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COMPUTATION METHODS OF LOGARITHMIC VECTOR

FIELDS ASSOCIATED TO SEMI-WEIGHTED

HOMOGENEOUS ISOLATED HYPERSURFACE

SINGULARITIES

By

Katsusuke Nabeshima and Shinichi Tajima

Abstract. Methods for computing logarithmic vector fields along

a semi-weighted homogeneous hypersurface with an isolated singu-

larity are considered in the context of symbolic computation. The

main idea of our approach is based on the concept of polar variety

and of algebraic local cohomology. New algorithms are introduced

for computing a set of generators of the modules of logarithmic

vector fields. The keys of the resulting algorithms are a notion of

parametric syzygy system and that of parametric local cohomology

system.

1. Introduction

The concept of logarithmic vector fields along a hypersurface, introduced by

K. Saito [38], is of considerable importance in complex analysis and singularity

theory. Logarithmic vector fields have been extensively studied and utilized by

several authors in diverse fields and in many di¤erent problems such as the theory

of Saito free divisors [2, 5, 11, 12], logarithmic comparison problems [8, 9],

singular holomorphic vector fields [3, 16, 39, 41], I -versal deformation theory

[13, 14, 37]. H. Terao [49] and J. W. Bruce [5] studied the modules of the log-

arithmic vector fields along the bifurcation set of a semiuniversal deformation of

an isolated hypersurface singularity and decided its structure. These authors also

gave a method of explicit computation for its free base.
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In singularity theory, A. Aleksandrov [1] and J. Wahl [50] independently

gave, among other results, a closed formula of the generators of logarithmic

vector fields along quasi-homogeneous complete intersection singularities. Later,

H. Hauser and G. Müller [19, 20] investigated Gröbner correspondences and

showed in particular that two germs of hypersurfaces with an isolated singular

point are biholomorphicaly isomorphic if and only if the corresponding Lie

algebras of logarithmic vector fields are isomorphic.

For non-quasi homogeneous cases, no closed formula and no algorithmic

method for computing logarithmic vector fields are known. Structure of loga-

rithmic vector fields has not been studied systematically even for the case of semi-

weighted homogeneous hypersurface isolated singularities. Many problems that

involve logarithmic vector fields still remain unsolved.

In this paper, we consider logarithmic vector fields along semi-weighted

homogeneous hypersurface isolated singularities. Based on results given in [42],

we propose an e¤ective method for computing a set of generators of the module

of logarithmic vector fields. The keys of our approach are the concept of a polar

variety and a set of local cohomology classes associated to the polar variety. We

generaize the proposed method to parametric cases for studying deformation of

hypersurface singularities. An innovation of this paper is a notion of parametric

syzygy system. The resulting algorithms can compute in particular the parameter

dependency of the structure of the module of logarithmic vector fields asso-

ciated to m-constant deformations of weighted homogeneous hypersurface isolated

singularities.

To be more precise, let f be a semi-weighted homogeneous polynomial in

K ½x1; . . . ; xn�, w.r.t. a weighted vector w A Nn, where K is the field of rational

numbers or complex numbers. We assume that the polynomial f defines an

isolated singularity at the origin and the sequence f ; qf
qx2

; qf
qx3

; . . . ; qf
qxn

� �
is a regular

sequence ([24, 25]).

In section 3, we describe an algorithm for computing a basis of local coho-

mology classes associated to the polar variety, namely local cohomology classes

associated to the ideal generated by f ; qf
qx2

; qf
qx3

; . . . ; qf
qxn

in the local ring. As we

have given in [31] only an outline of the algorithm, we illustrate here in section 3

a complete algorithm. We also show the e¤ectivity of the proposed algorithm and

how Poincaré polynomials work well, together with results of the benchmark

tests.

In section 4, first we describe relations between logarithmic vector fields and

local cohomology classes and we see that these local cohomology classes can be

used to reveal the structure of logarithmic vector fields. Second, we propose an
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algorithm for computing standard basis of the annihilator ideal of local coho-

mology classes mentioned above. The resulting algorithms will be utilized in the

next section.

In section 5, we provide two di¤erent computational methods of logarithmic

vector fields (with parameters). The first method utilizes Lazard’s homogeniza-

tion technique [23]. The second method utilizes a Gröbner basis computation of

a syzygy module. We describe these algorithms with many details and examples.

We also present empirical data and comparison of the two computational

methods.

This paper extends our conference paper [31] by many details, algorithms,

computation experiments and examples. The first method, described in section 5,

has been introduced in [31]. The second method is newly obtained in the present

paper.

All algorithms in this paper have been implemented in the computer algebra

system Risa/Asir [35]. All tests presented in this paper, have been performed

on a machine [OS: Windows 7 (64bit), CPU: Intel(R) Core i-7-5930K CPU @

3.50 GHz 3.50 GHz, RAM: 64 GB] and the computer algebra system Risa/Asir

version 20150126 [35].

2. Preliminaries

Throughout this paper, we use the notation x as the abbreviation of n

variables x1; . . . ; xn. The set of natural numbers N includes zero. K is the field

of rational numbers Q or the field of complex numbers C.

Let w ¼ ðw1;w2; . . . ;wnÞ A Nn be a weight vector with positive entries (i.e.,

wi > 0 for all i) for a given coordinate system x ¼ ðx1; x2; . . . ; xnÞ and x ¼ ðx1;
x2; . . . ; xnÞ. Set jajw ¼

Pn
i¼1 wiai for a ¼ ða1; a2; . . . ; anÞ A Nn. The weighted degree

of a term xa ¼ xa1
1 xa2

2 � � � xan
n is defined by degwðxaÞ ¼ jajw. Let degwð f Þ denote

the weighted degree of f , defined to be degwð f Þ ¼ maxfjajw j xa is a term of f g.
Let ordwð f Þ ¼ minfjajw j xa is a term of f g. ðordwð0Þ ¼ �1Þ.

Definition 2.1 ([4]). (i) A nonzero polynomial f in K ½x� is weighted ho-

mogeneous of type ðd;wÞ if all terms of f have the same weighted degree

d with respect to w, i.e., f ¼
P
jajw¼d cax

a where ca A K .

(ii) A polynomial f is called semi-weighted homogeneous (or semi-

quasihomogeneous) of type ðd;wÞ if f is of the form f ¼ f0 þ g where

f0 is a weighted homogeneous polynomial of type ðd;wÞ with an isolated

singularity at the origin, f ¼ f0 or ordwð f � f0Þ > d.
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Definition 2.2 (weighted term orders). For two multi-indices l ¼
ðl1; l2; . . . ; lnÞ and l 0 ¼ ðl 01; l

0
2; . . . ; l

0
nÞ in Nn, we write xl 0

0 xl or l 00 l if

jl 0jw < jljw, or if jl 0jw ¼ jljw and there exists j A N so that l 0i ¼ li for i < j and

l 0j < lj.

Definition 2.3 (inverse orders). Let 0 be a local or global term order.

Then, the inverse order 0�1 of 0 is defined by xa 0 xb , xb 0�1 xa where

a; b A Nn.

Note that if0 is a global term order (1 is the minimal term), then0�1 is the

local term order (1 is the maximal term). Conversely, if 0 is a local term order,

then 0�1 is the global term order.

Definition 2.4 (minimal bases). A basis fxg1 ; . . . ; xglg for a monomial ideal

I is said to be minimal if no xgi in the basis divides other xgj for i0 j, where

g1; . . . ; gl A Nn.

3. Algorithms for computing algebraic local cohomology classes

In this section we describe algorithms for computing algebraic local coho-

mology classes associated to a polar variety, and give results of the benchmark

tests.

3.1. Algebraic local cohomology

Here we briefly review algebraic local cohomology classes, and give notation

and definitions that will be used in this paper. The details are in [17, 18, 34, 43,

44, 45].

Let S ¼ fx A X j f ðxÞ ¼ 0g be a hypersurface with an isolated singularity

at the origin O in Cn, where X is an open neighborhood of the origin O and f

is a holomorphic defining function. Let OX be the sheaf of holomorphic func-

tions, OX ;O the stalk at the origin of the sheaf OX . Let Hn
fOgðOX Þ be the local

cohomology supported at O. Consider the pair ðX ;X �OÞ and its relative Čech

covering. Then, any section of Hn
fOgðOX Þ can be represented as an element of

relative Čech cohomology. All local cohomology classes we handle in this paper

are actually algebraic local cohomology classes that belong to the set defined

by

Hn
½O�ðK ½x�Þ :¼ lim

k!y
ExtnK ½x�ðK ½x�=hx1; x2; . . . ; xnik;K ½x�Þ;

194 Katsusuke Nabeshima and Shinichi Tajima



where hx1; . . . ; xni is the maximal ideal generated by x1; . . . ; xn. We identify

Hn
½O�ðK ½x�Þ with K ½x1; . . . ; xn�. An algebraic local cohomology class

P
cl

1

xlþ1

� �
is

represented as a polynomial in n variables
P

clx
l where xlþ1 ¼ xl1þ1

1 xl2þ1
2 � � �

xlnþ1
n , cl A K , l ¼ ðl1; . . . ; lnÞ A Nn and x ¼ ðx1; x2; . . . ; xnÞ. The multiplication by

xa is defined as

xa � xl ¼ xl�a; li b ai; i ¼ 1; . . . ; n;

0; otherwise;

�

where a ¼ ða1; . . . ; anÞ A Nn, l ¼ ðl1; . . . ; lnÞ A Nn, and l� a ¼ ðl1 � a1; . . . ;

ln � anÞ.
Let fix a global term order 0 on K½x�. For a given algebraic local coho-

mology class of the form

c ¼ clx
l þ

X
xl 0

0xl

cl 0x
l 0 ; cl 0 0;

we call xl the head term, cl the head coe‰cient, clx
l the head monomial and xl 0

the lower terms. Let htðcÞ, hcðcÞ and hmðcÞ denote the head term, the head

coe‰cient and the head monomial respectively. Furthermore, let TermðcÞ :¼
fxk jc ¼

P
k AN n ckx

k; ck 0 0; ck A Kg, the set of terms of c, CoefðcÞ :¼ fck jc ¼P
k AN n ckx

k; ck 0 0; ck A Kg, the set of coe‰cients of c and let LLðcÞ :¼ fxk A

TermðcÞ j xk 0 htðcÞg, the set of lower terms of c.

Let C be a finite subset of Hn
½O�ðK ½x�Þ. Set htðCÞ :¼ fhtðcÞ jc A Cg,

TermðCÞ :¼
S

c AC TermðcÞ, CoefðCÞ :¼
S

c AC CoefðcÞ and LLðCÞ :¼S
c AC LLðcÞ. Moreover, let MLðCÞ denote the set of monomial elements of

C, SLðCÞ the set of linear combination elements of C. For instance, let C ¼
f2x21x2 � 3x21 þ x2; x1x

2
2 þ x1; x

3
1x

2
2 ; x1x2g in C½x1; x2�, then MLðCÞ ¼ fx31x22 ; x1x2g

and SL ¼ f2x21x2 � 3x21 þ x2; x1x
2
2 þ x1g.

Let xl be a term and let F be a set of terms in K ½x� where l ¼ ðl1; . . . ;
lnÞ A Nn. We call xl � xi a neighbor of xl for each i ¼ 1; . . . ; n. We define the

neighbor of F as NeighborðFÞ :¼ fj � xi j j A F; i ¼ 1; . . . ; ng.
Note that for a polynomial and a set of polynomials in K ½x�, we use the same

notation as above, too.

Definition 3.1 (changing variables). Let G be a set of polynomials in K ½x�
and g A G. A map CV is defined as changing variables xi into xi, for all i A

f1; . . . ; ng. The inverse map CV�1 is defined as changing variables xi into xi.
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That is, CVðgÞ is in K ½x�. The set CVðGÞ is also defined as CVðGÞ ¼ fCVðgÞ j
g A Gg.

For instance, f ¼ �2x3
1x2 þ 2=5x2

1 þ 3 A Q½x1; x2� and c ¼ 3=2x21 � 2x2 þ
2x3 A Q½x1; x2; x3�. Then, CVð f Þ ¼ �2x31x2 þ 2=5x21 þ 3 and CV�1ðcÞ ¼ 3=2x2

1 �
2x2 þ 2x3.

3.2. Algorithms for computing algebraic local cohomology classes

Here we illustrate an algorithm for computing a basis of the vector space

HGð f Þ associated to a polar variety Gð f Þ of a hypersurface S.

