A topological proof of Chen's alternative Kneser coloring theorem 253

2. Proof of Theorem 1.1 and applications

In this section we prove Theorem 1.1 and give its applications. Throughout this section, the coefficient of cohomology is $Z_2 = Z/2Z$ and is omitted in the notation unless otherwise stated.

First we prove the following lemma.

LEMMA 2.1. Let *n* be a positive integer and *X* a connected free \mathbb{Z}_2 -CW-complex such that *p*-th cohomology $H^p(X)$ is zero for $1 \leq p \leq n-1$. If $f: X \to S^n$ is a \mathbb{Z}_2 -map, then the induced map $f^*: H^n(S^n) \to H^n(X)$ is a nonzero homomorphism

PROOF. Let $w(S^n)$ and w(X) be the Stiefel-Whitney class of $\pi_S : S^n \to \mathbb{R}P^n$ and $\pi_X : X \to X/\mathbb{Z}_2$ respectively. We consider the Gysin-Smith exact sequence (see [9, Corollary 12.3], [1, Chapter III]).

$$\cdots \xrightarrow{\pi_X^!} H^{p-1}(X/\mathbb{Z}_2) \xrightarrow{\bigcup w(X)} H^p(X/\mathbb{Z}_2) \xrightarrow{\pi_X^*} H^p(X) \xrightarrow{\pi_X^!} H^p(X/\mathbb{Z}_2) \xrightarrow{\bigcup w(X)} \cdots$$

Because $H^p(X) = 0$ for $1 \le p \le n-1$, we have $w(X)^n \ne 0$ from exactness of this sequence. Let $\overline{f}: X/\mathbb{Z}_2 \to \mathbb{R}P^n$ be a continuous map such that $\pi_S \circ f = \overline{f} \circ \pi_X$. Because $\overline{f}^*(w(S^n)^n) = \overline{f}^*(w(S^n))^n = w(X)^n \ne 0$, $\overline{f}^*: H^n(\mathbb{R}P^n) \to H^n(X/\mathbb{Z}_2)$ is a non-zero homomorphism. Note that transfer homomorphisms $\pi_X^!: H^n(X) \to H^n(X/\mathbb{Z}_2)$ and $\pi_S^!: H^n(S^n) \to H^n(\mathbb{R}P^n)$ satisfy $\pi_X^! \circ f^* = \overline{f}^* \circ \pi_S^!$. Because $\pi_S^!: H^n(S^n) \to H^n(S^n/\mathbb{Z}_2)$ is an isomorphism, $\pi_X^! \circ f^* = \overline{f}^* \circ \pi_S^! \ne 0: H^n(S^n) \to H^n(X/\mathbb{Z}_2)$. Therefore $f^*: H^n(S^n) \to H^n(X)$ is a non-zero homomorphism.

PROOF OF THEOREM 1.1. Let Y be a connected finite regular cell complex such that p-th cohomology $H^p(Y)$ is zero for $1 \le p \le n$. Let X be a subcomplex of Y such that every cell of $Y \setminus X$ is an (n+1)-cell and that there exists a free cellular \mathbb{Z}_2 -action on X. Then $H^p(X) = 0$ for $1 \le p \le n-1$, because the n skelton of X and Y are the same. If there exists a \mathbb{Z}_2 -map $f: X \to S^n$, then $f^*: H^n(S^n) \to H^n(X)$ is a non-zero homomorphism by Lemma 2.1.

We denote by e_1, \ldots, e_k (n+1)-cells in $Y \setminus X$. Consider the following commutative diagram.

$$\begin{array}{cccc} H^{n}(Y) & \longrightarrow & H^{n}(X) & \stackrel{\delta^{*}}{\longrightarrow} & H^{n+1}(Y,X) \\ & & \oplus j_{i}^{*} \\ & & & \cong \\ & & \bigoplus_{i=1}^{k} H^{n}(\partial e_{i}) & \stackrel{\cong}{\longrightarrow} & \bigoplus_{i=1}^{k} H^{n+1}(\overline{e_{i}},\partial e_{i}) \end{array}$$

