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A TOPOLOGICAL PROOF OF CHEN’S ALTERNATIVE

KNESER COLORING THEOREM

By

Yasuhiro Hara

Abstract. Johnson, Holroyd and Stahl [5] conjectured that the cir-

cular chromatic number of the Kneser graph is equal to the ordinary

chromatic number. Chen completely confirmed the conjecture in [4].

Chen’s alternative Kneser coloring theorem is a key lemma in his

proof of Johnson-Holroyd-Stahl conjecture. Chen [4] and Chang,

Liu and Zhu [3] proved the theorem by using Fan’s lemma. In this

paper, we prove Chen’s alternative Kneser coloring theorem by using

cohomology.

1. Introduction

Let G ¼ ðVðGÞ;EðGÞÞ be a graph and p, q integers with 1e qe p. We

denote by ½ p� the set f1; 2; . . . ; pg. A ðp; qÞ-coloring of G is a map c : VðGÞ ! ½ p�
such that qe jcðxÞ � cðyÞje p� q for every edge xy of G. The circular chromatic

number of G is

wcðGÞ ¼ inf
p

q

���� there exists a ðp; qÞ-coloring of G

� �
:

Because the ordinary chromatic number wðGÞ is equal to

minfp j there exists a ðp; 1Þ-coloring of Gg;

we see wcðGÞe wðGÞ. It has been known that wcðGÞ > wðGÞ � 1 (see [2],

[11]).
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We denote by
½n�
k

� �
the collection of all k-subsets of ½n�. The Kneser graph

KGn;k for nf 2k > 0, has vertex set
½n�
k

� �
and any two vertices u; v A

½n�
k

� �
are

adjacent if and only if u \ v ¼ q. Lovász [6] proved the chromatic number of

the Kneser graph KGn;k is n� 2k þ 2 by using a Borsuk-Ulam type theorem (see

also [7]).

Johnson, Holroyd and Stahl [5] conjectured that the circular chromatic

number wcðKGn;kÞ of the Kneser graph KGn;k is equal to the ordinary chromatic

number wðKGn;kÞ. Meunier [8] and Simonyi and Tardos [10] proved independently

that if n is even, then wcðKGn;kÞ ¼ wðKGn;kÞ. Chen [4] completely proved Johnson-

Holroyd-Stahl conjecture. Chang, Liu and Zhu gave a short proof of it in [3].

The following is a key lemma of the proofs of wcðKGn;kÞ ¼ wðKGn;kÞ in [3] and

[4].

Chen’s alternative Kneser coloring theorem ([3], [4]). Let n and k

be integers with nf 2k > 0. If c :
½n�
k

� �
! ½n� 2k þ 2� is a proper coloring of

KGn;k, then there exist two disjoint ðk � 1Þ-subsets S, T of ½n� and the integers of

½n�nðS [ TÞ are enumerated as i1; . . . ; in�2kþ2 such that cðS [ fijgÞ ¼ cðT [ fijgÞ ¼
j for j ¼ 1; 2; . . . ; n� 2k þ 2.

In [3] and [4], Fan’s lemma was used to prove this theorem. In this paper,

we prove Chen’s alternative Kneser coloring theorem by using cohomology

argument.

Let Sn denote the unit sphere in the ðnþ 1Þ-dimensional Euclidean space. We

denote by Z2 the cyclic group of order 2 and consider the antipodal Z2-action on

Sn. The following Borsuk-Ulam type theorem is the key theorem in a topological

proof of Chen’s alternative Kneser coloring theorem in this paper.

Theorem 1.1. Let n be a positive integer and Y a connected regular cell

complex such that H pðY ;Z2Þ ¼ 0 for 1e pe n. Let X be a subcomplex of Y

which admits a free cellular Z2-action such that each cell of YnX has dimension

ðnþ 1Þ. Then for each Z2-map f : X ! Sn, there exists an ðnþ 1Þ-cell e in YnX
such that ð f jqeÞ� : HnðSn;Z2Þ ! Hnðqe;Z2Þ is an isomorphism, where qe is the

boundary of e and f jqe is the restriction of f to qe.