Let f ¼ f0 þ g be a semi-weighted homogeneous polynomial of type ðd;wÞ in
K ½x�, where f0 is a weighted homogeneous polynomial of type ðd;wÞ with an

isolated singularity at the origin, and w is a weight vector. Let Gð f Þ be a polar

variety [24, 46, 47, 48] of the hypersurface S defined to be

Gð f Þ ¼ x A X

���� qfqx2 ðxÞ ¼
qf

qx3
ðxÞ ¼ � � � ¼ qf

qxn
ðxÞ ¼ 0

� �
:

Set

HGð f Þ ¼
�
c A Hn

½O�ðK ½x�Þ j f � c ¼
qf

qx2

� 	
� c

¼ qf

qx3

� 	
� c ¼ � � � ¼ qf

qxn

� 	
� c ¼ 0

�
:

Here, the system of coordinates ðx1; x2; . . . ; xnÞ is assumed to be generic

in a sense that HGð f Þ is a finite dimensional subspace of Hn
½O�ðK ½x�Þ. That is,

f ; qf
qx2

; . . . ; qf
qxn

n o
has an isolated common root at the origin.

Remark 1. Let I ¼ f ; qf
qx2

; . . . ; qf
qxn

D E
and m ¼ hx1; x2; . . . ; xni in K ½x�. Since

VðI : myÞ ¼ VðIÞnfOg, if there exists p in the ideal quotient I : my sucht that

pðOÞ0 0, then f ; qf
qx2

; . . . ; qf
qxn

has an isolated common root at the origin. Hence,

by computing a Gröbner basis of I : my in K½x�, one can know whether

f ; qf
qx2

; . . . ; qf
qxn

has the isolated common root at the origin or not.

The aim of this subsection is to give an e‰cient algorithm for computing

a basis of the vector space HGð f Þ. First we present an algorithm for computing a

basis of HGð f0Þ. Second, we design an algorithm for computing a basis of HGð f Þ by
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using the basis of HGð f0Þ. The essential point of the proposed algorithm is a use of

Poincaré polynomials.

Now we recall the notion of Poincaré polynomial for the ideal
D
f ; qf

qx2
;

qf
qx3

; . . . ; qf
qxn

E
[7].

Definition 3.2. Let f ¼ f0 þ g be a semi-weighted homogeneous polyno-

mial of type ðd;wÞ. Then, the Poincaré polynomial of the ideal
D
f ; qf

qx2
; qf
qx3

; . . . ;
qf
qxn

E
is defined by

PGð f ÞðsÞ ¼
ðsd � 1Þðsd�w2 � 1Þðsd�w3 � 1Þ � � � ðsd�wn � 1Þ
ðsw1 � 1Þðsw2 � 1Þðsw3 � 1Þ � � � ðswn � 1Þ :

Let PGð f ÞðsÞ ¼
Pp

i¼1 mis
di be the Poincaré polynomial of the ideal

D
f ; qf

qx2
;

qf
qx3

; . . . ; qf
qxn

E
. We introduce the multiset DPGð f Þ of weighted degrees as

DPGð f Þ ¼
[p
i¼1
fdi; di; . . . ; di|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mi elements

g:

Notice that DPGð f0Þ
¼ DPGð f Þ .

The following two results are essentially same as our previous results pre-

sented in [30, 34].

Proposition 3.3. Using the same notation as above, there exists a basis C0

of HGð f0Þ that satisfies the following conditions

(i) C0 consists of weighted homogeneous polynomials.

(ii) DPGð f0Þ
¼ fdegwðcÞ jc A C0g.

As f0 is a weighted homogeneous polynomial of type ðd;wÞ, the multiset of

weighted degrees of elements of a basis of HGð f0Þ equal to the multiset DPGð f0Þ
.

The next two lemmas [30, 45] are needed to construct the algorithm.

Lemma 3.4. Let T be the minimal basis of Term f ; qf
qx2

; . . . ; qf
qxn

n o� �D E
in

K ½x� and let M be the set of standard monomials of hTi. Then, for all xl A

CVðMÞ,

f � xl ¼ qf

qx2

� 	
� xl ¼ � � � ¼ qf

qxn

� 	
� xl ¼ 0:

Let MBðHGð f ÞÞ denote the set CVðMÞ.
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All monic monomial elements of a basis of the vector space HGð f0Þ can be

also obtained from the minimal basis of Term f0;
qf0
qx2

; . . . ; qf0
qxn

n o� �D E
.

Let LH0
denote the set of exponents of head terms in HGð f0Þ and let l ¼

ðl1; . . . ; lnÞ A Nn. Let L
ðlÞ
H0
¼ fl 0 A LH0

j l 00 lg:
The following lemma tells us a condition of head terms of HGð f0Þ.

Lemma 3.5. If l A LH0
, then, for each j ¼ 1; 2; . . . ; n, ðl1; . . . ; lj�1; lj � 1;

ljþ1; . . . ; lnÞ is in L
ðlÞ
H0

provided lj b 1.

The property above, denoted by (C), will be used in Algorithm 1 as a con-

dition to select candidates of head terms. Proposition 3.3 together with Lemma

3.4 and Lemma 3.5, allows us to design an algorithm to compute a basis of

HGð f0Þ.

As the set D is finite, the termination is obvious. The correctness follows

from Proposition 3.3 together with Lemma 3.4 and Lemma 3.5.

We illustrate Algorithm 1 with the following example.

Example 1. A polynomial f0 ¼ x4
1x2 þ x4

2 A C½x1; x2� (W13 singularity) is a

weighted homogeneous polynomial of type ð16; ð3; 4ÞÞ and defines an isolated

singularity at the origin of C2. As the sequence f0;
qf0
qx2

� �
is a regular sequence,

we are able to apply Algorithm 1 for computing a basis of HGð f0Þ. The variables

x1, x2 correspond x1, x2. Let 0 be the weighted term order s.t. x2 0 x1.

As the Poincaré polynomial of the ideal f0;
qf0
qx2

D E
is

PGð f0ÞðsÞ ¼
ðs16 � 1Þðs16�4 � 1Þ
ðs� 3Þðs2 � 4Þ

¼ s21 þ s18 þ s17 þ s15 þ s14 þ s13 þ s12 þ s11

þ s10 þ s9 þ s8 þ s7 þ s6 þ s4 þ s3 þ 1;

we obtain DGðF0Þ ¼ f0; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 17; 18; 21g. Next we com-

pute the set M0 of monic monomial elements of HGð f0Þ. By Lemma 3.4,

M0 ¼ f1; x1; x21 ; x
3
1 ; x2; x1x2; x

2
1x2; x

3
1x2; x

2
2 ; x1x

2
2 ; x

2
1x

2
2 ; x

3
1x

2
2g:

D ¼ DGð f0ÞndegwðM0Þ ¼ f12; 15; 18; 21g. (See Figure 1 and Figure 2). Set

C0 :¼M0.

The minimum number in D is 12. D is renewed as Dnf12g ¼ f15; 18; 21g.
Select terms whose weighted degree is 12. Then, from Figure 2, L ¼ fx41 ; x

3
2g.

Since x32 0 x41 and x32 satisfies the condition (C), set c ¼ x41 þ cð0;3Þx
3
2 where cð0;3Þ
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is an undetermined coe‰cient. From f0 � c ¼ 0, qf0
qx2

� �
� c ¼ 1þ 4cð0;3Þ ¼ 0, we

have cð0;3Þ ¼ �1=4. Hence, x41 � 1=4x32 is a member of the basis. C0 is renewed as

C0 [ fx41 � 1=4x32g.
The minimum number in D is 15. D is renewed as Dnf15g ¼ f18; 21g. Select

terms whose weighted degree is 15. Then, from Figure 2, L ¼ fx51 ; x1x
3
2g. Since

x1x
3
2 0 x51 and x1x

3
2 satisfies the condition (C), set c ¼ x51 þ cð1;3Þx1x

3
2 where cð1;3Þ

is an undetermined coe‰cient. From f0 � c ¼ 0, qf0
qx2

� �
� c ¼ ð1þ 4cð1;3ÞÞx1 ¼ 0,

we have cð1;3Þ ¼ �1=4. Thus, x51 � 1=4x1x
3
2 is a member of the basis. C0 is

renewed as C0 [ fx51 � 1=4x1x
3
2g.

Algorithm 1. Coho_Weighted

Specification: Coho_Weighted( f0;0)

Computing a basis of the vector space HGð f0Þ.
Input: f0 : a weighted homogeneous polynomial of type ðd;wÞ with an isolated singularity at the

origin. 0 : a weighted term order.

Output: C0 : a basis of the vector space HGð f0Þ.
BEGIN

DPGð f0 Þ
 Compute DPGð f0 Þ

from the Poincaré polynomial of type ðd;wÞ;
M  Compute all monic monomial elements of a basis of HGð f0Þ according to Lemma 3.4;

D DPGð f0 Þ
ndegwðMÞ; C0  M;

while D0q do

k  Select the minimum number from D; D Dnfkg;
L fxl j degwðxlÞ ¼ k; xl B htðC0Þg;
L 0  Select the 1st and 2nd smallest elements from L w.r.t. 0;

L LnL 0;
Flag 0;

while Flag0 1 do

xl  Select the greatest element from L 0 w.r.t. 0;

if l satisfies the condition (C) then

c xl þ
P

l 0 AL 0nfx lg; x l 0
0x l cl 0x

l 0 (where cl 0 is an undetermined coe‰cient)

F  f � c; qf

qx2

� �
� c; . . . ; qf

qxn

� �
� c

n o
;

E  fb ¼ 0 j b A CoefðF Þg;
A Solve the system E of linear equations;

if E has a solution then

c 0  Substitute A into c;

C0  C0 [ fc 0g;
Flag 1;

end-if

end -if

xk  Select the smallest element in L;

L Lnfxkg;
L 0  L 0 [ fxkg
end-while

end-while

return C0;

END
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The minimum number in D is 18. D is renewed as Dnf18g ¼ f21g. Select

terms whose weighted degree is 18. Then, from Figure 2, L ¼ fx61 ; x
2
1x

3
2g. Since

x21x
3
2 0 x61 and x21x

3
2 satisfies the condition (C), set c ¼ x61 þ cð2;3Þx

2
1x

3
2 where cð2;3Þ

is an undetermined coe‰cient. From f0 � c ¼ 0, qf0
qx2

� �
� c ¼ ð1þ 4cð2;3ÞÞx21 ¼ 0,

we have cð2;3Þ ¼ �1=4, and x61 � 1=4x21x
3
2 is a member of the basis. C0 is renewed

as C0 [ fx61 � 1=4x21x
3
2g.

The minimum number in D is now 21. D is renewed as Dnf21g ¼q.

We Select terms whose weighted degree is 21. Then, from Figure 2, L ¼
fx71 ; x

3
1x

3
2g. Since x31x

3
2 0 x71 and x31x

3
2 satisfies the condition (C), set c ¼ x71 þ

cð3;3Þx
3
1x

3
2 . From f0 � c ¼ 0, qf0

qx2

� �
� c ¼ ð1þ 4cð3;3ÞÞx31 ¼ 0, we have cð3;3Þ ¼

�1=4. Thus, x71 � 1=4x31x
3
2 is a member of the basis. C0 is renewed as C0 [

fx71 � 1=4x31x
3
2g.

Therefore,

C0 ¼M0 [ fx41 � 1=4x32 ; x
5
1 � 1=4x1x

3
2 ; x

6
1 � 1=4x21x

3
2 ; x

7
1 � 1=4x31x

3
2g

is a basis of HGð f0Þ.

Figure 1. Monic monomial elements.

Figure 2. Weighted degrees.
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The following theorem that follows immediately from Proposition 3.2 of [34],

shows the relations between a basis of HGð f0Þ and that of HGð f Þ.

Theorem 3.6. Let C0 ¼ fr1; . . . ; rr0g be a basis of the vector space HGð f0Þ
that satisfies properties given in Proposition 3.3. Then, there exists a basis C ¼
fc1; . . . ;cr0

g of the vector space HGð f Þ s.t.

(i) ci ¼ ri þ ni, i ¼ 1; . . . ; r0,

(ii) degwðriÞ > degwðniÞ.

The theorem says that, in semi-weighted case, the weighted degree of the

basis of HGð f Þ is completely determined by the Poincaré polynomial PGð f ÞðsÞ
associated to the ideal f ; qf

qx2
; . . . ; qf

qxn

D E
.

Theorem 3.6 together with Lemma 3.4 allows us to design an e‰cient

algorithm to compute a basis of HGð f Þ.

Algorithm 2. Coho_SemiW

Specification: Coho_SemiW( f ;0)

Computing a basis of the vector space HGð f Þ.
Input: f ¼ f0 þ g : a semi-weighted homogeneous polynomial of type ðd;wÞ where f0 is a weighted-

homogeneous polynomial of type ðd;wÞ; 0 : a weighted term order.