Yasuhiro HARA

where the first row is a part of the cohomology exact sequence of the pair (Y, X), $\overline{e_i}$ denotes the closure of e_i and $j_i : \partial e_i \to X$ denotes the inclusion map. We see that $\delta^* : H^n(X) \to H^{n+1}(Y, X)$ is injective because $H^n(Y) = 0$. From the above diagram, we see that $\bigoplus j_i^* : H^n(X) \to \bigoplus_{i=1}^k H^n(\partial e_i)$ is injective. Therefore $(f|\partial e_i)^* = j_i^* \circ f^* : H^n(S^n) \to H^n(\partial e_i)$ is a non-zero homomorphism for some *i*. Because $H^n(S^n) \cong H^n(\partial e_i) \cong \mathbb{Z}_2$, $(f|\partial e_i)^* : H^n(S^n) \to H^n(\partial e_i)$ is an isomorphism.

The following is an application of Theorem 1.1 to combinatorics.

PROPOSITION 2.2. Let *n* be a positive integer and *Y* a connected finite regular cell complex such that $H^p(Y) = 0$ for $1 \le p \le n$. Let *X* be a subcomplex of *Y* which admits a simplicial subdivision with a free simplicial \mathbb{Z}_2 -action, such that each cell of $Y \setminus X$ has dimension (n + 1). Let V(X) be the vertex set of a simplicial subdivision of *X* and *g* the generator of \mathbb{Z}_2 . Let $f : V(X) \to \{\pm 1, \pm 2, ..., \pm (n + 1)\}$ be a map satisfying $f(g \cdot u) = -f(u)$ for $u \in V(X)$ and $f(u) \neq -f(v)$ for each edge $\{u, v\}$. Then there exists a cell *e* in $Y \setminus X$ such that $f | V(\partial e) : V(\partial e)$ $\to \{\pm 1, \pm 2, ..., \pm (n + 1)\}$ is surjective.

PROOF. Let e_1, \ldots, e_{n+1} be the vectors of the standard orthonormal basis in \mathbb{R}^{n+1} . The (n+1)-dimensional crosspolytope is the convex hull of the points $e_1, -e_1, \ldots, e_{n+1}, -e_{n+1}$. We denote by Γ^n the boundary of the (n+1)dimensional crosspolytope. Note that Γ^n is homeomorphic to S^n . There is a simplicial complex structure on Γ^n such that vertices are $e_1, -e_1, \ldots, e_{n+1}, -e_{n+1}$ and a subset F of $\{e_1, -e_1, \ldots, e_{n+1}, -e_{n+1}\}$ is a face if and only if there is no $i \in [n]$ with both $e_i \in F$ and $-e_i \in F$. We identify the vertex set $V(\Gamma^n)$ of Γ^n with $\{\pm 1, \pm 2, \ldots, \pm (n+1)\}$.

Suppose that $f: V(X) \to \{\pm 1, \pm 2, \dots, \pm (n+1)\}$ satisfies $f(g \cdot u) = -f(u)$ for $u \in V(X)$ and $f(u) \neq -f(v)$ for each edge $\{u, v\}$. Then we have a \mathbb{Z}_2 simplicial map $f: X \to \Gamma^n$. By Theorem 1.1, there exists an (n+1)-cell e such that $(f|\partial e)^*: H^n(\Gamma^n) \to H^n(\partial e)$ is an isomorphism. Therefore we see that $f|V(\partial e):$ $V(\partial e) \to V(\Gamma^n)$ is surjective.

We give examples of Theorem 1.1 and Proposition 2.2.

Let n and k be integers with n > k. We put $I = [-1, 1], [n] = \{1, 2, ..., n\}$ and

$$\Lambda_n = \{ (S,T) \mid S \subset [n], T \subset [n], S \cap T = \emptyset \}.$$

A topological proof of Chen's alternative Kneser coloring theorem 255

For an integer k with $0 \leq k \leq n$, we define a subset $\Lambda_{n,k}$ of Λ_n by

$$\Lambda_{n,k} = \{ (S,T) \in \Lambda_n \, | \, |S| + |T| = n - k \},\$$

where |S| and |T| denotes the number of elements of S and T respectively. For $(S, T) \in \Lambda_n$, we define a subset $e_{S,T}$ of I^n by

$$e_{S,T} = \left\{ (x_1, \dots, x_n) \in I^n \, \middle| \begin{array}{c} x_i = 1 \text{ for } i \in S, \ x_j = -1 \text{ for } j \in T, \\ -1 < x_l < 1 \text{ for } l \notin S \cup T \end{array} \right\}.$$