In Theorem 1.1, we remark that qe is homeomorphic to Sn because Y is a

regular cell complex.
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2. Proof of Theorem 1.1 and applications

In this section we prove Theorem 1.1 and give its applications. Throughout

this section, the coe‰cient of cohomology is Z2 ¼ Z=2Z and is omitted in the

notation unless otherwise stated.

First we prove the following lemma.

Lemma 2.1. Let n be a positive integer and X a connected free Z2-

CW-complex such that p-th cohomology HpðX Þ is zero for 1e pe n� 1. If

f : X ! Sn is a Z2-map, then the induced map f � : HnðSnÞ ! HnðX Þ is a non-

zero homomorphism

Proof. Let wðSnÞ and wðXÞ be the Stiefel-Whitney class of pS : Sn ! RPn

and pX : X ! X=Z2 respectively. We consider the Gysin-Smith exact sequence

(see [9, Corollary 12.3], [1, Chapter III]).

� � � ���!p !
X

H p�1ðX=Z2Þ ���!
S
wðX Þ

HpðX=Z2Þ ���!p �
X

H pðX Þ ���!p !
X

H pðX=Z2Þ ���!
S
wðX Þ

� � �

Because HpðXÞ ¼ 0 for 1e pe n� 1, we have wðXÞn 0 0 from exactness of this

sequence. Let f : X=Z2 ! RPn be a continuous map such that pS � f ¼ f � pX .
Because f �ðwðSnÞnÞ ¼ f �ðwðSnÞÞn ¼ wðXÞn 0 0, f � : HnðRPnÞ ! HnðX=Z2Þ is

a non-zero homomorphism. Note that transfer homomorphisms p !
X : HnðXÞ !

HnðX=Z2Þ and p !
S : HnðSnÞ ! HnðRPnÞ satisfy p !

X � f � ¼ f � � p !
S. Because

p !
S : HnðSnÞ ! HnðSn=Z2Þ is an isomorphism, p !

X � f � ¼ f � � p !
S 0 0 : HnðSnÞ

! HnðX=Z2Þ. Therefore f � : HnðSnÞ ! HnðXÞ is a non-zero homomorphism.

r

Proof of Theorem 1.1. Let Y be a connected finite regular cell complex

such that p-th cohomology HpðY Þ is zero for 1e pe n. Let X be a sub-

complex of Y such that every cell of YnX is an ðnþ 1Þ-cell and that there exists

a free cellular Z2-action on X . Then HpðX Þ ¼ 0 for 1e pe n� 1, because the n

skelton of X and Y are the same. If there exisits a Z2-map f : X ! Sn, then

f � : HnðSnÞ ! HnðX Þ is a non-zero homomorphism by Lemma 2.1.

We denote by e1; . . . ; ek ðnþ 1Þ-cells in YnX . Consider the following

commutative diagram.

HnðYÞ ���! HnðXÞ Hnþ1ðY ;XÞ

0 j �i

???y G

???y
0k

i¼1
HnðqeiÞ ���!G

0k

i¼1
Hnþ1ðei; qeiÞ

��������!d �

253A topological proof of Chen’s alternative Kneser coloring theorem



where the first row is a part of the cohomology exact sequence of the pair

ðY ;X Þ, ei denotes the closure of ei and ji : qei ! X denotes the inclusion map.

We see that d� : HnðX Þ ! Hnþ1ðY ;X Þ is injective because HnðYÞ ¼ 0. From

the above diagram, we see that 0 j �i : HnðXÞ ! 0k

i¼1
HnðqeiÞ is injective.

Therefore ð f jqeiÞ� ¼ j �i � f � : HnðSnÞ ! HnðqeiÞ is a non-zero homomorphism

for some i. Because HnðSnÞGHnðqeiÞGZ2, ð f jqeiÞ� : HnðSnÞ ! HnðqeiÞ is an

isomorphism. r

The following is an application of Theorem 1.1 to combinatorics.