Output: C : a basis of the vector space HGð f Þ.
BEGIN

C0  Coho_Weightedð f0;0Þ;
M  Compute all monic monomial elements of a basis of HGð f Þ according to Lemma 3.4;

T  C0nM; C M;

while T 0q do

r Select an element whose head term is the smallest in htðTÞ w.r.t. 0, from T ;

T  Tnfrg;
if Ei A f2; 3; . . . ; ng; qf

qxi

� �
� r ¼ 0

� �
5ð f � r ¼ 0Þ then

C C [ frg;
else

L fxl j degwðxlÞ < degwðrÞ; xl B htðCÞg; ð}Þ
c rþ

P
x l AL clx

l;

F  f � c; qf

qx2

� �
� c; . . . ; qf

qxn

� �
� c

n o
;

E  fb ¼ 0 j b A CoefðF Þg;
A Solve the system E of linear equations;

c 0  Substitute A into c;

C C [ fc 0g;
end-if

end-while

return C;

END
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Remark 2. In [33] the conditions of lower monomials are introduced. It is

possible to improve Algorithm 2 by utilizing the conditions at ð}Þ. In fact, our

implementations contain these optimizations.

As the algorithm Coho_Weighted terminates, Algorithm 2 also terminates.

The correctness is also guaranteed by the algorithm Coho_SemiW and Theorem

3.6.

We illustrate Algorithm 2 with the following example.

Example 2. A polynomial f ¼ f0 þ x6
1 A C½x1; x2� (W13 singularity) is a semi-

weighted homogeneous polynomial of type ð16; ð3; 4ÞÞ where f0 ¼ x4
1x2 þ x4

2 . From

Example 1, C0 ¼M0 [ fx41 � 1=4x32 ; x
5
1 � 1=4x1x

3
2 ; x

6
1 � 1=4x21x

3
2 ; x

7
1 � 1=4x31x

3
2g.

We compute the set M of monic monomial elements of HGð f Þ. By Lemma 3.4,

M ¼M0. Set T ¼C0nM ¼ fx41 � 1=4x32 ; x
5
1 � 1=4x1x

3
2 ; x

6
1 � 1=4x21x

3
2 ; x

7
1 � 1=4x31x

3
2g

and C ¼M.

Take the element whose head term is the smallest, w.r.t. 0, in htðTÞ, that

is x41 � 1=4x32 . Set r ¼ x41 � 1=4x32 and T is renewed as Tnfx41 � 1=4x32g. Since r

satisfies f � r ¼ qf
qx2

� �
� r ¼ 0, x41 � 1=4x32 is a member of the basis. C is renewed

as C [ fx41 � 1=4x32g.
Take the element whose head term is the smallest, w.r.t. 0, in htðTÞ, that

is x51 � 1=4x1x
3
2 . Set r ¼ x51 � 1=4x1x

3
2 and T is renewed as Tnfx51 � 1=4x1x

3
2g.

Since r satisfies f � r ¼ qf
qx2

� �
� r ¼ 0, x51 � 1=4x1x

3
2 is a member of the basis. C is

renewed as C [ fx51 � 1=4x1x
3
2g.

Take the element whose head term is the smallest, w.r.t. 0, in htðTÞ, that

is x61 � 1=4x21x
3
2 . Set r ¼ x61 � 1=4x21x

3
2 and T is renewed as Tnfx61 � 1=4x21x

3
2g.

Then, as f � r ¼ 10 0 and qf
qx2

� �
� r ¼ 0, we have to decide additional lower

terms of r. L ¼ fxl j degwðxlÞ < 18; xl B htðCÞg ¼ fx32 ; x1x
3
2 ; x

4
1x2; x

4
2g. Set c ¼

rþ cð0;3Þx
3
2 þ cð1;3Þx1x

3
2 þ cð4;1Þx

4
1x2 þ cð0;4Þx

4
2 and solve

h
f � c ¼ cð4;1Þ þ cð0;1Þ þ 1 ¼

0; qf
qx2

� �
� c ¼ ðcð4;1Þ þ 4cð0;4ÞÞx2 þ 4cð0;3Þ þ 4cð1;3Þx1 ¼ 0

i
. Then, we obtain cð0;3Þ ¼

cð1;3Þ ¼ 0, cð4;1Þ ¼ �4=3, cð0;4Þ ¼ 1=3. Hence, x61 � 1=4x21x
3
2 � 4=3x41x2 þ 1=3x42 is a

member of the basis. C is renewed as C [ fx61 � 1=4x21x
3
2 � 4=3x41x2 þ 1=3x42g.

Set r ¼ x71 � 1=4x31x
3
2 . Then, as f � r ¼ x1 0 0 and qf

qx2

� �
� r ¼ 0, we have

to decide additional lower terms of r. L ¼ fxl j degwðxlÞ < 21; xl B htðCÞg ¼
fx32 ; x1x

3
2 ; x

4
1x2; x

4
2 ; x1x

3
2 ; x

5
2 ; x

5
1x2; x1x

4
2 ; x1x

2
2g. Set c ¼ rþ cð0;3Þx

3
2 þ cð1;3Þx1x

3
2 þ

cð4;1Þx
4
1x2 þ cð0;4Þx

4
2 þ cð1;3Þx1x

3
2 þ cð0;5Þx

5
2 þ cð5;1Þx

5
1x2 þ cð1;4Þx1x

4
2 þ cð4;2Þx

4
1x

2
2 and

solve f � c ¼ 0; qf
qx2

� �
� c ¼ 0

h i
. Then, we obtain x71 � 1=4x31x

3
2 þ 1=3x1x

4
2 �
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4=3x51x2 as a member of the basis. C is renewed as C [ fx71 � 1=4x31x
3
2 þ

1=3x1x
4
2 � 4=3x51x2g.

Therefore, C ¼M [ fx41 � 1=4x32 ; x
5
1 � 1=4x1x

3
2 ; x

6
1 � 1=4x21x

3
2 � 4=3x41x2 þ

1=3x42 ; x
7
1 � 1=4x31x

3
2 þ 1=3x1x

4
2 � 4=3x51x2g is a basis of HGð f Þ.

In our previous paper [45], an algorithm has been introduced for computing a

basis of the vector space HF of local cohomology classes in Hn
½O�ðK ½x�Þ anni-

hilated by the zero-dimensional ideal h f1; . . . ; fsi generated by F ¼ f f1; . . . ; fsg �
K ½x�. The algorithm mentioned above can also compute a basis of HGðFÞ by

giving f ; qf
qx2

; . . . ; qf
qxn

n o
as an input data.

The algorithm Coho_SemiW has been implemented in the computer algebra

system Risa/Asir. Here we give results of the benchmark tests. Table 1 shows a

comparison of the implementation of Coho_SemiW with our previous Risa/Asir

implementation [45] (Prev. alg.) in computation time (CPU time). x1, x2, x3 are

variables. The time is given in second. (The term order is the total degree lexi-

cographic term order s.t. x3 0 x2 0 x1.) mð f Þ is the Milnor number of f at the

origin. tð f Þ is the Tjurina number of f at the origin. Note that in Prob. 5,

ðx4
1 þ x9

2Þ
4 þ 3x16

1 is a weighted homogeneous polynomial.

As is evident from Table 1, the algorithm Coho_SemiW results in better

performance compare to our previous algorithm. In semi-weighted cases, as a

Poincaré polynomial tells us candidates of head terms and a number of elements

of a basis of HGð f Þ, the computation cost of selecting candidates of head terms

and lower terms, becomes smaller than that of our previous algorithm.

Prob. Semi-weighted homogeneous polynomial f mð f Þ tð f Þ Prev. alg. Coho_SemiW

1 ðx4
1 þ x6

2 þ x2
1x

3
2 Þ

2 þ x2
1x

9
2 þ 2x9

1 77 67 0.8424 0.0312

2 ðx5
1 þ x7

2 Þ
2 þ 3x14

2 þ x10
1 x5

2 þ 3x1x
14
2 117 99 1.42 0.234

3 ðx3
1 þ x13

2 Þ
2 þ x6

1 � 5x3
1x

20
2 125 115 2.278 0.2496

4 ðx4
1 þ x6

2 þ x2
1x

3
2 Þ

3 þ x8
1x

6
2 þ 3x11

1 x2
2 163 137 29.8 1.716

5 ðx4
1 þ x9

2 Þ
4 þ 3x16

1 525 525 393.8 0.8112

6 ðx4
1 þ x9

2 Þ
4 þ 3x16

1 þ 4x15
1 x3

2 525 439 1132 36.84

7 ðx3
1x2 þ x7

2 þ x2
1x

3
2 Þ

4 þ x14
1 þ 3x13

1 x3
2 351 293 816.1 46.32

8 ðx3
1 þ x1x

3
3 þ x4

2 Þ
2 þ x8

2 þ x9
3 þ x1x

7
2 280 221 3760 75.08

Table 1. Comparison of the algorithm [45] and Coho_SemiW.
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3.3. Parametric local cohomology systems

We turn to the parametric cases. Let f ¼ f0 þ g be a semi-weighted homo-

geneous polynomial of type ðd;wÞ with parameters t ¼ ðt1; . . . ; tmÞ A Km, where f0

is the weighted homogeneous part and K is an algebraic closure of K . We assume

that for generic values of the parameters t, f0 has an isolated singularity at the

origin.

In order to treat the parametric cases, we require the following notation and

definitions. Let t ¼ ðt1; t2; . . . ; tmÞ denote parameters in Km. For q1; . . . ; qr A K ½t�,
Vðq1; . . . ; qrÞ � Km denotes the a‰ne variety of q1; . . . ; qr, i.e., Vðq1; . . . ; qrÞ :¼
fa A Km j q1ðaÞ ¼ � � � ¼ qrðaÞ ¼ 0g and Vð0Þ :¼ Km: We call an algebraically

constructible set of the form Vðq1; . . . ; qrÞnVðq 01; . . . ; q 0s 0 Þ � Km with g1; . . . ; qr;

q 01; . . . ; q
0
s 0 A K ½t�, a stratum. (Notation A;A 0;A 00;A1; . . . ;Al ;B1; . . . ;Bk are fre-

quently used to represent strata.)

We define the localization of K ½t� w.r.t. the stratum A � Km as follows:

K ½t�A ¼ fc=b j c; b A K½t�; bðtÞ00 for t A Ag. Then for every a A A, the specializa-

tion homomorphism sa : K ½t�A½x� ! K ½x� (sa : K ½t�A½x� ! K½x� or sa : ðK ½t�A½x�Þ
s

! ðK ½x�Þ s, s A N>0) is defined as the map that substitutes a into m variables t.

When we say that saðhÞ makes sense for h A KðtÞ½x�, it has to be understood that

h A K ½t�A½x� for some A with a A A and for F � K ½t�A½x�, saðFÞ ¼ fsaðhÞ j h A Fg.
In order to treat parametric polynomial systems, we require comprehensive

Gröbner systems.

Definition 3.7 (CGS). Let fix a term order. Let F be a subset of ðK ½t�Þ½x�,
A1; . . . ;Al strata in Km and G1; . . . ;Gl subsets of ðK ½t�Þ½x�. A finite set G ¼
fðA1;G1Þ; . . . ; ðAl;GlÞg of pairs is called a comprehensive Gröbner system (CGS)

on A1 [ � � � [ Al for hFi if saðGiÞ, a A Ai, is a Gröbner basis of the ideal hsaðF Þi
in K ½x� for each i ¼ 1; . . . ; l. We simply say G is a comprehensive Gröbner

system for hFi if A1 [ � � � [ Al ¼ Km.

There exist several implementations [21, 27, 29] for computing comprehensive

Gröbner systems.

As f has parameters, the structure of the vector spaces HGð f Þ may change

with the values of parameters t. In order to deal with this issue, we introduce now

a notion of parametric local cohomology system of HGð f Þ.

Definition 3.8. Let Ai, Bj be strata in Km and Si a subset of ðK ½t�Ai
Þ½x�

where 1a ia l and 1a ja k. Set S ¼ fðA1;S1Þ; . . . ; ðAl;SlÞg and D ¼ fB1; . . . ;
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Bkg. Then, a pair ðS;DÞ is called a parametric local cohomology system (PLCS)

of HGð f Þ on A1 [ � � � [ Al [ B1 [ � � � [ Bk, if for all i A f1; . . . ; lg and a A Ai,

saðSiÞ is a basis of the vector space HGðsað f ÞÞ, and for all j A f1; . . . ; kg and

b A Bj, x A X j s
b
ð f ÞðxÞ ¼ s

b

qf
qx2

� �
ðxÞ ¼ � � � ¼ s

b

qf
qxn

� �
ðxÞ ¼ 0

n o
is not zero-

dimensional for any su‰ciently small neighborhood X of O, where HGðsað f ÞÞ ¼
c A Hn

½O�ðK ½x�Þ j sað f Þ � c ¼ sa
qf
qx2

� �
� c ¼ � � � ¼ sa

qf
qxn

� �
� c ¼ 0

n o
:

In the case where the weighted homogeneous part f0 contains parameters,

there is a possibility that f0 has non-isolated singularities for some values of the

parameters.