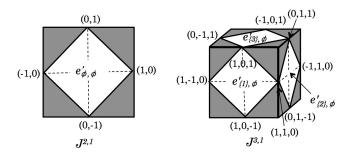
We have a cell decomposition of I^n such that the set of k-cells is $\{e_{S,T} | (S,T) \in \Lambda_{n,k}\}$. We denote by $(I^n)^{(k)}$ the k-skelton of I^n . We define a \mathbb{Z}_2 -action on $(I^n)^{(k)}$ by $g \cdot x = -x$, where g is the generator of \mathbb{Z}_2 . If k < n, this action on $(I^n)^{(k)}$ is a cellular free action. It is easily seen that $H^l((I^n)^{(k+1)}) = 0$ for $1 \le l \le k$. Therefore we have the following from Theorem 1.1.

PROPOSITION 2.3. Let $f : (I^n)^{(k)} \to S^k$ be a \mathbb{Z}_2 -map. Then there exists an $(S,T) \in \Lambda_{n,k+1}$ such that $(f|\partial e_{S,T})^* : H^k(S^k) \to H^k(\partial e_{S,T})$ is an isomorphism.

We define a subset $e'_{S,T}$ of $e_{S,T}$ by

$$e'_{S,T} = \left\{ (x_1, \dots, x_n) \in I^n \, \middle| \, x_i = 1 \text{ for } i \in S, \, x_j = -1 \text{ for } j \in T, \, \sum_{l \in [n] \setminus (S \cup T)} |x_l| < 1 \right\}.$$

Set $J^{n,k} = (I^n)^{(k+1)} \setminus \bigcup_{(S,T) \in \Lambda_{n,k+1}} e'_{S,T}$. It is seen that $(I^n)^{(k)}$ is a strong deformation retract of $J^{n,k}$.



We give a triangulation of $J^{n,k}$ as follows.

v is a vertex of $J^{n,k}$ if and only if $v \in \{-1,0,1\}^n \cap J^{n,k}$. For $v = (v_1 \dots, v_n) \in \{-1,0,1\}^n$, we define subsets v_+ and v_- of [n] by $v_+ = \{i \in [n] | v_i = 1\}$ and $v_- = \{i \in [n] | v_i = -1\}$ respectively. In what follows, we identify the set $\{-1,0,1\}^n$

with the set Λ_n by the bijection

$$\varphi: \{-1,0,1\}^n \to \Lambda_n, \quad v \mapsto (v_+,v_-)$$

and note that v is in e'_{v_+,v_-} . For $v \in \{-1,0,1\}^n$, we put $|v| = |v_+| + |v_-|$, where $|v_+|$ and $|v_-|$ denote the number of elements of v_+ and v_- respectively. For $u = (u_+, u_-)$, $v = (v_+, v_-)$, we write $u \leq v$ if $u_+ \subset v_+$ and $u_- \subset v_-$ and define $u \cup v$ and $u \cap v$ by $(u_+ \cup v_+, u_- \cup v_-)$ and $(u_+ \cap v_+, u_- \cap v_-)$ respectively. Under these notations, each vertex v of $J^{n,k}$ is identified with a pair (v_+, v_-) such that $|v| \geq n-k$.

Let $v_1, v_2 \dots v_t$ be mutually distinct vertices of $J^{n,k}$ regarded as elements of Λ_n by the above identification. Since $|v_j| \ge n-k$ for each j, we may rearrange these vertices so that $|v_1| = \dots = |v_s| = n-k$ and $|v_{s+1}| > n-k, \dots, |v_t| > n-k$. the set $\{v_1, v_2, \dots, v_t\}$ is a simplex in $J^{n,k}$ if and only if v_1, v_2, \dots, v_t satisifies the following conditions.