Proposition 2.2. Let n be a positive integer and Y a connected finite regular

cell complex such that H pðYÞ ¼ 0 for 1e pe n. Let X be a subcomplex of

Y which admits a simplicial subdivision with a free simplicial Z2-action, such that

each cell of YnX has dimension ðnþ 1Þ. Let VðXÞ be the vertex set of a sim-

plicial subdivision of X and g the generator of Z2. Let f : VðXÞ ! fG1;G2; . . . ;

Gðnþ 1Þg be a map satisfying f ðg � uÞ ¼ �f ðuÞ for u A VðX Þ and f ðuÞ0�f ðvÞ for
each edge fu; vg. Then there exists a cell e in YnX such that f jVðqeÞ : VðqeÞ
! fG1;G2; . . . ;Gðnþ 1Þg is surjective.

Proof. Let e1; . . . ; enþ1 be the vectors of the standard orthonormal basis

in Rnþ1. The ðnþ 1Þ-dimensional crosspolytope is the convex hull of the

points e1;�e1; . . . ; enþ1;�enþ1. We denote by Gn the boundary of the ðnþ 1Þ-
dimensional crosspolytope. Note that Gn is homeomorphic to Sn. There is a

simplicial complex structure on Gn such that vertices are e1;�e1; . . . ; enþ1;�enþ1

and a subset F of fe1;�e1; . . . ; enþ1;�enþ1g is a face if and only if there is no

i A ½n� with both ei A F and �ei A F . We identify the vertex set VðGnÞ of Gn with

fG1;G2; . . . ;Gðnþ 1Þg.
Suppose that f : VðXÞ ! fG1;G2; . . . ;Gðnþ 1Þg satisfies f ðg � uÞ ¼ �f ðuÞ

for u A VðX Þ and f ðuÞ0�f ðvÞ for each edge fu; vg. Then we have a Z2 sim-

plicial map f : X ! Gn. By Theorem 1.1, there exists an ðnþ 1Þ-cell e such that

ð f jqeÞ� : HnðGnÞ ! HnðqeÞ is an isomorphism. Therefore we see that f jVðqeÞ :
VðqeÞ ! VðGnÞ is surjective. r

We give examples of Theorem 1.1 and Proposition 2.2.

Let n and k be integers with n > k. We put I ¼ ½�1; 1�, ½n� ¼ f1; 2; . . . ; ng
and

Ln ¼ fðS;TÞ jS � ½n�;T � ½n�;S \ T ¼ qg:
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For an integer k with 0e ke n, we define a subset Ln;k of Ln by

Ln;k ¼ fðS;TÞ A Ln j jSj þ jT j ¼ n� kg;

where jSj and jT j denotes the number of elements of S and T respectively. For

ðS;TÞ A Ln, we define a subset eS;T of I n by

eS;T ¼ ðx1; . . . ; xnÞ A I n
���� xi ¼ 1 for i A S; xj ¼ �1 for j A T ;

�1 < xl < 1 for l B S [ T

� �
:

We have a cell decomposition of I n such that the set of k-cells is feS;T j ðS;TÞ A
Ln;kg. We denote by ðI nÞðkÞ the k-skelton of I n. We define a Z2-action on ðI nÞðkÞ

by g � x ¼ �x, where g is the generator of Z2. If k < n, this action on ðI nÞðkÞ is a
cellular free action. It is easily seen that H lððI nÞðkþ1ÞÞ ¼ 0 for 1e le k. There-

fore we have the following from Theorem 1.1.

Proposition 2.3. Let f : ðI nÞðkÞ ! Sk be a Z2-map. Then there exists an

ðS;TÞ A Ln;kþ1 such that ð f jqeS;T Þ� : HkðSkÞ ! HkðqeS;TÞ is an isomorphism.