Let J0 ¼ qf0
qx1

; . . . ; qf0
qxn

n o
(or G0 ¼ f0;

qf0
qx2

; . . . ; qf0
qxn

n o
) and G ¼ fðA1;G1Þ; . . . ;

ðAl ;GlÞg is a CGS on Km for J0 (or G0). Since for all a A Ai, saðGiÞ is a Gröbner

basis, the dimension of J0 (or G0), on Ai, can be easily computed. Because, as f0 is

weighted homogeneous, hJ0i (or hG0i) is weighted homogeneous, and thus hJ0i

(or G0) is zero dimensional on A in K ½x� if and only if hJ0i is zero dimensional

on A in the ring OX ;O of convergent power series.

As Algorithm 2 consists of only linear algebra computation, by utilizing the

Gaussian elimination method with parameter [40], the algorithm can be naturally

extended to parametric cases. Here, we give an outline of an algorithm for com-

puting parametric local cohomology systems of HGð f Þ.

Note that as we described in Remark 1 of subsection 3.2, D1, D2 can be

obtained by utilizing comprehensive Gröbner systems.

We illustrate a PLCS of HGð f Þ with the following examples. In the examples,

variables x1, x2 correspond to variables x1, x2.

Algorithm 3. Para_SemiW

Specification: Para_SemiW( f ;0)

Computing a parametric local cohomology system of HGð f Þ.
Input: f ¼ f0 þ g : a semi-weighted homogeneous polynomial of type ðd;wÞ with parameters where f0
is a weighted homogeneous polynomial of type ðd;wÞ; 0 : a weighted term order.

Output: ðS;DÞ: a PLCS of HGð f Þ.
BEGIN

D1  Compute strata on which f0 has non-isolated singularities;

D2  Compute strata on which f0;
qf0
qx2

; . . . ;
qf0
qxn

D E
is not of zero dimension;

S0  Compute a PLCS of HGð f0Þ on Kmnð
S

Bi A D1[D2
BiÞ;

S Compute a PLCS of HGð f Þ from S0;

END
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Example 3. A polynomial f ¼ x4
1 þ x5

2 þ tx1x
4
2 A ðC½t�Þ½x1; x2� is semi-

weighted of type ð20; ð5; 4ÞÞ where x1, x2 are variables and t is a parameter.

(The weight vector is w ¼ ð5; 4Þ.) Then, a PLCS of HGð f Þ ¼
n
c A H 2

½O�ðK ½x�Þ j
f � c ¼ qf

qx2

� �
� c ¼ 0

o
w.r.t. the weighted term order, is the following:

– if the parameter t belongs to C, then the set

C ¼ f1; x2; x22 ; x
3
2 ; x2; x1x2; x1x

2
2 ; x

2
1 ; x

2
1x2; x

2
1x

2
2 ; x

3
1 ; x

3
1x2; x

3
1x2;

4=25t2x51 � 16=125t3x2x
4
1 þ x32x

3
1 � 4=5tx42x

2
1

þ 16=25t2x52x1 � 64=125t3x62 ; 4=25t
2x41 þ x32x

2
1

� 4=5tx42x1 þ 16=25t2x52 ; x
3
2x1 � 4=5tx42g

is a basis of HGð f Þ. In this case, the parameter space C has not been

decomposed.

Example 4. A polynomial f ¼ x3
1 þ x9

2 þ sx2
1x

3
2 A ðC½s�Þ½x1; x2� is weighted

homogeneous of type ð9; ð3; 1ÞÞ where x1, x2 are variables and t is a parameter.

(A weight vector is w ¼ ð3; 1Þ.) Then, a PLCS of HGð f Þ ¼
n
c A H 2

½O�ðK ½x�Þ j
f � c ¼ qf

qx2

� �
� c ¼ 0

o
w.r.t. the weighted term order, is the following:

– if the parameter s belongs to Vð4s3 þ 27Þ, then f has non-isolated sin-

gularity,

– if the parameter s belongs to VðsÞ, then

f1; x2; x22 ; x
3
2 ; x

4
2 ; x

5
2 ; x

6
2 ; x

7
2 ; x1; x1x2; x1x

2
2 ; x1x

3
2 ; x1x

4
2 ; x1x

5
2 ; x1x

6
2 ;

x1x
7
2 ; x

2
1 ; x

2
1x2; x

2
1x

2
2 ; x

2
1x

3
2 ; x

2
1x

4
2 ; x

2
1x

5
2 ; x

2
1x

6
2 ; x

2
1x

7
2g

is a basis of HGð f Þ, and

– if the parameter s belongs to CnVð4s4 þ 27sÞ, then

f1; x2; x22 ; x
3
2 ; x

4
2 ; x

5
2 ; x

6
2 ; x

7
2 ; x1; x1x2; x1x

2
2 ; x1x

3
2 ; x1x

4
2 ; x1x

5
2 ; x1x

6
2 ; x1x

7
2 ; x

2
1 ; x

2
1x2;

x2x
4
1 � 3=ð2sÞx42x

3
1 þ 9=ð4s2Þx72x

2
1 þ 1=2x102 x1 � 3=ð4sÞx132 ;

x41 � 3=ð2sÞx32x
3
1 þ 9=ð4s2Þx62x

2
1 þ 1=2x92x1 � 3=ð4sÞx122 ;

x22x
3
1 � 3=ð2sÞx52x

2
1 � s=3x82x1 þ 1=2x112 ; x2x

3
1 � 3=ð2sÞx42x

2
1 þ 1=2x102 ;

x31 � 3=ð2sÞx32x
2
1 þ 1=2x92 ; x

2
2x

2
1 � 1=3sx82g

is a basis of HGð f Þ.
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The algorithm Para_SemiW has been implemented in the computer algebra

system Risa/Asir. We give results of the benchmark tests. Table 2 shows com-

parisons between the implementation of Para_SemiW and our previous Risa/Asir

implementation (Prev. alg.) of the algorithm1 [33] in numbers of strata (No. str.)

and computation time (CPU time). x1, x2, x3 are variables and s1, s2, t1, t2, t3 are

parameters. The time is given in second. > 1h means it takes more than 1 hour.

As is evident from Table 2, the algorithm Para_SemiW results in better per-

formance in contrast to our previous algorithm [33]. For semi-weighted homo-

geneous polynomials, the algorithm is quite e¤ective and gives a suitable de-

composition of the parameter space depending on the structure of the parametric

local cohomology classes. As results, the algorithm Para_SemiW gives small

numbers of strata.

4. Logarithmic vector fields and local cohomology

Here, we show the relations between logarithmic vector fields and local

cohomology classes. Second, we review a method to compute a standard basis of

the annihilator ideal of a certain subspace of HGð f Þ, which will be exploited to

construct an algorithm for computing logarithmic vector fields.

1 In our previous paper [33], an algorithm for computing a PLCS of HF has been introduced where

F ¼ f f1; f2; . . . ; fsg. By the algorithm, we are able to compute a PLCS of HGð f Þ if we input F ¼
f ;

qf

qx2
; . . . ; qf

qxn

n o
. The term order is the total degree lexicographic term order s.t. xn 0 � � �0 x2 0 x1.

Prev. alg. Para_SemiW

Semi-weighted homogeneous polynomial No. str. time No. str. time

1 x4
1x2 þ x6

2 þ t1x1x
5
2 þ t2x

2
1x

4
2 þ t3x1x

14
2 15 0.2184 1 0.0156

2 x2
1x2 þ x4

2 þ x5
3 þ t1x

2
2x

3
3 þ t2x

3
2x

2
3 7 0.156 1 0.0936

3 x3
1x3 þ x3

2 þ x2x
2
3 þ s1x2x

3
1 þ t1x1x

3
3 9 0.312 2 0.0312

4 x4
1 þ x9

2 þ t1x1x
7
2 þ t2x

2
1x

5
2 8 0.3774 1 0.0312

5 ðx4
1 þ x6

2 þ x2
1x

3
2 Þ

2 þ x2
1x

9
2 þ t1x

3
1x

8
2 þ t2x

7
1x

2
2 28 19.17 1 0.2652

6 ðx4
1 þ x6

2 þ x2
1x

3
2 Þ

3 þ x8
1x

6
2 þ t1x

11
1 x2

2 þ t2x
11
1 x3

2 — > 1h 1 1.997

7 x4
1 þ s1x

3
1x

2
2 þ s2x

2
1x

4
2 þ x8

2 — > 1h 11 2.886

8 x4
1 þ s1x

3
1x

2
2 þ s2x

2
1x

4
2 þ x8

2 þ t1x
9
2 þ t2x

10
2 — > 1h 11 2.98

Table 2. Comparison of the algorithm [33] and Para_SemiW.
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Recall that S ¼ fx A X j f ðxÞ ¼ 0g is a hypersurface with an isolated sin-

gularity at the origin O in X .

4.1. Logarithmic vector fields

Definition 4.1 ([38]). A holomorphic vector field

v ¼ a1ðxÞ
q

qx1
þ a2ðxÞ

q

qx2
þ � � � þ anðxÞ

q

qxn
;

aiðxÞ A OX , i ¼ 1; . . . ; n, is logarithmic along S if vð f Þ belongs to the ideal h f i

generated by f in OX .

Let DerX ð�log SÞ denote the sheaf of logarithmic vector fields along S and

DerX ;Oð�log SÞ the stalk at O of DerX ð�log SÞ.
Let pG : HGð f Þ ! HGð f Þ be the map defined by pGðcÞ ¼ qf

qx1

� �
� c and let

HFð f Þ denote the image of the map pG:

HFð f Þ ¼
qf

qx1

� 	
� c

����c A HGð f Þ

� �
:

Let AnnOX ;O
ðHGð f ÞÞ denote the annihilator ideal in OX ;O of HGð f Þ:

AnnOX ;O
ðHGð f ÞÞ ¼ faðxÞ A OX ;O j aðxÞ � c ¼ 0; Ec A HGð f Þg:

Lemma 4.2. AnnOX ;O
ðHGð f ÞÞ ¼ f ; qf

qx2
; qf
qx3

; . . . ; qf
qxn

D E
.

Proof. As HGð f Þ ¼ c A Hn
½O�ðK ½x�Þ j f �c ¼

qf
qx2

� �
� c ¼ � � � ¼ qf

qxn

� �
� c ¼ 0

n o
,

the Grothendieck local duality theorem on residue [17] implies that AnnOX ;O
ðHGð f ÞÞ

¼ f ; qf
qx2

; qf
qx3

; . . . ; qf
qxn

D E
. r

The following theorem is of basic importance.

Theorem 4.3 ([42]). Let aðxÞ A OX ;O. Then, the following conditions are

equivalent.

(i) aðxÞ A AnnOX ;O
ðHFð f ÞÞ.

(ii) There exists a logarithmic vector field v along S ðv A DerX ;Oð�log SÞÞ such
that

v ¼ aðxÞ q

qx1
þ a2ðxÞ

q

qx2
þ � � � þ anðxÞ

q

qxn

where a2ðxÞ; . . . ; anðxÞ A OX ;O.
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Proof. It is su‰cient to show that the annihilator ideal, in the local ring

OX ;O, of HFð f Þ is the ideal quotient f ; qf
qx2

; . . . ; qf
qxn

D E
: qf

qx1

D E
. Let aðxÞ A OX ;O:

Then, aðxÞ is in the annihilator ideal AnnOX ;O
ðHFð f ÞÞ if and only if

aðxÞ � qf

qx1

� 	
� c

� 	
¼ aðxÞ qf

qx1

� 	� 	
� c ¼ 0; Ec A HGð f Þ:

Since AnnOX ;O
ðHGð f ÞÞ ¼ f ; qf

qx2
; qf
qx3

; . . . ; qf
qxn

D E
, the condition above is equivalent to

the following.

aðxÞ A f ;
qf

qx2
;
qf

qx3
; . . . ;

qf

qxn

� �
:

qf

qx1

� �
:

Namely AnnOX ;O
ðHFð f ÞÞ ¼ f ; qf

qx2
; qf
qx3

; . . . ; qf
qxn

D E
: qf

qx1

D E
, which completes the proof.

r

A logarithmic vector field v generated over OX ;O by

f
q

qx1

� 	
; . . . ; f

q

qxn

� 	
and

qf

qxj

� 	
q

qxi

� 	
� qf

qxi

� 	
q

qxj

� 	
;

ð1a i < ja nÞ, is called trivial.

Lemma 4.4. Let v 0 ¼ a2ðxÞ q
qx2
þ � � � þ anðxÞ q

qxn
be a germ of holomorphic

vector field. If v 0 is a logarithmic vector field along S, then v 0 is trivial.

Proof. Since f ; qf
qx2

; qf
qx3

; . . . ; qf
qxn

� �
is a regular sequence, this lemma follows

immediately from the definition of regular sequences. r

This yields the following.

Proposition 4.5. Let v ¼ aðxÞ q
qx1
þ a2ðxÞ q

qx2
þ � � � þ anðxÞ q

qxn
be a logarithmic

vector field along S. Then, the following conditions are equivalent.