- (1) $v_1 \cup v_2 \cup \cdots \cup v_s \leq v_{s+1} \leq \cdots \leq v_t$.
- (2) If $s \ge 2$, then $|v_1 \cap v_2 \cap \cdots \cap v_s| = n k 1$ and $v_{i+} \cap v_{j-} = \emptyset$ for $1 \le i, j \le s$.

When s = 0 or s = 1, $\{v_1, v_2, \dots, v_t\}$ is a simplex in $J^{n,k}$ if and only if $v_1 \leq v_2 \leq \cdots \leq v_t$.

In this way, we have a triangulation of $J^{n,k}$. We give a cell decomposition of $(I^n)^{(k+1)}$ by simplexes of $J^{n,k}$ and $e'_{S,T}$ for $(S,T) \in \Lambda_{n,k+1}$.

We define a \mathbb{Z}_2 -action on $J^{n,k}$ by $g \cdot x = -x$. This action is simplicial and free. We denote by $V(J^{n,k})$ the vertex set of $J^{n,k}$. Then we have the following.

PROPOSITION 2.4. If $f: V(J^{n,k}) \to \{\pm 1, \pm 2, \dots, \pm (k+1)\}$ satisfies $f(g \cdot u) = -f(u)$ for any vertex u of $J^{n,k}$ and $f(u) \neq -f(v)$ for any edge $\{u,v\}$ of $J^{n,k}$, then there exists an $(S,T) \in \Lambda_{n,k+1}$ such that $f|V(\partial e'_{S,T}): V(\partial e'_{S,T}) \to \{\pm 1, \pm 2, \dots, \pm (k+1)\}$ is bijective.

PROOF. By Proposition 2.2, there exists an (S,T) in $\Lambda_{n,k+1}$ such that $f|V(\partial e'_{S,T})$ is surjective. Because $|V(\partial e'_{S,T})| = |V(\Gamma^k)| = 2(k+1), f|V(\partial e'_{S,T})$ is bijective.

3. Proof of Chen's alternative Kneser coloring theorem

In this section, we prove Chen's alternative Kneser coloring theorem. Our proof follows the line given in [3], replacing a combinatorial argument with Proposition 2.4 obtained by making use of topological method.

256

A topological proof of Chen's alternative Kneser coloring theorem 257

Let $c: \binom{[n]}{k} \to [n-2k+2]$ be a proper coloring of $KG_{n,k}$. For a subset S of [n], we define

$$c'(S) = \begin{cases} \max\{c(A) \, | \, A \subset S, \, |A| = k\} & (|S| \ge k) \\ 0 & (|S| < k). \end{cases}$$

Let (S, T) be an element of Λ_n such that $|S| + |T| \ge 2k - 1$. Then $|S| \ge k$ or $|T| \ge k$. If (S, T) satisfies both $|S| \ge k$ and $|T| \ge k$, then there exists a subset A of S and a subset B of T such that c'(S) = c(A) and c'(T) = c(B). Since $A \cap B \subset S \cap T = \emptyset$, $\{A, B\}$ is an edge of $KG_{n,k}$ and hence $c(A) \ne c(B)$. Therefore if $(S, T) \in \Lambda_n$ satisfies $|S| + |T| \ge 2k - 1$, then $c'(S) \ne c'(T)$.

We define a map λ from the vertex set of $J^{n,n-2k+1}$ to $\{\pm 1,\pm 2,\ldots,\pm (n-2k+2)\}$ by

$$\lambda(v) = \begin{cases} c'(v_+) & c'(v_+) > c'(v_-) \\ -c'(v_-) & c'(v_+) < c'(v_-) \end{cases}$$

Because $g(v_+, v_-) = (v_-, v_+)$, λ satisfies $\lambda(gv) = -\lambda(v)$.