We define a subset e 0S;T of eS;T by

e 0S;T ¼
�
ðx1; . . . ; xnÞ A I n

���� xi ¼ 1 for i A S; xj ¼ �1 for j A T ;
X

l A ½n�nðS[TÞ
jxl j < 1

�
:

Set J n;k ¼ ðI nÞðkþ1Þn
S

ðS;TÞ ALn; kþ1
e 0S;T . It is seen that ðI nÞðkÞ is a strong defor-

mation retract of J n;k.

We give a triangulation of J n;k as follows.

v is a vertex of J n;k if and only if v A f�1; 0; 1gn \ J n;k. For v ¼ ðv1 . . . ; vnÞ A
f�1; 0; 1gn, we define subsets vþ and v� of ½n� by vþ ¼ fi A ½n� j vi ¼ 1g and v� ¼
fi A ½n� j vi ¼ �1g respectively. In what follows, we identify the set f�1; 0; 1gn
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with the set Ln by the bijection

j : f�1; 0; 1gn ! Ln; v 7! ðvþ; v�Þ

and note that v is in e 0vþ; v� . For v A f�1; 0; 1gn, we put jvj ¼ jvþj þ jv�j, where

jvþj and jv�j denote the number of elements of vþ and v� respectively. For u ¼
ðuþ; u�Þ, v ¼ ðvþ; v�Þ, we write ue v if uþ � vþ and u� � v� and define u [ v

and u \ v by ðuþ [ vþ; u� [ v�Þ and ðuþ \ vþ; u� \ v�Þ respectively. Under these

notations, each vertex v of J n;k is identified with a pair ðvþ; v�Þ such that

jvjf n� k.

Let v1; v2 . . . vt be mutually distinct vertices of J n;k regarded as elements of

Ln by the above identification. Since jvjjf n� k for each j, we may rearrange

these vertices so that jv1j ¼ � � � ¼ jvsj ¼ n� k and jvsþ1j > n� k; . . . ; jvtj > n� k.

the set fv1; v2; . . . ; vtg is a simplex in J n;k if and only if v1; v2; . . . ; vt satisifies the

following conditions.

(1) v1 [ v2 [ � � � [ vs e vsþ1 e � � �e vt.

(2) If sf 2, then jv1 \ v2 \ � � � \ vsj ¼ n� k � 1 and viþ \ vj� ¼ q for 1e

i; je s.

When s ¼ 0 or s ¼ 1, fv1; v2; . . . ; vtg is a simplex in J n;k if and only if v1 e

v2 e � � �e vt.

In this way, we have a triangulation of J n;k. We give a cell decomposition

of ðI nÞðkþ1Þ by simplexes of J n;k and e 0S;T for ðS;TÞ A Ln;kþ1.

We define a Z2-action on J n;k by g � x ¼ �x. This action is simplicial and

free. We denote by VðJ n;kÞ the vertex set of J n;k. Then we have the following.

Proposition 2.4. If f : VðJ n;kÞ ! fG1;G2; . . . ;Gðk þ 1Þg satisfies f ðg � uÞ ¼
�f ðuÞ for any veretex u of J n;k and f ðuÞ0�f ðvÞ for any edge fu; vg of J n;k, then

there exists an ðS;TÞ A Ln;kþ1 such that f jVðqe 0S;TÞ : Vðqe 0S;TÞ ! fG1;G2; . . . ;

Gðk þ 1Þg is bijective.

Proof. By Proposition 2.2, there exists an ðS;TÞ in Ln;kþ1 such that

f jVðqe 0S;T Þ is surjective. Because jVðqe 0S;T Þj ¼ jVðGkÞj ¼ 2ðk þ 1Þ, f jVðqe 0S;TÞ is

bijective. r

3. Proof of Chen’s alternative Kneser coloring theorem

In this section, we prove Chen’s alternative Kneser coloring theorem. Our

proof follows the line given in [3], replacing a combinatorial argument with

Proposition 2.4 obtained by making use of topological method.
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Let c :
½n�
k