(i) v is trivial.

(ii) aðxÞ A f ; qf
qx2

; qf
qx3

; . . . ; qf
qxn

D E
.

In the next subsection, we consider an algorithm for computing a standard

basis of the ideal AnnOX ;O
ðHFð f ÞÞ which will be utilized to reveal the structure of

logarithmic vector fields along S.
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4.2. Local cohomology and standard bases

Here, we present an algorithm for computing standard bases as an appli-

cation of the algorithms Algorithm 2 and 3.

Let us consider first, for simplicity, the case where f has no parameters.

Definition 4.6 ([30]). Let 0 be a global term order on K ½x�, C a finite

subset of Hn
½O�ðK ½x�Þ and c an element of SLðCÞ with htðcÞ ¼ xg where g A Nn.

Let cðg;kÞ A K denote the coe‰cient of the lower term xk of c, i.e., c ¼ xg þP
xk

0xg cðg;kÞx
k:

Let X be a set of terms in K ½x�, then, for xl A X, the transfer SBC is defined

by the following:

SBCðxlÞ ¼ xl �
P

xk A htðSLðCÞÞ cðk;lÞx
k in K ½x�; if xl A LLðCÞ;

SBCðxlÞ ¼ xl in K ½x�; if xl B LLðCÞ:

�

The set SBCðXÞ is also defined by SBCðXÞ ¼ fSBCðxlÞ j xl A Xg:

The next theorem describes how to compute a standard basis of

AnnOX ;O
ðHFð f ÞÞ from a basis of the vector space HFð f Þ.

Theorem 4.7 ([30, 45]). Let F be a basis of the vector space HFð f Þ such that,

for all j A F, hcðjÞ ¼ 1 and htðjÞ B LLðFÞ. Let 0 be a global term order in K ½x�
and X be the minimal basis of hNeighborðhtðFÞÞnhtðFÞi in K ½x�. Then, SBFðXÞ is
a reduced standard basis of AnnOX ;O

ðHFð f ÞÞ w.r.t. the local term order 0�1 in the

ring OX ;O the ring of power series.

Example 5. Let us consider Example 2. f ¼ x4
1x2 þ x4

2 þ x6
1 A C½x1; x2� (W13

singularity) is a semi-weighted homogeneous polynomial of type ð16; ð3; 4ÞÞ. The
set C is a basis of the vector space HGð f Þ and the set

pGðCÞ ¼
qf

qx1

� 	
� c jc A C

� �
¼ f4; 4x2; 2=3x1; 6;�8x2 � x22 þ 2=3x21g:

The basis F of the vector space HFð f Þ that satisfies, for all c A pGðCÞ, hcðcÞ ¼ 1

and htðcÞ B LLðpGðCÞÞ w.r.t. the lexicographical term order 0 s.t. x2 0 x1, is

f1; x1; x2; x21 � 3=2x22g. The minimal basis Y of hNeighborðhtðpGðCÞÞÞnhtðpGðCÞÞi
is fx31 ; x1x2; x

2
2g.

Therefore, SBCðYÞ ¼ fx3
1 ; x1x2; x

2
2 þ 3=2x2

1g is the reduced standard basis of

AnnOX ;O
ðHFð f ÞÞ w.r.t. 0�1 in the local ring.

We turn to the parametric cases. In order to treat standard bases with

parameters, we introduce now a notion of parametric standard basis.
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Definition 4.8. Let F be a subset of ðK ½t�Þ½x�, A1; . . . ;Al strata in Km,

S1; . . . ;Sl subsets of KðtÞfxg and 0 a local term order. A finite set S ¼
fðA1;S1Þ; . . . ; ðAl;SlÞg of pairs is called a parametric standard basis on

A1 [ � � � [ Al of hFi w.r.t. 0 if Si � ðK ½t�Ai
Þ½x� and saðSiÞ is a standard

basis of the ideal hsaðFÞi in Kfxg w.r.t. 0 for each i ¼ 1; . . . ; l and a A Ai

where KðtÞ is the field of rational functions and Kfxg is the ring of power

series.

As the method for computing standard bases from a basis of HFð f Þ consists

of only linear algebra computation, the method can be generalized to parametric

cases, like Algorithm 3. This algorithm is the same as our previous algorithm

[30], essentially. Notably the algorithm also performs simultaneously a decom-

position of a given stratum into finer strata according to the structure of result-

ing vector spaces. We sketch the resulting method for computing a parametric

standard basis of AnnOX ;O
ðHFð f ÞÞ in Algorithm 4.

Algorithm 4. PSB

Specification: PSB( f ;0)

Computing a parametric standard basis of AnnOX ; O
ðHFðsað f ÞÞÞ w.r.t. 0.

Input: f : a semi-weighted homogeneous polynomial of type ðd;wÞ with parameters t.

0 : a local term order.

Output: ðP;DÞ :
P ¼ fðA1;P1Þ; ðA2;P2Þ; . . . ; ðAl ;PlÞg is a parametric standard basis on A1 [ A2 [ � � � [ Al, of the ideal

AnnOX ; O
ðHFð f ÞÞ w.r.t. 0. For all a A Ai, saðPiÞ is the reduced standard basis of AnnOX ; O

ðHFðsað f ÞÞÞ
w.r.t. 0, 1a ia l.

D ¼ fB1;B2; . . . ;Bkg is a set of strata s.t. the weighted homogeneous part of f does not define an

isolated singularity at the origin on Bi for 1a ia k.

BEGIN

ðS;DÞ  Para_SemiWð f ;0wÞ where 0w a weighted term order.

S 0  fðA; pGðCÞÞ j ðA;CÞ A Sg; P q;

while S 00q do

Select ðA 0;F 0Þ from S 0; S 0  S 0nfðA 0;F 0Þg;
v tðxa1 ; . . . ; xau Þ where TermðF 0Þ ¼ fxa1 ; . . . ; xaug and xau 0�1 � � �0�1 xa1 ;

H Compute a maximal linearly independent subset of F 0 whose coe‰cient matrix is the row

reduced echelon matrix w.r.t. v on A;

while H0q do

Select ðA 00;FÞ from H; H HnfðA 00;FÞg;
ðA 00;PÞ  Compute the reduced standard basis P of AnnOX ; O

ðHFð f ÞÞ on A 00 from F;

P P [ fðA 00;PÞg;
end-while

end-while

returnðP;DÞ;
END
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The correctness and termination of Algorithm 4 follow from Algorithm 3

and Theorem 4.7. We have implemented the algorithm for computing parametric

standard bases of AnnOX ;O
ðHFð f ÞÞ, in the computer algebra system Risa/Asir.

We illustrate parametric standard bases of AnnOX ;O
ðHFð f ÞÞ with Example 6.

Example 6. Let us consider Example 3, again. C is the basis of the vector

space HGð f Þ and pGðCÞ ¼ qf
qx1

� �
� c jc A C

n o
is f�4=5t2;�4=25t2x1 þ 16=25t3x2;

�4=25t2x21 þ 16=125t3x1x2 þ 4x32 � 64=125t4x22 ; 4; 4x2; 4x
2
2g. Hence, we obtain a

PLCS of HFð f Þ from the set pGðCÞ. The maximal linearly independent subset of

HFð f Þ whose coe‰cient matrix is a row reduced echelon matrix w.r.t. the total

degree lexicographic term order 0 s.t. x2 0 x1, is the following;

– if the parameter t belongs to VðtÞ, then F ¼ fx32 ; x
2
2 ; x2; 1g is a basis of

HFð f Þ, and

– if the parameter t belongs to CnVðtÞ, then F ¼ fx32 � 1=25t2x21 þ
4=125t3x1x2; x

2
2 ; x2; x1; 1g is a basis of HFð f Þ.

By Algorithm 4, the reduced standard basis of AnnOX ;O
ðHFð f ÞÞ w.r.t. 0�1 is

easily obtained from a PLCS of HFð f Þ, as follows;

– if the parameter t belongs to VðtÞ, then fx1; x4
2g is the reduced standard

basis, and

– if the parameter t belongs to CnVðtÞ, then fx2
1 þ 1=25t2x3

2 ; x1x2 �
4=125t3x3

2 ; x
4
2g is the reduced standard basis.

5. Main results

Here we introduce our main results that are algorithms for computing loga-

rithmic vector fields along S. We present two computation methods. The main

di¤erence is; the first method involves syzygy computation in a ‘‘local ’’ ring, and

the second method performs syzygy computation in a ‘‘global ’’ ring. We will

compare the first and the second methods in numbers of strata and computation

time.

5.1. Method 1

In order to explain the main idea of the method, let us consider first, for

simplicity, the case where f has no parameters. Assume that the reduced standard

basis fq1; q2; . . . ; qrg of the annihilating ideal AnnOX ;O
ðHFð f ÞÞ w.r.t. a local term

order 0 and a standard basis Mj of the module of syzygies w.r.t. the generators

qj
qf
qx1

; qf
qx2

; . . . ; qf
qxn

; f in OX ;O for each j ¼ 1; 2; . . . ; r, are given. Note that, the
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module order is POT (‘‘top down’’ order, see [10]) with 0. Then, we have the

following theorem.

Theorem 5.1. Under the setup above, there exists a vector ðcj1 ; cj2 ; . . . ; cjn ;
cjnþ1Þ A Mj such that cj1 contains a term of degree 0, i.e., a non-zero constant term

is in cj1 . The holomorphic vector field

vj ¼ qj
q

qx1
þ ðcj2=cj1Þ

q

qx2
þ � � � þ ðcjn=cj1Þ

q

qxn

is logarithmic along S, for each j A f1; . . . ; rg.

Proof. As the coe‰cients of q
qx1

are generated by the reduced standard basis

fq1; . . . ; qrg w.r.t.0 in OX ;O by Theorem 4.3, there exists a ðcj1 ; cj2 ; . . . ; cjn ; cjnþ1Þ A
Mj that satisfies the property because Mj is a standard basis w.r.t. POT with 0.

Since ðcj1 ; cj2 ; . . . ; cjn ; cjnþ1Þ is a syzygy,

cj1qj
qf

qx1
þ cj2

qf

qx2
þ � � � þ cjn

qf

qxn
¼ �cjnþ1 f :

Hence, vjð f Þ A h f i holds. r

Corollary 5.2. Using the same notation as in Theorem 5.1, let M be a

standard basis of the module of syzygies w.r.t. the generators
qf
qx2

; . . . ; qf
qxn

; f in

OX ;O. Set T ¼ c2
q
qx2
þ � � � þ cn

q
qxn

�� ðc2; . . . ; cn; cnþ1Þ A M
n o

w.r.t. a POT module

order with 0. Then, fv1; v2; . . . ; vrg [ T is a set of generators of DerX ;Oð�log SÞ.

Proof. By Proposition 4.5, v1; v2; . . . ; vr and elements of T generate

DerX ;Oð�log SÞ over OX ;O. r

Remark. For an arbitrary defining polynomial of a hypersurface, a set of

generators of the logarithmic vector fields with polynomial coe‰cients can be

directly computed as a syzygy module over the polynomial ring, which also

generates the logarithmic vector fields with analytic coe‰cients because of the

flatness of the power series ring over the polynomial ring. However, it is di‰cult

in general to extract local analytic properties of the module DerX ;Oð�log SÞ from
the generators obtained by the syzygy computation in the polynomial rings. Note

also that if we construct logarithmic vector fields directly by computing standard

bases of the module of syzygies w.r.t. the generators qf
qx1

; qf
qx2

; . . . ; qf
qxn

; f in OX ;O,
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then the output of the computation are, in general, not suitable to know the

local analytic properties of logarithmic vector fields. See for instance, Example 7.

In contrast, the proposed method that utilize the standard basis fq1; q2; . . . ; qrg
gives a nice set of generators of DerX ;Oð�log SÞ for analyzing complex analytic

properties, near the singular point in question, of logarithmic vector fields.

In the non-parametric case, it is possible to compute a standard basis of a

module of syzygies w.r.t. a given local term order in OX ;O. In fact, the computer

algebra system Singular [15] has a command of computing them.

Now we turn to the parametric case. Before describing the algorithm, we

introduce a notion of parametric syzygy systems.

Definition 5.3 (PSS). Let fix a term order. Let f1; . . . ; fs be a subset of

ðK ½t�Þ½x�, A1; . . . ;Al strata in Km and G1; . . . ;Gl subsets of ðK½t�Þ½x�. A finite set

G ¼ fðA1;G1Þ; . . . ; ðAl;GlÞg of pairs is called a parametric syzygy system (PSS)

on A1 [ � � � [ Al of ð f1; . . . ; fsÞ if saðGiÞ, a A Ai, is a standard basis (or Gröbner

basis) of the module of syzygies w.r.t. the generators sað f1Þ; sað f2Þ; . . . ; sað fsÞ in
K ½½x�� (or K ½x�) for each i ¼ 1; . . . ; l. We simply say G is a parametric syzygy

system of ð f1; . . . ; fsÞ if A1 [ � � � [ Al ¼ Km.