For an edge $\{u, v\}$ of $J^{n,n-2k+1}$, we easily see that $u_+ \cap v_- = \emptyset$ and $u_- \cap v_+$ = \emptyset . Therefore we see that $\lambda(u) \neq -\lambda(v)$ from the definition of λ . By Proposition 2.4, there exists an (S, T) in $\Lambda_{n,n-2k+2}$ such that $\lambda|V(\partial e'_{S,T}) : V(\partial e'_{S,T}) \rightarrow \{\pm 1, \pm 2, \ldots, \pm (n-2k+2)\}$ is bijective. Note that |S| + |T| = 2k - 2 and that every vertex $v = (v_+, v_-)$ of $\partial e'_{S,T}$ satisfies |v| = 2k - 1, $S \subset v_+$ and $T \subset v_-$. Therefore we have $|S| \leq |v_+| \leq |S| + 1$ and $|T| \leq |v_-| \leq |T| + 1$. We show that |S| = |T| = k - 1. Suppose |S| > |T|. Then $|v_-| \leq |T| + 1 \leq k - 1$ and $c'(v_-) = 0$ for $v \in V(\partial e_{S,T})$. Hence the map λ takes a positive value on every vertex of $\partial e'_{S,T}$, which contradicts that $\lambda|V(\partial e'_{S,T})$ is bijective. Anologously, the strict inequality |S| < |T| is impossible. Therefore |S| = |T| = k - 1.

Since $\lambda | V(\partial e'_{S,T})$ is bijective, there exist vertices v_1, \ldots, v_{n-2k+2} in $V(\partial e'_{S,T})$ such that $\lambda(v_1) = 1, \ldots, \lambda(v_{n-2k+2}) = n - 2k + 2$.

Next we observe $|(v_j)_+| = k$ as follows: since $\lambda(v_j) = j > 0$ we have $c'((v_j)_+) > c'((v_j)_-) \ge 0$ and hence $|(v_j)_+| \ge k$. On the other hand, $v_j \in V(\partial e'_{S,T})$ and |S| = k - 1 implies $|(v_j)_+| \le |S| + 1 \le k$ and we obtain the desired equality.

It follows from this that the elements of $[n] \setminus (S \cup T)$ are enumerated as $i_1, i_2, \ldots, i_{n-2k+2}$ such that $v_{1+} = S \cup \{i_1\}, \ldots, (v_{n-2k+2})_+ = S \cup \{i_{n-2k+2}\}$. Then $c(S \cup \{i_1\}) = 1, \ldots, c(S \cup \{i_{n-2k+2}\}) = n - 2k + 2$. If $a \neq b$, then $(S \cup \{i_a\}) \cap (T \cup \{i_b\}) = \emptyset$. Hence $S \cup \{i_a\}$ and $T \cup \{i_b\}$ are adjacent in the graph $KG_{n,k}$, we have $c(S \cup \{i_a\}) \neq c(T \cup \{i_b\})$ for $a \neq b$. Therefore we have $c(S \cup \{i_j\}) = c(T \cup \{i_b\}) = j$ for $j = 1, 2, \ldots, n - 2k + 2$.

Yasuhiro HARA

Acknowledgements

The author would like to thank the referee for careful reading and useful suggestions.

References

- G. E. Bredon, Introduction to compact transformation groups. Pure and Applied Mathematics, Vol. 46. Academic Press, New York-London, 1972.
- [2] J. A. Bondy and P. Hell, A note on the star chromatic number. J. Graph Theory 14 (1990), 479–482.
- [3] G. J. Chang, D. F. Liu and X. Zhu, A short proof for Chen's alternative Kneser coloring theorem. J. Combin. Theory Ser. A 120 (2013), no. 1, 159–163.
- [4] P-A. Chen, A new coloring theorem of Kneser graphs., J. Combin. Theory Ser. A 118 (2011), 1062–1071.
- [5] A. Johnson, F. C. Holroyd and S. Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, J. Graph Theory 26 (3) (1997), 137–145.
- [6] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), 319–324.
- [7] J. Matoušek, Using the Borsuk-Ulam theorem, Springer, Berlin (2003).
- [8] F. Meunier, A topological lower bound for the circular chromatic number of Schrijver graphs, J. Graph Theory 49(4) (2005), 257–261.
- [9] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Math. Studies 76. Princeton University Press, Princeton (1974).
- [10] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica 26 (2006), 587–626.
- [11] X. Zhu, Circular chromatic number: a survey, Combinatorics, graph theory, algorithms and applications. Discrete Math. 229 (2001), 371–410.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan E-mail: hara@math.sci.osaka-u.ac.jp