� �
! ½n� 2k þ 2� be a proper coloring of KGn;k. For a subset S

of ½n�, we define

c 0ðSÞ ¼ maxfcðAÞ jA � S; jAj ¼ kg ðjSjf kÞ
0 ðjSj < kÞ

�
:

Let ðS;TÞ be an element of Ln such that jSj þ jT jf 2k � 1. Then jSjf k or

jT jf k. If ðS;TÞ satisfies both jSjf k and jT jf k, then there exists a subset A

of S and a subset B of T such that c 0ðSÞ ¼ cðAÞ and c 0ðTÞ ¼ cðBÞ. Since A \ B �
S \ T ¼ q, fA;Bg is an edge of KGn;k and hence cðAÞ0 cðBÞ. Therefore if

ðS;TÞ A Ln satisfies jSj þ jT jf 2k � 1, then c 0ðSÞ0 c 0ðTÞ.
We define a map l from the vertex set of J n;n�2kþ1 to fG1;G2; . . . ;

Gðn� 2k þ 2Þg by

lðvÞ ¼ c 0ðvþÞ c 0ðvþÞ > c 0ðv�Þ
�c 0ðv�Þ c 0ðvþÞ < c 0ðv�Þ

�
:

Because gðvþ; v�Þ ¼ ðv�; vþÞ, l satisfies lðgvÞ ¼ �lðvÞ.
For an edge fu; vg of J n;n�2kþ1, we easily see that uþ \ v� ¼ q and u� \ vþ

¼ q. Therefore we see that lðuÞ0�lðvÞ from the definition of l. By Proposition

2.4, there exists an ðS;TÞ in Ln;n�2kþ2 such that ljVðqe 0S;TÞ : Vðqe 0S;TÞ ! fG1;

G2; . . . ;Gðn� 2k þ 2Þg is bijective. Note that jSj þ jT j ¼ 2k � 2 and that every

vertex v ¼ ðvþ; v�Þ of qe 0S;T satisfies jvj ¼ 2k � 1, S � vþ and T � v�. Therefore

we have jSje jvþje jSj þ 1 and jT je jv�je jT j þ 1. We show that jSj ¼ jT j ¼
k � 1. Suppose jSj > jT j. Then jv�je jT j þ 1e k � 1 and c 0ðv�Þ ¼ 0 for v A

VðqeS;TÞ. Hence the map l takes a positive value on every vertex of qe 0S;T ,

which contradicts that ljVðqe 0S;TÞ is bijective. Anologously, the strict inequality

jSj < jT j is impossible. Therefore jSj ¼ jT j ¼ k � 1.

Since ljVðqe 0S;TÞ is bijective, there exist vertices v1; . . . ; vn�2kþ2 in Vðqe 0S;TÞ
such that lðv1Þ ¼ 1; . . . ; lðvn�2kþ2Þ ¼ n� 2k þ 2.

Next we observe jðvjÞþj ¼ k as follows: since lðvjÞ ¼ j > 0 we have

c 0ððvjÞþÞ > c 0ððvjÞ�Þf 0 and hence jðvjÞþjf k. On the other hand, vj A Vðqe 0S;TÞ
and jSj ¼ k � 1 implies jðvjÞþje jSj þ 1e k and we obtain the desired equality.

It follows from this that the elements of ½n�nðS [ TÞ are enumerated as

i1; i2; . . . ; in�2kþ2 such that v1þ ¼ S [ fi1g; . . . ; ðvn�2kþ2Þþ ¼ S [ fin�2kþ2g. Then

cðS [ fi1gÞ ¼ 1; . . . ; cðS [ fin�2kþ2gÞ ¼ n� 2k þ 2. If a0 b, then ðS [ fiagÞ \
ðT [ fibgÞ ¼ q. Hence S [ fiag and T [ fibg are adjacent in the graph KGn;k,

we have cðS [ fiagÞ0 cðT [ fibgÞ for a0 b. Therefore we have cðS [ fijgÞ ¼
cðT [ fijgÞ ¼ j for j ¼ 1; 2; . . . ; n� 2k þ 2. r
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