We write for clarity a parametric syzygy system in a local ring as PSSsb (for

standard bases) and parametric syzygy system in a global ring as PSSgb (for

Gröbner bases).

It is easy to see that Theorem 5.1 can be generalized to the parametric case

by PSSsb. The outline of the algorithm for computing logarithmic vector fields is

therefore the following.

Step 1. Compute a parametric standard basis of the annihilator ideal

AnnOX ;O
ðHFð f ÞÞ by Algorithm 1.

Step 2. Compute a PSSsb of qj
qf
qx1

; qf
qx2

; . . . ; qf
qxn

; f
� �

where qj is an element of

the standard basis of AnnOX ;O
ðHFð f ÞÞ.

Step 3. Select an element ðc1; c2; . . . ; cn; cnþ1Þ from a PSSsb in OX , whose first

component has a non-zero constant term.

Step 4. Set vj ¼ qj
q
qx1
þ ðc2=c1Þ q

qx2
þ � � � þ ðcn=c1Þ q

qxn
.

In step 2, it is necessary to compute a PSSsb of qj
qf
qx1

; qf
qx2

; . . . ; qf
qxn

; f
� �

in the

rings of power series. However, to the best of our knowledge, there is currently

no implementation of such syzygy computation. Thus, we provide a new alter-

native e‰cient algorithm for computing the PSSsb in the rings of power series.

214 Katsusuke Nabeshima and Shinichi Tajima



In [28], an e‰cient algorithm for computing PSSgb in a ‘‘polynomial ring’’,

has been introduced. One can generalize the algorithm to a local ring by using

Lazard’s homogenization technique [23]. The algorithm of parametric syzygies is

described in Appendix A.

Note that as we apply Lazard’s homogenization technique, we obtain a

standard basis of the module of syzygies w.r.t. a local ‘‘total degree’’ term order

0. Thus, we compute, beforehand, a parametric standard basis of AnnOX ;O
ðHFð f ÞÞ

w.r.t. the same term order 0.

The complete algorithm for computing logarithmic vector fields along S with

parameters, is Algorithm 5.

The correctness clearly follows from Algorithm 4 (PSB) and Theorem 5.1.

As we use the Lazard’s homogenization technique, it follows from [28] and

Algorithm 4 that the algorithm for computing a PSSsb, at ð�Þ, terminates. Since

the set P and M have only finite number of pairs, the algorithm terminates. Note

that the part of ðhÞ will be used in Algorithm 8, too.

We illustrate the algorithm with the following examples.

Example 7. Let us consider Example 5. From Example 5, the reduced

standard basis of AnnOX ;O
ðHFð f ÞÞ w.r.t. 0�1 is fx3

1 ; x1x2; x
2
2 þ 3=2x2

1g. Then, a

syzygy basis of x3
1

qf
qx1

; qf
qx2

; f
� �

is

fð9þ 64x2;�6x4
1 þ 96x2

1x
2
2 þ 12x2

1x2 � 8x3
2 ;�384x2

1x1 � 48x2
1 þ 32x2

2Þ;

ð�24x4
1 � 16x2

1x2; 4x
2
1 þ 3x2; 6x

4
1x

4
2 þ 4x2

1x
2
2 ; 0Þ;

ð�24x2
1x2 � 3x2

1 � 2x2
2 ; 2x

6
1 � 36x4

1x
2
2 � 4x4

1x2; 144x
4
1x2 þ 16x4

1Þ;

ð�3x2
1 þ 16x2

2 ; 2x
6
1 � 4x4

1x2 þ 24x2
1x

3
2 ; 16x

4
1 � 96x2

1x
2
2Þ;

ðx4
1 þ 4x3

2 ;�6x8
1 � 4x6

1x2; 0Þg:

We take ð9þ 64x2;�6x4
1 þ 96x2

1x
2
2 þ 12x2

1x2 � 8x3
2 ;�384x2

1x1 � 48x2
1 þ 32x2

2Þ
(because the first component has a non-zero constant term) and set

v1 ¼ x3
1

q

qx1
þ ð�6x4

1 þ 96x2
1x

2
2 þ 12x2

1x2 � 8x3
2Þ=ð9þ 64x2Þ �

q

qx2
:

As 1=ð9þ 64x2Þ ¼ 1=4
Py

i¼0ð�64=9Þ
i
xi
2, v1 is a holomorphic vector field

x3
1

qf

qx1
þ ð�6x4

1 þ 96x2
1x

2
2 þ 12x2

1x2 � 8x3
2Þ

Xy
i¼0
ð�64=9Þ ixi

2

q

qx2
:
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Algorithm 5. Method 1

Specification: Method1( f ;0)

Computing bases of DerX ;Oð�log SÞ.
Input: f : a semi-weighted homogeneous polynomial of type ðd;wÞ with parameters t.

0 : a local term order.

Output: ðV;DÞ :
V ¼ fðA1;V1Þ; . . . ; ðAl;VlÞg, Vi is a set of logarithmic vector fields along S on Ai for each i A
f1; . . . ; lg.

D ¼ fB1; . . . ;Bkg is a set of strata s.t. the weighted homogeneous part of f does not define an isolated

singularity at the origin on Bi for 1a ia k.

BEGIN

L q; ðP;DÞ  PSBð f ;0Þ;
T Compute a PSSsb of

qf

qx2
; . . . ;

qf

qxn
; f

� �
in OX ;

while T0q do

Select fðA0;MÞg from T; T TnfðA0;MÞg; L0  q;

while M0q do

Select ðc2; . . . ; cn; cnþ1Þ from M; M  Mnfðc2; . . . ; cn; cnþ1Þg;
L0  c2

q
qx2
þ � � � þ cn

q
qxn

n o
;

end-while

end-while

L L \ fðA0;L0Þg;

ðhÞ

while P0q do

Select ðA; fq1; . . . ; qrgÞ from P; P PnfðA; fq1; . . . ; qrgÞg;
/*fq1; . . . ; qrg is the reduced standard basis*/
for each j A f1; . . . ; rg do

M Compute a PSSsb of qj
qf

qx1
;
qf

qx2
; . . . ;

qf

qxn
; f

� �
on A; ð�Þ

S q;

while M0q do

Select ðA 0;MÞ from M; M MnfðA 0;MÞg;
ðc1; . . . ; cnþ1Þ  Select an element from M whose 1st component is a nonzero constant;

v qj
q
qx1
þ ðc2=c1Þ q

qx2
þ � � � þ ðcn=c1Þ q

qxn
;

while V0q do

Select ðA 00;VÞ from V; V VnfðA 00;VÞg;
if A 0 \ A 000q then

S S [ fðA 0 \ A 00;V [ fvgÞg;
end-if

end-while

end-while

V S;

end-for

end-while

return ðV;DÞ;
END
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Likewise, we take the following vector from a syzygy basis of x1x2
qf
qx1

; qf
qx2

; f
� �

:

ð9þ 64x2; 8x
4
1 þ 2x2

1x2 þ 96x3
2 þ 12x2

2 ;�8x2
1 � 384x2

2 � 48x2Þ:

Moreover, we take the following vector from a syzygy basis of
�
x2
2 þ 3=2x2

1
qf
qx1

;
qf
qx2

; f
�
:

ð27� 292x2
1 � 27x2; 4x

5
1 � 629x3

1x2 � 27x3
1 � 438x1x

3
2 þ 54x1x2;

2624x3
1 þ 1752x1x

2
2 þ 216x1Þ:

Hence, we have the following as non-trivial logarithmic vector fields

v2 ¼ x1x2 �
q

qx1
þ ð8x4

1 þ 2x2
1x2 þ 96x3

2 þ 12x2
2Þ=ð9þ 64x2Þ �

q

qx2
;

v3 ¼ x2
2 þ 3=2x2

1 �
q

qx1
þ ð4x5

1 � 629x3
1x2 � 27x3

1 � 438x1x
3
2 þ 54x1x2Þ=

ð27� 292x2
1 � 27x2Þ �

q

qx2
:

Thus, v1, v2, v3 and trivial vector fields generate DerX ;Oð�log SÞ.
Note that the expansion of a polynomial ð9þ 64x2Þx3

1 is 9x3
1 þ 64x3

1x2. If the

expansion of a polynomial is given, then we cannot obtain the really important

factor x3
1 . If we compute logarithmic vector fields with expanded polynomials

in coe‰cients (for example the command ‘‘syz’’ of Singular [15]), then as, in

general, a coe‰cient polynomial cannot be factored into polynomials, we cannot

get really important information as outputs and we need further computation to

find the essential factor. In contrast, our algorithm tells us the essential informa-

tion on coe‰cients a1ðxÞ’s, at the isolated singularity, by computing a standard

basis of an annihilating ideal AnnOX ;O
ðHFð f ÞÞ. This is a significant feature of the

proposed algorithm.

The next example handles a parametric case.

Example 8. Let us consider Example 3 and Example 6, again. Now, we

know a parametric standard basis of the annihilator ideal AnnOX ;O
ðHFð f ÞÞ w.r.t.

0�1 where 0 is the local total degree lexicographic term order s.t. x2 0 x1.

– If the parameter t belongs to VðtÞ, then fx1; x4
2g is the reduced standard

basis. Compute a PSSsb of x1
qf
qx1

; qf
qx2

; f
� �

on VðtÞ. Then, fð�5; 4x2; 20Þ;
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ð5x4
2 ;�4x4

1 ; 0Þg is the PSSsb. Select ð�5; 4x2; 20Þ and set

v1 ¼ x1
q

qx1
� 4=5x2

q

qx2

which is an Euler logarithmic vector field. Next, we compute a PSSsb

of x4
2

qf
qx1

; qf
qx2

; f
� �

on VðtÞ. Then, fð0;�x4
1 � x5

2 ; 5x
4
2Þ; ð�5; 4x3

1 ; 0Þg is the

PSSsb. Select ð�5; 4x3
1 ; 0Þ and set

v2 ¼ x4
2

q

qx1
� 4=5x3

1

q

qx2

which is a trivial logarithmic vector field. Thus, v1 and trivial vector fields

generate DerX ;Oð�log SÞ.
– If the parameter t belongs to CnVðtÞ, then fx2

1 þ 1=25t2x3
2 ; x1x2 �

4=125t3x3
2 ; x

4
2g is the reduced standard basis. By the same way, we can

obtain the following three non-trivial logarithmic vector fields u1, u2, u3;

u1 ¼ ðx2
1 þ 1=25t2x3

2Þ
q

qx1
þ 1=25ðð64t6x3

1 � ð16t5x2 þ 625tÞx2
1

� ð1180t4x2
2 � 12500x2Þx1 þ 64t7x4

2 � 125t3x3
2Þ=ð625� 64t4x2ÞÞ

q

qx2
;

u2 ¼ ðx1x2 � 4=125t3x3
2Þ

q

qx1
þ 1=125ðð�256t7x3

1 þ ð64t6x2 þ 2500t2Þx2
1

� ð80t5x2
2 þ 3125tx2Þx1 � 256t8x4

2 � 5900t4x3
2

þ 62500x2
2Þ=ð625� 64t4x2ÞÞ

q

qx2
;

u3 ¼ x4
2

q

qx1
þ ððð64t4x2 � 500Þx3

1 � 16t3x2
2x

2
1 þ 20t2x3

2x1

þ 64t5x5
2 � 525tx4

2Þ=ð625� 64t4x2ÞÞ
q

qx2
:

5.2. Method 2

Here we introduce another new algorithm for computing logarithmic vector

fields along S. The key ideal of the new algorithm is the next lemma.

Lemma 5.4. Let f1; f2; . . . ; fl be polynomial in K ½x� s.t. fx A X j f1ðxÞ ¼
f2ðxÞ ¼ � � � ¼ flðxÞ ¼ 0g ¼ fOg where X be a neighborhood of the origin O of Cn.

Let IO be an ideal generated by f1; f2; . . . ; fl in OX ;O (local ring) and I be an ideal
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generated by f1; f2; . . . ; fl in K ½x� (global ring). Let h be a polynomial in K½x�,
s.t. h A IO. Then, there exists a polynomial g A I : hhi s.t. g B m, where I : hhi ¼
fg A K ½x� j gh A Ig is the ideal quotient and m ¼ hx1; x2; . . . ; xni is the maximal

ideal in OX ;O.

Proof. As I has a minimal primary decomposition and fx A X j f1ðxÞ ¼ � � �
¼ fsðxÞ ¼ 0g ¼ fOg, I can be written as I ¼ I0 \ I1 \ I2 \ � � � \ Ir where I0; I1; . . . ;

Ir are primary ideals and VðI0Þ ¼ fOg, O B VðIiÞ for each i A f1; . . . ; rg. Notice

that IO ¼ OX ;O n I0 where n is a tensor product. Recall that VðI : hI0iÞ ¼S
1aiar VðIiÞ. Since, h A I0 ¼ I0 \ K ½x1; . . . ; xn�, we have VðI : hhiÞ �S
1aiar VðIiÞ; which immediately implies that there exists a polynomial g A K ½x�

s.t. gh A I and gðOÞ0 0: r

Let fq1; . . . ; qrg be the reduced standard basis of the annihilating ideal of

HFð f Þ w.r.t. a local term order 0. Then, by the proof of Theorem 4.3, for each

j A f1; . . . ; rg,

qj
qf

qx1
A

qf

qx2
;
qf

qx3
; . . . ;

qf

qxn
; f

� �
:

Therefore, there exists gj A
qf
qx2

; qf
qx3

; . . . ; qf
qxn

; f
D E

: qj
qf
qx1

D E
with gjðOÞ0 0. Since,

gj qj
qf
qx1

� �
A qf

q2
; qf
q3
; . . . ; qf

qxn
; f

D E
, gj qj

qf
qx1

� �
can be written as

gj qj
qf

qx1

� 	
¼ p2

qf

qx2
þ � � � þ pn

qf

qxn
þ pnþ1 f

where p2; . . . ; pn; pnþ1 A K ½x�. The condition gjðOÞ0 0 implies that qj ¼ pj=gj and

pj=gj, are well-defined as elements of OX ;O for j ¼ 2; . . . ; n. Hence, if we have

polynomial gj ; p2; . . . ; pn; pnþ1, then qj
qf
qx1

can be written as follows

qj
qf

qx1
¼ ðp2=gjÞ �

qf

qx2
þ � � � þ ðpn=gjÞ �

qf

qxn
þ ðpnþ1=gjÞ � f :

This implies

qj
qf

qx1
� ðp2=gjÞ �

qf

qx2
� � � � � ðpn=gjÞ �

qf

qxn
A h f i

in OX ;O, namely,

vj ¼ qj
q

qx1
þ ð�p2=gjÞ

q

qx2
þ � � � þ ð�pn=gjÞ

q

qxn

is a logarithmic vector field along S.
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The denominator gj can be obtained by using an algorithm for computing

ideal quotients, and polynomials p2; . . . ; pn; pnþ1 can also be obtained in a poly-

nomial ring K ½x� by utilizing an algorithm for computing syzygies.

Theorem 5.5. Algorithm 4 outputs a logarithmic vector field along S and

terminates.

Proof. We prove that there exists a vector ðc1; . . . ; cn; cnþ1Þ in Syz s.t. c1

is a nonzero constant. By Lemma 5.4, there exists g A G s.t. gðOÞ0 0. Since

g q
qf
qx1

� �
A qf

qx2
; qf
qx3

; . . . ; qf
qxn

; f
D E

, there exist p2; . . . ; pn; pnþ1 A K ½x� s.t. g q
qf
qx1

� �
¼

p2
qf
qx2
þ � � � þ pn

qf
qxn
þ pnþ1 f : Let ðu2; . . . ; un; unþ1Þ be a syzygy of qf

qx2
; . . . ; qf

qxn
; f

� �
,

i.e., u2
qf
qx2
þ � � � þ un

qf
qxn
þ unþ1 f ¼ 0: Then,

g q
qf

qx1

� 	
� p2

qf

qx2
þ � � � þ pn

qf

qxn
þ pnþ1 f

� 	� 	

þ u2
qf

qx2
þ � � � þ un

qf

qxn
þ unþ1 f

� 	
¼ 0; i:e:;

gq
qf

qx1

� 	
þ ðu2 � p2Þ

qf

qx2
þ � � � þ ðun � pnÞ

qf

qxn
þ ðunþ1 � pnþ1Þ f ¼ 0:

Hence, ð1; u2 � p2; . . . ; un � pn; unþ1 � pnþ1Þ is a syzygy of gq
qf
qx1

� �
; qf
qx2

; . . . ; qf
qxn

; f .

As Syz is a Gröbner basis of the syzygy module w.r.t. a POT order in K ½x�nþ1

and ð1; u2 � p2; . . . ; un � pn; unþ1 � pnþ1Þ A hSyzi, there exists an element ðc1; . . . ;

Algorithm 6. OneElement

Specification: OneElement( f ; q)

Computing a logarithmic vector field along S.

Input: f : a semi-weighted homogeneous polynomial of type ðd;wÞ.
q A K ½x�: q A SB where SB is a reduced standard basis of AnnOX ; O

ðHFð f ÞÞ.
Output: v ¼ q q

qx1
þ d2

q
qx2
þ � � � þ dn

q
qxn

: v is logarithmic along S.

BEGIN

1: G  Compute a Gröbner basis of
qf

qx2
;
qf

qx3
; . . . ;

qf

qxn
; f

D E
: q

qf

qx1

D E
in K½x�;

2: g Select a polynomial g from G s.t. gðOÞ0 0;

3: Syz Compute a Gröbner basis of a module of syzygies w.r.t. the generators gq
qf

qx1

� �
;
qf

qx2
; . . . ;

qf

qxn
;

f , w.r.t. a POT module order in K ½x�nþ1;
4: ðc1; . . . ; cn; cnþ1Þ  Select ðc1; . . . ; cn; cnþ1Þ from Syz s.t. c1 contains a nonzero constant;

5: For each i A f2; . . . ; ng,
di  ci=ðc1gÞ;

return q q
qx1
þ d2

q
qx2
þ � � � þ dn

q
qxn

;

END
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cn; cnþ1Þ A Syz such that the first component is a nonzero constant. Therefore,

obviously,

q
qf

qx1
þ ðc2=ðc1gÞÞ

qf

qx2
þ � � � þ ðcn=ðc1gÞÞ

qf

qxn
A h f i:

As an algorithm for computing Gröbner bases terminates in K ½x�, Algorithm 4

also terminates. r

Corollary 5.6. Using the same notation as in Theorem 5.5 and Corollary

5.2, let V ¼ fv j for each i A f1; . . . ; rg; v ¼ OneElementð f ; qiÞg. Then, V [ T is a

set of generators of DerX ;Oð�log SÞ.

Proof. By Proposition 4.5 and Theorem 5.5, obviously, elements of V [ T

generate DerX ;Oð�log SÞ over OX ;O. r

Let us consider parametric cases. It is possible to extend Algorithm 6 to

parametric cases, naturally, by utilizing CGS and PSSgb, as follows.

Algorithm 7. ParaOneElement

Specification: ParaOneElement( f ; q;A)

Computing a logarithmic vector field along S with parameters on A.

Input: f : a semi-weighted homogeneous polynomial of type ðd;wÞ with parameters.

ðq;AÞ : q A SB and ðA; SBÞ A P where P is an output of Algorithm 4.

Output: V ¼ fðA1; fv1gÞ; . . . ; ðAl; fvlgÞg: vj ¼ q q
qx1
þ dj2

q
qx2
þ � � � þ djn

q
qxn

is a logarithmic along S on

Aj , for each j A f1; . . . ; lg.
BEGIN

V q; G Compute a CGS of
qf

qx2
;
qf

qx3
; . . . ;

qf

qxn
; f

D E
: q

qf

qx1

D E
on A; ð}Þ

while G0q do

ðA 0;GÞ  Select ðA 0;GÞ from G; G GnfðA 0;GÞg;
g Select a polynomial g from G s.t. gðOÞ0 0;

Y Compute a PSSgb of gq
qf

qx1

� �
;
qf

qx2
; . . . ;

qf

qxn
; f

� �
on A 0;

while Y0q do

ðA 00; SyzÞ  Select ðA 00; SyÞ from Y; Y YnfðA 00; SyzÞg;
ðc1; . . . ; cn; cnþ1Þ  Select ðc1; . . . ; cn; cnþ1Þ from Syz s.t. c1 is a nonzero constant;

for each i A f2; . . . ; ng do

di  ci=ðc1gÞ;
end-for

V V [ A 00; q q
qx1
þ d2

q
qx2
þ � � � þ dn

q
qxn

n o� �n o
;

end-while

end-while

return V;

END
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Remark. At ð}Þ, an algorithm for computing CGS of ideal quotients is

required. This algorithm is described in [22]. It is possible to compute CGS of the

ideal quotients.

The consideration above yields the following new algorithm for computing

logarithmic vector fields along S with parameters.

Let us remark that the first part of Method 2 is the same as ðhÞ of Method 1.

The correctness follows from Theorem 5.5. Since the set P and M have only

finite number of pairs, the algorithm terminates.

We illustrate the algorithm with the following examples.

Example 9. A polynomial f ¼ f0 þ x6
1 (W13 singularity) is a semi-weighted

homogeneous polynomial of type ð16; ð3; 4ÞÞ in C½x1; x2� where f0 ¼ x4
1x2 þ x4

2

Algorithm 8. Method 2

Specification: Method2( f ;0)

Computing bases of DerX ;Oð�log SÞ.
Input: f : a semi-weighted homogeneous polynomial of type ðd;wÞ with parameters t.

0 : a local term order.

Output: ðV;DÞ:
V ¼ fðA1;V1Þ; . . . ; ðAl ;VlÞg, Vi is a set of logarithmic vector fields along S on Ai for each

i A f1; . . . ; lg.
D ¼ fB1; . . . ;Bkg is a set of strata s.t. the weighted homogeneous part of f does not define an isolated

singularity at the origin on Bi for 1a ia k.

BEGIN

ðhÞ of Method 1

while P0q do

Select ðA; fq1; . . . ; qrgÞ from P; P PnfðA; fq1; . . . ; qrgÞg; /*standard basis*/
for each j from 1 to r do

V ParaOneElementð f ; qi;AÞ; S q;

while V0q do

Select ðA 0;VÞ from V; V MnfðA 0;VÞg;
while L0q do

Select ðA 00;LÞ from L; L LnfðA 00;LÞg;
if A 0 \ A 000q then S S [ fðA 0 \ A 00;V [ LÞg; end-if

end-while

end-while

L S;

end-for

end-while

return ðV;DÞ;
END
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is a weighted homogeneous polynomial. From Example 5, SB ¼ fx3
1 ; x1x

2
2 ; x

2
2 þ

3=2x2
1g is the reduced standard basis of AnnOX ;O

ðHFð f ÞÞ w.r.t the local weighted

degree lexicographic term order 0 with the coordinate ðx1; x2Þ.
For each element of SB, we apply the algorithm OneElement for computing

logarithmic vector fields.

1. Take x3
1 from SB. Then, f27� 256x2

1 ; 9þ 64x2g is a Gröbner basis of the

ideal quotient qf
qx2

; f
D E

: ðx3
1Þ

qf
qx1

D E
w.r.t. the total degree lexicographic

term order 0td (global term order) with the coordinate ðx1; x2Þ. Set g ¼
9þ 64x2 and compute a Gröbner basis of a module of syzygies w.r.t. the

generators gðx3
1Þ

qf
qx1

; qf
qx2

; f . Then, the Gröbner basis (w.r.t. 0td ) is

fð�1; 6x4
1 � 96x2

1x
2
2 � 12x2

1x2 þ 8x3
2 ; 384x

2
1x1 þ 48x2

1 � 32x2
2Þ;

ð0; x6
1 þ x4

1x2 þ x4
2 ;�x4

1 � 4x3
2Þg:

From the first element, we get

v1 ¼ �x3
1

q

qx1
þ ð6x4

1 � 96x2
1x

2
2 � 12x2

1x2 þ 8x3
2Þ=ð9þ 64x2Þ

q

qx2

as a logarithmic vector field along S because the first component of the

first element is a constant.

2. Take x1x
2
2 from SB. Then, f27� 256x2

1 ; 9þ 64x2g is a Gröbner basis of
qf
qx2

; f
D E

: x1x
2
2

qf
qx1

D E
w.r.t. 0td . Set g ¼ 9þ 64x2 and compute a Gröbner

basis of a module of syzygies w.r.t. the generators gðx1x2
2Þ

qf
qx1

; qf
qx2

; f . Then,

the Gröbner basis (w.r.t. 0td ) is

fð�1;�8x4
1 � 2x2

1x2 � 96x3
2 � 12x2

2 ; 8x
2
1 þ 384x2

2 þ 48x2Þ;

ð0; x6
1 þ x4

1x2 þ x4
2 ;�x4

1 � 4x3
2Þg

Hence, we get

v2 ¼ �x1x2
2

q

qx1
þ ð�8x4

1 � 2x2
1x2 � 96x3

2 � 12x2
2Þ=ð9þ 64x2Þ

q

qx2

as a logarithmic vector field along S.

3. Take x2
2 þ 3=2x2

1 from SB. Then, f27� 256x2
1 ; 9þ 64x2g is a Gröbner

basis of qf
qx2

; f
D E

: ðx2
2 þ 3=2x2

1Þ
qf
qx1

D E
w.r.t. 0td . Set g ¼ 9þ 64x2 and

compute a Gröbner basis of a module of syzygies w.r.t. the generators

gðx3Þ qf
qx1

; qf
qx2

; f . Then, the Gröbner basis (w.r.t. 0td )
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fð1;�96x5
1 � 88x3

1x2 � 9x3
1 þ 146x1x

2
2 þ 18x1x2; 96x

3
1 � 584x1x2 � 72x1Þ;

ð0;�x6
1 � x4

1x2 � x4
2 ; x

4
1 þ 4x3

2Þg:

Hence, we get

v3 ¼ ðx2 þ 3=2x2
1Þ

q

qx1
þ ð�96x5

1 � 88x3
1x2 � 9x3

1

þ 146x1x
2
2 þ 18x1x2Þ=ð9þ 64x2Þ

q

qx2

as a logarithmic vector field along S.

Therefore, v1, v2, v3 and trivial vector fields generate DerX ;Oð�log SÞ.

The next example handles a parametric case.

Example 10. A polynomial f ¼ f0 þ t1x
4
2x3 þ t2x

3
3 A C½x1; x2; x3� (S17 sin-

gularity) is a semi-weighted homogeneous polynomial of type ð24; ð7; 4; 10ÞÞ
where f0 ¼ x2

1x3 þ x2x
2
3 þ x6

2 and t1, t2 are parameters.

By applying the method [32] for computing Tjurina stratification, the list of

Tjurina numbers of f is obtained as follows.

– If ðt1; t2Þ A Vðt1; t2Þ, then the Tjurina number tð f Þ of f at the origin, is 17.

– If ðt1; t2Þ A Vðt1ÞnVðt1; t2Þ, then the Tjurina number tð f Þ of f at the origin,

is 16.

– If ðt1; t2Þ A C2nVðt1Þ, then the Tjurina number tð f Þ of f at the origin,

is 15.

Let us consider logarithmic vector fields along S with the parameters.

Algorithm 4 outputs

PS ¼ fðVðt1; t2Þ; fx6
2 ; x2x3; 6x

5
2 þ x2

3 ; x1gÞ; ðVðt1ÞnVðt1; t2Þ;

fx6
2 ; x

2
1 þ 18=7t2x

5
2 ; x1x2; x1x3;�72=7t2x5

2 þ x1x3; 6x
5
2 þ x2

3gÞ;

ðC2nVðt1Þ; fx6
2 ; x1x

2
2 ; x

2
1 þ 18=7t2x

5
2 � 1=7t1x

4
2 ; x1x3;

�72=7t2x5
2 þ 4=7t1x

4
2 þ x2x3; 6x

5
2 þ x2

3gÞg

as a parametric standard basis of AnnOX ;O
ðHFðsað f ÞÞÞ.

Notice that the decomposition of the parameter space C2 is the same as the

Tjurina stratification.

1. Take ðVðt1; t2Þ; fx6
2 ; x2x3; 6x

5
2 þ x2

3 ; x1gÞ from PS. Then, on Vðt1; t2Þ, the
algorithm outputs the following non-trivial logarithmic vector fields
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along S:

V11 ¼
�
7x1

q

qx1
þ 10x3

q

qx3
þ 4x2

q

qx2
; ð6x5

2 þ x2
3Þ

q

qx1
� 2x1x3

q

qx2
;

�7x2x3
q

qx1
þ 12x1x3

q

qx3
þ 2x1x2

q

qx2
;

�7x6
2

q

qx1
� 2x1x

2
3

q

qx3
þ 2x1x2x3

q

qx2

�

and the following trivial logarithmic vector fields along S:

V12 ¼
�
ð�6x2

1x3 � 5x2x
2
3Þ

q

qx3
þ ð�x2

1x2 � 2x2
2x3Þ

q

qx2
;

ð6x5
2 þ x2

3Þ
q

qx3
þ ð�x2

1 � 2x2x3Þ
q

qx2
; ðx2

1x3 þ x6
2 þ x2x

2
3Þ

q

qx2

�
:

Hence, if ðt1; t2Þ A Vðt1; t2Þ, then V11 [V12 generates DerX ;Oð�log SÞ.
2. Take ðVðt1ÞnVðt1; t2Þ; fx6

2 ; x
2
1 þ 18=7t2x

5
2 ; x1x2; x1x3;�72=7t2x5

2 þ x1x3;

6x5
2 þ x2

3gÞ, from PS. Then, on Vðt1ÞnVðt1; t2Þ, the algorithm outputs the

following non-trivial logarithmic vector fields along S:

V21 ¼
�
ð6x5

2 þ x2
3Þ

q

qx1
� 2x1x3

q

qx2
; ð�7Þð�72=7t2x5

2 þ x2x3Þ
q

qx1

þ 12x1x3
q

qx3
þ ð2x1x2 � 24t2x1x3Þ

q

qx2
;

ð1492992b5x3
3 � 16807Þðx1x3Þ

q

qx1
þ ð�74088t2x4

2x3 þ 127008t22x
3
2x

2
3

� 217728t32x
2
2x3 þ 373248t42x2x

4
3 þ 1492992t52x

5
3 � 24010x2

3Þ
q

qx3

þ ð�12348t2x5
2 þ 21168t22x

4
2x3 � 36288t32x

3
2x

2
3 þ 62208t42x

2
2x

3
3

þ 746496t52x2x
4
3 � 9604x2x3 þ 14406t2x

2
3Þ

q

qx2
;

ð1492992t52x3
3 � 16807Þx1x2

q

qx1
þ ð127008t22x4

2x3 � 217728t32x
3
2x

2
2

þ 373248t42x
2
2x

3
3 þ 1492992t52x2x

4
3 � 24010x2x3 þ 12348t2x

2
3Þ

q

qx3
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þ ð21168t22x5
2 � 36288t33x

4
2 þ 62208t42x

3
2x

2
3 þ 746496t52x

2
2x

3
3

� 9604x2
2 þ 2058t2x2x3 � 24696t22x

2
3Þ

q

qx2
;�7ðx2

1 þ 18=7t2x
5
2Þ

q

qx1

� 10x1x3
q

qx3
þ ð�4x1x2 þ 6t2x1x3Þ

q

qx2
;

ð�1492992t52x3
3 þ 16807Þx6

2

q

qx1
þ ð49392t2x4

2x3 � 84672t22x
3
2x

2
3

þ 145152t32x
2
2x

3
3 � 248832t42x2x

4
3 þ 4802x2

3Þx1
q

qx3

þ ð8232t2x5
2 � 14112t22x

4
2x1 þ 24192t32x

3
2x

2
3 � 41472t42x

2
2x

3
3

þ ð497664t52x4
3 � 4802x3Þx2 � 9604t2x

2
3Þx1

q

qx2

�
;

and the trivial logarithmic vector fields along S are V12.

Hence, if ðt1; t2Þ A Vðt1ÞnVðt1; t2Þ, then V21 [V12 generates

DerX ;Oð�log SÞ.
3. Take the last segment from PS. In this case, the algorithm decomposes

C2nVðt1Þ into 4 strata

Vðt2ÞnVðt1; t2Þ;Vð4t31 þ 27t2ÞnVðt1; t2Þ;Vð64t61 þ 912t31 t2 þ 3969t22ÞnVðt1; t2Þ;

C2nVð256t101 t2 þ 5376t71 t2 þ 40500t41 t
3
2 þ 107163t1t

4
2Þ:

This decomposition happens when we compute a Gröbner basis of an

ideal quotient qf
qx2

; qf
qx3

; f
D E

: q
qf
qx1

D E
in Algorithm 6, namely, for each

stratum, the structure of the ideal quotient is di¤erent from others.

Due to the saving of pages, we omit the output of logarithmic vector

fields along S, because the output is quite huge.

The algorithm Method 2 (with total degree lexicographic term order s.t. x3 0

x2 0 x1) has been implemented in the computer algebra system Risa/Asir. Here we

give results of the benchmark tests. Table 3 shows a comparison of the imple-

mentation of Method 1 with Method 2 in numbers of strata (No. strata) and

computation time (CPU time). x1, x2, x3 are variables and s1, s2, t1, t2 are

parameters. The time is given in second. > 3h means it takes more than 3 hours.

Note that in Prob. 5, if s1 0 05s22 � 40 0, then x4
1 þ s1x

3
1x

2
2 þ s2x

2
1x

4
2 þ x8

2 is a

weighted homogeneous polynomial.
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In all tests of Table 3, Method 2 results in better performance compared to

Method 1. The essential point of Method 2 is computing Gröbner bases of ideal

quotients, instead of standard bases. In general, a size of output of PSSgb in

Algorithm 7 is smaller than that of PSSsb in Algorithm A (Lazard’s homoge-

nization technique). Thus, the numbers of strata of Method 2 is smaller than that

of Method 1.

We can use various term order in Method 2 unlike Method 1.

In this paper, we have introduced two algorithms for computing loga-

rithmic vector fields along a semi-weighted homogeneous isolated hypersurface

singularity.
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Appendix A. Parametric syzygies

Here, we describe how to compute PSSsb in a ‘‘local ring’’. Our main idea

for computing PSSsb, is to combine the algorithm for computing PSSsb in a

polynomial ring [28] with Lazard’s homogenization technique [23].

Method 1 Method 2

Prob. Semi-weighted homogeneous poly. No. strata time No. strata time

1 x3
1 þ x2x

2
3 þ x8

2 þ t1x1x
6
2 2 0.0468 2 0.0312

2 x3
1x2 þ x3

2 þ x2x
2
3 þ x3

1x3 þ t1x1x
3
3 12 0.4050 2 0.078

3 x3
1x3 þ x3

2 þ x2x
2
3 þ s1x2x

3
1 þ t1x1x

3
3 14 0.4056 5 0.3276

4 x2
1x3 þ x3

2 þ s1x2x
7
3 þ t1x

11
3 þ x12

3 9 3.292 3 0.4836

5 x4
1 þ s1x

3
1x

2
2 þ s2x

2
1x

4
2 þ x8

2 24 1.451 15 1.045

6 x3
1 þ x2x

2
3 þ x11

2 þ t1x1x
8
2 þ t2x1x

9
2 12 26.08 5 3.931

7 x3
1x2 þ x15

2 þ t1x1x
11
2 þ t2x1x

12
2 18 43.6 6 8.19

8 x3
1x2 þ x2

1x
4
2 þ x10

2 þ t1x
11
2 þ t2x

12
2 — > 3h 9 510.5

Table 3. Comparison of Method 1 and Method 2.
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Definition A.1. Let g ¼
Pd

i¼0 gi A K ½x� be a polynomial of total degree

d where gi is a homogeneous polynomial of degree i. Then, ghðx0; xÞ ¼Pd
i¼0 giðxÞxd�i

0 is a homogeneous polynomial of total degree d in K ½x0; x� where
x0 is the extra variable. We call gh the homogenization of g. Let q be a ho-

mogenization of g, i.e., q ¼ gh. The dehomogenization of q is qe ¼ qð1; xÞ, i.e.,
qe ¼ ghð1; xÞ ¼ gðxÞ.

We generalize the algorithm [28] to compute PSSgb in a local ring by using

Lazard’s homogenization technique [23]. The following algorithm outputs PSSsb.

The correctness and termination follow from [23] and [28].
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V. Gerdt, W. Koepf, E. Mayr and E. Vorozhtsov (Eds.), Computer Algebra in Scientific

Computing (CASC), Lecture Notes in Computer Science 7442, (2012). Springer, 248–259.

[30] K. Nabeshima and S. Tajima, On e‰cient algorithms for computing parametric local coho-

mology classes associated with semi-quasihomogeneous singularities and standard bases.

In: K. Nabeshima (Ed.), International Symposium on Symbolic and Algebraic Com-

putation (2014). ACM, 351–358.

[31] K. Nabeshima and S. Tajima, Computing logarithmic vector fields associated with parametric

semi-quasihomogeneous hypersurface isolated singularities. In: D. Robertz (Ed.), Inter-

national Symposium on Symbolic and Algebraic Computation (ISSAC) (2015). ACM,

334–348.

229Computation methods of logarithmic vector fields



[32] K. Nabeshima and S. Tajima, Computing Tjurina stratifications of m-constant deformations via

parametric local cohomology systems, Applicable Algebra in Engineering, Communica-

tion and Computing, 27 (2016), 451–467.

[33] K. Nabeshima and S. Tajima, Algebraic local cohomology with parameters and parametric

standard bases for zero-dimensional ideals. Journal of Symbolic Computation, 82 (2017),

91–122.

[34] Y. Nakamura and S. Tajima, On weighted-degrees for algebraic local cohomologies associated

with semiquasihomogeneous singularities. Advanced Studies in Pure Mathematics 46

(2007), 105–117.

[35] M. Noro and T. Takeshima, Risa/Asir—A computer algebra system. In: Wang, P. (Ed.), Inter-

national Symposium on Symbolic and Algebraic Computation (ISSAC) (1992). ACM,

387–396.
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